动能和动能定理

合集下载

动能和动能的定理

动能和动能的定理

动能定理与牛顿第二定律的关系
牛顿第二定律描述了力对物体运动状态改变 的作用,即F=ma,其中F为作用力,m为质 量,a为加速度。而动能定理则描述了力对物 体动能改变的作用,即合外力对物体所做的 功等于物体动能的变化。
动能定理可以看作是牛顿第二定律在动能方 面的应用,因为物体的加速度与作用力成正 比,而物体的动能与速度平方成正比,所以 当力作用在物体上使其加速时,物体的动能
动能定理对于理解能量守恒定律的意义
动能定理是能量守恒定律在动力学中 的具体表现,通过动能定理可以深入 理解能量守恒定律的内涵和应用。
VS
动能定理表明,力对物体所做的功等 于物体动能的改变量,这有助于我们 更好地理解能量的转化和守恒,以及 物体运动状态的改变。
05 动能定理的深入思考
动能定理与势能、内能的关系
动能的特点
动能是标量,只有大 小,没有方向。
动能是状态量,与过 程无关,只与物体在 某一时刻的状态有关。
动能是相对量,与参 考系的选取有关。
动能与其他物理量的关系
动能与动量关系
P=mv,其中P为物体的动量,单位是 千克·米/秒(kg·m/s)。
动能与能量关系
动能是能量的一种形式,是物体机械 运动的能量,其他形式的能量可以转 化为动能。
也会相应增加或减少。
动能定理与相对论的关系
在相对论中,物体的动能不再是经典力学中的1/2mv^2, 而是与物体的质量和速度相关的更复杂的表达式。但动 能定理的基本思想仍然适用,即合外力对物体所做的功 等于物体动能的改变。
相对论中的动能关系式为E_k = (m_0c^2 + E_k') / √(1-v^2/c^2),其中E_k为物体的动能,m_0为物体的 静止质量,E_k'为物体因运动而具有的内部能量,v为物 体的速度,c为光速。这个公式可以看作是经典力学中动能的定理表述

7-7动能和动能定理(共34张PPT)

7-7动能和动能定理(共34张PPT)
(1)小球抛出点A距圆弧轨道B端的高度h.
(2)小球经过轨道最低点C时对轨道的压力FC (3)小球能否到达轨道最高点D?若能到达,试求对D点的压力FD
.若不能到达,试说明理由.
4. (12分)光滑曲面轨道置于高度为H=1.8m的平台上,其末端切线水 平;另有一长木板两端分别搁在轨道末端点和水平地面间,构成 倾角为 的斜面,如图所示。一个可视作质点的质量为m=1kg 的小球,从光滑曲面上由静止开始下滑(不计空气阻力,g取 10m/s2, )
(1)圆弧轨道的半径及轨道BC 所对圆心角(可用角度的三角函数 值表示)
(2)小球与斜面 AB 间的动摩擦因数
1.图中ABCD是一条长轨道,其中AB段是倾角为θ的斜面 ,CD是水平的,BC是与AB和CD都相切的一小段圆弧,其 长度可以略去不计,一质量为m的小滑块在A点从静止状 态释放,沿轨道滑下,最后停在D点,A点和D点的位置如图 所示, ,现用一沿轨道方向的力推滑块,使它缓慢地由D点 推回到A点时停下,设滑块与轨道间的摩擦系数为μ,则推 力做的功等于
4.(讨论)电动机通过一条绳子吊起质量为8kg的 物体。绳的拉力不能超过120N,电动机的功率不 能超过1 200W,要将此物体由静止起,用最快 的方式将பைடு நூலகம்体吊高90m(已知物体在被吊高90m 以前已开始以最大速度匀速上升),所需时间为 多少?(g取10 m/s2)
习题课
1.如图所示,在同一竖直平面内的两正对着的相同半圆光
(B)距离OA大于OB;
(C)距离OA小于OB;
(D)无法做出明确的判断。
3.一木块由A点自静止开始下滑,沿ACEB运动到 最高点B设动摩擦因数μ处处相同,转 角处撞击 不计机械能损失,测得A、B两点连线与水平方 向夹角为θ ,则木块与接触面间动摩擦因数μ为B (B)

高考物理科普动能与动能定理

高考物理科普动能与动能定理

高考物理科普动能与动能定理动能与动能定理动能是物理学中的一个重要概念,用来描述物体的运动状态。

在高考物理中,学生需要对动能与动能定理有一定的了解。

本文将介绍什么是动能以及动能定理的含义和应用。

一、动能的定义动能(kinetic energy)是一个物体由于运动而具有的能量。

简单来说,物体的动能与物体的质量和速度有关。

动能的单位是焦耳(J)。

动能的计算公式如下:动能 = 1/2 ×质量 ×速度²其中,质量的单位是千克(kg),速度的单位是米/秒(m/s)。

例如,质量为2千克的物体以10米/秒的速度运动,其动能为:动能 = 1/2 × 2 kg × (10 m/s)² = 100 J这表示该物体由于运动而具有100焦耳的能量。

二、动能定理动能定理(kinetic energy theorem)是描述物体动能变化的定理。

它的表述如下:物体的动能的变化量等于作用在物体上的净外力所做的功。

净外力指的是物体受到的所有外力的矢量和,而功即为力对物体的作用在物体上产生的能量转移。

根据动能定理,如果一个物体受到净外力作用,其动能就会发生改变。

当净外力与物体运动方向一致时,物体的动能增加;当净外力与物体运动方向相反时,物体的动能减少。

三、动能定理的应用动能定理在物理学中具有很多应用。

以下是一些常见的应用场景:1. 能量转换:动能定理可以用来描述机械能的转换。

例如,当一个物体在上升过程中受到重力作用时,其动能会逐渐减小,而重力势能会逐渐增加;当物体下落时,动能增加,而重力势能减小。

2. 简谐振动:对于简谐振动,动能和势能之间会发生周期性的转换。

例如,弹簧振子的动能在振动过程中会由最大值转变为最小值,而势能则相反。

3. 碰撞过程:在碰撞过程中,动能定理可以用来分析物体的速度和动量变化。

例如,当两个物体碰撞时,动能定理可以帮助计算碰撞后物体的速度。

四、总结动能与动能定理是高考物理中的重要知识点。

动能与动能定理

动能与动能定理

动能与动能定理
动能是物体运动时所具有的能量,它是物理学中一个重要的概念。


能的大小与物体质量和速度有关,公式为K=1/2mv²,其中K表示动能,m表示物体质量,v表示物体速度。

这个公式告诉我们,当一个
物体的速度增加时,它的动能也会增加;而当一个物体的质量增加时,它的动能也会增加。

动能定理是描述力对物体所做功与物体获得动能之间关系的定理。


表明,在没有外力做功或者外力做功为零的情况下,物体获得或失去
的动能等于所受合力沿着位移方向所作的功。

即K2-
K1=W12=W=(F12*s),其中K1和K2分别表示初始和最终状态下物体的动能,W12表示在这两个状态之间所受合力所作的功。

通过上述公式可以看出,在相同距离内,速度越大、质量越大、受到
更大合力等因素都会导致获得更多的动能。

同时,在相同条件下,外
力做功越大,则获得更多的动能。

在实际应用中,我们可以通过运用动能定理来计算机械设备或者车辆
等物体的动能大小,从而更好地掌握其运动状态和性能。

同时,还可
以通过改变物体的质量、速度、受力等因素来调节其动能大小,以达
到更好的运行效果。

总之,动能与动能定理是物理学中重要的概念和定理。

它们不仅有着广泛的应用价值,而且对于我们深入了解物体运动规律和性质也具有重要意义。

动能与动能定理

动能与动能定理

动能与动能定理动能是物体运动时所具有的能量,是描述物体运动状态的重要物理量。

本文将介绍动能的概念、计算方法以及动能定理的原理和应用。

一、动能的概念与计算方法动能是物体运动时所具有的能量,它与物体的质量和速度有关。

动能的计算公式为:动能 = 1/2 ×质量 ×速度的平方式中,“质量”表示物体的质量,单位为千克,“速度的平方”表示物体的速度的平方,单位为米每秒。

二、动能定理的原理与表达方式动能定理是描述物体运动过程中能量变化的定理,它表明,当物体受到合外力作用时,物体的动能会发生变化。

动能定理可用以下方式表达:动能的变化量 = 物体所受合外力的功其中,“动能的变化量”表示物体动能的增量或减量,“物体所受合外力的功”表示作用在物体上的合外力所做的功。

三、动能定理的应用动能定理在物理学中有广泛的应用,以下是其中两个重要方面:1. 机械能守恒原理根据动能定理,当物体只受重力做功或只受弹力做功时,物体的总机械能保持不变。

即动能和势能之和保持不变。

2. 动能定理与运动的描述动能定理可以用来分析和描述物体的运动过程。

通过计算物体在不同位置或不同时间点的动能变化量,可以了解物体的运动状态和受力情况,进而预测物体的运动轨迹。

四、总结动能是物体运动时所具有的能量,可以通过物体质量和速度来计算。

动能定理描述了物体受到合外力作用时动能的变化规律,可以用来研究和描述物体运动的特性。

在实际应用中,动能定理在机械能守恒和运动分析等方面发挥着重要的作用。

通过本文的介绍,相信读者对动能与动能定理有了更深入的理解,能够运用这些概念和定理解决有关的物理问题。

动能和动能定理

动能和动能定理

动能和动能定理动能是物体运动过程中所具有的能量,它是物体动力学性质的一种表现。

在物理学中,动能被定义为物体具有的使其能够进行相互作用的能力。

一、动能的定义和计算公式动能是与物体的质量和速度有关的物理量。

它可以通过以下公式进行计算:动能(K) = 1/2 * m * v^2其中,m为物体的质量,v为物体的速度。

二、动能与能量转换动能在物体运动的过程中可以转化为其他形式的能量,例如势能、热能等。

这种能量的转化过程可以通过动能定理来描述。

动能定理表明,物体所具有的动能变化等于物体所受到的净作用力所做的功。

数学表示为:∆K = W其中∆K表示动能的变化,W表示外力所做的功。

三、动能的应用动能的概念和定理在物理学中有广泛的应用。

1. 运动物体的动能计算:通过动能的定义和计算公式,可以计算质点、刚体等运动物体所具有的动能,进一步分析物体的运动状态。

2. 能量转化和守恒:通过动能定理,我们可以理解能量是如何在不同形式之间转化的,例如机械能转化为热能、光能等。

3. 力学分析中的应用:动能定理是力学分析中的重要工具之一,通过应用动能定理,可以计算物体受到的净作用力,进而研究物体的运动规律。

四、动能定理的局限性虽然动能定理在描述物体运动和能量转化方面具有重要意义,但也存在一定的局限性。

1. 仅适用于刚体系统:动能定理的推导基于刚体的运动,对于柔软物体的运动无法直接应用。

2. 需满足牛顿力学前提:动能定理基于牛顿力学的假设和前提,只适用于符合牛顿力学规律的物体。

3. 不考虑其他能量损失:在实际情况下,物体的运动中可能还存在其他能量的损失,例如空气阻力、摩擦等,这些因素在动能定理中没有考虑。

五、结论动能是物体运动过程中所表现出的能量,可以通过物体的质量和速度来计算。

动能定理描述了动能与净作用力所做的功之间的关系,进一步解释了能量转化的过程。

在物理学中,动能和动能定理被广泛应用于分析物体的运动和能量转化过程。

然而,动能定理也存在一定的局限性,在实际问题中需要综合考虑其他因素。

动能与动能定理

动能与动能定理

动能与动能定理动能是物体运动的表现,是描述物体运动状态的重要物理量之一。

物体的动能与其质量和速度有关,可以用公式K = 0.5mv²来表示,其中K表示物体的动能,m表示物体的质量,v表示物体的速度。

动能定理是描述物体运动动能变化的原理,它说明了当物体受到力的作用时,动能的变化量与力的做功的关系。

根据动能定理,物体的动能变化等于作用在物体上的力所做的功。

公式可以表示为K2 - K1 = W,其中K1表示物体在起始状态的动能,K2表示物体在结束状态的动能,W表示力所做的功。

动能定理的推导可以通过牛顿第二定律和功的定义来进行。

根据牛顿第二定律F = ma,将物体的加速度a表示为v² - u² / 2s,其中u表示起始速度,v表示结束速度,s表示运动距离。

将力与位移的乘积表示为Fs,将物体的质量m替换进去,可以得到力所做的功W = 0.5mv² - 0.5mu²。

根据动能定理,我们可以理解一些与动能相关的现象。

比如,在一个平直的水平面上,当一个物体在滑行过程中受到恒定的水平力作用时,物体的动能会发生变化。

如果力的方向与物体运动的方向一致,力做正功,物体的动能增加;如果力的方向与物体运动的方向相反,力做负功,物体的动能减少。

如果没有外力作用,物体的动能不会发生改变。

动能定理也可以应用于其他一些情况。

例如,当一个物体自由落体时,在下落过程中由于重力的做功,物体的动能会逐渐增加,而在上升过程中,由于重力与位移的夹角大于90°,重力做负功,物体的动能会减少。

当物体到达最高点时,动能达到最小值,为零,而在下落过程中逐渐恢复。

动能定理的应用还可以帮助我们理解一些现实中的问题。

例如,当汽车减速时,汽车制动器所施加的摩擦力会做负功,使汽车的动能减小,从而使汽车减速停止。

另外,运动员在进行跳跃动作时,运动员腿部的肌肉通过做功使身体获得一定的动能,然后将动能转化为跳跃的高度或距离。

动能定理

动能定理

7动能和动能定理一、动能和动能定理1.基本知识(1)动能 ①定义: 物体由于 而具有的能.②表达式: E k =12mv 2,式中v 是瞬时速度.③单位 动能的单位与功的单位相同,国际单位都是 ,符号为J. 1 J =1 kg·m 2/s 2=1 N·m. ④对动能概念的理解a .动能是标量,只有 ,没有 ,且动能为非负数.b .动能是状态量,在某一时刻,物体具有一定的速度,也就具有一定的动能. ⑤动能的变化量 即末状态的动能与初状态的ΔE k =12mv 22-12mv 21.ΔE k >0,表示物体的 .ΔE k <0表示物体的 .(2)动能定理的推导①建立情景 如图所示,质量为m 的物体,在恒力F 作用下,经位移l 后,速度由v 1增加到v 2.②推导依据外力做的总功:W = 由牛顿第二定律:F =由运动学公式:l =v 22-v 212a.③结论:W =12mv 22-12mv 21 即W =E k2-E k1=ΔE k .(3)动能定理的内容力在一个过程中对物体所做的功,等于物体在这个过程中 。

(4)动能定理的表达式 ①W =12mv 22-12mv 21. ②W =E k2-E k1. 说明:式中W 为 ,它等于各力做功的 。

(5)动能定理的适用范围不仅适用于 做功和 运动,也适用于 做功和 运动情况.二、对动能、动能定理的理解1.动能的特征(1)是状态量:与物体的运动状态(或某一时刻的速度)相对应.(2)具有相对性:选取不同的参考系,物体的速度不同,动能也不同,一般以地面为参考系.(3)是标量:只有大小,没有方向;只有正值,没有负值.2.对动能定理的理解(1)内容:外力对物体做的总功等于其动能的增加量,即W =ΔE k . (2)表达式W =ΔE k 中的W 为外力对物体做的总功.(3)ΔE k =12mv 22-12mv 21为物体动能的变化量,也称作物体动能的增量,表示物体动能变化的大小.(4)动能定理描述了做功和动能变化的两种关系.①等值关系:某物体的动能变化量总等于合力对它做的功.②因果关系:合力对物体做功是引起物体动能变化的原因,合力做功的过程实质上是其他形式的能与动能相互转化的过程,转化了多少由合力做了多少功来度量.例1. 关于运动物体所受的合力、合力做的功及动能变化的关系,下列说法正确的是( )A .合力为零,则合力做功一定为零B .合力做功为零,则合力一定为零C .合力做功越多,则动能一定越大D .动能不变化,则物体所受合力一定为零规律总结: 动能与速度的关系1.瞬时关系:动能和速度均为状态量,二者具有瞬时对应关系.2.变化关系:动能是标量,速度是矢量,当动能发生变化时,物体的速度(大小)一定发生了变化,当速度发生变化时,可能仅是速度方向的变化,物体的动能可能不变.训练1.(2014·苏州高一检测)一物体做变速运动时,下列说法正确的有( ) A .合力一定对物体做功,使物体动能改变 B .物体所受合力一定不为零 C .合力一定对物体做功,但物体动能可能不变 D .物体加速度一定不为零 动能定理的应用及优越性1.应用动能定理解题的基本步骤2.优越性(1)对于变力作用或曲线运动,动能定理提供了一种计算变力做功的简便方法.功的计算公式W=Fl cos α只能求恒力做的功,不能求变力的功,而由于动能定理提供了一个物体的动能变化ΔE k与合力对物体所做功具有等量代换关系,因此已知(或求出)物体的动能变化ΔE k=E k2-E k1,就可以间接求得变力做功.算,运算简单不易出错.注意:动能定理虽然是在物体受恒力作用,沿直线做匀加速直线运动的情况下推导出来的,但是对于外力是变力或物体做曲线运动,动能定理同样成立.例2.一架喷气式飞机质量m=5×103 kg,起飞过程中从静止开始滑行的路程s=5.3×102 m时(做匀加速直线运动),达到起飞速度v=60 m/s.在此过程中飞机受到的平均阻力是飞机重力的k倍(k=0.02).求飞机受到的牵引力.规律总结:动能定理与牛顿运动定律在解题时的选择方法1.动能定理与牛顿运动定律是解决力学问题的两种重要方法,一般来讲凡是牛顿运动定律能解决的问题,用动能定理都能解决,但动能定理能解决的问题,牛顿运动定律不一定都能解决,且同一个问题,用动能定理要比用牛顿运动定律解决起来更简便.2.通常情况下,其问题若涉及时间或过程的细节,要用牛顿运动定律去解决;其问题若不考虑具体细节、状态或时间,如物体做曲线运动、受力为变力等情况,一般要用动能定理去解决.训练2.一辆汽车以v1=6 m/s的速度沿水平路面行驶时,急刹车后能滑行s1=3.6 m,如果以v2=8 m/s的速度行驶,在同样的路面上急刹车后滑行的距离s2应为( ) A.6.4 m B.5.6 m C.7.2 m D.10.8 m三、用动能定理求变力的功例3.如图所示,AB 为14圆弧轨道,BC 为水平直轨道,圆弧的半径为R ,BC 的长度也是R .一质量为m 的物体,与两个轨道的动摩擦因数都为μ,当它由轨道顶端A 从静止下滑时,恰好运动到C 处停止,那么物体在AB 段克服摩擦力做功为( )A.12μmgRB.12mgR C .mgR D .(1-μ)mgR规律总结:1.本题中摩擦力的大小、方向都在变化,应用功的定义式无法直接求它做的功,在这种情况下,就要考虑利用动能定理.2.物体的运动过程分为多个阶段时,我们尽量对全过程应用动能定理,如果这样不能解决问题,我们再分段处理.如本题中我们直接对由A →B →C 的全过程应用动能定理,就比分为两个阶段由A →B 和由B →C 分别来处理简单一些.动能定理在多过程中的应用1.分段应用动能定理时,将复杂的过程分割成一个个子过程,对每个子过程的做功情况和初、末动能进行分析,然后针对每个子过程应用动能定理列式,然后联立求解.2.全程应用动能定理时,分析整个过程中出现过的各力的做功情况,分析每个力的做功,确定整个过程中合外力做的总功,然后确定整个过程的初、末动能,针对整个过程利用动能定理列式求解.当题目不涉及中间量时,选择全程应用动能定理更简单、更方便. 例4.如图所示,ABCD 为一竖直平面的轨道,其中BC 水平,A 点比BC 高出10 m ,BC 长1 m ,AB 和CD 轨道光滑.一质量为1 kg 的物体,从A 点以4 m/s 的速度开始运动,经过BC 后滑到高出C 点10.3 m 的D 点速度为零.求:(g 取10 m/s 2)(1)物体与BC 轨道间的动摩擦因数. (2)物体第5次经过B 点时的速度.(3)物体最后停止的位置(距B 点多少米).当堂双基达标1.对于动能的理解,下列说法错误的是( )A .动能是机械能的一种表现形式,凡是运动的物体都具有动能B .动能总为正值C .一定质量的物体,动能变化时,速度一定变化;但速度变化时,动能不一定变化D .动能不变的物体,一定处于平衡状态2.(多选)关于动能,下列说法正确的是( )A .公式E k =12mv 2中的速度v 是物体相对于地面的速度B .动能的大小由物体的质量和速率决定,与物体运动的方向无关C .物体以相同的速率向东和向西运动,动能的大小相等但方向不同D .物体以相同的速率做匀速直线运动和曲线运动,其动能不同3.(多选)一质量为0.1 kg 的小球,以5 m/s 的速度在光滑水平面上匀速运动,与竖直墙壁碰撞后以原速率反弹,若以弹回的速度方向为正方向,则小球碰墙过程中的速度变化和动能变化分别是( )A .Δv =10 m/sB .Δv =0C .ΔE k =1 JD .ΔE k =0 4.关于动能定理,下列说法中正确的是( ) A .某过程中外力的总功等于各力做功的绝对值之和 B .只要合外力对物体做功,物体的动能就一定改变 C .在物体动能不改变的过程中,动能定理不适用 D .动能定理只适用于受恒力作用而加速运动的过程5.下列关于运动物体所受的合力、合力做功和动能变化的关系,正确的是( ) A .如果物体所受的合力为零,那么合力对物体做的功一定为零 B .如果合力对物体做的功为零,则合力一定为零C .物体在合力作用下做匀变速直线运动,则动能在一段过程中变化量一定不为零D .如果物体的动能不发生变化,则物体所受合力一定是零6.一质量为m 的小球,用长为l 的轻绳悬挂于O 点.第一次小球在水平拉力F 1作用下,从平衡位置P 点缓慢地移到Q 点,此时绳与竖直方向夹角为θ(如图7­7­4所示),在这个过程中水平拉力做功为W 1.第二次小球在水平恒力F 2作用下,从P 点移到Q 点,水平恒力做功为W 2,重力加速度为g ,且θ<90°,则( )A .W1=F 1l sin θ,W 2=F 2l sin θ B .W 1=W 2=mgl (1-cos θ)C .W 1=mgl (1-cos θ),W 2=F 2l sin θD .W 1=F 1l sin θ,W 2=mgl (1-cos θ)7.一质量为m 的滑块,以速度v 在光滑水平面上向左滑行,从某一时刻起,在滑块上作用一向右的水平力,经过一段时间后,滑块的速度变为-2v (方向与原来相反),在这段时间内,水平力所做的功为( )A.32mv 2 B .-32mv 2 C.52mv 2 D .-52mv 2 8.(多选)甲、乙两个质量相同的物体,用大小相等的力F 分别拉它们在水平面上从静止开始运动相同的距离s ,如图7­7­6所示,甲在光滑面上,乙在粗糙面上,则下列关于力F 对甲、乙两物体做的功和甲、乙两物体获得的动能的说法中正确的是( )A .力F 对甲物体做功多B .力F 对甲、乙两个物体做的功一样多C .甲物体获得的动能比乙大D .甲、乙两个物体获得的动能相同9.有一质量为m 的木块,从半径为r 的圆弧曲面上的a 点滑向b 点,如图所示,如果由于摩擦使木块的运动速率保持不变,则以下叙述正确的是( )A .木块所受的合力为零B .因木块所受的力都不对其做功,所以合力做的功为零C .重力和摩擦力做的功代数和为零D .重力和摩擦力的合力为零10.物体在合外力作用下做直线运动的v ­t 图象如图所示.下列表述正确的是( )A .在0~1 s 内,合力做正功B .在0~2 s 内,合力总是做负功C .在1~ 2 s 内,合力不做功D .在0~3 s 内,合力总是做正功11.(多选)如图所示,一个小环沿竖直放置的光滑圆环形轨道做圆周运动.小环从最高点A 滑到最低点B 的过程中,小环线速度大小的平方v 2随下落高度h 的变化图象可能是图中的( )12.如图所示,一物体由A 点以初速度v 0下滑到底端B ,它与挡板B 做无动能损失的碰撞后又滑回到A 点,其速度正好为零.设A 、B 两点高度差为h ,则它与挡板碰前的速度大小为( )A. 2gh +v 204B.2ghC.2gh +v 202D.2gh +v 2013.质量为m的小球用长度为L的轻绳系住,在竖直平面内做圆周运动,运动过程中小球受空气阻力作用.已知小球经过最低点时轻绳受的拉力为7mg,经过半周小球恰好能通过最高点,则此过程中小球克服空气阻力做的功为( )A.mgL4B.mgL3C.mgL2D.mgL14.物体在合外力的作用下做直线运动的v-t图像如图所示,下列表述中正确的是()A.在0~1s内,合外力做正功B.在0~2s内,合外力总是做正功C.在1s~2s内,合外力不做正功D.在0~3s内,合外力总是做正功15.(多选)物体沿直线运动的v­t图象如图所示,已知在第1秒内合力对物体做功为W,则( )A.从第1秒末到第3秒末合力做功为4WB.从第3秒末到第5秒末合力做功为-2WC.从第5秒末到第7秒末合力做功为WD.从第3秒末到第4秒末合力做功为-0.75W16.如图所示,在距沙坑表面高h=8 m处,以v0=22 m/s的初速度竖直向上抛出一质量m=0.5 kg的物体,物体落到沙坑并陷入沙坑d=0.3 m深处停下.若物体在空中运动时的平均阻力是重力的0.1倍(g=10 m/s2).求:(1)物体上升到最高点时离开沙坑表面的高度H;(2)物体在沙坑中受到的平均阻力F是多少?17.如图所示,滑雪者从高为H的山坡上A点由静止下滑,到B点后又在水平雪面上滑行,最后停止在C点.A、C两点的水平距离为s,求滑雪板与雪面间的动摩擦因数μ.18.如图所示,AB为固定在竖直平面内的14光滑圆弧轨道,轨道的B点与水平地面相切,其半径为R.质量为m的小球由A点静止释放,求:(1)小球滑到最低点B时,小球速度v的大小;(2)小球刚到达最低点B时,轨道对小球支持力F N的大小;(3)小球通过光滑的水平面BC滑上固定曲面,恰达最高点D,D到地面的高度为h(已知h<R),则小球在曲面上克服摩擦力所做的功Wf.。

动能与动能定理的解析

动能与动能定理的解析

动能与动能定理的解析动能是描述物体运动状态的物理量,是物体运动所具有的能量形式。

在物理学中,动能可以通过物体质量和速度的平方来计算。

动能定理则是表明物体的动能变化量与外力所做的功等于物体所受的净作用力所做的功的关系。

一、动能的定义及计算公式动能是物体由于运动而具有的能量,它与物体的质量和速度有关。

动能的定义公式为:动能 = 1/2 ×质量 ×速度的平方,用数学表达式表示为:K = 1/2mv²。

其中,K代表动能,m代表物体的质量,v代表物体的速度。

二、动能与速度的关系动能与物体的速度呈正比关系。

当物体的速度增加时,其动能也会相应增加。

这意味着速度越大,物体运动所具有的能量就越多,动能也就越大。

相反,当物体的速度减小时,其动能会减小。

三、动能与质量的关系动能与物体的质量呈正比关系。

质量越大,动能也就越大;质量越小,动能也就越小。

这是因为相同速度下,质量较大的物体具有更大的惯性,需要更多的能量来维持其运动状态。

四、动能定理的解析动能定理是描述物体运动状态变化的一个重要定理。

它表明,物体的动能变化量等于外力所做的功。

动能定理的数学表达式为:∆K = W,其中∆K代表动能的变化量,W代表外力所做的功。

根据动能定理,当物体受到净作用力时,它的动能会发生变化。

当物体受到正向作用力(如推力、引力等)时,该作用力所做的功为正,导致物体的动能增加;当物体受到负向作用力(如阻力、制动力等)时,该作用力所做的功为负,导致物体的动能减小。

动能定理可用来解析物体在不同情况下的动能变化。

例如,在施加恒定力的作用下,物体的速度会随时间增加,由动能定理可推导出速度与时间的关系。

同样,当物体在阻力作用下停止运动时,也可以应用动能定理来计算作用力所做的功和动能的变化量。

动能定理也可以用于解析机械能守恒的情况。

当物体只受重力等保守力的作用时,机械能(势能和动能之和)保持不变。

根据动能定理,作用力所做的功等于动能的变化量为零,从而得出机械能守恒的结论。

动能、动能定理

动能、动能定理

变式训练3、如图5- 4所示,在水平桌面的边角处有一轻质光滑的定滑轮K,一条 2不可伸长的轻绳绕过K分别与物块A、B相连,A、B的质量分别为mA、mB.开始时系 统处于静止状态,
现用一水平恒力F拉物块A,
使物块B上升,已知当B 上升距离为h时.B的速 度为v,求此过程中物 块A克服摩擦力所做的功. (重力加速度为g) 图5­2­4
点评:此题求返回原抛出点的速率还可以对下落 过程采用动能定理再和上升过程联立方程求解,当 然这种解法比对全过程采用动能定理繁琐.同时注 意阻力做功特点.
例4、如图5-2-3所示,在水平地面上固定一倾角为θ的光滑绝缘斜面,斜面处于电场强度大小 为E、方向沿斜面向下的匀强电场中.一劲度系数为k的绝缘轻质弹簧的一端固定在斜面 底端,整根弹簧处于自然 状态.一质量为m、带电量 为q(q>0)的滑块从距离弹簧 上端为s0处静止释放,滑块在运动过程中电量保持不变,设滑块与弹簧接触过程没有机械能损 失,弹簧始终处在弹性限度内,重力加速度大小为g.
图5­2­2
解析:物体由静止开始运动,绳中拉力对物体做 的功等于物体增加的动能.物体运动到绳与水平 方向夹角= 时的速率设为v,有:v cos 45 v0, 45 = 1 则:v 2v0 所以绳的拉力对物体做的功为W= mv 2 = 2 2 mv0 .答案为B.
点评:本题涉及运动的合成与分解、功、动能定理等多方面知识.要 求考生深刻理解动能定理的含义,并能够应用矢量的分解法则计算瞬时 速度.
解析:由动能定理得: 1 W=Fh (mA+mB)v 2-mB gh - 2
二、运用动能定理求变力功 例2、如图5-- 所示,质量为m的物体置于光滑 2 2 水平面上,一根绳子跨过定滑轮一端固定在物 体上,另一端在力F 作用下,以恒定速率v0 竖直 向下运动,物体由静止开始运动到绳与水平方向 夹角= 过程中,绳中拉力对物体做的功为( 45 B 1 2 2 A. mv0 B.mv0 4 1 2 2 2 C. mv0 D. mv0 2 2 )

动能和动能定理

动能和动能定理

动能和动能定理一、动能的概念动能是物体运动所具有的能量,是物体运动的一种形式。

在物理学中,动能通常表示为K或E_k,它与物体的质量和速度相关。

动能的大小与物体的质量成正比,与物体的速度的平方成正比。

动能的单位为焦耳(J)。

动能公式:动能公式描述了动能与物体的质量和速度之间的关系。

它的表达式为:K = 1/2mv^2其中,K表示动能,m表示物体的质量,v表示物体的速度。

二、动能定理动能定理是描述物体的动能变化与物体所受的净外力之间的关系。

动能定理可以表述为:物体的净功等于物体动能的变化。

动能定理公式:动能定理可以表示为如下的公式:W_net = ΔK其中,W_net表示物体受到的净功,ΔK表示物体动能的变化。

三、动能定理的解释动能定理的本质是能量守恒定律在物体运动中的具体应用。

根据能量守恒定律,一个孤立系统的能量总量是不变的。

在动能定理中,物体所受的外力所做的功被转化为物体的动能。

根据动能定理,当物体受到净外力时,物体将加速或减速,其动能将发生改变。

如果净功为正,表示物体的动能增加;如果净功为负,表示物体的动能减小。

动能定理可以解释为何抛出物体的速度越大,其运动的距离也越远。

四、应用举例1. 汽车的制动当汽车刹车时,制动器施加一个逆向力,使汽车减速。

根据动能定理,汽车减速时,动能发生变化,由动能转化为其他形式的能量(如热能)。

净功为负,表示汽车的动能减小。

2. 投掷运动当一个物体被投掷到空中时,物体的动能由静止状态转变为动能,然后再转变为高度势能。

在最高点时,物体的动能为零,而势能最大。

根据动能定理,动能的增加等于物体所受的净功。

3. 弹簧振子当一个弹簧振子从平衡位置偏移并释放时,它会振动。

在一个完整的振动周期中,弹簧振子的动能将在振动的过程中不断转化为势能和反向。

根据动能定理,弹簧振子的动能变化等于所受的净功。

五、总结动能和动能定理是描述物体运动和能量转化的重要概念。

动能表示物体运动所具有的能量,与物体的质量和速度有关。

动能、动能定理

动能、动能定理

(一)动能1. 定义:物体由于运动而具有的能。

2. 表达式:221mv E k = 3. 特点:(1)动能是状态量,221mv E k =中的v 必须是瞬时速度而不能代入平均速度,动能具有相对性。

(2)动能是标量且总为正值。

(3)动能和功之间没有直接的关系。

(4)物体的速度改变了,动能不一定改变。

如:匀速圆周运动物体的动能改变了,速度一定改变。

(二)动能定理1. 内容:合外力做的功等于物体动能的增量2. 表达式:W =221t mv 2021mv - 或K K K E E E W 12∆=-=3. 对动能定理的理解 (1)物理意义动能定理指出了物体动能的变化是通过外力做功的过程(即力对空间的积累)来实现的,并且通过功来量度,即外力对物体做的总功,对应着物体动能的变化。

动能定理的表达式中等号的意义是一种因果关系,表明了数值上是相等的,并不意味着“功就是动能增量”,也不是“功转变成动能”,而是“做功引起物体动能的变化”。

(2)动能定理的计算式是标量式,v 、s 为相对于同一参考系(一般为地面)的运动量,且式中只涉及动能和功,无其他形式的能。

(3)动能定理的研究对象是单一物体,或者可以看成单一物体的物体系,反映外力所做的功引起动能变化的规律。

(4)动能定理适用于物体的直线运动,也适用于曲线运动,适用于恒力做功,也适用于变力做功,力可以是各种性质的力,既可以各力同时作用,也可以分阶段作用,只要求知道在作用过程中各力做功的多少和正负即可,这些正是应用动能定理的优越性所在。

(5)任意外力做的功都能引起动能的变化。

而只有重力或弹力做功才能引起重力势能、弹性势能的变化,要注意这种对应关系的区别。

①动能定理只强调初末状态动能的变化,在一段过程中初末位置的动能变化量为零,并不意味着在此过程中的各个时刻动能不变化。

②物体所受合力不为零时,其动能不一定变化,比如合力方向始终与速度方向垂直时,动能就不会变化。

4. 动能定理的应用 (1)研究对象的选取可以是单个物体,也可以是多个物体组成的一个物体系。

动能及动能定理

动能及动能定理
知识回顾
运动学公式 (匀变速直线运动)
速度公式
位移公式
速度与位 移公式
v=v0+at x=v0t+at2/2 v2-v02=2ax
牛顿第二定律: F合=ma
知识回顾 能量变化和力做功关系
重力势能变化
重力做功
弹性势能变化
弹力做功
动能变化
合外力做功
功与速度变化关系结论: 动能与v2成正比
一、影响动能的因素 乒乓球运动运动员抽球的时速可以达到170km/h 职业足球运动员射门时速可以达到210km/h 铅球在空中下落的速度大概为45km/h
质量为m的小球,由高处 静止滑入光滑轨道,之后 进入圆轨道最高点,要完 成圆周运动,速度要达到 v=√gR ,则开始下落处 高度至少为。
四、动能定理应用
四、动能定理应用 应用2: 恒力 曲线运动
例:由高为h处,以v0向水平方向抛出一小 球, 不计空气阻力,小球落地时的速度v。
任意方向v0抛出小球,落地时速度始终一样
四、动能定理应用
光滑圆轨道上,质量为m的小 球作圆周运动,在最高点的速 度为 v=√gR 则此小球运动到 最低点的速度为?
四、动能定理应用
一、影响动能的因素 动能除了和速度有关,还与物体自身质量有关
二、动能
重力做功:WG=mgh1-mgh2 EP=mgh WG=EP1-EP2
式子中含有 v2和m
合外力做功=
-
二、动能
v1
光滑水平面上,质量为m的 物块在F力作用下运动了L, 速度由v1增加到v2
W=FL =ma·
v2-v02 2a
W=
1 2
mv22
-
1 2
mv12
v2

动能动能定理机械能守恒定律

动能动能定理机械能守恒定律

动能动能定理机械能守恒定律1. 动能、动能定理2. 机械能守恒定律【要点扫描】动能动能定理-、动能如果-个物体能对外做功,我们就说这个物体具有能量.物体由于运动而具有的能.Ek=mv2,其大小与参照系的选取有关.动能是描述物体运动状态的物理量.是相对量。

二、动能定理做功可以改变物体的能量.所有外力对物体做的总功等于物体动能的增量.W1+W2+W3+……=?mvt2-?mv021、反映了物体动能的变化与引起变化的原因——力对物体所做功之间的因果关系.可以理解为外力对物体做功等于物体动能增加,物体克服外力做功等于物体动能的减小.所以正功是加号,负功是减号。

2、“增量”是末动能减初动能.ΔEK>0表示动能增加,ΔEK<0表示动能减小.3、动能定理适用于单个物体,对于物体系统尤其是具有相对运动的物体系统不能盲目的应用动能定理.由于此时内力的功也可引起物体动能向其他形式能(比如内能)的转化.在动能定理中.总功指各外力对物体做功的代数和.这里我们所说的外力包括重力、弹力、摩擦力、电场力等.4、各力位移相同时,可求合外力做的功,各力位移不同时,分别求各力做的功,然后求代数和.5、力的独立作用原理使我们有了牛顿第二定律、动量定理、动量守恒定律的分量表达式.但动能定理是标量式.功和动能都是标量,不能利用矢量法则分解.故动能定理无分量式.在处理-些问题时,可在某-方向应用动能定理.6、动能定理的表达式是在物体受恒力作用且做直线运动的情况下得出的.但它也适用于外力为变力及物体作曲线运动的情况.即动能定理对恒力、变力做功都适用;直线运动与曲线运动也均适用.7、对动能定理中的位移与速度必须相对同-参照物.三、由牛顿第二定律与运动学公式推出动能定理设物体的质量为m,在恒力F作用下,通过位移为s,其速度由v0变为vt,则:根据牛顿第二定律F=ma……①根据运动学公式2as=vt2―v02……②由①②得:Fs=mvt2-mv02四、应用动能定理可解决的问题恒力作用下的匀变速直线运动,凡不涉及加速度和时间的问题,利用动能定理求解-般比用牛顿定律及运动学公式求解要简单得多.用动能定理还能解决-些在中学应用牛顿定律难以解决的变力做功的问题、曲线运动的问题等.机械能守恒定律-、机械能1、由物体间的相互作用和物体间的相对位置决定的能叫做势能.如重力势能、弹性势能、分子势能、电势能等.(1)物体由于受到重力作用而具有重力势能,表达式为EP=mgh.式中h是物体到零重力势能面的高度.(2)重力势能是物体与地球系统共有的.只有在零势能参考面确定之后,物体的重力势能才有确定的值,若物体在零势能参考面上方高h处其重力势能为EP=mgh,若物体在零势能参考面下方低h处其重力势能为EP=-mgh,“-”不表示方向,表示比零势能参考面的势能小,显然零势能参考面选择的不同,同-物体在同-位置的重力势能的多少也就不同,所以重力势能是相对的.通常在不明确指出的情况下,都是以地面为零势面的.但应特别注意的是,当物体的位置改变时,其重力势能的变化量与零势面如何选取无关.在实际问题中我们更会关心的是重力势能的变化量.(3)弹性势能,发生弹性形变的物体而具有的势能.高中阶段不要求具体利用公式计算弹性势能,但往往要根据功能关系利用其他形式能量的变化来求得弹性势能的变化或某位置的弹性势能.2、重力做功与重力势能的关系:重力做功等于重力势能的减少量WG=ΔEP减=EP初-EP末,克服重力做功等于重力势能的增加量W克=ΔEP增=EP末—EP初应特别注意:重力做功只能使重力势能与动能相互转化,不能引起物体机械能的变化.3、动能和势能(重力势能与弹性势能)统称为机械能.二、机械能守恒定律1、内容:在只有重力(和弹簧的弹力)做功的情况下,物体的动能和势能发生相互转化,但机械能的总量保持不变.2、机械能守恒的条件(1)对某-物体,若只有重力(或弹簧弹力)做功,其他力不做功(或其他力做功的代数和为零),则该物体机械能守恒.(2)对某-系统,物体间只有动能和重力势能及弹性势能的相互转化,系统和外界没有发生机械能的传递,机械能也没有转变为其他形式的能,则系统机械能守恒.3、表达形式:EK1+Epl=Ek2+EP2(1)我们解题时往往选择的是与题目所述条件或所求结果相关的某两个状态或某几个状态建立方程式.此表达式中EP 是相对的.建立方程时必须选择合适的零势能参考面.且每-状态的EP都应是对同-参考面而言的.(2)其他表达方式,ΔEP=-ΔEK,系统重力势能的增量等于系统动能的减少量.(3)ΔEa=-ΔEb,将系统分为a、b两部分,a部分机械能的增量等于另-部分b的机械能的减少量,三、判断机械能是否守恒首先应特别提醒注意的是,机械能守恒的条件绝不是合外力的功等于零,更不是合外力等于零,例如水平飞来的子弹打入静止在光滑水平面上的木块内的过程中,合外力的功及合外力都是零,但系统在克服内部阻力做功,将部分机械能转化为内能,因而机械能的总量在减少.(1)用做功来判断:分析物体或物体受力情况(包括内力和外力),明确各力做功的情况,若对物体或系统只有重力或弹力做功,没有其他力做功或其他力做功的代数和为零,则机械能守恒;(2)用能量转化来判定:若物体系中只有动能和势能的相互转化而无机械能与其他形式的能的转化,则物体系机械能守恒.(3)对-些绳子突然绷紧,物体间非弹性碰撞等除非题目的特别说明,机械能必定不守恒,完全非弹性碰撞过程机械能不守恒【规律方法】动能动能定理【例1】如图所示,质量为m的物体与转台之间的摩擦系数为μ,物体与转轴间距离为R,物体随转台由静止开始转动,当转速增加到某值时,物体开始在转台上滑动,此时转台已开始匀速转动,这过程中摩擦力对物体做功为多少?解析:物体开始滑动时,物体与转台间已达到最大静摩擦力,这里认为就是滑动摩擦力μmg.根据牛顿第二定律μmg=mv2/R……①由动能定理得:W=?mv2 ……②由①②得:W=?μmgR,所以在这-过程摩擦力做功为?μmgR点评:(1)-些变力做功,不能用W=Fscos求,应当善于用动能定理.(2)应用动能定理解题时,在分析过程的基础上无须深究物体的运动状态过程中变化的细节,只须考虑整个过程的功量及过程始末的动能.若过程包含了几个运动性质不同的分过程.既可分段考虑,也可整个过程考虑.但求功时,有些力不是全过程都作用的,必须根据不同情况分别对待求出总功.计算时要把各力的功连同符号(正负)-同代入公式.【例2】-质量为m的物体.从h高处由静止落下,然后陷入泥土中深度为Δh后静止,求阻力做功为多少?提示:整个过程动能增量为零,则根据动能定理mg(h +Δh)-Wf=0所以Wf=mg(h+Δh)答案:mg(h+Δh)(一)动能定理应用的基本步骤应用动能定理涉及-个过程,两个状态.所谓-个过程是指做功过程,应明确该过程各外力所做的总功;两个状态是指初末两个状态的动能.动能定理应用的基本步骤是:①选取研究对象,明确并分析运动过程.②分析受力及各力做功的情况,受哪些力?每个力是否做功?在哪段位移过程中做功?正功?负功?做多少功?求出代数和.③明确过程始末状态的动能Ek1及EK2④列方程W=-,必要时注意分析题目的潜在条件,补充方程进行求解.【例3】总质量为M的列车沿水平直线轨道匀速前进,其末节车厢质量为m,中途脱节,司机发觉时,机车已行驶了L 的距离,于是立即关闭油门,除去牵引力,设阻力与质量成正比,机车的牵引力是恒定的,当列车的两部分都停止时,它们的距离是多少?解析:此题用动能定理求解比用运动学结合牛顿第二定律求解简单.先画出草图如图所示,标明各部分运动位移(要重视画草图);对车头,脱钩前后的全过程,根据动能定理便可解得.FL-μ(M-m)gs1=-?(M-m)v02对末节车厢,根据动能定理有-μmgs2=-mv02而Δs=s1-s2由于原来列车匀速运动,所以F=μMg.以上方程联立解得Δs=ML/(M-m).说明:对有关两个或两个以上的有相互作用、有相对运动的物体的动力学问题,应用动能定理求解会很方便.最基本方法是对每个物体分别应用动能定理列方程,再寻找两物体在受力、运动上的联系,列出方程解方程组.(二)应用动能定理的优越性(1)由于动能定理反映的是物体两个状态的动能变化与其合力所做功的量值关系,所以对由初始状态到终止状态这-过程中物体运动性质、运动轨迹、做功的力是恒力还是变力等诸多问题不必加以追究,就是说应用动能定理不受这些问题的限制.(2)-般来说,用牛顿第二定律和运动学知识求解的问题,用动能定理也可以求解,而且往往用动能定理求解简捷.可是,有些用动能定理能够求解的问题,应用牛顿第二定律和运动学知识却无法求解.可以说,熟练地应用动能定理求解问题,是-种高层次的思维和方法,应该增强用动能定理解题的主动意识.(3)用动能定理可求变力所做的功.在某些问题中,由于力F的大小、方向的变化,不能直接用W=Fscosα求出变力做功的值,但可由动能定理求解.【例4】如图所示,质量为m的物体用细绳经过光滑小孔牵引在光滑水平面上做匀速圆周运动,拉力为某个值F时,转动半径为R,当拉力逐渐减小到F/4时,物体仍做匀速圆周运动,半径为2R,则外力对物体所做的功的大小是:A. B.C. D. 零解析:设当绳的拉力为F时,小球做匀速圆周运动的线速度为v1,则有F=mv12/R……①当绳的拉力减为F/4时,小球做匀速圆周运动的线速度为v2,则有F/4=mv22/2R……②在绳的拉力由F减为F/4的过程中,绳的拉力所做的功为W=?mv22-?mv12=-?FR所以,绳的拉力所做的功的大小为FR/4,A选项正确.说明:用动能定理求变力功是非常有效且普遍适用的方法.【例5】质量为m的飞机以水平速度v0飞离跑道后逐渐上升,若飞机在此过程中水平速度保持不变,同时受到重力和竖直向上的恒定升力(该升力由其他力的合力提供,不含重力).今测得当飞机在水平方向的位移为L时,它的上升高度为h,求(1)飞机受到的升力大小?(2)从起飞到上升至h 高度的过程中升力所做的功及在高度h处飞机的动能?解析:(1)飞机水平速度不变,L= v0t,竖直方向的加速度恒定,h=?at2,消去t即得由牛顿第二定律得:F=mg+ma=(2)升力做功W=Fh=在h处,vt=at=,(三)应用动能定理要注意的问题注意1:由于动能的大小与参照物的选择有关,而动能定理是从牛顿运动定律和运动学规律的基础上推导出来,因此应用动能定理解题时,动能的大小应选取地球或相对地球做匀速直线运动的物体作参照物来确定.【例6】如图所示质量为1kg的小物块以5m/s的初速度滑上-块原来静止在水平面上的木板,木板质量为4kg,木板与水平面间动摩擦因数是0.02,经过2s以后,木块从木板另-端以1m/s相对于地面的速度滑出,g取10m/s,求这-过程中木板的位移.解析:设木块与木板间摩擦力大小为f1,木板与地面间摩擦力大小为f2.对木块:-f1t=mvt-mv0,得f1=2 N对木板:(fl-f2)t=Mv,f2=μ(m+M)g得v=0.5m/s对木板:(fl-f2)s=?Mv2,得s=0.5 m答案:0.5 m注意2:用动能定理求变力做功,在某些问题中由于力F的大小的变化或方向变化,所以不能直接由W=Fscosα求出变力做功的值.此时可由其做功的结果——动能的变化来求变力F所做的功.【例7】质量为m的小球被系在轻绳-端,在竖直平面内做半径为R的圆周运动,运动过程中小球受到空气阻力的作用.设某-时刻小球通过轨道的最低点,此时绳子的张力为7mg,此后小球继续做圆周运动,经过半个圆周恰能通过最高点,则在此过程中小球克服空气阻力所做的功为()A、mgR/4B、mgR/3C、mgR/2D、mgR解析:小球在圆周运动最低点时,设速度为v1,则7mg-mg=mv12/R……①设小球恰能过最高点的速度为v2,则mg=mv22/R……②设过半个圆周的过程中小球克服空气阻力所做的功为W,由动能定理得:-mg2R-W=?mv22-?mv12……③由以上三式解得W=mgR/2. 答案:C说明:该题中空气阻力-般是变化的,又不知其大小关系,故只能根据动能定理求功,而应用动能定理时初、末两个状态的动能又要根据圆周运动求得不能直接套用,这往往是该类题目的特点.机械能守恒定律(一)单个物体在变速运动中的机械能守恒问题【例1】如图所示,桌面与地面距离为H,小球自离桌面高h处由静止落下,不计空气阻力,则小球触地的瞬间机械能为(设桌面为零势面)()A、mgh;B、mgH;C、mg(H +h);D、mg(H-h)解析:这-过程机械能守恒,以桌面为零势面,E初=mgh,所以着地时也为mgh,有的学生对此接受不了,可以这样想,E初=mgh ,末为E末=?mv2-mgH,而?mv2=mg(H+h)由此两式可得:E末=mgh答案:A【例2】如图所示,-个光滑的水平轨道AB与光滑的圆轨道BCD连接,其中圆轨道在竖直平面内,半径为R,B为最低点,D为最高点.-个质量为m的小球以初速度v0沿AB 运动,刚好能通过最高点D,则()A、小球质量越大,所需初速度v0越大B、圆轨道半径越大,所需初速度v0越大C、初速度v0与小球质量m、轨道半径R无关D、小球质量m和轨道半径R同时增大,有可能不用增大初速度v0解析:球通过最高点的最小速度为v,有mg=mv2/R,v=这是刚好通过最高点的条件,根据机械能守恒,在最低点的速度v0应满足?m v02=mg2R+?mv2,v0= 答案:B(二)系统机械能守恒问题【例3】如图,斜面与半径R=2.5m的竖直半圆组成光滑轨道,-个小球从A点斜向上抛,并在半圆最高点D水平进入轨道,然后沿斜面向上,最大高度达到h=10m,求小球抛出的速度和位置.解析:小球从A到D的逆运动为平抛运动,由机械能守恒,平抛初速度vD为mgh—mg2R=?mvD2;所以A到D的水平距离为由机械能守恒得A点的速度v0为mgh=?mv02;由于平抛运动的水平速度不变,则vD=v0cosθ,所以,仰角为【例4】如图所示,总长为L的光滑匀质的铁链,跨过-光滑的轻质小定滑轮,开始时底端相齐,当略有扰动时,某-端下落,则铁链刚脱离滑轮的瞬间,其速度多大?解析:铁链的-端上升,-端下落是变质量问题,利用牛顿定律求解比较麻烦,也超出了中学物理大纲的要求.但由题目的叙述可知铁链的重心位置变化过程只有重力做功,或“光滑”提示我们无机械能与其他形式的能转化,则机械能守恒,这个题目我们用机械能守恒定律的总量不变表达式E2=El,和增量表达式ΔEP=-ΔEK分别给出解答,以利于同学分析比较掌握其各自的特点.(1)设铁链单位长度的质量为P,且选铁链的初态的重心位置所在水平面为参考面,则初态E1=0滑离滑轮时为终态,重心离参考面距离L/4,EP=-PLgL/4 Ek2=Lv2即终态E2=-PLgL/4+PLv2由机械能守恒定律得E2= E1有-PLgL/4+PLv2=0,所以v= (2)利用ΔEP=-ΔEK,求解:初态至终态重力势能减少,重心下降L/4,重力势能减少-ΔEP= PLgL/4,动能增量ΔEK=PLv2,所以v=点评:(1)对绳索、链条这类的物体,由于在考查过程中常发生形变,其重心位置对物体来说,不是固定不变的,能否确定其重心的位置则是解决这类问题的关键,顺便指出的是均匀质量分布的规则物体常以重心的位置来确定物体的重力势能.此题初态的重心位置不在滑轮的顶点,由于滑轮很小,可视作对折来求重心,也可分段考虑求出各部分的重力势能后求出代数和作为总的重力势能.至于零势能参考面可任意选取,但以系统初末态重力势能便于表示为宜.(2)此题也可以用等效法求解,铁链脱离滑轮时重力势能减少,等效为-半铁链至另-半下端时重力势能的减少,然后利用ΔEP=-ΔEK求解,留给同学们思考.【模拟试题】1、某地强风的风速约为v=20m/s,设空气密度ρ=1.3kg/m3,如果把通过横截面积=20m2风的动能全部转化为电能,则利用上述已知量计算电功率的公式应为P=_________,大小约为_____W(取-位有效数字)2、两个人要将质量M=1000 kg的小车沿-小型铁轨推上长L=5 m,高h=1 m的斜坡顶端.已知车在任何情况下所受的摩擦阻力恒为车重的0.12倍,两人能发挥的最大推力各为800 N。

《动能和动能定理》 讲义

《动能和动能定理》 讲义

《动能和动能定理》讲义一、引入在我们的日常生活中,运动的物体随处可见。

比如飞驰的汽车、投掷出去的铅球、飞行中的子弹等等。

当这些物体运动时,它们似乎具有一种能够对外做功的能力。

那么,这种能力究竟是如何描述和衡量的呢?这就引出了我们今天要探讨的主题——动能和动能定理。

二、什么是动能简单来说,动能就是物体由于运动而具有的能量。

想象一下,一辆快速行驶的汽车和一辆缓慢行驶的汽车,哪一辆具有更大的“冲击力”或者说能够做更多的功呢?显然是快速行驶的那一辆。

这是因为它的运动速度更快,所以具有更大的动能。

动能的大小与物体的质量和速度有关。

其表达式为:$E_k =\frac{1}{2}mv^2$ ,其中$E_k$ 表示动能,$m$ 表示物体的质量,$v$ 表示物体的速度。

从这个表达式中,我们可以看出以下几点:1、动能与物体的质量成正比。

质量越大的物体,在相同速度下具有的动能就越大。

比如一辆大卡车和一辆小汽车以相同的速度行驶,大卡车具有更大的动能。

2、动能与速度的平方成正比。

这意味着速度对动能的影响更为显著。

速度增加一倍,动能将增加到原来的四倍。

所以,即使物体的质量较小,但如果速度足够快,也能具有较大的动能。

例如,一颗子弹虽然质量很小,但由于其高速飞行,具有很大的动能,可以造成巨大的杀伤力。

三、动能定理有了对动能的理解,接下来我们来学习动能定理。

动能定理表述为:合外力对物体所做的功等于物体动能的变化量。

用数学表达式可以写成:$W =\Delta E_k$ ,其中$W$ 表示合外力对物体做的功,$\Delta E_k$ 表示动能的变化量。

假如一个物体在初始时刻的动能为$E_{k1}$,经过一段时间,在外力的作用下,其动能变为$E_{k2}$,那么动能的变化量$\Delta E_k = E_{k2} E_{k1}$。

为了更好地理解动能定理,我们来看几个例子。

例 1:一个质量为$m$ 的物体在光滑水平面上,受到一个水平恒力$F$ 的作用,从静止开始运动,经过一段距离$s$ 后,速度达到$v$ 。

动能和动能定理-PPT

动能和动能定理-PPT

解得 s=0.25 m,说明工件未到达B点时,速度已达到v, 所以工件动能的增量为 △EK = 1/2 mv2 = 0.5×1×1= 0.5 J
8
大家有疑问的,可以询问和交流
可以互相讨论下,但要小声点
9
练习2.两辆汽车在同一平直路面上行驶,它们的质 量之比m1∶m2=1∶2,速度之比v1∶v2=2∶1,两 车急刹车后甲车滑行的最大距离为s1,乙车滑行的 最大距离为s2,设两车与路面间的动摩擦因数相等, 不计空气阻力,则(D ) A.s1∶s2=1∶2 B.s1∶s2=1∶1 C.s1∶s2=2∶1 D.s1∶s2=4∶1
24
解: 设从脱钩开始,前面的部分列车和末节车厢分别行驶了s1、s2
才停止,则两者距离s=s1-s2.对前面部分的列车应用动能定理,

FL
-
k(M
-
m)gs1
=
-
1(M 2
-
m)v02
对末节车厢应用动能定理,有
- kmgs2
=
1 -
2
mv
2 0
又整列车匀速运动时,有F = kMg,则可解得△s =
15
练习5.某人在高h处抛出一个质量为m的物
体.不计空气阻力,物体落地时的速度为v,这人对
物体所做的功为:D( )
A.Mgh
B.mv2/2
C.mgh+mv2/2
D.mv2/2- mgh
16
例6. 斜面倾角为α,长为L,AB段光滑,BC段粗糙,AB =L/3, 质量为m的木块从斜面顶端无初速下滑,到达C端 时速度刚好为零。求物体和BC段间的动摩擦因数μ。
分析:以木块为对象,下滑全过程用动能定理:
重力做的功为 WG mgLsinα

动能与动能定理

动能与动能定理

动能与动能定理动能是描述物体的运动状态和能量的一种物理量。

在物理学中,动能通常用符号K表示,其计算公式为K=½mv²,其中m为物体的质量,v为物体的速度。

动能定理则描述了动能的改变与物体所受合外力的关系。

本文将从动能的概念、计算公式,以及动能定理的推导和应用等方面进行探讨。

1. 动能的概念动能是物体在运动过程中所具有的能量,它随着物体的速度增加而增加。

当物体停止运动时,动能为零。

动能的单位是焦耳(J)。

在经典物理学中,动能的计算公式为K=½mv²,其中m为物体的质量,v为物体的速度。

正如计算公式所示,动能与物体的质量和速度的平方成正比。

2. 动能定理的推导动能定理描述了物体运动的改变与物体所受合外力的关系。

根据牛顿第二定律F=ma,将其代入动能的计算公式K=½mv²中,可得到K=½m(v²-0)。

根据牛顿第二定律的形式F=ma,我们知道力可以表示为F=dp/dt,其中p是物体的动量,t是时间。

代入动量的定义p=mv,可得到F=mdv/dt。

将这个方程代入动能的计算公式中,可得到K=½mdv/dt *v。

对动能公式进行简化后,可得到K=d(½mv²)/dt,即动能的变化率等于物体所受合外力的功率。

3. 动能定理的应用动能定理可以应用于多种物理问题的求解和分析。

首先,我们可以利用动能定理来计算物体的速度和位移。

通过已知物体的质量、起始速度、物体所受合外力的功率等信息,可以利用动能定理来求解相应的物理量。

其次,动能定理可以帮助我们理解和解释物体的能量转化过程。

例如,当一个物体从较高的位置下落时,它的重力势能被转化为动能,从而使其速度增加。

在碰撞等过程中,动能定理也可以用于分析和计算能量的守恒与转化。

总结:动能是物体运动时所具有的能量,与物体的质量和速度的平方成正比。

动能定理描述了动能的变化与物体所受合外力的关系,通过动能定理可以计算物体的速度和位移,并用于分析能量的转化过程。

第2讲动能和动能定理

第2讲动能和动能定理

第2讲 动能和动能定理1.动能(1)定义:物体由于运动而具有的能.(2)公式:E k =12m v 2.(3)单位:焦耳,1 J =1 N·m =1 kg·m 2/s 2. (4)矢标性:动能是标量,只有正值. (5)动能是状态量,因为v 是瞬时速度.1.(2012·苏州模拟)一个小球从高处自由落下,则球在下落过程中的动能( ). ①与它下落的距离成正比 ②与它下落距离的平方成正比 ③与它运动的时间成正比 ④与它运动时间的平方成正比A .①②B .③④C .①④D .②③ 答案 C2.(2012·中山模拟)质量为m 的物体在水平力F 的作用下由静止开始在光滑地面上运动,前进一段距离之后速度大小为v ,再前进一段距离使物体的速度增大为2v ,则( ).A .第二过程的速度增量大于第一过程的速度增量B .第二过程的动能增量是第一过程动能增量的3倍C .第二过程合外力做的功等于第一过程合外力做的功D .第二过程合外力做的功等于第一过程合外力做功的2倍解析 由题意知,两个过程中速度增量均为v ,A 错误;由动能定理知:W 1=12m v 2,W 2=12m (2v )2-12m v 2=32m v 2,故B 正确,C 、D 错误.答案 B3.一个25 kg 的小孩从高度为3.0 m 的滑梯顶端由静止开始滑下,滑到底端时的速度为2.0 m/s.取g =10 m/s 2,关于力对小孩做的功,以下结果正确的是( ).A .合外力做功50 JB .阻力做功500 JC .重力做功500 JD .支持力做功50 J解析 合外力做的功W 合=E k -0,即W 合=12m v 2=12×25×22 J =50 J ,A 项正确;W G -W 阻=E k -0,故W 阻=mgh -12m v 2=750 J -50 J =700 J ,B 项错误;重力做功W G =mgh =25×10×3 J =750 J ,C错;小孩所受支持力方向上的位移为零,故支持力做的功为零,D 错.答案 A4.如图4-2-1所示,一半径为R 的半圆形轨道BC 与一水平面相连,C 为轨道的最高点,一质量为m 的小球以初速度v 0从圆形轨道B 点进入,沿着圆形轨道运动并恰好通过最高点C ,然后做平抛运动.求:图4-2-1(1)小球平抛后落回水平面D 点的位置距B 点的距离.(2)小球由B 点沿着半圆轨道到达C 点的过程中,克服轨道摩擦阻力做的功.解析 (1)小球刚好通过C 点,由牛顿第二定律mg =m v C 2R小球做平抛运动,有2R =12gt 2 s =v C t解得小球平抛后落回水平面D 点的位置距B 点的距离 s =2R(2)小球由B 点沿着半圆轨道到达C 点,由动能定理 -mg ·2R -W f =12m v C 2-12m v 02解得小球克服摩擦阻力做功 W f =12m v 02-52mgR . 答案 (1)2R (2)12m v 02-52mgR考点一 对动能定理的理解 1.动能定理公式中等号的意义等号表明合力做功与物体动能的变化间的三个关系: (1)数量关系:即合外力所做的功与物体动能的变化具有等量代换关系.可以通过计算物体动能的变化,求合力的功,进而求得某一力的功.(2)单位相同:国际单位都是焦耳.(3)因果关系:合外力的功是引起物体动能变化的原因. 2.准确理解动能定理动能定理⎝⎛⎭⎫W =ΔE k =12m v t 2-12m v 02适用于任何力作用下,以任何形式运动的物体(或系统),是一标量式,不存在方向问题,它把过程量(做功)与状态量(动能)联系在一起,常用于求变力做功、分析复杂运动过程、判断能量间的转化关系等.【典例1】如图4-2-2所示,图4-2-2电梯质量为M ,在它的水平地板上放置一质量为m 的物体.电梯在钢索的拉力作用下由静止开始竖直向上加速运动,当上升高度为H 时,电梯的速度达到v ,则在这个过程中,以下说法中正确的是( ).A .电梯地板对物体的支持力所做的功等于m v 22B .电梯地板对物体的支持力所做的功小于m v 22C .钢索的拉力所做的功等于m v 22+MgHD .钢索的拉力所做的功大于m v 22+MgH解析 以物体为研究对象,由动能定理W N -mgH =12m v 2,即W N =mgH +12m v 2,选项A 、B 错误.以系统为研究对象,由动能定理得:W T -(m +M )gH =12(M +m )v 2,即W T =12(M +m )v 2+(M +m )gH >m v 22+MgH ,选项D 正确,选项C 错误. 案 D【变式1】 (2012·山东东营)图4-2-3人通过滑轮将质量为m 的物体,沿粗糙的斜面由静止开始匀加速地由底端拉上斜面,物体上升的高度为h ,到达斜面顶端的速度为v ,如图4-2-3所示,则在此过程中( ).A .物体所受的合外力做功为mgh +12m v 2B .物体所受的合外力做功为12m v 2C .人对物体做的功为mghD .以上说法都不对解析 物体沿斜面做匀加速运动,根据动能定理:W 合=W F -W f -mgh =12m v 2,其中W f 为物体克服摩擦力做的功.人对物体做的功即是人对物体的拉力做的功,所以W 人=W F =W f +mgh +12m v 2,A 、C 错误,B 正确. 答案 B考点二 动能定理在多过程中的应用 优先考虑应用动能定理的问题 (1)不涉及加速度、时间的问题.(2)有多个物理过程且不需要研究整个过程中的中间状态的问题. (3)变力做功的问题.(4)含有F 、s 、m 、v 、W 、E k 等物理量的力学问题. 【典例2】如图4-2-4所示,用特定材料制作的细钢轨竖直放置,半圆形轨道光滑,半径分别为R 、2R 、3R 和4R ,R =0.5 m ,水平部分长度L =2 m ,轨道最低点离水平地面高h =1 m .中心有孔的钢球(孔径略大于细钢轨直径),套在钢轨端点P 处,质量为m =0.5 kg ,与钢轨水平部分的动摩擦因数为μ=0.4.给钢球一初速度v 0=13 m/s.取g =10 m/s 2.求:图4-2-4(1)钢球运动至第一个半圆形轨道最低点A 时对轨道的压力. (2)钢球落地点到抛出点的水平距离.解析 (1)球从P 运动到A 点过程 由动能定理得: mg ·2R -μmg ·L =12m v 12-12m v 02由牛顿第二定律:N -mg =m v 12R 由牛顿第三定律:N =-N ′解得:N ′=-178 N .故对轨道压力为178 N 方向竖直向下(2)设球到达轨道末端点速度为v 2,对全程由动能定理得:-μmg ·5L -4mgR =12m v 22-12m v 02解得v 2=7 m/s 由平抛运动h +8R =12gt 2 s =v 2t 解得:s =7 m. 答案 (1)178 N 竖直向下(2)7 m——应用动能定理的解题步骤【变式2】如图4-2-5所示,物体在有动物毛皮的斜面上运动,由于毛皮的特殊性,引起物体的运动有如下特点:①顺着毛的生长方向运动时,毛皮产生的阻力可以忽略,②逆着毛的生长方向运动时,会受到来自毛皮的滑动摩擦力,且动摩擦因数μ恒定.斜面顶端距水平面高度为h =0.8 m ,质量为m =2 kg 的小物块M 从斜面顶端A 由静止滑下,从O 点进入光滑水平滑道时无机械能损失,为使M 制动,将轻弹簧的一端固定在水平滑道延长线B 处的墙上,另一端恰位于水平轨道的中点C .已知斜面的倾角θ=53°,动摩擦因数均为μ=0.5,其余各处的摩擦不计,重力加速度g =10 m/s 2,下滑时逆着毛的生长方向.求:图4-2-5(1)弹簧压缩到最短时的弹性势能(设弹簧处于原长时弹性势能为零). (2)若物块M 能够被弹回到斜面上,则它能够上升的最大高度是多少?(3)物块M 在斜面上下滑过程中的总路程.解析 (1)物块M 从斜面顶端A 运动到弹簧压缩到最短,由动能定理得mgh -μmg cos θh sin θ-E p =0 则弹性势能E p =mgh -μmg cos θhsin θ=10 J.(2)设物块M 第一次被弹回,上升的最大高度为H ,由动能定理得mg (h -H )-μmg cos θh sin θ=0 则H =h -μcos θhsin θ=0.5 m.(3)物块M 最终停止在水平面上,对于运动的全过程,由动能定理有mgh -μmg cos θ·s =0物块M 在斜面上下滑过程中的总路程s =hμcos θ=2.67 m.答案 (1)10 J (2)0.5 m (3)2.67 m考点三 用动能定理求变力的功(小专题) 一、状态分析法动能定理不涉及做功过程的细节,故求变力功时只分析做功前后状态即可. 【典例3】如图4-2-6所示,图4-2-6质量为m 的物体被线牵引着在光滑的水平面上做匀速圆周运动,拉力为F 时,转动半径为r .当拉力增至8F 时,物体仍做匀速圆周运动,其转动半径为r2,求拉力对物体做的功.解析 对物体运用牛顿第二定律得拉力为F 时,F =m v 12r ,①拉力为8F 时,8F =m v 22r 2.②联立①②及动能定理得:拉力做功W =12m v 22-12m v 12=2Fr -12Fr =32Fr .答案 32Fr二、过程分割法有些问题中,作用在物体上的某个力在整个过程中是变力,但若把整个过程分为许多小段,在每一小段上此力就可看做是恒力.分别算出此力在各小段上的功,然后求功的代数和.即可求得整个过程变力所做的功.【典例4】如图4-2-7所示,质量为m 的物体静图4-2-7止于光滑圆弧轨道的最低点A ,现以始终沿切线方向、大小不变的外力F 作用于物体上使其沿圆周转过π2到达B 点,随即撤去外力F ,要使物体能在竖直圆轨道内维持圆周运动,外力F 至少为多大? 解析 物体从A 点到B 点的运动过程中,由动能定理可得 W F -mgR =12m v B 2①如何求变力F 做的功呢?过程分割,将AB 划分成许多小段,则当各小段弧长Δs 足够小时,在每一小段上,力F 可看做恒力,且其方向与该小段上物体位移方向一致,有W F =F Δs 1+F Δs 2+…+F Δs 1+…=F (Δs 1+Δs 2+…+Δs 1+…)=F ·π2R ②从B 点起撤去外力F ,物体的运动遵循机械能守恒定律,由于在最高点维持圆周运动的条件是mg ≤m v 2R ,即在圆轨道最高点处速度至少为Rg .故由此机械能守恒定律得: 12m v B 2=mgR +m (Rg )22③联立①②③式得:F =5mg π. 答案 5mgπ三、对象转换法在有些求功的问题中,作用在物体上的力可能为变力,但转换对象后,就可变为求恒力功. 【典例5】如图4-2-8所示,质量为2 kg 的木块套在光滑的竖直杆上,图4-2-8用60 N 的恒力F 通过轻绳拉木块,木块在A 点的速度v A =3 m/s 则木块运动到B 点的速度v B 是多少?(木块可视为质点,g 取10 m/s 2)解析 先取木块作为研究对象,则由动能定理得: W G +W T =12m v B 2-12m v A 2①其中W G =-mg ·AB ,W T 是轻绳上张力对木块做的功, 由于力的方向不断变化,这显然是一个变力做的功,对象转换: 研究恒力F 的作用点,在木块由A 运动到B 的过程中,恒力F 的功W F =F (AC -BC ),它在数值上等于W T .故①式可变形为:-mgAB +F (AC -BC )=12m v B 2-12m v A 2,代入数据解得v B =7 m/s.答案 7 m/s【典例】 (2011·浙江卷,24)(20分)节能混合动力车是一种可以利用汽油及所储存电能作为动力来源的汽车.有一质量m =1 000 kg 的混合动力轿车,在平直公路上以v 1=90 km/h 匀速行驶,发动机的输出功率为P =50 kW.当驾驶员看到前方有80 km/h 的限速标志时,保持发动机功率不变,立即启动利用电磁阻尼带动的发电机工作给电池充电,使轿车做减速运动,运动L =72 m 后,速度变为v 2=72 km/h.此过程中发动机功率的15用于轿车的牵引,45用于供给发电机工作,发动机输送给发电机的能量最后有50%转化为电池的电能.假设轿车在上述运动过程中所受阻力保持不变.求:(1)轿车以90 km/h 在平直公路上匀速行驶时,所受阻力F 阻的大小; (2)轿车从90 km/h 减速到72 km/h 过程中,获得的电能E 电;(3)轿车仅用其在上述减速过程中获得的电能E 电维持72 km/h 匀速运动的距离L ′. 解 (1)轿车牵引力与输出功率的关系P =F 牵v将P =50 kW ,v 1=90 km/h =25 m/s 代入得 F 牵=Pv 1=2×103 N .(4分)当轿车匀速行驶时,牵引力与阻力大小相等,有F 阻=2×103 N .(2分)(2)在减速过程中,注意到发动机只有15P 用于汽车的牵引.根据动能定理有15Pt -F 阻L =12m v 22-12m v 12(5分) 代入数据得Pt =1.575×105 J(3分)电源获得的电能为E 电=50%×45Pt =6.3×104 J .(2分)(3)根据题设,轿车在平直公路上匀速行驶时受到的阻力仍为F 阻=2×103 N .在此过程中,由能量守恒定律可知,仅有电能用于克服阻力做功,则E 电=F 阻L ′(2分)代入数据得L ′=31.5 m .(2分)答案 (1)2×103N (2)6.3×104J (3)1.5 m 一、动能及动能定理的单独考查(低频考查) 1.(2009·上海单科,5)小球由地面竖直上抛,上升的最大高度为H ,设所受阻力大小恒定,地面为零势能面.在上升至离地高度h 处,小球的动能是势能的2倍,到达最高点后再下落至离地高度h 处,小球的势能是动能的2倍,则h 等于( ).A.H 9B.2H 9C.3H 9D.4H 9 解析 设小球的初动能为E k0,阻力为F ,根据动能定理,上升到最高点有,E k0=(mg +F )H ,上升到离地面h 处有,E k0-2mgh =(mg +F )h ,从最高点到离地面h 处,有(mg -F )(H -h )=12mgh ,解以上三式得h =49H . 答案 D2.(2011·课标全国卷,15改编)一质点开始时做匀速直线运动,从某时刻起受到一恒力作用.此后,该质点的动能不可能( ).A .一直增大B .先逐渐减小至零,再逐渐增大C .先逐渐增大至某一最大值,再逐渐减小D .先逐渐减小至某一非零的最小值,再逐渐增大解析 若力F 的方向与初速度v 0的方向一致,则质点一直加速,动能一直增大,选项A 正确.若力F 的方向与v 0的方向相反,则质点先减速至速度为零后反向加速,动能先减小至零后增大,选项B 正确.若力F 的方向与v 0的方向成一钝角,如斜上抛运动,物体先减速,减到某一值,再加速,则其动能先减小至某一非零的最小值,再增大,选项D 正确. 答案 C二、动能定理的应用且综合其他考点出现(高频考查) 3.(2009·上海单科,20)质量为5×103 kg 的汽车在t =0时刻速度v 0=10 m/s ,随后以P =6×104 W 的额定功率沿平直公路继续前进,经72 s 达到最大速度,该汽车受恒定阻力,其大小为2.5×103 N .求:(1)汽车的最大速度v m ;(2)汽车在72 s 内经过的路程s .解析 (1)达到最大速度时,牵引力等于阻力P =f v m v m =P f =6×1042.5×103m/s =24 m/s(2)由动能定理可得Pt -fs =12m v m 2-12m v 02所以s =2Pt -m (v m 2-v 02)2f =2×6×104×72-5×103×(242-102)2×2.5×103m =1 252 m 答案 (1)24 m/s(2)1 252 m图4-2-94.(2011·江苏卷,14)如图4-2-9所示,长为L 、内壁光滑的直管与水平地面成30°角固定放置.将一质量为m 的小球固定在管底,用一轻质光滑细线将小球与质量为M =km 的小物块相连,小物块悬挂于管口.现将小球释放,一段时间后,小物块落地静止不动,小球继续向上运动,通过管口的转向装置后做平抛运动,小球在转向过程中速率不变.(重力加速度为g ).(1)求小物块下落过程中的加速度大小; (2)求小球从管口抛出时的速度大小;(3)试证明小球平抛运动的水平位移总小于22L .解析 (1)设细线中的张力为T ,根据牛顿第二定律得Mg -T =Ma T -mg sin 30°=ma 且M =km 解得a =2k -12(k +1)g .(2)设M 落地时速度大小为v ,m 射出管口时速度大小为v 0.M 落地前由动能定理得Mg ·L sin 30°-mg ·L sin 30°·sin 30°=12(M +m )v 2,对m ,M 落地后由动能定理得-mg (L -L sin 30°)sin 30°=12m v 02-12m v 2 联立解得v 0=k -22(k +1)gL (k >2).(3)小球做平抛运动,则s =v 0t L sin 30°=12gt 2 解得s =Lk -22(k +1)由k -22(k +1)<12得s =Lk -22(k +1)<22L .答案 (1)2k -12(k +1)g (2)k -22(k +1)gL (k >2) (3)见解析。

动能和动能定律

动能和动能定律
1.在研究某一物体受到力的持续作用而发生状态改 变时,如涉及位移和速度而不涉及时间时应首先考虑应用 动能定理,而后考虑牛顿定律、运动学公式,如涉及加速 度时,先考虑牛顿第二定律. 2.用动能定理解题,关键是对研究对象进行准确的 受力分析及运动过程分析,并画出物体运动过程的草图, 让草图帮助我们理解物理过程和各量关系,有些力在物体 运动全过程中不是始终存在的,在计算外力做功时更应引 起注意.
高频考点例析
mg[h- R(1- cos60° )]- μmgscos60° 1 =0- mv02 2 物体在斜面上通过的总路程为 1 2g(h- R)+v02 2 s= μg 2×10×(3.0-1.0)+4.02 = m】 280 m 【规律总结】 解此题应注意重力为恒力,做功只与 始末位置高度差有关,而滑动摩擦力做功与路程有关的特 点,全程应用动能定理求解.
一、对动能定理的理解 1.位移和速度:必须是相对于同一个参考系的,一 般以地面为参考系. 2.动能定理适用范围:直线运动、曲线运动、恒力 做功、变力做功、同时做功、分段做功各种情况均适用. 3.动能定理既适用于一个持续的过程,也适用于几 个分段过程的全过程. 4.动能定理公式中等号的意义 等号表明合力做的功与物体动能的变化有以下三个关 系: (1)数量相等.即通过计算物体动能的变化,求合力 的功,进而求得某一力的功. (2)因果关系:合外力的功是引起物体动能变化的原 因. (3)单位相同,国际单位都是焦耳.
变式训练
高频考点例析
2.如图5-2-6所示,ABCD是一 个盆式容器,盆内侧壁与盆底BC的连接 处都是一段与BC相切的圆弧,BC为水 平的,其距离d=0.50 m.盆边缘的高度 为h=0.30 m.在A处放一个质量为m的 小物块并让其从静止出发下滑.已知盆 内侧壁是光滑的,而盆底BC面与小物块 间的动摩擦因数为μ=0.10.小物块在盆 内来回滑动,最后停下来,则停下的位 置到B的距离为( ) A.0.50 m B.0.25 m C.0.10 m D.0
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

动能和动能定理
一、教学目标
1.知识和技能:
⑴理解动能的概念,会用动能的定义式进行计算;
⑵理解动能定理及其推导过程;
⑶知道动能定理的适用条件,会用动能定理进行计算。

2.过程和方法:
⑴体验实验与理论探索相结合的探究过程。

⑵培养学生演绎推理的能力。

⑶培养学生的创造能力和创造性思维。

3.情感、态度和价值观:
⑴激发学生对物理问题进行理论探究的兴趣。

⑵激发学生用不同方法处理同一问题的兴趣,会选择用最优的方法处理问题。

二、设计思路
动能定理是力学中一条重要规律,它反映了外力对物体所做的总功跟物体动能改变的关系,动能定理贯穿在本章以后的内容中,是
本章的教学重点。

学习掌握它,对解决力学问题,尤其是变力做功,时间未知情况下的问题有很大的方便。

本课--的过程为:
学生通过回忆初中所学的内容和实验引起思考
学生讨论,设计情景,进行理论探讨和论证,找出动能的表达式。

通过对前面探讨过程的深入思考,得出动能定理
通过具体实例,深化对动能和动能定理的理解,突出动能定理的优越性
由于本节内容较多又很重要,建议安排一节习题课,以达到良好的效果。

三、教学重点、难点
1.重点:⑴动能概念的理解;⑵动能定理及其应用。

2.难点:对动能定理的理解。

四、教学资源
斜面、质量不同的滑块、木块等
五、--
教师活动
学生活动
点评
一、引入新课【板书】一、动能提问:在初中我们学过动能的初步知识,那么什么是物体的动能?【板书】1、定义:物体由于运动而具有的能量叫动能。

提问:物体的动能大小和哪些因素有关呢?你有什么方法可以证明?引导学生重复初中所做得滑块撞击木块的实验。

归纳:物体能够对外做功的本领越大,物体的能量就越大,实验中滑块的质量和速度越大,对外做功的本领越大,说明动能和物体的质量和速度有关。

提问:那么,到底如何定量的来表示动能呢?过渡:上一节课我们研究了做功和物体速度变化的关系,两者之间有什么关系?提问:那么比例系数为多少呢?如何去确定呢?设计情景:如图所示,某物体的质量为m,在与运动方向相同的恒力f的作用下发生一段位移l,速度由v1增加到v2。

求做功和速度变化的关系?选择学生的答案,投影学生的解答过程,归纳,总结。

根据牛顿第二定律:……①根据运动学公式:…②外力f做功:…………
③由①②③得:思考:外力做功引起了什么量的变化?归纳:外力f所做的功等于“”这个物理量的变化,所以在物理学中就用“”这个量表示物体的动能。

二、新课教学【板书】2、公式:提问:动能的大小由什么决定?它是标量还是矢量?【板书】3、说明:①动能是标量,且总为正值,由物体的速率和质量决定,与运动方向无关;提问:动能的单位?【板书】②动能的单位:焦(j)1j=1n·m=1kg·m2/s2 提问:二战时一位飞行员用手抓住了一颗飞行的子弹,这说明了什么?【板书】③动能具有相对性。

讲解:有了动能的公式,前面的方程就可以写成:提问:⑴上式的物理意义是什么?⑵如果物体受到几个力共同作功,上式是否还成立呢?讲解:上式具有普遍意义,是力学中的一条重要规律。

【板书】二、动能定理1、表述:合外力对物体做的功,等于物体动能的变化。

2、公式:提问:刚才的推导是在物体受恒力作用,并且做直线运动的情况下得出的。

如果物体受到变力作用或物体做曲线运动时,定理是否正确呢?【板书】3、动能定理适用于变力做功和曲线运动的情况。

引导学生看课本例题1。

确定研究对象:飞机分析研究过程:飞机滑跑过程分析受力:重力、支持力、牵引力和阻力分析做功情况:牵引力和阻力做功分析动能变化:初动能末动能根据动能
定理列出方程,求解。

思考:如果用牛顿运动定律和运动学公式是否可以求解?引导比较两种解法。

引导学生看课本例题2。

提问:通过两个例题,你是否可以归纳出应用动能定理解题的步骤?【板书】三、应用动能定理解题的步骤1、确定研究对象2、确定研究过程3、分析物体的受力和各力的做功情况4、确定初末状态的动能5、应用动能定理列方程求解6、检验三、学生练习:1、物体的速度增大为原来的n倍,动能增大为多少倍?动能增加了多少倍?速度变为原来的,动能变为多少?动能变化了多少?质量增加为原来的n倍,动能增大为多少倍?动能增加了多少倍?(强化动能和速度及质量的关系,辨析动能和动能变化的区别。

)2、子弹以水平速度v射入固定木板深s处,假设子弹在木板中受的阻力是恒定的,那么子弹以水平射入木板中,射入的深度是多少?子弹以的初动能射入木板中,射入的深度又是多少?(强化应用动能定理解题的基本思路和方法)四、作业:《问题与练习》第2、3、4、5题学生回答:物体由于运动而具有的能量叫动能。

学生回答:物体的质量和速度越大,它的动能就越大。

学生上台演示滑块从斜面上滑下:同一滑块,高度越高,滑块把木块推得越远;同一高度,质量越大,滑块把木块推得越远。

学生回答:力对初速度为零的物体所做
的功与物体速度的二次方成正比。

学生讨论:找出做功和速度平方变化的定量关系。

学生讨论,求解。

学生讨论找出“”这个特定意义的物理量。

学生回答:动能的大小由物体的质量和速率决定。

学生讨论:动能是标量。

学生回答:动能的单位和功的单位相同。

学生讨论:子弹相对飞行员的速度很小,相对动能也就很小。

学生回答:做功等于物体动能的变化。

学生讨论:可以成立,此时的w应为合外力对物体做的总功。

学生讨论:采用微元法,将物体的运动分解成许多小段,在每一小段上物体受到恒力且做匀速运动,可以得到同样的结论。

学生看书,归纳解题过程。

学生练习用牛顿运动定律和运动学公式求解学生回答:动能定理不涉及物体运动过程中的加速度和时间,应用比较方便。

学生讨论归纳。

练一练,做一做,想一想开门见山,直接点题。

在初中所学内容的基础上深入探究,激发学生的学习兴趣。

学生直接参与探究过程,增加感性认识。

深化对前一节课所学内容的理解,激发学生的探究兴趣。

让学生感受理论探究的过程,在学生求解的过程中要适度巡视,加以指导。

应用学生的解答过程,肯定学生的探究过程。

让学生体会探究的乐趣和喜悦。

在探究的基础上进一步激发学生的科学思维能力。

通过问题和实际事例,增加学生对知识的感性认识和横向联系,突破教学难点。

紧紧扣住探究过程,再次提出问题,激发学生的研究兴趣和学习热情,发挥学生的主观能动性。

通过学生的思考,和以前所学的思维方法有机结合,突破难点。

学习用理论指导实践的方法,培养细致严谨的科学态度。

通过比较,激发学生用不同方法处理同一问题的兴趣。

通过比较,突出动能定理的优点,增强学生对知识的内化。

强化解题步骤,培养学生科学细致的解题思路和规范。

学生根据所学的知识,当堂巩固,培养应用规律解决问题的能力,加强对知识和规律的理解。

同时拓展学生的认知空间。

加深对课堂知识的巩固和理解。

相关文档
最新文档