小升初典型应用题精练行程问题学生版
小升初典型应用题精练——行程问题(学生版)
领航小升初专题四行程问题一、知识点1路程、时间、速度是行程问题的三个基本量,它们之间的关系如下:路程=时间X速度,时间=路程十速度,速度=路程十时间。
2、在行程问题中有一类“流水行船”问题,在利用路程、时间、速度三者之间的关系解答这类问题时,应注意各种速度的含义及相互关系:顺流速度=静水速度+水流速度,逆流速度=静水速度-水流速度,静水速度=(顺流速度+逆流速度)十2,水流速度=(顺流速度-逆流速度)十2。
此处的静水速度、顺流速度、逆流速度分别指船在静水中、船顺流、船逆流的速度。
3、相遇问题和追及问题。
在这两个问题中,路程、时间、速度的关系表现为:相遇问题:= t度和X相遇吋间,速J度和=总路程一相遇吋间T相遇时间=总路程一速度和f追击问题:[追及时间=追及路程逋度差,追及路程二速度差X追及吋间,I速度差=追及路程+追及时间*在实际问题中,总是已知路程、时间、速度中的两个,求另一个。
二、习题精练1、一个车队以4米/秒的速度缓缓通过一座长200米的大桥,共用115秒。
已知每辆车长5米,两车间隔10米。
问:这个车队共有多少辆车?2、骑自行车从甲地到乙地,以10千米/时的速度行进,下午1点到;以15千米/时的速度行进,上午11点到。
如果希望中午12点到,那么应以怎样的速度行进?3、戈删比赛前讨论了两个比赛方案。
第一个方案是在比赛中分别以 2.5米/秒和3.5米/秒的速度各划行赛程的一半;第二个方案是在比赛中分别以 2.5米/秒和3.5米/秒的速度各划行比赛时间的一半。
这两个方案哪个好?4、小明去爬山,上山时每小时行2.5千米,下山时每小时行4千米,往返共用 3.9时。
问:小明往返一趟共行了多少千米?5、一只蚂蚁沿等边三角形的三条边爬行,如果它在三条边上每分钟分别爬行50,20,40厘米,那么蚂蚁爬行一周平均每分钟爬行多少厘米?6、两个码头相距418千米,汽艇顺流而下行完全程需11时,逆流而上行完全程需19时。
六年级小升初数学行程问题专项训练(1)(1)(1)
六年级小升初数学行程问题专项训练【小升初常考必考题型】1.甲车和乙车同时在同一个地方同向出发,甲车每小时行24千米,乙车每小时行15千米。
行驶2小时后甲车发生故障,进行修理,乙车一直在行驶。
甲车修好之后花费8小时才赶上乙车,甲车维修了几小时?2.一个队伍长360千米,以每秒3米的速度前进,一人以每秒5米的速度从队尾赶到队头,需要多长时间?3.甲的速度为10千米每小时,乙的速度为5千米每小时。
两人同时同地背向而行,3小时后,甲掉头追赶乙。
甲追上乙要多长时间?4.甲、乙同时同向同点从500米的环形跑道上出发,甲每分钟跑280米,乙每分钟跑230米。
多久后甲第一次追上乙?5.两地相距60千米,两车同时出发,甲车在后追赶乙车。
甲车每小时行30千米,乙车每小时行25千米,多久后两车还相距20千米?6.甲、乙两人同时向相反的方向走去,6分钟后两人相距780米,甲每分钟走73米,乙每分钟走多少米?7.甲、乙两辆汽车同时从A开往B,2.8小时后甲车落后于乙车28千米。
已知甲车每小时行32千米,则乙车每小时行多少千米?8.甲在乙前面100米,甲、乙同时出发,20分钟后乙追上甲,已知甲每分钟走25米,乙每分钟走多少米?9.甲、乙两车分别从A,B两地出发,并在A,B两地间不断往返行驶。
已知甲车的速度是15千米/小时,乙车的速度是25千米/小时,甲、乙两车第三次相遇地点与第四次相遇地点相差100 千米。
求A,B两地的距离10.小明和小光同时从解放军营地回校执行任务,小光步行速度是小明的4倍,营地有一辆摩托车,只能搭乘一人,它的速度是小明步行速度的16 3倍。
为了使小光和小明在最短时间内到达,小明小光需要步行的距离之比是多少?11.在一条马路上,小明骑车与小光同向而行J小明骑车速度是小光速度的3倍,每隔10分有一辆公共汽车超过小光,每隔20分有一辆公共汽车超过小明。
已知公共汽车从始发站每次间隔同样的时间发一辆车,问:相邻两车间隔几分?12.猎狗前面26步远有一只野兔,猎狗追之,兔跑8步的时间狗跑5步,兔跑9步的距离等于狗跑4步的距离。
(完整版)小升初行程问题经典试题
一、相遇问题1、一列快车和一列慢车,同时从甲、乙两站出发,相向而行,经过6小时相遇,相遇后快车继续行驶3小时后到达乙站。
已知慢车每小时行45千米,甲、乙两站相距多少千米?2、甲、乙二人分别以每小时3千米和5千米的速度从A、B两地相向而行.相遇后二人继续往前走,如果甲从相遇点到达B地共行4小时,那么A、B两地相距多少千米?3.一列快车从甲城开往乙城,每小时行65千米,一列客车同时从乙城开往甲城,每小时行60千米,两列火车在距中点20千米处相遇,相遇时两车各行了多少千米4、兄弟两人同时从家里出发到学校,路程是1400米。
哥哥骑自行车每分钟行200米,弟弟步行每分钟行80米,在行进中弟弟与刚到学校就立即返回来的哥哥相遇。
从出发到相遇,弟弟走了多少米?相遇处距学校有多少米?5、有两只蜗牛同时从一个等腰三角形的顶点A出发(如图),分别沿着两腰爬行。
一只蜗牛每分钟行2.5米,另一只蜗牛每分钟行2米,8分钟后在离C点6米处的P点相遇,BP的长度是多少米?6、甲、乙两人同时从A、B两地相向而行,相遇时距A地120米,相遇后,他们继续前进,到达目的地后立即返回,在距A地150米处再次相遇,AB两地的距离是多少米?7、A、B两地相距38千米,甲、乙两人分别从两地同时出发,相向而行,甲每小时行8千米,乙每小时行11千米,甲到达B地后立即返回A地,乙到达A地后立即返回B地,几小时后两人在途中相遇?相遇时距A地多远?10、甲、乙两人从A地到B地,丙从B地到A地。
他们同时出发,甲骑车每小时行8千米,丙骑车每小时行10千米,甲丙两人经过5小时相遇,再过1小时,乙、丙两人相遇。
求乙的速度。
11、甲、乙、丙三人行走的速度依次分别为每分钟30米、40米、50米。
甲、乙在A地,丙在B地,同时相向而行,丙遇乙后10分钟和甲相遇。
求A、B两地相距多少米?12、甲、乙两车分别从A、B两地同时相对开出,经过5小时相遇,相遇后各自继续前进,又经过3小时,甲车到达B地,这时乙车距A地还有120千米。
(完整版)小升初数学行程问题应用题(附答案)
小升初数学行程问题应用题1、甲乙两车同时从AB两地相对开出。
甲行驶了全程的5/11,如果甲每小时行驶4。
5千米,乙行了5小时。
求AB两地相距多少千米?2、一辆客车和一辆货车分别从甲乙两地同时相向开出。
货车的速度是客车的五分之四,货车行了全程的四分之一后,再行28千米与客车相遇。
甲乙两地相距多少千米?3、甲乙两人绕城而行,甲每小时行8千米,乙每小时行6千米。
现在两人同时从同一地点相背出发,乙遇到甲后,再行4小时回到原出发点。
求乙绕城一周所需要的时间?4、甲乙两人同时从A地步行走向B地,当甲走了全程的1/4时,乙离B地还有640米,当甲走余下的5/6时,乙走完全程的7/10,求AB 两地距离是多少米?5、甲,乙两辆汽车同时从A,B两地相对开出,相向而行。
甲车每小时行75千米,乙车行完全程需7小时。
两车开出3小时后相距15千米,A,B两地相距多少千米?6、甲,已两人要走完这条路,甲要走30分,已要走20分,走3分后,甲发现有东西没拿,拿东西耽误3分,甲再走几分钟跟乙相遇?7、甲,乙两辆汽车从A地出发,同向而行,甲每小时走36千米,乙每小时走48千米,若甲车比乙车早出发2小时,则乙车经过多少时间才追上甲车?8、甲乙两人分别从相距36千米的ab两地同时出发,相向而行,甲从a地出发至1千米时,发现有物品以往在a地,便立即返回,去了物品又立即从a地向b地行进,这样甲、乙两人恰好在a,b两地的终点处相遇,又知甲每小时比乙多走0。
5千米,求甲、乙两人的速度?9、两列火车同时从相距400千米两地相向而行,客车每小时行60千米,货车小时行40千米,两列火车行驶几小时后,相遇有相距100千米?10、甲每小时行驶9千米,乙每小时行驶7千米。
两者在相距6千米的两地同时向背而行,几小时后相距150千米?11、甲乙两车从相距600千米的两地同时相向而行已知甲车每小时行42千米,乙车每小时行58千米两车相遇时乙车行了多少千米? 12、两车相向,6小时相遇,后经4小时,客车到达,货车还有188千米,问两地相距?13、甲乙两地相距600千米,客车和货车从两地相向而行,6小时相遇,已知货车的速度是客车的3分之2 ,求二车的速度?14、小兔和小猫分别从相距40千米的A、B两地同时相向而行,经过4小时候相聚4千米,再经过多长时间相遇?15、甲、乙两车分别从a b两地开出甲车每小时行50千米乙车每小时行40千米甲车比乙车早1小时到两地相距多少?16、两辆车从甲乙两地同时相对开出,4时相遇。
小升初复习行程问题练习(含答案)
行程问题练习知识点梳理一、基础公式①路程=速度×时间②时间=路程÷速度③速度=路程÷时间二、常见题型①一般相遇:路程和=时间×速度和②中点相遇:四步曲(1)找出快走者多走的路程:中点路程×2 (2)算出速度差:快者速度-慢者速度 (3)时间:(1)的路程÷(2)的速度=时间(4)套用公式:路程和=时间×速度和③往返相遇:两者相对行驶,第三人在中间往返。
同时出发、同时停止就是相遇时间。
④环形相遇:背向行驶,相遇几次就共走了几个全长。
三、解题思路①画行程图理解题意。
②分析题型。
③套用公式。
例题1红红和聪聪分别从相距 1026 米的两地同时出发,相向而行。
红红家的小狗也跟来了,而且跑在了红红的前面。
当小狗和聪聪相遇后,立即返回跑向红红,遇到红红后,又立即返回跑向聪聪,这样跑来跑去,一直到两人相遇。
这只小狗一共跑了__________米。
(已知红红每分钟走54 米,聪聪每分钟走60 米,小狗每分钟跑70米)例题2一辆客车从 A 地出发开往 B 地,同时一辆货车从 B 地出发开往 A 地。
3 小时后两车在离 A 地 180 千米的 C 地相遇。
相遇后两车继续向前行驶,2 小时后,客车到达 B 地。
此刻,货车还要行驶多少小时才能到达A地?例题3星期天,小英从家里出发去少年宫学画画。
她刚走不久,妈妈发现小英忘了带画笔,于是就去追小英。
如图象表示两人行走的时间和路程。
①妈妈每分钟走__________米;②照这样的速度,妈妈出发后__________分钟可以追上小英。
例题4某日上午,甲、乙两车先后从 A 地出发沿一条公路匀速前往 B 地。
甲车 7 点出发,如图是甲行驶路程 s(千米)随行驶时间 t(小时)变化的图像。
乙车 8 点出发,若要在 9 点至 10 点之间(含 9 点和 10 点)追上甲车,则乙车的速度 v (单位:千米/时)的范围是__________。
完整)小升初数学行程问题应用题(附答案)
完整)小升初数学行程问题应用题(附答案)1、甲乙两车同时从AB两地相对开出。
已知甲行驶了全程的5/11,每小时行驶4.5千米,乙行了5小时。
求AB两地相距多少千米?解析:设AB两地相距x千米,甲行驶了5/11x千米,乙行驶了5小时,根据速度公式,可列出以下方程组:5/11x = 4.5t (甲的路程)x = 5t (乙的路程)将第二个方程代入第一个方程中,得到:5/11(5t) = 4.5tt = 55/9将t代入第二个方程中,得到:x = 5t = 275/9所以,AB两地相距约为30.56千米。
2、一辆客车和一辆货车分别从甲乙两地同时相向开出。
已知货车的速度是客车的五分之四,货车行了全程的四分之一后,再行28千米与客车相遇。
甲乙两地相距多少千米?解析:设AB两地相距x千米,客车的速度为v,则货车的速度为5v/4.根据题意,可列出以下方程组:x = 4/3(1/4x + 28) + 1/3(1/4x)v + 5v/4 = x/6将第二个方程代入第一个方程中,得到:x = 336所以,AB两地相距约为336千米。
3、甲乙两人绕城而行,甲每小时行8千米,乙每小时行6千米。
现在两人同时从同一地点相背出发,乙遇到甲后,再行4小时回到原出发点。
求乙绕城一周所需要的时间?解析:设城市周长为x千米,甲乙相遇的时间为t小时,则甲走了8t千米,乙走了6t千米。
根据题意,可列出以下方程组:8t + 6t = x6(t + 4) + 6t = x将第一个方程代入第二个方程中,得到:6t + 24 = 8tt = 12将t代入第一个方程中,得到:x = 96所以,乙绕城一周所需要的时间为16小时。
4、甲乙两人同时从A地步行走向B地,当甲走了全程的1/4时,乙离B地还有640米,当甲走余下的5/6时,乙走完全程的7/10,求AB两地距离是多少米?解析:设AB两地距离为x米,甲走了全程的1/4x米,剩余的3/4x米,乙走了x-640米。
小学数学典型应用题行程问题
行程问题经典题型(一)1、甲、乙两地相距6千米,某人从甲地步行去乙地,前一半时间均匀每分钟行80米,后一半时间均匀每分钟行70米。
问他走后一半行程用了多少分钟?剖析:解法1、全程的均匀速度是每分钟(80+70)/2=75米,走完整程的时间是6000/75=80分钟,走前一半行程速度必定是80米,时间是3000/80=37.5分钟,后一半行程时间是80-37.5=42.5分钟解法2:设走一半行程时间是x分钟,则80*x+70*x=6*1000,解方程得:x=40分钟因为80*40=3200米,大于一半行程3000米,所以走前一半行程速度都是80米,时间是3000/80=37.5分钟,后一半行程时间是40+(40-37.5)=42.5分钟答:他走后一半行程用了42.5分钟。
2、小明从家到学校有两条相同长的路,一条是平路,另一条是一半上坡路、一半下坡路。
小明上学走两条路所用的时间相同多。
已知下坡的速度是平路的1.5倍,那么上坡的速度是平路的多少倍?剖析:解法1:设行程为180,则上坡和下坡均是90。
设走平路的速度是2,则下坡速度是3。
走下坡用时间90/3=30,走平路一共用时间180/2=90,所以走上坡时间是90-30=60 走与上坡相同距离的平路时用时间90/2=45 因为速度与时间成反比,所以上坡速度是下坡速度的45/60=0.75倍。
解法2:因为距离和时间都相同,所以均匀速度也相同,又因为上坡和下坡路各一半也相同,设距离是1份,时间是1份,则下坡时间=0.5/1.5=1/3,上坡时间=1-1/3=2/3,上坡速度=(1/2)/(2/3)=3/4=0.75解法3:因为距离和时间都相同,所以:1/2*行程/上坡速度+1/2*行程/1.5=行程/1,得:上坡速度=0.75答:上坡的速度是平路的0.75倍。
3、一只小船从甲地到乙地来回一次共用2小时,回来时顺流,比去时的速度每小时多行驶8千米,所以第二小时比第一小时多行驶6千米。
六年级下册数学小升初必考《行程问题》专项练习
六年级下册数学小升初必考《行程问题》专项1、一座铁路桥长1800米,一列火车开过大桥需要75秒,火车开过路旁的电线杆只需15秒,求火车全长是多少米?75﹣15=60(秒)火车速度是:1800÷60=30(米/秒)火车全长是:30×15=450(米)答:火车全长是450米.2、哪知龙王雨水只能灭凡火,却灭不了三昧真火,降雨反似火上浇油,越烧越灼,烧得大圣一身烟火,魂飞魄散,一时间不得起身.不得已,八戒借了悟空的筋斗云,便要去南方请菩萨搭救,红孩儿得知八戒南去,料他必向观音求助,便要赶在他前面,化身为「假观音菩萨」欺骗他.筋斗云时速200公里,红孩儿的火云时速250公里,八戒出发后15分钟红孩儿便出发追赶,问红孩儿要飞多久才能拦截到八戒?15分钟=1/4小时,200×1/4÷(250﹣200)=50÷50=1(小时)答:红孩儿要飞1小时才能拦截到八戒。
3、快、慢两车分别从甲、乙两站同时开出,相向而行,经过2.5小时相遇,相遇地点距离中点25千米,已知慢车每小时行驶40千米,那么快车到达乙站还需要几小时?快车慢车路程差:25×2=50(千米)速度差:50÷2.5=20(千米/时)快车速度:20+40=60(千米/时)快车到达乙站需用时:2.5×40÷60=5/3(时)答:那么快车到达乙站还需要5/3小时。
4、一辆汽车从甲地开往乙地,每分钟行750米,预计50分钟到达,但汽车行驶到3/5的路程时,出了故障,用5分钟修理完毕.如果仍需在预定时间内到达乙地,汽车行驶余下的路程时,每分钟必须比原来快多少米?余下的路程:750×50×(1-3/5)=1500(米)走余下路程所用时间:50×(1-3/5)-5=15(分)对应速度:15000÷15=1000(米/分)每分钟比原来快1000-750=250(米)答:每分钟必须比原来快250米。
(完整版)小升初数学行程问题应用题(附答案)
小升初数学行程问题应用题1、甲乙两车同时从AB两地相对开出。
甲行驶了全程的5/11,如果甲每小时行驶4。
5千米,乙行了5小时。
求AB两地相距多少千米 ?2、一辆客车和一辆货车分别从甲乙两地同时相向开出。
货车的速度是客车的五分之四,货车行了全程的四分之一后,再行28千米与客车相遇.甲乙两地相距多少千米?3、甲乙两人绕城而行,甲每小时行8千米,乙每小时行6千米。
现在两人同时从同一地点相背出发,乙遇到甲后,再行4小时回到原出发点。
求乙绕城一周所需要的时间?4、甲乙两人同时从A地步行走向B地,当甲走了全程的1/4时,乙离B地还有640米,当甲走余下的5/6时,乙走完全程的7/10,求AB两地距离是多少米?5、甲,乙两辆汽车同时从A,B两地相对开出,相向而行。
甲车每小时行75千米,乙车行完全程需7小时。
两车开出3小时后相距15千米,A,B两地相距多少千米?6、甲,已两人要走完这条路,甲要走30分,已要走20分,走3分后,甲发现有东西没拿,拿东西耽误3分,甲再走几分钟跟乙相遇?7、甲,乙两辆汽车从A地出发,同向而行,甲每小时走36千米,乙每小时走48千米,若甲车比乙车早出发2小时,则乙车经过多少时间才追上甲车?8、甲乙两人分别从相距36千米的ab两地同时出发,相向而行,甲从a地出发至1千米时,发现有物品以往在a地,便立即返回,去了物品又立即从a地向b地行进,这样甲、乙两人恰好在a,b两地的终点处相遇,又知甲每小时比乙多走0。
5千米,求甲、乙两人的速度?9、两列火车同时从相距400千米两地相向而行,客车每小时行60千米,货车小时行40千米,两列火车行驶几小时后,相遇有相距100千米?10、甲每小时行驶9千米,乙每小时行驶7千米。
两者在相距6千米的两地同时向背而行,几小时后相距150千米?11、甲乙两车从相距600千米的两地同时相向而行已知甲车每小时行42千米,乙车每小时行58千米两车相遇时乙车行了多少千米?12、两车相向,6小时相遇,后经4小时,客车到达,货车还有188千米,问两地相距?13、甲乙两地相距600千米,客车和货车从两地相向而行,6小时相遇,已知货车的速度是客车的3分之2 ,求二车的速度?14、小兔和小猫分别从相距40千米的A、B两地同时相向而行,经过4小时候相聚4千米,再经过多长时间相遇?15、甲、乙两车分别从a b两地开出甲车每小时行50千米乙车每小时行40千米甲车比乙车早1小时到两地相距多少?16、两辆车从甲乙两地同时相对开出,4时相遇.慢车是快车速度的五分之三,相遇时快车比慢车多行80千米,两地相距多少?17、甲乙两人分别从A、B两地同时出发,相向而行,甲每分钟行100米,乙每分钟行120米,2小时后两人相距150米.A、B两地的最短距离多少米?最长距离多少米?18、甲乙两地相距180千米,一辆汽车从甲地开往乙地计划4小时到达,实际每小时比原计划多行5千米,这样可以比原计划提前几小时到达?19、甲、乙两车同时从AB两地相对开出,相遇时,甲、乙两车所行路程是4:3,相遇后,乙每小时比甲快12千米,甲车仍按原速前进,结果两车同时到达目的地,已知乙车一共行了12小时,AB两地相距多少千米?20、甲乙两汽车同时从相距325千米的两地相向而行,甲车每小时行52千米,乙车的速度是甲车的1。
小升初典型应用题精练行程问题 附详细解答
3、相遇问题和追及问题。
在这两个问题典型应用题精练(行程问题)中,路程、时间、速度的关系表现为:、路程、时间、速度是行程问题的三个1相遇问题:基本量,它们之间的关系如下:追击问题:路程时间×速度,=在实际问题中,总是已知路程、时间、速 =路程÷速度,时间度中的两个,求另一个。
速度路程÷时间。
=1 、一个车队以4米/秒的速度缓缓、在行程问题中有一类“流水行船”问2通过一座长200米的大桥,共用115秒。
题,在利用路程、时间、速度三者之间的已知每辆车长5米,两车间隔10米。
问:应注意各种速度的关系解答这类问题时,这个车队共有多少辆车?含义及相互关系:2、骑自行车从甲地到乙地,以10千水流速度,静水速度顺流速度=+米/时的速度行进,下午1点到;以15千米/时的速度行进,上午11点到。
如果希 -水流速度,静水速度逆流速度=望中午12点到,那么应以怎样的速度行逆流速度)÷+(顺流速度静水速度=2,进?(顺流速度水流速度=。
逆流速度)÷-23 、划船比赛前讨论了两个比赛方案。
第一个方案是在比赛中分别以2.5米逆流速度分顺流速度、此处的静水速度、/秒和3.5米/秒的速度各划行赛程的一船顺流、别指船在静水中、船逆流的速度。
米2.5第二个方案是在比赛中分别以半;/秒和3.5米/秒的速度各划行比赛时间分钟行40米,他们每天都在同一时刻相遇。
有一天小明提前出门,的一半。
这两个方案哪个好?因此比平时早9分钟与李大爷相遇,这天小明比平时提小明去爬山,上山时每小时行4 、前多少分钟出门?千米,往返千米,下山时每小时行42.59、小刚在铁路旁边沿铁路方向的公3.9时。
问:小明往返一趟共行了多共用路上散步,他散步的速度是2米/少千米?秒,这时迎面开来一列火车,从车头到车尾经过一只蚂蚁沿等边三角形的三条边5、他身旁共用18秒。
已知火车全长342米,如果它在三条边上每分钟分别爬行爬行,求火车的速度。
小升初行程问题大全(含答案)精编版
行程问题【题目1】有甲乙丙三车各以一定的速度从A到B,乙比丙晚出发10分钟,出发后40分钟追上丙,甲比乙又晚出发10分钟,出发后60分钟追上丙,问,甲出发后多少分钟可以追上乙?【题目2】正方形ABCD是一条环形公路,已知汽车在AB上的时速为90千米,在BC上的时速是120千米,在CD上的时速是60千米,在DA上的时速是80千米。
已知从CD上的一点P同时反向各发一辆汽车,他们将在A、B的中点上相遇。
那么如果从PC中点M点同时反向各发一辆汽车,他们将在A、B上的一点N相遇。
求AN占AB的几分之几?【题目3】甲乙二人在400米的跑道上进行两次竞赛,第一次乙先跑到25米后,甲开始追乙,到终点比乙提前7.5秒,第二次乙先跑18秒后,甲追乙,当乙到终点时,甲距终点40米,求在400米内,甲乙速度各多少?【题目4】甲乙两人分别从AB两地同时出发,在AB之间往返跑步,甲每秒跑3米,乙每秒跑7米。
如果他们第四次相遇点与第五次相遇点的距离是150米,那么AB之间的距离是多少米?【题目5】甲乙两辆车在一条长为10千米的环形公路上从同一地点同时反向开出,甲车开出4千米时两车相遇。
如果每次相遇后两车都提速10%,求第三次相遇时甲车离出发点多远。
【题目6】甲、乙两人同时从山脚开始爬山,到达山顶后就立即下山,他们下山的速度是各自上山速度的2倍。
甲到达山顶时乙距山顶还有400米;甲回到山脚时,乙刚好下到半山腰。
求山脚到山顶的距离。
【题目7】甲乙两车同时从A、B两地出发相向而行,两车中途相遇后,甲又用4小时到B地,乙又用9小时到A地,相遇时,甲车比乙车多行了90千米,求甲乙两车每小时各行多少千米?【题目1】一次越野赛跑中,当小明跑了1600米时,小刚跑了1450米,此后两人分别以每秒a米和每秒b米匀速跑,又过100秒时小刚追上小明,200秒时小刚到达终点,300秒时小明到达终点,这次越野赛跑的全程为多少?【题目2】甲乙两车分别从AB两地同时出发相向而行,出发时,甲和乙的速度比是4:3,相遇后,甲的速度减少10%,乙的速度增加20%。
(完整版)小升初行程问题
(完整版)⼩升初⾏程问题⾏程问题考点⼀:⼀般⾏程问题公式,速度×时间=路程路程÷时间=速度路程÷速度=时间考点⼆:相遇问题公式,速度和×相遇时间=相遇路程相遇路程÷相遇时间=速度和相遇路程÷速度和=相遇时间考点三:追及问题公式,速度差×追及时间=追及距离追及距离÷追及时间=速度差追及距离÷速度差=追及时间考点四:⽕车过桥公式:⽕车速度×过桥时间=车长+桥长考点五:流⽔⾏船公式,顺⽔速度=船速+⽔速逆⽔速度=船速-⽔速船速=(顺⽔速度+逆⽔速度)÷2 ⽔速=(顺⽔速度-逆⽔速度)÷2 顺⽔速度=逆⽔速度+⽔速×2 逆⽔速度=顺⽔速-⽔速×2考点六:环形⾏程问题公式,封闭环形上的相遇问题,利⽤关系式:环形周长÷速度和=相遇时间封闭环形上的追及问题,利⽤关系:环形周长÷速度差=追及时间【例1】甲⼄⼆⼈同时从两地出发,相向⽽⾏。
⾛完全程,甲需要60分钟,⼄需要40分钟。
出发后5分钟,甲因忘带东西⽽返回出发点,取东西⼜耽误了5分钟。
甲再次出发,多长时间后两⼈相遇?【例2】两列⽕车从甲、⼄两地相向⽽⾏,慢车从甲地到⼄地需要8⼩时,⽐快车从⼄地到甲地多⽤31的时间。
如果两车同时开出,那么相遇时快车⽐慢车多⾏40千⽶。
求甲、⼄两地的距离。
【例3】⼀艘轮船顺流航⾏120千⽶,逆流航⾏80千⽶共⽤了16⼩时,逆流航⾏120千⽶也⽤了16⼩时。
求⽔流速度。
【例4】已知某铁路长1000⽶,⼀列⽕车从桥上通过,测得⽕车从开始上桥到完全下桥共⽤了120秒,整列⽕车完全在桥上的时间为80秒,求⽕车的速度和长度。
【例5】甲⼄⼆⼈在操场的400⽶跑到上练习竞⾛,两⼈同时出发,出发时甲在⼄的后⾯,出发后6分钟甲第⼀次追上⼄,22分钟时甲第⼆次追上⼄。
假设两⼈的速度都保持不变,问:出发时甲在⼄⾝后多少⽶?【例6】甲⼄两车分别从A 、B 两地同时出发,在A 、B 之间不断往返⾏驶。
小升初行程问题大全(含答案)
小升初行程问题大全(含答案)行程问题【题目1】有甲乙丙三车各以一定的速度从A到B,乙比丙晚出发10分钟,出发后40分钟追上丙,甲比乙又晚出发10分钟,出发后60分钟追上丙,问,甲出发后多少分钟可以追上乙?【题目2】正方形ABCD是一条环形公路,已知汽车在AB上的时速为90千米,在BC上的时速是120千米,在CD上的时速是60千米,在DA上的时速是80千米。
已知从CD上的一点P同时反向各发一辆汽车,他们将在A、B的中点上相遇。
那么如果从PC中点M点同时反向各发一辆汽车,他们将在A、B上的一点N相遇。
求AN占AB的几分之几?【题目3】甲乙二人在400米的跑道上进行两次竞赛,第一次乙先跑到25米后,甲开始追乙,到终点比乙提前7.5秒,第二次乙先跑18秒后,甲追乙,当乙到终点时,甲距终点40米,求在400米内,甲乙速度各多少【题目4】甲乙两人分别从AB两地同时出发,在AB之间往返跑步,甲每秒跑3米,乙每秒跑7米。
如果他们第四次相遇点与第五次相遇点的距离是150米,那么AB之间的距离是多少米?【题目5】甲乙两辆车在一条长为10千米的环形公路上从同一地点同时反向开出,甲车开出4千米时两车相遇。
如果每次相遇后两车都提速10%,求第三次相遇时甲车离出发点多远。
【题目6】甲、乙两人同时从山脚开始爬山,到达山顶后就立即下山,他们下山的速度是各自上山速度的2倍。
甲到达山顶时乙距山顶还有400米;甲回到山脚时,乙刚好下到半山腰。
求山脚到山顶的距离。
【题目7】甲乙两车同时从A、B两地出发相向而行,两车中途相遇后,甲又用4小时到B地,乙又用9小时到A地,相遇时,甲车比乙车多行了90千米,求甲乙两车每小时各行多少千米?【题目1】一次越野赛跑中,当小明跑了1600米时,小刚跑了1450米,此后两人分别以每秒a米和每秒b米匀速跑,又过100秒时小刚追上小明,200秒时小刚到达终点,300秒时小明到达终点,这次越野赛跑的全程为多少?【题目2】甲乙两车分别从AB两地同时出发相向而行,出发时,甲和乙的速度比是4:3,相遇后,甲的速度减少10%,乙的速度增加20%。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
领航小升初专题四行程问题一、知识点1、路程、时间、速度是行程问题的三个基本量,它们之间的关系如下:路程=时间×速度,时间=路程÷速度,速度=路程÷时间。
2、在行程问题中有一类“流水行船”问题,在利用路程、时间、速度三者之间的关系解答这类问题时,应注意各种速度的含义及相互关系:顺流速度=静水速度+水流速度,逆流速度=静水速度-水流速度,静水速度=(顺流速度+逆流速度)÷2,水流速度=(顺流速度-逆流速度)÷2。
此处的静水速度、顺流速度、逆流速度分别指船在静水中、船顺流、船逆流的速度。
3、相遇问题和追及问题。
在这两个问题中,路程、时间、速度的关系表现为:相遇问题:追击问题:在实际问题中,总是已知路程、时间、速度中的两个,求另一个。
二、习题精练1 、一个车队以4米/秒的速度缓缓通过一座长200米的大桥,共用115秒。
已知每辆车长5米,两车间隔10米。
问:这个车队共有多少辆车?2、骑自行车从甲地到乙地,以10千米/时的速度行进,下午1点到;以15千米/时的速度行进,上午11点到。
如果希望中午12点到,那么应以怎样的速度行进?3 、划船比赛前讨论了两个比赛方案。
第一个方案是在比赛中分别以2.5米/秒和3.5米/秒的速度各划行赛程的一半;第二个方案是在比赛中分别以2.5米/秒和3.5米/秒的速度各划行比赛时间的一半。
这两个方案哪个好?4 、小明去爬山,上山时每小时行2.5千米,下山时每小时行4千米,往返共用3.9时。
问:小明往返一趟共行了多少千米?5、一只蚂蚁沿等边三角形的三条边爬行,如果它在三条边上每分钟分别爬行50,20,40厘米,那么蚂蚁爬行一周平均每分钟爬行多少厘米?6 、两个码头相距418千米,汽艇顺流而下行完全程需11时,逆流而上行完全程需19时。
求这条河的水流速度。
7、甲车每小时行40千米,乙车每小时行60千米。
两车分别从A,B两地同时出发,相向而行,相遇后3时,甲车到达B地。
求A,B两地的距离。
8、小明每天早晨按时从家出发上学,李大爷每天早晨也定时出门散步,两人相向而行,小明每分钟行60米,李大爷每分钟行40米,他们每天都在同一时刻相遇。
有一天小明提前出门,因此比平时早9分钟与李大爷相遇,这天小明比平时提前多少分钟出门?9、小刚在铁路旁边沿铁路方向的公路上散步,他散步的速度是2米/秒,这时迎面开来一列火车,从车头到车尾经过他身旁共用18秒。
已知火车全长342米,求火车的速度。
10、铁路线旁边有一条沿铁路方向的公路,公路上一辆拖拉机正以20千米/时的速度行驶。
这时,一列火车以56千米/时的速度从后面开过来,火车从车头到车尾经过拖拉机身旁用了37秒。
求火车的全长。
11、如右图所示,沿着某单位围墙外面的小路形成一个边长300米的正方形,甲、乙两人分别从两个对角处沿逆时针方向同时出发。
已知甲每分走90米,乙每分走70米。
问:至少经过多长时间甲才能看到乙?12、猎狗追赶前方30米处的野兔。
猎狗步子大,它跑4步的路程兔子要跑7步,但是兔子动作快,猎狗跑3步的时间兔子能跑4步。
猎狗至少跑出多远才能追上野兔?13、有甲乙丙三车各以一定的速度从A到B,乙比丙晚出发10分钟,出发后40分钟追上丙,甲比乙又晚出发10分钟,出发后60分钟追上丙,问,甲出发后多少分钟可以追上乙?14、正方形ABCD是一条环形公路,已知汽车在AB上的时速为90千米,在BC上的时速是120千米,在CD上的时速是60千米,在DA上的时速是80千米。
已知从CD上的一点P同时反向各发一辆汽车,他们将在A、B的中点上相遇。
那么如果从PC中点M点同时反向各发一辆汽车,他们将在A、B上的一点N相遇。
求AN占AB的几分之几?15、甲乙二人在400米的跑道上进行两次竞赛,第一次乙先跑到25米后,甲开始追乙,到终点比乙提前7.5秒,第二次乙先跑18秒后,甲追乙,当乙到终点时,甲距终点40米,求在400米内,甲乙速度各多少?16、甲乙两人分别从AB两地同时出发,在AB之间往返跑步,甲每秒跑3米,乙每秒跑7米。
如果他们第四次相遇点与第五次相遇点的距离是150米,那么AB之间的距离是多少米?17、甲乙两辆车在一条长为10千米的环形公路上从同一地点同时反向开出,甲车开出4千米时两车相遇。
如果每次相遇后两车都提速10%,求第三次相遇时甲车离出发点多远。
18、甲、乙两人同时从山脚开始爬山,到达山顶后就立即下山,他们下山的速度是各自上山速度的2倍。
甲到达山顶时乙距山顶还有400米;甲回到山脚时,乙刚好下到半山腰。
求山脚到山顶的距离。
19、甲乙两车同时从A、B两地出发相向而行,两车中途相遇后,甲又用4小时到B地,乙又用9小时到A地,相遇时,甲车比乙车多行了90千米,求甲乙两车每小时各行多少千米?20、一次越野赛跑中,当小明跑了1600米时,小刚跑了1450米,此后两人分别以每秒a米和每秒b 米匀速跑,又过100秒时小刚追上小明,200秒时小刚到达终点,300秒时小明到达终点,这次越野赛跑的全程为多少?21、甲乙两车分别从AB两地同时出发相向而行,出发时,甲和乙的速度比是4:3,相遇后,甲的速度减少10%,乙的速度增加20%。
这样,当甲到达B地时,乙离A地还有17千米,那摩AB两地相距多少千米?22、从甲地到乙地全是山路,其中上山路程是下山路程的2/3,一辆汽车从甲地到乙地共行7小时,汽车上山速度是下山速度的一半,这辆这辆汽车从乙地返回甲地需要多少小时?23、甲乙两地,如果去时的速度提高25%,可比原定的时间提前6分钟到达,如果每小时少行10千米,则将多用1/3的时间才能到达,问两地的距离。
24、小丁骑自行车去小周家,先以12千米/小时的速度下山,然后又以9千米/小时的速度走过一段平路,到小周家共用了55分钟;后来时他用8千米/小时的速度通过平路,又以4千米/小时的速度上山回到了家,共用了90分钟,求小周家和小丁家的距离25、甲乙丙三人同时从同一地点出发,沿一条线路追前面的小明,他们三人分别用9分,15分,20分别追上小明,已知甲每小时行24千米,已知甲每小时行24千米,乙每小时行20千米,丙每小时行多少千米?26、网友求助:有一个圆形的池子,ABC三人同时由池子边的某一地点出发,绕池子跑步。
AB向同一方向跑,C在途中遇上A,然后经过4分钟又遇上B。
A每分钟跑400米。
B每分钟跑200米。
C每分钟跑150米。
池子的周长是多少米?27、A的速度为每小时行30千米,B的速度为每小时行20千米,A和B同时从甲地出发到乙地,他们先后到乙地后又返回甲地……,如此往返来回运动。
已知A与B第二次迎面相遇与A第二次追上B 的两点相距45千米,甲乙两地相距多少千米?28、小明和小丁一起去上学,他们以5千米/时的速度行走,走了18分钟,小明突然想起忘带数学书,于是赶紧以10千米/时的速度往家跑,小丁仍以原速前进,若取书的时间忽略不计,小明仍以10千米/时的速度追赶小丁,多长时间才能追上?29、AB两地相距2400米,甲从A地.乙从B地同时出发,在A.B间往返长跑,甲每分钟跑300米,乙每分钟跑240米,在35分钟后停止运动。
甲乙两人在第几次相遇时距A地最近?最近距离是多少米。
30、A,B,C三两车同时从甲地到乙地,按原来速度A应比B早到10分钟,在他们同时出发20分钟后,因为天降大雨,A的速度下降1/4,C速度下降1/5,B速度不变,结果三车同时到达乙地,问,C车行完全程原定要用多少分钟?31、甲乙二人同时从A地到B地。
甲每小时走的路程比乙走的3倍还多1千米。
甲到达B地后,停留45分钟,然后从B地返回,在途中遇乙。
这时距他们出发的时间恰好过了3小时。
如果A、B两地相距25.5千米。
求甲乙二人的速度。
32、甲乙两人同时从A地出发,背向而行,分别前往B.C两地,已知甲乙两人每小时共行96千米,甲乙的速度比是9:7,两人恰好同时同时分别到达BC,乙立即用原速度返回,当乙行了40分钟后,甲在B地得到通知,要求立即返回并且要与乙同时到达A地,甲返回时把原速度提高了20%,这样两人同时到达A地,问B、C间的路程。
33、小明家和小画家在一条之路上,两人从家中同时出发相向而行,在离小明家500米处第一次相遇,相遇后两人保持原速继续前进,到达对方家后立即返回,在离小华家600米处第二次相遇,求两家的距离是多少米?34、甲乙两车同时从A、B两地相向而行,途中相遇,相遇时距A地90千米。
相遇后两车继续以原速前进,到达目的地后立即返回,在途中第二次相遇。
这时相遇点距A地50千米。
已知从第一次相遇到第二次相遇的时间是4小时,求甲乙两地的速度?35、客货两车从甲乙两地同时相向而行分别到达两地立即反回,第二次相遇时,客车距乙地48米。
已知客货两车速度比为5:4,甲乙相距多少千米?36、甲、乙二人同时从A、B两地相向而行,两人相遇的地点距离A地180千米。
第二天,甲、乙二人又同时从A、B两地相向而行,甲把自己的速度提高到原来4倍,乙的速度不变,两人相遇的地点恰好又距离B地180千米,第三天,甲、乙二人还是同时从A,B两地相向而行,甲的速度与第一天速度相同,乙把自己的速度提高到原来的4倍,那么这次他们相遇的地点与A、B两地中点之间的距离是多少千米?37、甲乙丙三个车站在同一条公路上,且他们之间路程相等,A,B两人分别从甲丙两站相向而行,A 在超过乙路150米处和B相遇,然后两人继续前行,A在到丙站后,立即返回,在经过乙站450米处,追上了B。
求甲丙两站的距离。
38、B处的兔子和A处的狗相距56米。
兔子从B处逃跑,狗同时从A处跳出追兔子,狗一跳2米,狗跳3次的时间和兔子跳4次的时间相同。
兔子跳出112米后被狗追上,问兔子一跳多少米?39、甲乙两车分别从A、B两地同时开出,相对而行,4小时后甲车行了全程的1/4,乙车行的路程比全程的12.5%少60千米,甲乙两车继续行驶735千米相遇。
求AB两地相距多少千米?40、火车每分钟行1050米,从车头与一个路标并列到车尾离开这个路标3分钟后一辆摩托车以每分钟1200米的速度从这个路标出发,摩托车出发25分钟后,与火车的车头正好并列,求这列火车的长。
41、船顺流航行速度是每小时8千米,逆流而上的速度是每时7千米,两船同时从同一地点出发,甲船顺流而下,然后返回,乙船逆流而上,然后返回,经过2时同时回到出发点,这2小时中,有多少时间,甲乙两船航行方向是相同的?42、在同一路线上有ABCD四个人,每人的速度固定不变。
已知A在12时追上C,14时时与D迎面相遇,16时时与B迎面相遇。
而B在17时时与C迎面相遇,18时追上D,那么D在几时迎面遇到C。
43、一条河上有甲、乙两个码头,甲在乙的上游50千米处。