基因功能分析的基本策略资料
基因组测序数据分析中常见问题及解决策略
基因组测序数据分析中常见问题及解决策略基因组测序是一项重要的技术,已经广泛应用于生物医学研究、疾病诊断和个体化治疗等领域。
然而,基因组测序数据分析过程中常会遇到一些问题,正确解决这些问题对于准确地分析基因组数据至关重要。
本文将探讨基因组测序数据分析中常见的问题,并提出解决策略。
一、质量控制问题质量控制是基因组测序数据分析的第一步,主要目的是检查测序数据的质量,并去除质量较差的数据。
常见的质量控制问题包括低质量碱基、接头污染和重复序列等。
针对这些问题,可以采取以下策略。
首先,使用质量评估工具(如FastQC)检查测序数据的质量分布。
对于低质量碱基,可以通过Trimming或过滤掉具有低质量碱基的序列来解决。
接头污染可以通过使用Trimming工具删除接头序列来解决。
对于重复序列,可以利用特定软件(如Prinseq)去除这些序列,以保证数据的准确性和可靠性。
二、序列比对问题在基因组测序数据分析中,序列比对是其中一个关键步骤,目的是将测序数据与参考基因组进行比对,并得到每个位置的reads覆盖度。
常见的问题包括参考基因组选择和序列比对比对率等。
针对这些问题,可以考虑以下解决策略。
首先,对于参考基因组的选择,应根据具体研究目的和样本特点选择最适合的参考基因组。
对于高变异的样本,可以选择一致性较高的参考基因组进行比对。
其次,比对率低的问题可以通过选择合适的比对工具来解决。
目前常用的比对工具包括Bowtie、BWA等,根据具体情况选择适合的工具进行比对。
三、变异检测问题基因组测序数据分析的主要目的之一是检测样本中的变异,包括单核苷酸变异(SNV)、插入缺失变异(Indel)等。
常见的变异检测问题包括假阳性和假阴性。
针对这些问题,可以考虑以下策略。
首先,采用多个变异检测工具进行分析,不仅能够减少假阳性结果的产生,更能提高结果的准确性。
其次,对于假阴性结果,可以根据实验的目的进行进一步的验证,如采用Sanger测序等验证方法来提高结果的可信度。
基因组测序及功能解析
基因组测序及功能解析【引言】基因组测序和功能解析是现代遗传学研究中的重要技术和方法之一。
通过对生物体基因组的测序,我们可以获取关于基因组的详细信息,进而了解其组成、结构和功能。
基因组的功能解析则指的是对基因组序列进行解读和理解,以揭示基因之间的相互作用、功能和调控机制。
本文将介绍基因组测序的基本原理和方法,以及基因组功能解析的常见策略和意义。
【基因组测序】基因组测序是指对一个生物体的整个基因组进行测序,即获取其所有基因的DNA序列信息。
其基本原理是利用高通量测序技术将DNA分子断裂、重复复制、测序和组装,最终获得完整而准确的基因组序列。
目前常用的基因组测序技术有两类:Sanger测序和下一代测序。
Sanger测序是早期开发的一种经典测序方法,基于链终止和荧光标记的原理,逐个测定每个碱基的序列。
尽管Sanger测序准确可靠,但其运行周期较长、成本较高,适用于小规模基因组测序。
相比之下,下一代测序技术(如Illumina、454和Ion Torrent等)以其高通量、高效率和低成本的特点成为当前主流。
这些技术通过将DNA分子打断成片段,并在平行的DNA模板合成、扩增和测序过程中,有效提高了测序的速度和准确度。
【基因组功能解析】基因组功能解析是对基因组序列进行解读和研究,以了解基因之间的相互作用、功能和调控机制。
基因组的功能包括编码蛋白质的基因、非编码RNA等。
基因组功能解析的目标之一是鉴定和注释基因组中的基因和功能元件,以帮助我们理解基因组的结构和功能。
基因组注释是确定基因、非编码RNA以及其他功能元件如启动子、转录因子结合位点等的位置和功能。
基因组功能解析的常见策略包括基因预测、同源序列比对、基因表达分析、DNA甲基化分析等。
基因预测是通过计算机算法和生物信息学工具对序列进行比对、搜索和分析,预测出具有编码潜力的DNA序列,即基因。
同源序列比对则是将所研究生物的基因组序列与已知的功能注释良好的生物基因组进行比对,以推断序列的功能和结构。
基因功能的研究方法
一、计算机预测基因功能 二、实验确认基因功能 1.基因失活是功能分析的主要手段
1.1 基因敲除(Gene knock-out)
1.2 基因敲除的技术路线 1.3 基因敲除的主要应用领域及国内外研究进展 1.4 基因失活的表型效应有时不易分辨
2.转座子突变库的构建
2.1 插入序列 2.2 实验步骤
➢ 至于高等生物,因其某些表型具有难以捉摸的综 种内同源基因或平行基因(paralogous gene) 同一种生物内部的同源基因,它们常常是多基因家族的不同成员,其共同的祖先基因可能
存在于物种形成之后,也可能出现于物种形成之前。 将Ac因子转座酶的编码基因与组成型启动子如35S构建成嵌合基因表达载体,由于除去了转座因子两侧的反向重复顺序,转座酶的编
植物体细胞全能性; 已经建立了一套成熟的转基因系统,使外
源基因在转基因植株中成功表达。
➢植物中有许多转座子系统,它们的转座机
制已经清楚,通过转座子的随机插入可获 得大量的突变型,根据插入的转座子序列 合成探针,可分离被破坏的位点,并分析 它们的组成。
1.1 基因敲除(Gene knock-out) ➢ 概念:基因敲除除可中止某一基因的
表达外,还包括引入新基因及引入定 点突变。 即可以是用突变基因或其它基因敲除 相应的正常基因,也可以用正常基因 敲除相应的突变基因。
➢ 基因敲除是80年代后半期应用DNA同源重 组原理发展起来的一门新技术。80年代初, 胚胎干细胞(ES细胞)分离和体外培养的 成功奠定了基因敲除的技术基础。
根据这个特性,将编码DNA-BD的基因与已知蛋白质Bait protein的基因构建在同一个表达载体上,在酵母中表达两者的融合蛋白BD-
的贡献,也可列出很长的一串名单。 Bait protein。
基因功能分析的基本策略
基因功能分析的重要性
基因功能分析是理解生物学过程和疾病机制的关键,有助于发现新的治疗靶点和发展个性化医疗策略。
通过基因功能分析,可以深入了解基因与表型之间的关系,为遗传性疾病和复杂性疾病的预防、诊断 和治疗提供科学依据。
详细描述:基因变异与药物反应关联分析旨在了解不同基因变异对药物 疗效和副作用的影响。这种分析有助于实现个性化用药,提高治疗效果
并减少副作用。
通过以上三种策略,基因功能分析有助于深入了解基因与疾病的关系, 为疾病的预防、诊断和治疗提供有力支持。
基因功能研究的挑战与展望
基因功能研究的挑 战
技术限制
目前的技术手段在研究基因功能时仍存在局限性,例如难以对所有 基因进行全面研究,难以精确分析基因间的相互作用。
04
数据处理与分析
对收集到的数据进行处理、统计分析 和可视化,挖掘基因功能相关的模式 和规律。
基因表达分析
基因表达的检测方法
基因芯片技术
通过微阵列芯片检测基因 表达谱,可同时检测大量 基因的表达水平。
测序技术
利用高通量测序技术,对 特定组织或细胞中的基因 表达进行全面检测。
荧光定量PCR
通过荧光染料或探针,实 时监测PCR扩增过程中荧 光信号的变化,从而确定 基因表达量。
跨学科合作 基因功能研究需要多学科的交叉合作,包括生物 学、医学、化学、物理学等,以更全面地理解基 因的功能。
个性化医疗 随着基因功能研究的深入,将有助于实现基于个 体基因信息的个性化医疗,提高疾病预防和治疗 效果。
未来研究方向
深入研究基因间的相互作用
未来研究将更深入地探索基因间的相互作用, 以更准确地理解基因的功能。
多基因遗传病基因研究的策略和方法
多基因遗传病基因研究的策略和方法多基因遗传病是由多个基因的遗传变异所致的疾病,其研究策略和方法主要包括以下几个方面:1.基因组关联分析(GWAS)GWAS是一种广泛应用于多基因遗传病研究的方法,它通过对大量样本进行基因组分析,寻找与疾病相关的基因位点。
GWAS可以发现与疾病相关的单核苷酸多态性(SNP),从而确定疾病的遗传风险因子。
GWAS的优点是可以发现新的遗传变异,但其缺点是只能发现单个基因的影响,而无法考虑基因之间的相互作用。
2.基因组学数据整合分析基因组学数据整合分析是将不同来源的基因组学数据整合起来,以发现与疾病相关的基因和通路。
这种方法可以将GWAS、转录组、蛋白质组等多种数据整合起来,从而更全面地了解疾病的遗传机制。
3.基因组学功能研究基因组学功能研究是通过对基因的功能进行研究,以了解其在疾病发生和发展中的作用。
这种方法包括基因敲除、基因表达调控、蛋白质相互作用等实验手段,可以揭示基因在疾病中的作用机制。
4.系统生物学分析系统生物学分析是将基因组学数据与生物学网络相结合,以了解基因之间的相互作用和通路。
这种方法可以揭示疾病的复杂性和多样性,从而为疾病的预防和治疗提供新的思路。
总之,多基因遗传病的研究需要综合运用多种方法和技术,以全面了解疾病的遗传机制和发展规律。
基因功能分析的基本策略课件(共 71张PPT)
RNAi 是真核生物中广泛存在的现象
植物:干扰因素自叶脉向外扩散,绿色荧光蛋白 线虫:左侧为 转基因线虫;右侧线虫则经 (GFP) GFP dsRNA 基因 Hela 细胞:经GFP ORC6 siRNA 作用后,细胞出现多核现象。 果蝇:右侧果蝇为野生型,左侧为 shRNA 造成的色素缺乏的 被抑制,显露出红色。 处理。部分细胞 RNAi 相关蛋白表达较低,仍有绿色荧光。 绿色为 tubulin, 缺陷型。 红色为 DNA。ORC6 细胞分裂调控蛋白。
检测的提示重组体存在的基因。GFP、 LacZ、AP、 LUC。
融合基因 (fusion gene): 将特定的目的基因与报告
基因拼接成融合基因,并与顺式作用元件拼接成完 整的转录单位。
动物转基因常用的载体
腺病毒载体 逆转录病毒载体 非病毒类载体:如质粒等。
2. 中游—基因转移、胚胎移植与建系
基本原理
转基因动物
基本过程
上游—基因改造和载体构建
中游—基因转移、胚胎移植与建系 下游—基因整合、表达的检测与细胞筛选
1. 上游—基因改造和载体构建
外源基因: 完整的转录单位, 由顺式作用元件、结构
基因和转录终止信号组成。
报告基因 (reporter gene) : 在表达载体中引入易于
第十二章
基因功能分析的基本策略
转基因模型是研究基因功能的主要手段
转基因生物: 外源基因导入生物体表达。 基因打靶: 外源基因替换内源基因。 基因敲除。 基因敲入。 基因沉默: 导入特定基因,抑制内源性基因表达。
第一节 转基因技术
转基因技术(transgenic technology):将外源 基因导入细胞,随机整合到受体基因组内, 并随细胞分裂而遗传给后代。 细胞模型。 转基因动物。 转基因植物。
基因功能分析的基本策略
2、双链干涉RNA的合成; 化学合成法;体外转录法
3、双链干涉RNA对目标RNA的干涉: 首先,将干涉RNA转染到靶细胞; 其次,是对目标RNA干涉程度进行分析:可采用RT-
PCR在RNA水平上监测、Western blot在蛋白质水平上 进行监测
RT-PCR Western blot
后代
受精
植入
全能性细胞
假孕小鼠
转基因动物应用:
1、通过转基因动物来研究特定基因在组织中特异表达或表达 的时相; 2、在活体内研究或发现基因的新功能; 3、可用于只在胚胎期才表达的基因结构和功能研究; 4、建立研究外源基因表达、调控的动物模型; 5、遗传性疾病的研究; 6、建立人类疾病的动物模型,为人类的基因治疗提供依据; 7、动物新品种的培育; 8、基因工程产品的制备;
转基因技术存在的问题
1、不能将外源基因定向地插入受精卵细胞染色体的特 定部位; 2、外源基因随机整合可能引起插入突变,破坏宿主基 因组功能; 3、外源基因随机整合在宿主染色体上的拷贝数不同, 可能出现不同表现型; 4、整合的外源基因遗传丢失而导致转基因动物症状的 不稳定遗传。
二、稳定转染细胞
稳定转染细胞是一种最常用的细胞水平的转基因模 型,外源基因通过转基因过程插入到细胞染色体中,使 外源基因可以作为细胞染色体的一部分得以在细胞中稳 定表达。
RNA干涉的机制:
在植物、动物和人的细胞内存在着无活性或低活性的被 称为Dicer的由核酸内切酶和解旋酶等组成的酶复合体。 当细胞内出现异常双链RNA时,如病毒RNA,可以激活 Dicer,被激活的Dicer识别并将其切割成短的双链RNA, 同时生成的短的双链RNA又可以进一步激活Dicer,并 与之结合,形成的复合物称为RNA诱导的沉默复合物。 该复合物通过Dicer中的解旋酶将短的双链RNA变成互 补单链RNA,此单链RNA即可识别并结合到细胞内与其 互补的靶RNA分子上,并通过Dicer中的核酸内切酶将 靶RNA切割,使其失去功能。RNA干涉可以被认为是机 体的一种防御机制。
研究基因功能的实验方案
基因功能研究一般先用生物信息学分析对基因的结构和功能做预测,然后就要对我们的推测进行验证,如何验证一个基因的功能,目前最常用的基因功能研究策略为功能获得与功能失活。
1、功能获得策略是指将基因直接导入某一细胞或个体中,通过该基因在机体内的表达,观察细胞生物学行为或个体表型遗传性状的变化,从而鉴定基因的功能。
常用的功能获得的具体方法有基因过表达技术以及CRISPR-SAM技术等。
2、基因的过表达技术:基因过表达技术是指将目的基因构建到组成型启动子或组织特异性启动子的下游,通过载体转入某一特定细胞中,实现基因的表达量增加的目的,可以使用的载体类型有慢病毒载体,腺病毒载体,腺相关病毒载体等多种类型。
当基因表达产物超过正常水平时,观察该细胞的生物学行为变化,从而了解该基因的功能。
基因过表达技术可用于在体外研究目的基因在DNA、RNA和蛋白质水平上的变化以及对细胞增殖、细胞凋亡等生物学过程的影响。
可使用产品:过表达慢病毒、cDNA克隆(可用作ORF克隆)CRISPR-SAM技术:CRISPR-SAM系统由三部分组成:第一个部分是dCas9与VP64融合蛋白;第二个部分是含2个MS2 RNA adapter的sgRNA;第三个是MS2-P65-HSF1激活辅助蛋白。
CRISPR-SAM系统借助dCas9-sgRNA的识别能力,通过MS2与MS2 adapter的结合作用,将P65/HSF1/VP64等转录激活因子拉拢到目的基因的启动子区域,成为一种强效的选择性基因活化剂,从而达到增强基因表达的作用。
可使用产品:全基因Cas9 SAM-慢病毒文库2、功能获得两种方法的比较:基因的过表达技术与CRISPR-SAM技术都能达到基因表达的上调,但是由于基因的过表达技术使用的载体容量的限制,导致基因的过表达技术只能用于研究一定长度内的基因。
而CRISPR-SAM技术是通过增强目的基因启动子的转录而实现基因的过表达,可以不受基因大小的限制。
植物基因定位和基因功能分析的方法研究
植物基因定位和基因功能分析的方法研究随着现代生物学和遗传学的发展,人们对植物基因定位和基因功能分析的方法进行了深入研究,这不仅可以帮助人们更好地理解植物发育和生长的机理,还能为植物育种和生产提供有用的信息和工具。
本文将重点介绍当前主要的植物基因定位和基因功能分析方法。
一、植物基因定位方法1.遗传连锁图谱遗传连锁图谱是一种利用遗传标记来分析不同基因之间遗传联系的方法。
通过对多个遗传标记在植物基因组中的位置进行测定和分析,可以建立起一张遗传图谱,用于揭示不同基因之间的距离和相对位置。
这种方法通常使用分子标记进行,如限制性片段长度多态性(RFLP)、简单重复序列(SSR)、随机扩增多态性(RAPD)等等。
2.基因组关联分析基因组关联分析是一种利用大规模基因组数据来解析复杂性状遗传基础的方法。
这种方法可以在典型生境群体中寻找有影响的变异位点,并确定它们与复杂性状之间的关系。
这种方法使用的主要技术是基因芯片和全基因组二代测序等高通量技术。
3.定位克隆定位克隆是一种在表型、遗传连锁图谱和基因组关联分析的基础上,利用分子遗传学的技术从候选区域中精确定位基因的方法。
这种方法最初是通过描述多态性突变体的表型特征并与别的单基因遗传性神经病的解决方案进行议会比较,通过遗传性状继承模式的推断、基因组DNA库筛选和分子标记标示等技术逐渐细化到定位至遗传连锁图谱中的一个小区域或物理图谱上的一小段碎片。
目前随着技术不断升级,整个过程已经极度自动化,能够对基因进行深准碎片定位和氨基酸序列注释,进一步明确植物基因的功能和作用机制。
二、基因功能分析方法1.反相留出反向遗传(反相留出)是一种采用RNA干扰技术降低或抑制嘌呤和非嘌呤物种基因表达的途径。
这种技术利用RNAi的调控机制,特异性破坏mRNA分子,并通过RNA的剪切或配对等方式,实现对靶基因的抑制。
这种技术能够有效地研究基因在发育、生长、代谢等过程中的功能,并探究不同基因之间的互相作用。
基因表达及功能分析基本策略
目录
Western blot基本程序
1. 蛋白质样品的制备 2. SDS-PAGE分离 3. 蛋白质转膜 4. 特异抗体(即第一抗体)与膜上的蛋白质(抗原)印
迹杂交 5. 再经偶联了可检测标记信号的第二抗体(即抗抗体,
商品试剂盒中多采用偶联辣根过氧化物酶的Ig) 6. 最后经与酶的底物反应而显影、成像,经扫描后获取
26
目录
根据蛋白质芯片制作方法和用途不同,可将其分为 1. 蛋白质检测芯片 2. 蛋白质功能芯片两大类
蛋白质检测芯片包括: 1. 抗体芯片 2. 抗原芯片 3. 配体芯片 4. 碳水化合物芯片等
27
目录ห้องสมุดไป่ตู้
2.双向电泳结合质谱普遍用于蛋白质表达 谱的分析和鉴定
目前比较和鉴定蛋白质表达谱更多采用双向聚丙烯酰 胺凝胶电泳结合质谱技术。双向聚丙烯酰胺凝胶电泳技术 又称二维电泳(two-dimensional electrophoresis, 简称2-D电 泳)。
➢虽然原位杂交在功能性方面提供的信息较少,但是该 技术还是被广泛用于组织中的基因表达分析,这是因 为其较高的稳定性、较广泛的靶点和组织适用性。
8
目录
(二)两种变换的聚合酶链式反应是常用的 mRNA检测方法
1.反转录PCR
➢ 可用于mRNA的半定量分析
➢ 反转录PCR(reverse transcription-PCR,RT-PCR) 是 一种简单、快捷地对RNA进行定性、定量分析的方法。 它是以mRNA为模板,体外扩增cDNA,再以cDNA为模 板进行特定基因转录产物的PCR扩增。RT-PCR技术一般 用于RNA的定性分析;如果设置阳性参照,则可对待测 RNA样品进行半定量分析。
➢ 运用双重着色或多重着色程序同时对多个感兴趣的靶分子 进行检测,是一种揭示更多有关细胞群的功能和它们之间 相互作用信息的有效方法。
植物基因功能研究的主要方法_3215
植物基因功能研究的主要方法随着植物基因组计划的实施和完成,大量的基因组数据库和EST数据库得以建立和完成,因此产生的问题是成千上万新基因的功能有待分子生物学家鉴定。
研究植物基因功能主要有两种策略:正向遗传学和反向遗传学策略。
正向遗传学是传统的方法,策略是通过筛选天然或人工产生的突变体进而克隆相关目标基因,即从功能(表型)-突变体-基因,最后得到具有相关功能(如对干旱敏感或耐旱)的基因,常用手段是图位克隆并结合一些基因差异表达筛选技术(如差减杂交、差异显示PCR、差异显示分析等)。
反向遗传学的策略是从已知的基因序列入手鉴定其功能,研究手段包括基因的互补实验、超表达、反义抑制、基因敲除、基因激活等。
采用反向遗传学鉴定基因功能是基因组计划由结构基因组学过渡到功能基因组学的必然要求。
目前,植物抗逆性功能基因的研究策略主要集中在利用差减杂交、差异显示PCR、差异显示分析、cDNA微阵列(或基因芯片)等技术筛选与逆境胁迫相关的表达序列标签(EST)或转录因子,然后利用反向遗传学等技术对转录因子的功能进行研究。
正向遗传学手段主要集中在抗逆性状的遗传分析和QTL定位方面,然而目前尚无抗逆性状QTL基因克隆的报道;通过突变体抗逆筛选的途径主要是在模式植物拟南芥中,特别是克隆了一大批与ABA合成或ABA 敏感性有关的基因,例如ABA不敏感的abi8突变体(Brocard-Gifford et al., 2004)。
近年来许多国家(特别是我国)的水稻突变体数量剧增,为通过抗逆筛选克隆基因奠定了基础。
综合利用这些研究手段可以全面地了解植物对胁迫响应的复杂机制和相互作用以及相应的信号传导途径,从而为更加高效地利用基因工程技术来提高植物的抗逆性奠定基础。
下面就几种常见的研究抗逆基因功能的策略作简要介绍。
1. 超量表达(Over-expression)超量表达是指将目的基因全长序列与高活性的组成型或组织特异型启动子融合,通过转化获得该基因产物大量积累的植株,从而扩大该基因在生理生化过程中的效应,这部分扩大的效应带来的与正常植株在各种表型上的差异有助于帮助理解基因功能。
研究植物基因功能的策略和方法_3110
研究植物基因功能的策略和方法研究植物基因功能主要有两种策略:正向遗传学(forward genetics)和反向遗传学(reverse genetics)策略。
正向遗传学即通过生物个体或细胞基因组的自发突变或人工诱变,寻找相关表型或性状改变,然后通过图位克隆并结合一些基因差异表达筛选技术(如差减杂交、差异显示PCR、差异显示分析等)从这些特定性状变化的个体或细胞中找到对应的突变基因,并揭示其功能,例如遗传病基因的克隆。
反向遗传学的原理正好相反,人们首先是改变某个特定的基因或蛋白质,然后再去寻找与之有关的表型变化,例如基因剔除技术或转基因研究。
简单地说,正向遗传学是从表型变化研究基因变化,而反向遗传学则是从基因变化研究表型变化。
研究植物体内基因功能的方法主要有以下几种:(1)基因功能丧失或减少,即筛选目的基因功能部分丧失或全部丧失的突变体,比较其与野生型的表型差异来确定该基因功能;(2)基因功能增加或获得,即筛选目的基因高水平表达的植株,比较其与相应对照植株(野生型植株,功能丧失突变体或模式植物植株)差异,观察其表型性状变化来鉴定基因功能;(3)基因异位表达(Ectopic expression),通过定向调控靶基因的时空表达模式来研究基因功能;(4)微阵列(Microarray)是一种在全基因组水平对基因表达进行高通量检测的技术;(5)酵母双杂交技术(Yeast two-hybrid system)用于分析基因产物即蛋白质之间的互作。
1 基因功能丧失或减少以前,通常通过筛选自然突变体来获得基因功能部分或全部丧失的突变体,但概率较低;现在一般通过各种人工方法来获得合适突变体。
人工产生基因功能丧失的方法有插入突变、反义抑制(antisense suppression)、共抑制(cosuppression)、双链RNA干扰(double-stranded RNA interference, dsRNAi)。
多基因遗传病基因研究的策略和方法
多基因遗传病基因研究的策略和方法多基因遗传病是由多个基因的遗传变异引起的疾病。
与单基因遗传病不同,多基因遗传病的研究策略和方法更为复杂,涉及到许多基因的相互作用和环境因素的影响。
下面将介绍一些常用的多基因遗传病基因研究的策略和方法。
1.家系研究:家系研究是通过调查家族中患者和正常人的亲属关系,分析遗传特点和传递规律,确定哪些基因可能与疾病有关。
家系研究需要建立家族数据库,收集每个成员的临床表型和基因型信息。
2.关联研究:关联研究是通过统计分析疾病患者和正常人的基因型频率差异,探索遗传变异与疾病之间的关系。
常用的关联研究方法包括基因关联分析(GWAS)和候选基因研究。
GWAS采用全基因组筛查的方式,分析大规模的单核苷酸多态性(SNP)位点与疾病的关联关系。
候选基因研究则是在基因位点和疾病之间已有先验假设的基础上,选取相关的基因进行深入研究。
3. 功能研究:功能研究是为了确定遗传变异对基因和蛋白质功能的影响,以及这些影响如何导致疾病。
功能研究可以通过in vitro实验、动物模型或人类疾病样本来进行。
常用的功能研究方法包括构建突变体细胞系、表达蛋白质和基因功能鉴定。
4.环境因素的研究:多基因遗传病的发病风险受到遗传变异和环境因素的相互作用影响。
因此,研究环境因素对遗传变异的调控作用十分重要。
该研究策略包括研究环境因素对基因表达的调控、研究环境因素与遗传变异之间的相互作用。
5.罕见出现的突变研究:许多多基因遗传病病因并不明确,因为疾病相关的遗传变异在人群中非常罕见。
通过对少数患者进行突变筛查,并对突变位点进行详细的功能研究,可以发现新的和罕见的基因突变,从而深入研究疾病的机制。
总的来说,多基因遗传病的研究策略和方法涉及到家系研究、关联研究、功能研究、环境因素研究和罕见基因突变研究。
这些方法的综合应用可以帮助科学家更好地了解多基因遗传病的病因和发病机制,为相关疾病的预防、诊断和治疗提供科学依据。
基因功能分析的基本策略
基因功能分析的基本策略一、利用转基因模型研究基因的功能1转基因动物:是指用人工方法将外源基因导入或整合到基因组内,并能稳定传代的一类动物。
2基本原理:将目的基因(或基因组片段)用显微注射等方法注入实验动物的受精卵或着床前的胚胎细胞中,使目的基因整合到基因组中,然后将此受精卵或着床前的胚胎细胞再植入受体动物园的输卵管(或子宫)中,使其发育成携带有外源基因的转基因动物。
导入基因的方法有显微注射法、胚胎干细胞法、逆转录病毒感染法、精子载体法。
二、利用基因敲除模型研究基因的功能1基因打靶:是指通过DNA定点同源重组,改变基因组中的某一特定基因,从而在生物活体内研究此基因的功能。
若定向敲除某个基因,称为基因敲除,若定向将一段基因序列替代另一段基因序列,称为基因敲入。
2同源重组:是指发生在同源序列间的重组,它通过链的断裂和再连接,在两个DNA分子同源序列之间进行单链或双链片段的交换。
又称基本重组。
3基因敲除:是目前在体内研究基因功能的最佳方法,是指通过DNA同源重组定向的将外源基因插入宿主细胞染色体DNA,从而使特定基因在细胞内或生物或体内失活的过程。
4基因打靶的必备条件:胚胎干细胞(ES)、打靶载体5打靶载体的筛选标志:neo(新霉素)阳性筛选标志;HSV-tk阴性筛选标志。
6基因敲除的基本程序:①打靶载体的构建②打靶载体导入ES细胞③基因敲除ES细胞注射入胚泡④胚泡植入假孕小鼠的子宫中⑤嵌合体的杂交育种7构建打靶载体的基本过程①获得目的基因的同源片段,将此DNA片段克隆到一般的质粒载体中;②从重组质粒中切除目的基因的大部分同源DNA序列,只留部分序列在线性质粒载体的两端;③将neo基因克隆到带有目的基因同源顺序的线性质粒中,使之位于残留目的基因同源顺序的中间;④在目的基因同源顺序的外侧线性化重组质粒载体,将HSV-tk基因克隆到此线性载体中。
三、通过抑制或沉默基因表达对基因的功能进行分析研究1利用反义RNA抑制基因表达水平2利用RNAi技术在细胞中沉默特定基因已研究其功能1。
基因功能分析范文
基因功能分析范文
基因敲除是一种通过将基因从生物体中删除来研究其功能的方法。
这可以通过使用人工合成的核酸链,如小干扰RNA或剪接酶导向的Cas9系统来实现。
通过将这些核酸链引入生物体,可以选择性地靶向并删除目标基因。
通过观察删除基因后是否会引起生物体的明显变化,可以确定基因在生物体中的功能。
基因过表达是一种研究基因功能的方法,可以通过在生物体中大量表达目标基因来揭示其功能。
这可以通过将目标基因的DNA序列插入到带有启动子和增强子的表达载体中来实现。
然后,携带表达载体的质粒可以被转染到生物体细胞中,从而导致目标基因的过表达。
通过观察基因过表达后生物体的变化,可以推测出基因的功能。
基因功能分析的最终目标是理解基因在生物体内的作用以及其在自然选择中的起源和演化。
这些研究对于疾病诊断和治疗、农业改良和生物技术的发展都具有重要意义。
通过深入研究基因功能,我们可以更好地理解生物体的生命活动和表型表达,为未来的研究和应用提供更多的机会。
生物化学第三节 基因的生物学功能鉴定技术
第三节基因的生物学功能鉴定技术2015-07-16 71002 0人类基因组计划虽然解析了基因序列,但绝大多数基因的功能尚不清楚。
因此,利用各种技术手段研究基因的功能将是“后基因组时代”的主要内容之一。
基因功能的确定必须通过实验来验证。
通常采用基因功能获得和(或)基因功能缺失的策略,观察基因在细胞或生物个体中所导致的细胞生物学行为或个体表型遗传性状的变化,从而从正反两方面对基因的功能进行鉴定。
此外,基于正向遗传学的随机突变筛选技术也成为揭示基因功能的重要手段。
由于基因的功能必须在完整的生物个体及其生命过程中才能得到完整的体现,因此,从整体水平研究基因的功能是必然的选择。
一、用功能获得策略鉴定基因功能基因功能获得策略的本质是将目的基因直接导人某一细胞或个体中,使其获得新的或更高水平的表达,通过细胞或个体生物性状的变化来研究基因功能。
常用的方法有转基因技术和基因敲入技术。
(一)用转基因技术获得基因功能转基因技术(transgenic technology)是指将外源基因导入受精卵或胚胎干细胞(embryonic stem cell),即ES细胞,通过随机重组使外源基因插入细胞染色体DNA,随后将受精卵或ES细胞植入假孕受体动物的子宫,使得外源基因能够随细胞分裂遗传给后代。
转基因动物(transgenic animal)是指应用转基因技术培育出的携带外源基因,并能稳定遗传的动物,其制备步骤主要包括转基因表达载体的构建、外源基因的导入和鉴定、转基因动物的获得和鉴定、转基因动物品系的繁育等。
在转基因动物中,以转基因小鼠最为常见。
建立转基因小鼠的常用方法有两种,一是直接将目的DNA显微注射到受精卵的雄性原核,然后植入假孕母鼠体内,使之发育成幼仔;二是将带有目的基因的ES细胞注射到囊胚,然后在小鼠体内发育成幼仔。
在出生的动物中即含有在一个等位基因的位点进行了DNA整合的小鼠,即转基因杂合子。
经子代杂合子交配,在其后代中可筛选到纯合子(图22-7)。
基因功能分析策略
欧盟国家总面积不到20万公顷,0.3%左右。
精选课件
精选课件
各國GMO作物栽培面積的變遷
(藍色者為全球統計)
百 萬 公 頃
精选课件
Research on Transgenic Corn
转基因玉米研究
antigen against an E.coli
toxin.
Part of the Plant Science Institute Biopharmaceutical Initiative
Feeding antigencontaining corn to mice
protected them against E. coli enterotoxin and
精选课件
转基因玉米
抗虫害的玉米
玉米是主要粮食之一,又可以提炼油脂,也可以用作食品和 工业的原料以及作饲料,浑身是宝。人们称它是含金的植物。如 今培育出转基因玉米,品质更好,产量更高。
精选课件
转基因小麦
从植物体中分离出 合成赖氨酸的基因,把 这基因转入小麦植株中, 培育出转基因小麦。用 这种转基因小麦制造出 来的面粉,更适合用来 烤面包,而且面粉中赖 氨酸含量高,这种面包 的营养价值高。
4.胚胎干细胞法:将转染的胚胎干细胞注射
入受体囊胚腔,可参与嵌合体的形成,将来出生的动 物的生殖系统就有可能整合上外源基因,通过杂交繁 育得到纯合目的基因的个体,即为转基因动物。
精选课件
转基因动物的应用前景
1、研究基因的结构与功能,了解动物生命现 象的内在本质。
2、建立多种疾病的动物模型,研究发病机理 及治疗方法。
基因序列分析和基因功能鉴定
基因序列分析和基因功能鉴定随着生命科学技术的不断发展,基因研究已经成为现代生物学和医学的一个重要领域。
基因是生物体内遗传信息的基本单位,对基因序列的分析和基因功能的鉴定有助于我们更好地了解生命的本质和机制,对疾病的诊断和治疗也有着重要的意义。
1. 基因序列分析基因的分析一般从基因组和基因序列入手。
基因组是指一个生物体细胞中所有基因所组成的DNA总体。
基因序列是指基因中的核苷酸(A、C、G、T)序列,其中包含了基因的编码区和非编码区。
研究基因序列可以为基因功能的进一步研究提供必要的基础和依据。
1.1 基因序列的测序基因序列的测序是研究基因的必经之路。
过去,基因序列的测定依赖于繁琐的实验操作,难度比较大。
而随着DNA测序技术的不断进步和发展,现在的基因序列测序变得更为简单和高效。
目前,主要的测序技术有Sanger测序、高通量测序(如Illumina、Ion Torrent、Pacific BioSciences)等。
1.2 基因序列的注释基因序列的注释是将基因序列信息转化为功能性信息的过程。
基因序列注释可以帮助人们更深入地了解基因的结构和功能,为基因功能的研究奠定基础。
目前,已经有多种基因注释软件和工具可供使用,如NCBI RefSeq、Ensembl、UCSC Genome Browser等。
2. 基因功能鉴定基因功能鉴定是指通过一系列实验手段去验证某个基因在细胞生理或病理过程中所扮演的角色。
通过基因功能的鉴定,我们可以更好地了解基因在生物中的作用和重要性,同时也可以为疾病的防治提供科学依据。
2.1 基因敲除技术基因敲除技术是利用RNA干扰(RNA interference,RNAi)或基因突变实现对目标基因的抑制或破坏。
通过将RNA或DNA片段引入细胞中,可以使目标基因无法被转录或翻译,从而达到基因敲除的目的。
该技术已经广泛应用于许多基因功能研究领域。
2.2 基因过表达技术基因过表达技术是利用质粒、病毒或其他载体将目标基因大量表达在细胞或组织中。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
DNA 显微注射
DNA注射针
精原核 卵原核
持卵管
DNA 显微注射
DNA 显微注射到尚未发生核融合的受精卵 的精原核。显微镜下观察,精原核比卵原 核大,容易辨别。
线性 DNA 整合效率比超螺旋 DNA 高出数 倍,因而用于显微注射的转入基因通常是 去除载体序列的线状 DNA。
DNA 显微注射法的特点
录的地方。
胚胎干细胞法的特点
定点整合。
ES 细胞在体外培养,外源 DNA 导入后可
用正-负选择法筛选择正确整合的 ES 细胞, 相对较简单。
目前只在小鼠身上获得成功。
3)逆转录病毒感染法
逆转录病毒载体的构建
获得四/八细胞胚胎/囊胚/原肠胚 外源 DNA 导入早期胚胎:
获得病毒颗粒感染早期胚胎
第十二章
基因功能分析的基本策略
转基因模型是研究基因功能的主要手段
转基因生物: 外源基因导入生物体表达。 基因打靶: 外源基因替换内源基因。 基因敲除。 基因敲入。 基因沉默: 导入特定基因,抑制内源性基因表达。
第一节 转基因技术
转基因技术(transgenic technology):将外源 基因导入细胞,随机整合到受体基因组内, 并随细胞分裂而遗传给后代。 细胞模型。 转基因动物。 转基因植物。
包装细胞与早期胚胎共培养
感染后的胚胎植入受体动物子宫,发育
成携带外源基因的动物。
逆转录病毒感染法
外源基因 逆转录病毒载体
四/八细胞胚胎/囊胚/原肠胚
逆转录病毒感染
纯合体小鼠
嵌合小鼠
逆转录病毒感染法的特点
通过病毒 DNA 插入宿主 DNA 的机制,将 外源目的基因整合到宿主基因组,整合效率 高。 反转录病毒载体容量有限,只能转移小片段 DNA(<10kb)。 对家禽类的转基因研究有重要意义。
DNA
磷酸钙-DNA 共沉淀法 逆转录病毒感染法 电穿孔法
胚胎干细胞
微注射
囊胚
原囊胚
转基因动物
外源 DNA 的整合
用于 ES 细胞的 DNA 载体一般带有定点整
合元件, 避免了随机整合。
定点整合位点应选择在基因组内编码非必
需产物的地方,以减少整合对细胞正常功 能的影响。
定点整合位点必须在基因组的可以进行转
4)精子载体法
外源 DNA 共育法 脂质体转染法
电穿孔法 精子 卵细胞 受精卵 转基因动物
DNA
DNA
磷酸钙-DNA共沉淀法 逆转录病毒感染法
电穿孔法
精子 卵细胞
受精卵 显微注射 四细胞 胚胎
胚胎干细胞
微注射 囊胚 转基因 动物
原肠胚
DNA
逆转录病毒感染 DNA
3. 下游—基因整合与表达检测及筛选
染色体基因水平:是否整合了外源基因以
及整合的位点和拷贝数。
转录水平:转基因的 mRNA 的存在与否以
及表达水平。
蛋白水平:转基因的蛋白质的表达以及功
能检测。
鉴定方法
PCR
Southern blot
染色体原位杂交 Northern blot RT-PCR Western blot
转入的外源基因要能够高效表达,最好是 可以诱导表达。 转入基因中应该包含有帮助提高整合效率 的序列,如微卫星序列。
微卫星序列
诱导表达 启动子
外源基因
微卫星序列
2) 胚胎干细胞法
胚胎干细胞(embryo stem cells, ES 细胞): 可人工培养增殖的小鼠胚泡发育期胚胎细 胞,当把这种胚胎细胞重新导入另一胚泡 期的胚胎之后,它仍然保持着分化成其他 类型细胞的能力。 ES 细胞具有与胚胎细胞相似的形态特征和分 化特性。
检测的提示重组体存在的基因。GFP、 LacZ、AP、 LUC。
融合基因 (fusion gene): 将特定的目的基因与报告
基因拼接成融合基因,并与顺式作用元件拼接成完 整的转录单位。
动物转基因常用的载体
腺病毒载体 逆转录病毒载体 非病毒类载体:如质粒等。
2. 中游—基因转移、胚胎移植与建系
胚胎干细胞法
分离和培养 ES 细胞。 外源基因导入 ES 细胞。 导入外源基因的 ES 细胞的子宫转移。 转基因鼠的鉴定及鼠系建立。
胚胎干细胞的分离和培养
胚胎干细胞 胚泡 培养皿中分离 胚泡内层细胞
加饲养层细胞培养
胰蛋白酶 消化解离
胚胎干细胞的分离和培养
胚胎干细胞外源 DNA 的导入
基本原理
转基因动物
基本过程
上游—基因改造和载体构建
中游—基因转移、胚胎移植与建系 下游—基因整合、表达的检测与细胞筛选
1. 上游—基因改造和载体构建
外源基因: 完整的转录单位, 由顺式作用元件、结构
基因和转录终止信号组成。
报告基因 (reporter gene) : 在表达载体中引入易于
DNA 大小无限制,最大可达 250Kb。 随机整合:在染色体上整合的位点是随
机的,整合的拷贝数也不一定。
转入的基因有可能碰巧整合到具有重
要功能的基因之中,干扰该基因的正 常表达,影响转基因动物的正常发育 和代谢。
总效率较低(实际成功率1/1000)。
提高显微注射 DNA 表达的成功率
构建携带目的基因的载体。 外源基因导入:将目的基因通过显微注射等 方法注入实验动物的受精卵或着床前的胚胎 细胞中。 使目的基因整合到基因组中。 将此受精卵或着床前的胚胎细胞再植入受体 动物的输卵管或子宫中。 使其发育成携带外源基因的转基因动物。
基本原理
供体基因
受体的受精卵
基本原理
转基因的受精卵
基因导入技术:物理、化学和生物学方法
1) 显微注射法 (microinjection)
2) 胚胎干细胞法(embryonic stem cells, ES 细胞) 3) 逆转录病毒感染法
4) 精子载体法
1) DNA显微注射法
制备超量受精卵。 DNA 显微注射。 转移注射卵到输卵管或子宫。 转基因鼠的鉴定及鼠系建立。
一.转基因生物的意义
20 世纪 80 年代 (Brinster and Palmiter): 著名的转基因小鼠实验,金属硫蛋白基 因启动子驱动大鼠生长激素基因表达。 转基因生物的用途: 研究手段:疾病的转基因动物模型。 改良动物性状:抗病性、耐寒性等。 生产产品:抗体、疫苗等的生产。
二、基本原理