带电粒子在磁场中运动之临界与极值问题
微小专题5带电粒子在磁场中运动的临界极值与多解问题
微小专题5带电粒子在磁场中运动的临界极值与多解问题1.如图所示,在边长为L的等边三角形ACD区域内,存在垂直于所在平面向里的匀强磁场.大量的质量为m、电荷量为q的带正电粒子以相同速度(速度大小未确定)沿垂直于CD的方向射入磁场,经磁场偏转后三条边均有粒子射出,其中垂直于AD边射出的粒子在磁场中运动的时间为t0.不计粒子的重力及粒子间的相互作用.求:(1)磁场的磁感应强度大小.(2)要确保粒子能从CD边射出,射入的最大速度.(3)AC、AD边上可能有粒子射出的范围.2.(2016·扬州一模)现代物理经常用磁场来研究同位素粒子,在xOy坐标系内有垂直于平面向里的匀强磁场,磁感应强度为B.现有电荷量均为+q的a、b两粒子从坐标原点O以相同速率v同时射入磁场,a沿x轴正方向,b沿y轴正方向,a粒子质量为m,b粒子质量为2m.不计粒子重力以及粒子间相互作用.(1)求当a粒子第1次刚到达y轴时,b粒子到达的位置坐标.(2)a、b粒子是否会再次相遇?如能,请通过推导求出何时相遇;如不能,请简要说明理由.(3)设两粒子在y轴上投影的距离为Δy,则Δy何时有最大值?并求出Δy的最大值.3.(2016·海安中学)aa'、bb'、cc'为足够长的匀强磁场的分界线,相邻两分界线间距均为d,磁场方向如图所示,Ⅰ、Ⅱ区磁感应强度分别为B和2B,边界aa'上有一粒子源P,平行于纸面向各个方向发射速率为的带正电粒子,Q为边界bb'上一点,PQ连线与磁场边界垂直,已知粒子质量为m,电荷量为q,不计粒子重力和粒子间相互作用力.求:(1)沿PQ方向发射的粒子飞出Ⅰ区时经过bb'的位置.(2)粒子第一次通过边界bb'的位置范围.(3)进入Ⅱ区的粒子第一次在磁场Ⅱ区中运动的最长时间和最短时间.4.(2016·南通一模)控制带电粒子的运动在现代科学实验、生产生活、仪器电器等方面有广泛的应用.现有这样一个简化模型:如图所示,y轴左、右两边均存在方向垂直纸面向里的匀强磁场,右边磁场的磁感应强度始终为左边的2倍.在坐标原点O处,一个电荷量为+q、质量为m 的粒子a,在t=0时以大小为v0的初速度沿x轴正方向射出,另一与a相同的粒子b某时刻也从原点O以大小为v0的初速度沿x轴负方向射出.不计粒子重力及粒子间的相互作用,粒子相遇时互不影响.(1)若a粒子能经过坐标为的P点,求y轴右边磁场的磁感应强度B1.(2)为使粒子a、b能在y轴上Q(0,-l0)点相遇,求y轴右边磁场的磁感应强度的最小值B2.(3)若y轴右边磁场的磁感应强度为B0,求粒子a、b在运动过程中可能相遇点的坐标值.微小专题5带电粒子在磁场中运动的临界极值与多解问题1.(1)(2)(3)见解析【解析】(1)由洛伦兹力提供向心力有qvB=m,T==,当粒子垂直于AD边射出时,根据几何关系有圆心角为60°,t0=T,解得B=.(2)当轨迹圆与AC、AD都相切时,粒子能从CD边射出,半径最大,速度为最大值,此时r=sin60°=L,由qvB=m得r=,解得v=.(3)由(2)知,当轨迹圆与AC相切时,从AC边射出的粒子距C最远.故有粒子射出的范围为CE 段,x CE=cos60°=,当轨迹圆与AD边的交点F恰在圆心O正上方时,射出的粒子距D点最远.故有粒子射出的范围为DF段,x DF==.2.(1)由qvB=m可知a粒子半径r1=,周期T1=,b粒子半径r2==2r1,周期T2==2T1,a粒子第1次刚到达y轴历时Δt==,此时b粒子运动周,位置坐标为.(2)由图可知,ab可能在O、P点再次相遇由T2=2T1,a、b粒子经过t=T2=在O点再次相遇,该过程粒子不可能在P点相遇,所以a、b粒子在t=(k=1、2、3、…)时刻相遇.(3)解法一:由第(1)问分析可知,当a粒子第二次到达其圆轨迹最高点时(即a粒子运动了T1),b粒子恰好在其圆轨迹的最低点,此时两粒子在y轴上投影的距离Δy最大.考虑圆周运动的周期性,此后a粒子每运动两周,b粒子运动一周,两粒子在y轴上投影的距离Δy再次最大,所以t=T1+n·2T1=时Δy最大,Δy max=4r1=.解法二:由qvB=m可知:a粒子半径为r时,b粒子的半径为2r,由T=可知:b的半径扫过θ角时,a的半径扫过2θ角,Δy=r-r cos2θ-2r sinθ=r-r(1-2sin2θ)-2r sin θ=2r(sin2θ-sinθ)=2r[(sinθ-0.5)2-0.25],当sin θ=-1时,Δy有最大值4r,此时θ=2nπ+1.5π,即2nπ+1.5π=ωt==,得t=时Δy最大,Δy max=4r=3.(1)(2-)d(2) 2d(3)【解析】(1)由洛伦兹力充当向心力得qvB=,R=,把v=带入得,r1=2d,如图所示可得,sin θ==,θ=30°,PM=QN=2d-2d cos θ=2d-d=(2-)d,所以经过bb'的位置为Q下方(2-)d.(2)当正电粒子速度竖直向上进入磁场Ⅰ,距离Q点上方最远.由几何关系得cos α1==,α1=60°,QH1=2d sin α1=d.当正电粒子进入后与bb'相切时,距离Q点下方最远由几何关系得cos α2==,α2=60°,QH2=2d sin α2=d.所以有粒子通过的的范围长度为L=2d.(3)r2==d,T==,轨迹圆所对应的弦越长,在磁场Ⅱ中的时间越长.当轨迹圆的弦长为直径时,所对应的时间最长为t max==,当轨迹圆的弦长为磁场Ⅱ的宽度时,从cc'飞出所对应的时间最短为t min==,从bb'飞出所对应的时间最短为t min==,所以最短时间为t min=.4.(1)设a粒子在y轴右侧运动的半径为R1,由几何关系有+=,由于B1qv0=m,解得B1=.甲(2)B2最小,说明Q点是a、b粒子在y轴上第一次相遇的点,由图乙可知,a、b粒子同时从O 点出发,且粒子在y轴右侧运动的圆周运动半径R2=,又B2qv0=m,解得B2=.乙(3)由图丙可见,只有在两轨迹相交或相切的那些点,才有相遇的可能性,所以有y轴上的相切点和y轴左侧的相交点.经分析可知,只要a、b粒子从O点出发的时间差满足一定的条件,这些相交或相切的点均能相遇.粒子在y轴右侧的运动半径r1=,粒子在y轴左侧的运动半径r2=,①y轴上的相切点坐标为(k=1,2,3,…).②y轴左侧的相交点相遇由图丙可知,OA=AC=OC=r2.可得x A=-r2sin60°=-,y A=-r2cos60°=-,y轴左侧的相遇点的坐标(n=1,2,3,…).丙。
带电粒子在磁场中的运动(临界、极值、磁聚焦、扩散)_图文
A.
B.
2R
2R
O
O
B
M 2R R N
M R 2R
N
C.
2R D.
O
RM
O
M 2R
2R N M 2R
2R N
ON
……以速率 v 沿纸面各个方向由小孔O射入磁场
B
M
2R 2R
O
O
2R R
R 2R
A.
B.
ON
O
2R
2R
C.
2R
R
O
2R
2R
D.
例2、如图,质量为m、带电量为+q 的粒子以速度v 从O点
。
a y v0 M B
r 2R Or N
O
bx
二、磁聚焦和磁扩散原理
1、条件:圆形磁场区域半径与粒子轨道半径相等 2、特点:磁聚焦和次扩散具有可逆性
磁场区域半径 R 与运动半径 r 相等
C
B
r
四边形ABCD为菱形
R
D
AB//CD
Hale Waihona Puke A因为AB边竖直,则CD边竖直
从C点水平射出
磁扩散现象
一点发散成平行
沿y 轴正方向射入磁感应强度为 B 的圆形匀强磁场区域, 磁场方向垂直纸面向外,粒子飞出磁场区域后,从 b 处 穿过x轴,速度方向与 x 轴正方向的夹角为30º,不计重力 ,试求圆形匀强磁场区域的最小面积;
y o
y O2
x
A
v
p
60° 60° 30° b
O
O1
30°
v
x
以运动轨迹对应的弦长为直径的圆面积最小
带电粒子在磁场中的运动(临界、极值、磁聚 焦、扩散)_图文.ppt
2025高考物理 带电粒子在有界磁场中运动的临界和极值问题
2025高考物理 带电粒子在有界磁场中运动的临界和极值问题一、多选题1.如图所示,直角三角形ABC 区域内有垂直纸面向外的匀强磁场(图中未画出),AC 边长为l ,∠B =o 30,一群比荷为q m的带正电粒子以相同速度在CD 范围内垂直AC 边射入,从D 点射入的粒子恰好不从AB 边射出。
已知从BC 边垂直射出的粒子在磁场中运动的时间为t ,粒子在磁场中运动的最长时间为53t ,不计粒子的重力及粒子间的相互作用力,则( )A .磁感应强度大小为m qtπ BC D .粒子在磁场中扫过的面积为()2349l π2.如图所示,长方形abcd 长ad =0.6m ,宽ab =0.3m ,O 、e 分别是ad 、bc 的中点,以ad 为直径的半圆内有垂直于纸面向里的匀强磁场(边界上无磁场),磁感应强度B =0.25T 。
一群不计重力、质量m =3×10-7kg 、电荷量q =+2×10-3C 的带电粒子以速度v =5×102m/s 沿垂直ad 方向且垂直于磁场射入磁场区域( )A .从Od 边射入的粒子,出射点全部分布在Oa 边B .从aO 边射入的粒子,出射点全部分布在ab 边C .从Od 边射入的粒子,出射点分布在be 边D .从aO 边射入的粒子,出射点分布在ab 边和be 边3.如图所示,竖直平面内两条虚线是匀强磁场的上下边界,宽度0.2m d =,磁场的磁感应强度0.1T B =,在磁场下边界P 点有粒子源,可以向磁场各个方向发射速度30 1.010m /sv =⨯带正电的粒子,粒子比荷42.510C /kg q m=⨯,不计粒子的重力,下列说法正确的是( )A .粒子在磁场中做匀速圆周运动的半径为0.4mB .粒子在磁场中做匀速圆周运动的半径为0.5mC .粒子在磁场中运动的最长时间是4810s 3π-⨯ D .粒子在磁场中运动的最长时间是4110s 3π-⨯二、单选题4.如图所示,某真空室内充满匀强磁场,磁场方向垂直于纸面向里,磁场内有一块足够长的平面感光板MN ,点a 为MN 与水平直线ab 的交点,MN 与直线ab 的夹角为53θ=︒,ab 间的距离为10cm d =。
高考物理知识体系总论:带电粒子在匀强磁场中运动的临界极值及多解问题
PART 2
利用知识体系框架来解题
DREAM OF THE FUTURE
经典例题1
(多选)空间存在方向垂直于纸面向里的匀强磁场,图中的正方形为其边界。 一细束由两种粒子组成的粒子流沿垂直于磁场的方向从O点入射。这两种 粒子带同种电荷,它们的电荷量、质量均不同,但其比荷相同,且都包含 不同速率的粒子。不计重力。下列说法正确的是(ꢀꢀ) A.入射速度相同的粒子在磁场中的运动轨迹一定相同 B.入射速度不同的粒子在磁场中的运动时间一定不同 C.在磁场中运动时间相同的粒子,其运动轨迹一定相同 D.在磁场中运动时间越长的粒子,其轨迹所对的圆心角一定越大
有些题目只告诉了磁感应强度的大小,而未具体指出 磁感应强度的方向,此时必须考虑由磁感应强度方向
多解
不确定而形成的多解。如图所示。
4.运动的往 复性形成多
解
带电粒子在匀强磁场中运动的临界极值及多解问题
大致框架
1.带电粒子
如图所示,带电粒子在洛伦兹力作用下飞越有界磁场
电性不确定
时,由于粒子运动轨迹是圆弧状,因此,它可能直接
带电粒子在匀强磁场中运动的临界极值及多解问题
大致框架
突破一ꢀ 带电粒子在匀强磁场中 运动的临界极值问题
1.分析方法 2.四个结论
(1)刚好穿出磁场边界的条件是带电粒子在磁场中运 动的轨迹与边界相切。 (2)当速率v一定时,弧长越长,圆心角越大,则带电 粒子在有界磁场中运动的时间越长。 (3)当速率v变化时,圆心角大的,运动时间长,解题 时一般要根据受力情况和运动情况画出运动轨迹的草 图,找出圆心,根据几何关系求出半径及圆心角等。 (4)在圆形匀强磁场中,当运动轨迹圆半径大于区域 圆半径时,则入射点和出射点为磁场直径的两个端点 时,轨迹对应的偏转角最大(所有的弦长中直径最长)。
专题八 带电粒子在有界磁场中的临界极值问题讲解
方法二 旋转圆法
粒子速度大小不变,方向改变,则 r=mqBv大小不变,但轨迹 的圆心位置变化,相当于圆心在绕着入射点滚动(如图所示).
例 2 (2015·四川理综)(多选)如图所示,S 处有一电子源,可
向纸面内任意方向发射电子,平板 MN 垂直于纸面,在纸面内的 长度 L=9.1 cm,中点 O 与 S 间的距离 d=4.55 cm,MN 与直线 SO 的夹角为 θ,板所在平面有电子源的一侧区域有方向垂直于 纸面向外的匀强磁场,磁感应强度 B=2.0×10-4T.电子质量 m= 9.1×10-31 kg,电荷量 e=-1.6×10-19C,不计电子重力.电子 源发射速度 v=1.6×106 m/s 的一个电子,该电子打在板上可能 位置的区域的长度为 l,则( )
B.从 ac 边中点射出的粒子,在磁场中的运动时间为 2πm 3qB
C.从 ac 边射出的粒子的最大速度值为23qmBL D.bc 边界上只有长度为 L 的区域可能有粒 子射出
[解析] 带电粒子在磁场中运动的时间是看圆心角的大小, 而不是看弧的长短,A 项错误;作出带电粒子在磁场中偏转的示 意图,从 ac 边上射出的粒子,所对的圆心角都是 120°,所以在 磁场中运动的时间为 t=13T=23πqmB,B 项正确;从 ac 边射出的最 大速度粒子的弧线与 bc 相切,如图所示,半径为 L,由 R=mqBv⇒ v=qBmR=qmBL,C 项错误;如图所示,在 bc 边上只有 Db=L 长 度区域内有粒子射出,D 项正确,选 B、D 项.
例1 (多选)如图所示,在直角三角形 abc 中,有垂直纸面的匀强
磁场,磁感应强度为 B.在 a 点有一个粒子发射源,可以沿 ab 方向源 源不断地发出速率不同,电荷量为q(q>0)、质量为 m 的同种粒子.已 知∠a=60°,ab=L,不计粒子的重力,下列说法正确的是( )
带电粒子在匀强磁场中的运动-临界、极值及多解问题
•
例题
有些题目只告诉了磁感应的大小,而未具体 指出磁感应强度的方向,此时必须要考虑磁
感应强度方向不确定而形成多解
电场力方向一定指向圆心,而洛伦兹力方向可能指向圆心,也可能背离圆心, 从而形成两种情况.
• 2.方法界定将一半径为 的圆绕着入射点旋转, 从而探索出临界条件,这种方法称为“旋转法”.
•
旋转法”模型示例
带电粒子在磁场中运动的多解问题
• 带电粒子电性不确定形成多解 • 受洛伦兹力作用的带电粒子,可能带正电荷,也可
能带负电荷,在相同的初速度的条件下,正、负粒 子在磁场中运动轨迹不同,导致形成多解.
•
“放缩圆”模型示例
“旋转法”解决有界磁场中的临界问题
• 1.适用条件(1)速度大小一定,方向不同带电粒子 进入匀强磁场时,他们在磁场中做匀速圆周运动的 半径相同,若射入初速度为v0,则圆周半径为 . 如图所示.(2)轨迹圆圆心——共圆带电粒子在磁 场中做匀速圆周运动的圆心在以入射点P为圆心、 半径 的圆上.
临界状态不唯一形成多解
• 带电粒子在洛伦兹力作用下飞越有界磁场 时,由于粒子运动轨迹是圆弧状,因此, 他可能直接穿过去了,也可能转过180°从 入射界面反向飞出,于是形成了多解.如图 所示.
•
Байду номын сангаас
带电粒子在匀强磁场中的运动临界、极值及多解问题
• 1.有界磁场中临界问题的处 理方法
• 2.带电粒子在磁场中运动的 多解问题
1.有界磁场中临界问题的处理方法
• “放缩法”解决有界磁场中的临界问题 • 1.适用条件 • (1)速度方向一定,大小不同粒子源发射速度方向一定、大小
第3课时 带电粒子在磁场中运动的特例(临界、极值及多解问题)
随堂自测过关
要点探究冲关
界、极值问题
1.解决此类问题的关键
自我解答·合作探究
要点一 带电粒子在有界磁场中运动的临
找准临界点. 2.找临界点的方法 以题目中的“恰好”“最大”“最高”“至少”等词 语为突破口,借助半径 R 和速度 v(或磁场 B)之间的约 束关系进行动态运动轨迹分析,确定轨迹圆和边界的 关系,找出临界点,然后利用数学方法求解极值.
3.常用到的结论 (1)临界值 刚好穿出(穿不出)磁场边界的条件是带电粒子在 磁场中运动的轨迹与边界相切. (2)时间极值 ①当速度 v 一定时,弧长(弦长)越长,圆周角越大, 则带电粒子在有界磁场中运动的时间越长. ②当速率 v 变场边界为圆形时,从入射点到出射点连接起来 的线段就是圆磁场的一条弦,以该条弦为直径的圆 就是最小圆,可求出圆形磁场区的最小面积.
B 最小.
,r=
mv 1 ,从上式看出,r∝ B qB
,当 r 最大时,
由题图可知,当粒子从 b 点射出时,磁场的磁感应强度为最小值,
由几何关系得 rmax=
2 2
L,所以 Bmin
2m v0 = qL
.
m v0 答案:(1) 2qh
(2)
2
2
v0 指向第Ⅳ象限与 x 轴正方向成 45°角
2m v0 (3) qL
要点二 带电粒子在匀强磁场中运动的多解
问题
1.带电粒子电性不确定形成多解 受洛伦兹力作用的带电粒子,可 能带正电,也可能带负电,在相同 的初速度的条件下,正负粒子在 磁场中运动轨迹不同,形成多解. 如图(甲)带电粒子以速率 v 垂直 进入匀强磁场,如带正电,其轨迹为 a,如带负电,其轨 迹为 b.
(2 2 )dqB . 2 )d,v = m
带电粒子在有界磁场中的临界,极值,多解问题
带电粒子在匀强磁场中的运动---临界问题、极值问题与多解问题一、带电粒子在有界磁场中运动的临界和极值问题带电粒子在有界磁场中只运动一段圆弧就飞出磁场边界,其轨迹不是完整的圆,因此,此类问题要根据带电粒子运动的轨迹作相关图去寻找几何关系,分析临界条件,然后应用数学知识和相应物理规律分析求解.找临界点的方法是:以题目中的“恰好”“最大”“最高”“至少”等词语为突破口,借助半径R和速度v(或磁场B)之间的约束关系进行动态运动轨迹分析,确定轨迹圆和边界的关系,找出临界点,然后利用数学方法求解极值,常用结论如下:(1)刚好穿出磁场边界的条件是带电粒子在磁场中运动的轨迹与边界相切;(2)当速率v一定时,弧长越长,轨迹对应的圆心角越大,则带电粒子在有界磁场中运动的时间越长;(3)当速率v变化时,圆心角大的,运动时间越长。
【例1】如图所示真空中狭长区域的匀强磁场的磁感应强度为B,方向垂直纸面向里,宽度为d,速度为v的电子从边界CD外侧垂直射入磁场,入射方向与CD间夹角为θ.电子质量为m、电量为q.为使电子从磁场的另一侧边界EF射出,则电子的速度v应为多大?二、带电粒子在有界磁场中运动的多解问题1. 带电粒子电性不确定形成多解.受洛伦兹力作用的带电粒子,可能带正电,也可能带负电,在相同的初速度下,正负粒子在磁场中的运动轨迹不同,形成多解.2. 磁场方向不确定形成多解.3. 临界状态不唯一形成多解:带电粒子在洛伦兹力作用下飞越有界磁场时,由于粒子运动轨迹是圆弧形的,它可能穿过去,也可能转过180°从磁场的入射边界边反向飞出,于是形成多解.4. 运动的重复性形成多解:带电粒子在部分是电场、部分是磁场的空间运动时,运动往往具有重复性,形成多解.【例2】 长为L ,间距也为L 的两平行金属板间有垂直向里的匀强磁场,如图所示,磁感应强度为B ,今有质量为m 、带电量为q 的正离子从平行板左端中点以平行于金属板的方向射入磁场。
带电粒子在匀强磁场中运动的临界极值问题(解析版)
带电粒子在匀强磁场中运动的临界极值问题由于带电粒子往往是在有界磁场中运动,粒子在磁场中只运动一段圆弧就飞出磁场边界,其轨迹不是完整的圆,因此,此类问题往往要根据带电粒子运动的轨迹作相关图去寻找几何关系,分析临界条件,然后应用数学知识和相应物理规律分析求解.1.临界条件的挖掘(1)刚好穿出磁场边界的条件是带电粒子在磁场中运动的轨迹与边界相切。
(2)当速率v一定时,弧长(或弦长)越长,圆心角越大(前提条件是劣弧),则带电粒子在有界磁场中运动的时间越长。
(3)当速率v变化时,轨迹圆心角越大,运动时间越长。
(4)当运动轨迹圆半径大于圆形磁场半径时,则以磁场直径的两端点为入射点和出射点的轨迹对应的偏转角最大。
2.不同边界磁场中临界条件的分析(1)平行边界:常见的临界情景和几何关系如图所示。
(2)矩形边界:如图所示,可能会涉及与边界相切、相交等临界问题。
(3)三角形边界:如图所示是正△ABC区域内某正粒子垂直AB方向进入磁场的粒子临界轨迹示意图。
粒子能从AB间射出的临界轨迹如图甲所示,粒子能从AC间射出的临界轨迹如图乙所示。
3. 审题技巧许多临界问题,题干中常用“恰好”、“最大”、“至少”、“不相撞”、“不脱离”等词语对临界状态给以暗示.审题时,一定要抓住这些特定的词语挖掘其隐藏的规律,找出临界条件.【典例1】如图所示,垂直于纸面向里的匀强磁场分布在正方形abcd区域内,O点是cd边的中点。
一个带正电的粒子仅在磁场力的作用下,从O点沿纸面以垂直于cd边的速度射入正方形内,经过时间t0后刚好从c点射出磁场。
现设法使该带电粒子从O点沿纸面以与Od成30°角的方向,以大小不同的速率射入正方形内,下列说法中正确的是( )A .若该带电粒子在磁场中经历的时间是53t 0,则它一定从cd 边射出磁场B .若该带电粒子在磁场中经历的时间是23t 0,则它一定从ad 边射出磁场C .若该带电粒子在磁场中经历的时间是54t 0,则它一定从bc 边射出磁场D .若该带电粒子在磁场中经历的时间是t 0,则它一定从ab 边射出磁场 【答案】 AC 【解析】 如图所示,【典例2】放置在坐标原点O 的粒子源,可以向第二象限内放射出质量为m 、电荷量为q 的带正电粒子,带电粒子的速率均为v ,方向均在纸面内,如图8-2-14所示.若在某区域内存在垂直于xOy 平面的匀强磁场(垂直纸面向外),磁感应强度大小为B ,则这些粒子都能在穿过磁场区后垂直射到垂直于x 轴放置的挡板PQ 上,求:(1)挡板PQ 的最小长度; (2)磁场区域的最小面积. 【答案】 (1)mv Bq (2)⎝⎛⎭⎫π2+1m 2v 2q 2B2【解析】 (1)设粒子在磁场中运动的半径为R ,由牛顿第二定律得qvB =mv 2R ,即R =mvBq【跟踪短训】1. 在xOy 平面上以O 为圆心、半径为r 的圆形区域内,存在磁感应强度为B 的匀强磁场,磁场方向垂直于xOy 平面.一个质量为m 、电荷量为q 的带电粒子,从原点O 以初速度v 沿y 轴正方向开始运动,经时间t 后经过x 轴上的P 点,此时速度与x 轴正方向成θ角,如图8-2-24所示.不计重力的影响,则下列关系一定成立的是( ).A .若r <2mv qB ,则0°<θ<90° B .若r ≥2mv qB ,则t ≥πmqBC .若t =πm qB ,则r =2mv qBD .若r =2mv qB ,则t =πmqB【答案】 AD【解析】 带电粒子在磁场中从O 点沿y 轴正方向开始运动,圆心一定在垂直于速度的方向上,即在x 轴上,轨道半径R =mv qB .当r ≥2mvqB 时,P 点在磁场内,粒子不能射出磁场区,所以垂直于x 轴过P 点,θ最大且为90°,运动时间为半个周期,即t =πm qB ;当r <2mvqB 时,粒子在到达P 点之前射出圆形磁场区,速度偏转角φ在大于0°、小于180°范围内,如图所示,能过x 轴的粒子的速度偏转角φ>90°,所以过x 轴时0°<θ<90°,A 对、B 错;同理,若t =πmqB ,则r ≥2mv qB ,若r =2mv qB ,则t 等于πm qB,C 错、D 对. 2. 如图所示,磁感应强度大小为B =0.15 T 、方向垂直纸面向里的匀强磁场分布在半径为R =0.10 m 的圆形区域内,圆的左端跟y 轴相切于直角坐标系原点O ,右端跟很大的荧光屏MN 相切于x 轴上的A 点。
高考物理磁场精讲精练带电粒子在磁场中运动的临界极值问题
带电粒子在磁场中运动的临界、极值问题临界状态是指物体从一种运动状态(或物理现象)转变为另一种运动状态(或物理现象)的转折状态,它既具有前一种运动状态(或物理现象)的特点,又具有后一种运动状态(或物理现象)的特点,起着承前启后的转折作用.由于带电粒子在磁场中的运动通常都是在有界磁场中的运动,常常出现临界和极值问题.1.临界问题的分析思路临界问题的分析对象是临界状态,临界状态就是指物理现象从一种状态变化成另一种状态的中间过程,这时存在着一个过渡的转折点,此转折点即为临界状态点.与临界状态相关的物理条件则称为临界条件,临界条件是解决临界问题的突破点.临界问题的一般解题模式: (1)找出临界状态及临界条件; (2)总结临界点的规律; (3)解出临界量; (4)分析临界量列出公式. 2.极值问题的分析思路所谓极值问题就是对题中所求的某个物理量最大值或最小值的分析或计算,求解的思路一般有以下两种:一是根据题给条件列出函数关系式进行分析、讨论;二是借助于几何图形进行直观分析.例题1.平面OM 和平面ON 之间的夹角为30°,其横截面(纸面)如图所示,平面OM 上方存在匀强磁场,磁感应强度大小为B ,方向垂直于纸面向外.一带电粒子的质量为m ,电荷量为q (q >0).粒子沿纸面以大小为v 的速度从OM 的某点向左上方射入磁场,速度与OM 成30°角.已知该粒子在磁场中的运动轨迹与ON 只有一个交点,并从OM 上另一点射出磁场.不计重力.粒子离开磁场的出射点到两平面交线O 的距离为( )A.mv2qBB .3mv qBC.2mv qBD.4mv qB解析:选D.如图所示,粒子在磁场中运动的轨道半径为R =mv qB.设入射点为A ,出射点为B ,圆弧与ON 的交点为P .由粒子运动的对称性及粒子的入射方向知,AB =R .由几何图形知,AP =3R ,则AO =3AP =3R ,所以OB =4R =4mvqB.故选项D 正确.例题2.(多选)如图所示,M 、N 为两块带等量异种电荷的平行金属板,两板间电压可取从零到某一最大值之间的任意值.静止的带电粒子带电荷量为+q ,质量为m (不计重力),从点P 经电场加速后,从小孔Q 进入N 板右侧的匀强磁场区域,磁感应强度大小为B ,方向垂直于纸面向外,CD 为磁场边界上的一绝缘板,它与N 板的夹角为θ=30°,孔Q 到板的下端C 的距离为L ,当M 、N 两板间电压取最大值时,粒子恰垂直打在CD 板上,则( )A .两板间电压的最大值U m =q 2B 2L 22mB .CD 板上可能被粒子打中区域的长度x =⎝ ⎛⎭⎪⎫3-33LC .粒子在磁场中运动的最长时间t m =πmqBD .能打在N 板上的粒子的最大动能为q 2B 2L 218m解析:选BCD.M 、N 两板间电压取最大值时,粒子恰垂直打在CD 板上,所以其轨迹圆心在C 点,CH =QC =L ,故半径R 1=L ,又因Bqv 1=m v 21R 1,qU m =12mv 21,可得U m =qB 2L 22m,所以A 错误.设轨迹与CD 板相切于K 点,半径为R 2,在△AKC 中sin 30°=R 2L -R 2=12,可得R 2=L3,CK 长为3R 2=33L ,则CD 板上可能被粒子打中的区域即为HK 的长度,x =HK =L -CK =⎝ ⎛⎭⎪⎫3-33L ,故B 正确.打在QE 间的粒子在磁场中运动的时间最长,周期T =2πm qB ,所以t m =πm qB ,C 正确.能打到N 板上的粒子的临界条件是轨迹与CD 相切,由B 选项知,r m =R 2=L 3,可得v m =BqL 3m ,动能E km =q 2B 2L 218m,故D 正确.例题3.如图甲所示,在空间中存在垂直纸面向里的磁感应强度为B 的匀强磁场,其边界AB 、CD 相距为d ,在左边界的Q 点处有一质量为m 、带电量为q 的负粒子沿与左边界成30°的方向射入磁场,粒子重力不计.求:(1)带电粒子能从AB 边界飞出的最大速度;(2)若带电粒子能垂直CD 边界飞出磁场,穿过小孔进入如图乙所示的匀强电场中减速至零且不碰到负极板,则极板间电压U 应满足什么条件?整个过程粒子在磁场中运动的时间是多少?(3)若带电粒子的速度是(2)中的3倍,并可以从Q 点沿纸面各个方向射入磁场,则粒子能打到CD 边界的距离大小?解析:(1)带电粒子在磁场中做匀速圆周运动,设半径为R 1,运动速度为v 0.粒子能从左边界射出,临界情况如图甲所示,由几何条件知R 1+R 1cos 30°=d又qv 0B =mv 20R 1解得v 0=Bqd m (1+cos 30°)=2(2-3)Bqdm所以粒子能从左边界射出时的最大速度为v m =v 0=2(2-3)Bqdm(2)带电粒子能从右边界垂直射出,如图乙所示. 由几何关系知R 2=dcos 30°由洛伦兹力提供向心力得Bqv 2=m v 22R 2由动能定理得-qU =0-12mv 22解得U =B 2qd 22m cos 230°=2B 2qd23m 所加电压满足的条件U ≥2B 2qd23m.粒子转过的圆心角为60°,所用时间为T 6,而T =2πmBq因返回通过磁场所用时间相同,所以总时间t =2×T 6=2πm3Bq(3)当粒子速度是(2)中的3倍时,解得R 3=2d由几何关系可得粒子能打到CD 边界的范围如图丙所示.粒子打到CD 边界的距离l =2×2d cos 30°=23d答案:(1)2(2-3)Bqd m (2)U ≥2B 2qd 23m 2πm3Bq(3)23d。
高中物理带电粒子在有界磁场中运动临界问题极值问题和多解问题
(1)综合③④结论知,所有从 ab 上射出的粒子的入射 速度 v0 的范围应为q3Bml<v0<qmBl.
临界状态(轨迹与边界相切)
d
c
临界Байду номын сангаас态
B
θv
(轨迹与边界相切)
a
b
圆心在过入射点跟速度方向垂直的直线上
①速度较小时粒子做部分圆周运动后从原边界飞出;
②速度在某一范围内从上侧面边界飞;
③速度较大时粒子做部分圆周运动从右侧面边界飞出;
④速度更大时粒子做部分圆周运动从下侧面边界飞出。
例1 如图所示,S为一个电子源,它可以在纸面 内360°范围内发射速率相同的质量为m、电量为e的 电子,MN是一块足够大的挡板,与S的距离OS=L, 挡板在靠近电子源一侧有垂直纸面向里的匀强磁场, 磁感应强度为B,问:
PQ
v
S
圆心在过入射点跟跟速度方向垂直的直线上 ①速度较小时,作圆弧运动后从原边界飞出; ②速度增加为某临界值时,粒子作部分圆周运动其轨 迹与另一边界相切; ③速度较大时粒子作部分圆周运动后从另一边界飞出
量变积累到一定程度发生质变,出现临界状态
二、带电粒子在矩形边界磁场中的运动
vB
o
圆心在磁场原边界上 ①速度较小时粒子作半圆运动后从原边界飞出; ②速度在某一范围内时从侧面边界飞出; ③速度较大时粒子作部分圆周运动从对面边界飞出。
(1)若使电子源发射的电子能到达 挡板,则发射速度最小为多大?
(2)如果电子源S发射电子的速度 为第(1)问中的2倍,则挡扳上被电子 击中的区域范围有多大?
【解析】 (1)电子射出方向不同,其在匀强磁场中 的轨迹不同,每个电子的圆轨道的圆心都位于以射出点 S 为圆心、半径 r=mBev的圆弧上,如图所示.欲使电子有 可能击中挡板,电子的轨道半径至少为L2,如图所示.
带电粒子在磁场中运动之临界与极值问题
精心整理考点4.6临界与极值问题考点4.6.1“放缩圆”方法解决极值问题1、圆的“放缩”当带电粒子射入磁场的方向确定,但射入时的速度v大小或磁场的强弱B变化时,粒子做圆周运动的轨道半径r随之变化.在确定粒子运动的临界情景时,可以以入射点为定点,将轨道半径放缩,作出一系列的轨迹,从而探索出临界条件.如图所示,粒子进入长方形边界OABC形成的临界情景为②和④.1.(多选)如图所示,左、右边界分别为PP′、QQ′的匀强磁场的宽度为d,磁感应强度大小为B,方向垂直纸面向里.一个质量为m、电荷量为q的微观粒子,沿图示方向以速度v0垂直射入磁场.欲使粒子不能从边界QQ′射出,粒子入射速度v0的最大值可能是()A.B.C.D.2.(2016·全国卷Ⅲ,18)平面OM和平面ON之间的夹角为30°,其横截面(纸面)如图所示,平面OM上方存在匀强磁场,磁感应强度大小为B,方向垂直于纸面向外。
一带电粒子的质量为m,电荷量为q(q>0)。
粒子沿纸面以大小为v的速度从OM的某点向左上方射入磁场,速度与OM成30°角。
已知该粒子在磁场中的运动轨迹与ON只有一个交点,并从OM 上另一点射出磁场。
不计重力。
粒子离开磁场的出射点到两平面交线O的距离为()A. B. C. D.3.(多选)长为L的水平极板间,有垂直纸面向内的匀强磁场,如下图所示,磁感应强度为B,板间距离也为L,板不带电,现有质量为m,电荷量为q 的带正电粒子(不计重力),从左边极板间中点处垂直磁感线以速度v水平射入磁场,欲使粒子不打在极板上,可采用的办法是()A、使粒子的速度v<B、使粒子的速度v>C、使粒子的速度v>D、使粒子速度<v<4.如图所示,边长为L的正方形ABCD区域内存在磁感应强度方向垂直于纸面向里、大小为B的匀强磁场,一质量为m、带电荷量为-q的粒子从AB边的中点处垂直于磁感应强度方向射入磁场,速度方向与AB边的夹角为30°.若要求该粒子不从AD边射出磁场,则其速度大小应满足()A.v≤B.v≥C.v≤D.v≥5.如图所示,条形区域AA′、BB′中存在方向垂直于纸面向外的匀强磁场,磁感应强度为B,AA′、BB′为磁场边界,它们相互平行,条形区域的长度足够长,宽度为d.一束带正电的某种粒子从AA′上的O点以大小不同的速度沿着AA′成60°角方向射入磁场,当粒子的速度小于某一值v0时,粒子在磁场区域内的运动时间为定值t0;当粒子速度为v1时,刚好垂直边界BB′射出磁场.不计粒子所受重力.求:(1)粒子的比荷;(2)带电粒子的速度v0和v1.6.如图所示,两个同心圆,半径分别为r和2r,在两圆之间的环形区域内存在垂直纸面向里的匀强磁场,磁感应强度为B.圆心O处有一放射源,放出粒子的质量为m,带电荷量为q,假设粒子速度方向都和纸面平行.(1)图中箭头表示某一粒子初速度的方向,OA与初速度方向夹角为60°,要想使该粒子经过磁场第一次通过A点,则初速度的大小是多少?(2)要使粒子不穿出环形区域,则粒子的初速度不能超过多少?7.如图所示,M、N为两块带等量异种电荷的平行金属板,两板间电压可取从零到某一最大值之间的各种数值.静止的带电粒子带电荷量为+q,质量为m(不计重力),从点P经电场加速后,从小孔Q进入N板右侧的匀强磁场区域,磁感应强度大小为B,方向垂直于纸面向外,CD为磁场边界上的一绝缘板,它与N板的夹角为θ=45°,孔Q到板的下端C的距离为L,当M、N两板间电压取最大值时,粒子恰垂直打在CD板上,求:(1)两板间电压的最大值U m;(2)CD板上可能被粒子打中的区域的长度x;(3)粒子在磁场中运动的最长时间t m.8.如图所示,OP曲线的方程为:y=1-0.4(x,y单位均为m),在OPM区域存在水平向右的匀强电场,场强大小E1=200N/C(设为I区),PQ右边存在范围足够大的垂直纸面向内的匀强磁场,磁感应强度为B=0.1T(设为Ⅱ区),与x轴平行的刚上方(包括PN存在竖直向上的匀强电场,场强大小E2=100N/C(设为Ⅲ区),PN的上方h=3.125m处有一足够长的紧靠y轴水平放置的荧光屏AB,OM 的长度为a=6.25m。
高中物理 磁场(三)带电粒子在匀强磁场中运动的临界极值问题与多解问题
带电粒子在匀强磁场中运动的临界极值问题与多解问题一、带电粒子在磁场中运动的临界极值思维方法物理系统由于某些原因而要发生突变时所处的状态,叫做临界状态.突变过程是从量变到质变的过程,在临界状态的前后,系统服从不同的物理规律,按不同的规律变化。
在高考试题中涉及的物理过程中常常出现隐含着一个或几个临界状态,需要通过分析思考,运用所学的知识和已有的能力去分析临界条件,挖掘出临界值,那么如何确定它们的临界条件?下面介绍三种寻找临界点的两种有效方法:1.对称思想带电粒子垂直射入磁场后,将做匀速圆周运动。
分析粒子运动,会发现它们具有对称的特点,即:粒子的运动轨迹关于入射点P与出射点Q的中垂线对称,轨迹圆心O位于对称线上,入射速度、出射速度与PQ 线间的夹角(也称为弦切角)相等,并有==2=t,如图所示。
应用这一粒子运动中的“对称性”不仅可以轻松地画出粒子在磁场中的运动轨迹,对于某些临界问题的求解也非常便捷。
【典例】如图所示,半径r=10cm的圆形区域内有匀强磁场,其边界跟y轴在坐标原点O处相切;磁场B=0.33T垂直于纸面向内,在O处有一放射源S可沿纸面向各个方向射出速率均为v=3.2×106m/s的α粒子;已知α粒子质量为m=6.6×10-27kg,电量q=3.2×10-19c,则α粒子通过磁场空间的最大偏转角θ及在磁场中运动的最长时间t各多少?【审题指导】本题α粒子速率一定,所以在磁场中圆周运动半径一定,由于α粒子从点O进入磁场的方向不同故其相应的轨迹与出场位置均不同,则粒子通过磁场的速度偏向角θ不同,要使α粒子在运动中通过磁场区域的偏转角θ最大,则必使粒子在磁场中运动经过的弦长最大,因而圆形磁场区域的直径即为粒子在磁场中运动所经过的最大弦,依此作出α粒子的运动轨迹进行求解。
【名师点睛】当速度一定时,弧长(或弦长)越长,圆周角越大,则带电粒子在有界磁场中运动的时间越长。
2.放缩法带电粒子以任意速度沿特定方向射入匀强磁场时,它们将在磁场中做匀速圆周运动,其轨迹半径随速度的变化而变化,如图所示(图中只画出粒子带正电的情景),速度v0越大,运动半径也越大。
带电粒子在匀强磁场中运动的临界极值及多解问题
带电粒子在匀强磁场中运动的临界极值及多解问题突破有界磁场中临界问题的处理方法考向1 “放缩法”解决有界磁场中的临界问题1.适用条件(1)速度方向一定,大小不同粒子源发射速度方向一定、大小不同的带电粒子进入匀强磁场时,这些带电粒子在磁场中做匀速圆周运动的轨迹半径随速度的变化而变化.(2)轨迹圆圆心——共线如图所示(图中只画出粒子带正电的情景),速度v 0越大,运动半径也越大.可以发现这些带电粒子射入磁场后,它们运动轨迹的圆心在垂直速度方向的直线PP ′上.2.方法界定以入射点P 为定点,圆心位于PP ′直线上,将半径放缩作轨迹,从而探索出临界条件,这种方法称为“放缩法”.[典例1] 如图所示,垂直于纸面向里的匀强磁场分布在正方形abcd 区域内,O 点是cd 边的中点.一个带正电的粒子仅在洛伦兹力的作用下,从O 点沿纸面以垂直于cd 边的速度射入正方形内,经过时间t 0刚好从c 点射出磁场.现设法使该带电粒子从O 点沿纸面以与Od 成30°的方向,以大小不同的速率射入正方形内,粒子重力不计.那么下列说法中正确的是( )A.若该带电粒子从ab 边射出,它经历的时间可能为t 0B.若该带电粒子从bc 边射出,它经历的时间可能为5t 03C.若该带电粒子从cd 边射出,它经历的时间为5t 03D.若该带电粒子从ad 边射出,它经历的时间可能为2t 03[解析] 作出从ab 边射出的轨迹①、从bc 边射出的轨迹②、从cd 边射出的轨迹③和从ad 边射出的轨迹④.由带正电的粒子从O 点沿纸面以垂直于cd 边的速度射入正方形内,经过时间t 0刚好从c 点射出磁场可知,带电粒子在磁场中做圆周运动的周期是2t 0.由图可知,从ab 边射出经历的时间一定不大于5t 06;从bc 边射出经历的时间一定不大于4t 03;从cd 边射出经历的时间一定是5t 03;从ad 边射出经历的时间一定不大于t 03,C 正确.[答案] C考向2 “旋转法”解决有界磁场中的临界问题1.适用条件(1)速度大小一定,方向不同带电粒子进入匀强磁场时,它们在磁场中做匀速圆周运动的半径相同,若射入初速度为v 0,则圆周运动半径为R =mv 0qB.如图所示.(2)轨迹圆圆心——共圆带电粒子在磁场中做匀速圆周运动的圆心在以入射点P 为圆心、半径R =mv 0qB的圆上. 2.方法界定 将一半径为R =mv 0qB的圆绕着入射点旋转,从而探索出临界条件,这种方法称为“旋转法”. [典例2] 如图所示,真空室内存在匀强磁场,磁场方向垂直于纸面向里,磁感应强度的大小B =0.60 T.磁场内有一块平面感光板ab ,板面与磁场方向平行.在距ab 为l =16 cm 处,有一个点状的α粒子放射源S ,它向各个方向发射α粒子,α粒子的速度都是v =3.0×106m/s.已知α粒子的比荷q m=5.0×107C/kg ,现只考虑在纸面内运动的α粒子,求ab 板上被α粒子打中区域的长度.[解题指导] 过S 点作ab 的垂线,根据左侧最值相切和右侧最值相交计算即可. [解析] α粒子带正电,故在磁场中沿逆时针方向做匀速圆周运动,用R 表示轨迹半径,有qvB =m v 2R由此得R =mv qB代入数值得R =10 cm ,可见2R >l >R因朝不同方向发射的α粒子的圆轨迹都过S ,由此可知,某一圆轨迹在下图中N 左侧与ab 相切,则此切点P 1就是α粒子能打中的左侧最远点.为确定P 1点的位置,可作平行于ab的直线cd ,cd 到ab 的距离为R ,以S 为圆心,R 为半径,作圆弧交cd 于Q 点,过Q 作ab 的垂线,它与ab 的交点即为P 1.即:NP 1=R 2-(l -R )2=8 cm再考虑N 的右侧.任何α粒子在运动中离S 的距离不可能超过2R ,在N 点右侧取一点P 2,取SP =20 cm ,此即右侧能打到的最远点由图中几何关系得NP 2=(2R )2-l 2=12 cm 所求长度为P 1P 2=NP 1+NP 2 代入数值得P 1P 2=20 cm. [答案] 20 cm突破 带电粒子在磁场中运动的多解问题考向1 带电粒子电性不确定形成多解受洛伦兹力作用的带电粒子,可能带正电荷,也可能带负电荷,在相同的初速度的条件下,正、负粒子在磁场中运动轨迹不同,导致形成多解.[典例3] 如图所示,宽度为d 的有界匀强磁场,磁感应强度为B ,MM ′和NN ′是磁场左右的两条边界线.现有一质量为m 、电荷量为q 的带电粒子沿图示方向垂直磁场射入.要使粒子不能从右边界NN ′射出,求粒子入射速率的最大值为多少?[解题指导] 由于粒子电性不确定,所以分成正、负粒子讨论,不从NN ′射出的临界条件是轨迹与NN ′相切.[解析] 题目中只给出粒子“电荷量为q ”,未说明是带哪种电荷,所以分情况讨论. 若q 为正电荷,轨迹是如图所示的上方与NN ′相切的14圆弧,则轨道半径R =mv Bq又d =R -R2解得v =(2+2)Bqdm.若q 为负电荷,轨迹是如图所示的下方与NN ′相切的34圆弧,则轨道半径R ′=mv ′Bq又d =R ′+R ′2解得v ′=(2-2)Bqdm[答案](2+2)Bqd m (q 为正电荷)或(2-2)Bqdm(q 为负电荷)考向2 磁场方向不确定形成多解有些题目只告诉了磁感应强度的大小,而未具体指出磁感应强度的方向,此时必须要考虑磁感应强度方向不确定而形成的多解.[典例4] (多选)一质量为m 、电荷量为q 的负电荷在磁感应强度为B 的匀强磁场中绕固定的正电荷沿固定的光滑轨道做匀速圆周运动,若磁场方向垂直于它的运动平面,且作用在负电荷的电场力恰好是磁场力的三倍,则负电荷做圆周运动的角速度可能是(不计重力)( )A.4qB mB.3qBmC.2qBmD.qB m[解析] 根据题目中条件“磁场方向垂直于它的运动平面”,磁场方向有两种可能,且这两种可能方向相反.在方向相反的两个匀强磁场中,由左手定则可知负电荷所受的洛伦兹力的方向也是相反的.当负电荷所受的洛伦兹力与电场力方向相同时,根据牛顿第二定律可知4Bqv =m v 2R ,得v =4BqR m ,此种情况下,负电荷运动的角速度为ω=v R =4Bqm ;当负电荷所受的洛伦兹力与电场力方向相反时,有2Bqv =m v 2R ,v =2BqRm,此种情况下,负电荷运动的角速度为ω=v R =2Bqm,应选A 、C. [答案] AC考向3 临界状态不唯一形成多解如图所示,带电粒子在洛伦兹力作用下飞越有界磁场时,由于粒子运动轨迹是圆弧状,因此,它可能直接穿过去了,也可能转过180°从入射界面反向飞出,于是形成了多解.如图所示.[典例5] (多选)长为l 的水平极板间有垂直纸面向里的匀强磁场,如图所示,磁感应强度为B ,板间距离也为l ,板不带电.现有质量为m 、电荷量为q 的带正电粒子(不计重力),从左边极板间中点处垂直磁感线以速度v 水平射入磁场,欲使粒子不打在极板上,可采用的办法是( )A.使粒子的速度v <Bql 4mB.使粒子的速度v >5Bql4mC.使粒子的速度v >Bql mD.使粒子的速度v 满足Bql 4m <v <5Bql 4m[解析] 带电粒子刚好打在极板右边缘,有r 21=⎝⎛⎭⎪⎫r 1-l 22+l 2,又因r 1=mv 1Bq ,解得v 1=5Bql 4m ;粒子刚好打在极板左边缘,有r 2=l 4=mv 2Bq ,解得v 2=Bql4m,故A 、B 正确.[答案] AB考向4 带电粒子运动的往复性形成多解空间中部分是电场,部分是磁场,带电粒子在空间运动时,运动往往具有往复性,因而形成多解.[典例6] 如图所示,在x 轴上方有一匀强磁场,磁感应强度为B ;x 轴下方有一匀强电场,电场强度为E .屏MN 与y 轴平行且相距L .一质量m 、电荷量为e 的电子,在y 轴上某点A 自静止释放,如果要使电子垂直打在屏MN 上,那么:(1)电子释放位置与原点O 的距离s 需满足什么条件? (2)电子从出发点到垂直打在屏上需要多长时间? [解题指导] 解答本题可分“两步走”: (1)定性画出粒子运动轨迹示意图.(2)应用归纳法得出粒子做圆周运动的半径r 和L 的关系.[解析] (1)在电场中,电子从A →O ,动能增加eEs =12mv 2在磁场中,电子偏转,半径为r =mv 0eB据题意,有(2n +1)r =L所以s =eL 2B 22Em (2n +1)2(n =0,1,2,3,…).(2)在电场中匀变速直线运动的时间与在磁场中做部分圆周运动的时间之和为电子总的运动时间t =(2n +1)2s a +T 4+n T 2,其中a =Ee m ,T =2πm eB整理后得t =BL E +(2n +1)πm2eB(n =0,1,2,3,…).[答案] (1)s =eL 2B 22Em (2n +1)2(n =0,1,2,3,…) (2)BL E +(2n +1)πm2eB(n =0,1,2,3,…) 专项精练1.[放缩法的应用]如图所示,有一个正方形的匀强磁场区域abcd ,e 是ad 的中点,f 是cd 的中点,如果在a 点沿对角线方向以速度v 射入一带负电的粒子,恰好从e 点射出,则( )A.如果粒子的速度增大为原来的两倍,将从d 点射出B.如果粒子的速度增大为原来的三倍,将从f 点射出C.如果粒子的速度不变,磁场的磁感应强度变为原来的两倍,也将从d 点射出D.只改变粒子的速度使其分别从e 、d 、f 点射出时,从e 点射出所用时间最短答案:A 解析:作出示意图如图所示,根据几何关系可以看出,当粒子从d 点射出时,轨道半径增大为原来的两倍,由半径公式R =mvqB可知,速度也增大为原来的两倍,选项A 正确,显然选项C 错误;当粒子的速度增大为原来的四倍时,才会从f 点射出,选项B 错误;粒子的周期公式T =2πmqB,可见粒子的周期与速度无关,在磁场中的运动时间取决于其轨迹圆弧所对应的圆心角,所以从e 、d 射出时所用时间相等,从f 点射出时所用时间最短,故D 错误.2.[旋转法的应用]如图所示,在真空中坐标xOy 平面的x >0区域内,有磁感应强度B =1.0×10-2T 的匀强磁场,方向与xOy 平面垂直,在x 轴上的P (10,0)点,有一放射源,在xOy 平面内向各个方向发射速率v =104m/s 的带正电的粒子,粒子的质量为m =1.6×10-25kg ,电荷量为q =1.6×10-18C ,求带电粒子能打到y 轴上的范围.答案:-10~10 3 cm 解析:带电粒子在磁场中运动时由牛顿第二定律得:qvB =m v 2R解得:R =mv qB=0.1 m =10 cm如图所示,当带电粒子打到y 轴上方向的A 点与P 连线正好为其圆轨迹的直径时,A 点即为粒子能打到y 轴上方的最高点.因OP =10 cm ,AP =2R =20 cm则OA =AP 2-OP 2=10 3 cm当带电粒子的圆轨迹正好与y 轴下方相切于B 点时,若圆心再向左偏,则粒子就会从纵轴离开磁场,所以B 点即为粒子能打到y 轴下方的最低点,易得OB =R =10 cm ,综上所述,带电粒子能打到y 轴上的范围为-10~10 3 cm.3.[带电粒子在磁场中运动的临界问题]如图所示,在平面直角坐标系xOy 的第四象限有垂直纸面向里的匀强磁场,一质量为m =5.0×10-8kg 、电荷量为q =1.0×10-6C 的带正电粒子从静止开始经U 0=10 V 的电压加速后,从P 点沿图示方向进入磁场,已知OP =30 cm(粒子重力不计,sin 37°=0.6,cos 37°=0.8).(1)求带电粒子到达P 点时速度v 的大小;(2)若磁感应强度B =2.0 T ,粒子从x 轴上的Q 点离开磁场,求OQ 的距离; (3)若粒子不能进入x 轴上方,求磁感应强度B ′满足的条件. 答案:(1)20 m/s (2)0.90 m (3)B ′>5.33 T解析:(1)对带电粒子的加速过程,由动能定理有qU 0=12mv 2代入数据得:v =20 m/s.(2)带电粒子仅在洛伦兹力作用下做匀速圆周运动,有qvB =mv 2R得R =mv qB代入数据得:R =0.50 m 而OPcos 53°=0.50 m故圆心一定在x 轴上,轨迹如图甲所示 由几何关系可知:OQ =R +R sin 53° 故OQ =0.90 m.甲乙(3)带电粒子恰不从x 轴射出(如图乙所示),由几何关系得:OP >R ′+R ′cos 53° ① R ′=mv qB ′②由①②并代入数据得:B ′>163T≈5.33 T(取“≥”同样正确). 4.[带电粒子在磁场中运动的多解问题]如图甲所示,M 、N 为竖直放置彼此平行的两块平板,板间距离为d ,两板中央各有一个小孔O 、O ′正对,在两板间有垂直于纸面方向的磁场,磁感应强度随时间的变化如图乙所示,设垂直纸面向里的磁场方向为正方向.甲 乙有一群正离子在t =0时垂直于M 板从小孔O 射入磁场.已知正离子质量为m 、带电荷量为q ,正离子在磁场中做匀速圆周运动的周期与磁感应强度变化的周期都为T 0,不考虑由于磁场变化而产生的电场的影响.求:(1)磁感应强度B 0的大小;(2)要使正离子从O ′孔垂直于N 板射出磁场,正离子射入磁场时的速度v 0的可能值. 答案:(1)2πm qT 0 (2)πd 2nT 0(n =1,2,3,…)解析:(1)正离子射入磁场,由洛伦兹力提供向心力,即qv 0B 0=mv 2r①做匀速圆周运动的周期T 0=2πrv 0②联立两式得磁感应强度B 0=2πmqT 0.③(2)要使正离子从O ′孔垂直于N 板射出磁场,两板之间正离子只运动一个周期即T 0时,v 0的方向应如图所示,有r =d4④当在两板之间正离子共运动n 个周期,即nT 0时,有- 11 - r =d 4n(n =1,2,3,…)⑤ 联立①③⑤求解,得正离子的速度的可能值为v 0=qB 0r m =πd 2nT 0(n =1,2,3,…).。
带电粒子在磁场中地临界极值问题
带电粒子在磁场运动的临界与极值问题考点解读解决此类问题的关键是:找准临界点. 找临界点的方法是:以题目中的“恰好”“最大”“最高”“至少”等词语为突破口,借助半径R 和速度v (或磁场B )之间的约束关系进行动态运动轨迹分析,确定轨迹圆和边界的关系,找出临界点,然后利用数学方法求解极值,常用结论如下:(1)刚好穿出磁场边界的条件是带电粒子在磁场中运动的轨迹与边界相切.(2)当速度v 一定时,弧长(或弦长)越长,圆周角越大,则带电粒子在有界磁场中运动的时间越长.(3)当速率v 变化时,圆周角越大,运动时间越长.典例剖析1.磁感应强度的极值问题例1 如图所示,一带正电的质子以速度v 0从O 点垂直射入,两个板间存在垂直纸面向里的匀强磁场.已知两板之间距离为d ,板长为d ,O 点是板的正中间,为使质子能从两板间射出,试求磁感应强度应满足的条件(已知质子的带电荷量为e ,质量为m ).2.偏角的极值问题例2 在真空中,半径r =3×10-2m 的圆形区域内有匀强磁场,方向如图所示,磁感应强度B =0.2 T ,一个带正电的粒子以初速度v 0=1×106 m/s 从磁场边界上直径ab 的一端a 射入磁场,已知该粒子的比荷q m=1×108C/kg ,不计粒子重力.(1)求粒子在磁场中做匀速圆周运动的半径; (2)若要使粒子飞离磁场时有最大偏转角,求入射时v 0与ab 的夹角θ及粒子的最大偏转角.3.时间的极值问题例3 如图所示,M、N为两块带等量异种电荷的平行金属板,两板间电压可取从零到某一最大值之间的各种数值.静止的带电粒子带电荷量为+q,质量为m(不计重力),从点P经电场加速后,从小孔Q进入N板右侧的匀强磁场区域,磁感应强度大小为B,方向垂直于纸面向外,CD为磁场边界上的一绝缘板,它与N板的夹角为θ=45°,孔Q到板的下端C的距离为L,当M、N两板间电压取最大值时,粒子恰垂直打在CD板上,求:(1)两板间电压的最大值Um;(2)CD板上可能被粒子打中的区域的长度x;(3)粒子在磁场中运动的最长时间t m.4.面积的极值问题例4 如图12所示,一带电质点,质量为m,电量为q,以平行于Ox轴的速度v从y轴上的a点射入图中第一象限所示的区域。
磁场中的临界和极值问题
1.带电粒子在匀强磁场中做匀速圆周运动的半径公式
r mv qB
2.带电粒子在匀强磁场中做匀速圆周运动的周期公式
T 2 m qB
3.求带电粒子在匀强磁场中做匀速圆周运动时间的公式
t T m 2 qB
带电粒子在有界磁场中运动的几种常见情形 (1)直线边界(进出磁场具有对称性,如图所示)
(2010全国新课标1卷,25)如图所示,在0≤x≤a、 o≤y≤a/2范围内有垂直于xoy平面向外的匀强磁场,磁 感应强度大小为B。坐标原点O处有一个粒子源,在 某时刻发射大量质量为m、电荷量为q的带正电粒子, 它们的速度大小相同,速度方向均在xoy平面内,与y
轴正方向的夹角分布在0~9 0 0 范围内。己知粒子在磁
如图,磁感应强度为B的匀强磁场垂直于 纸面向里,PQ
为该磁场的右边界线,磁场中有一点O到PQ的距离为r。
现从点O以同一速率将相同的带负电粒子向纸面内各个不
同的方向射出,它们均做半径为r的匀速圆周运动,求带
电粒子打在边界PQ上的范围(粒子的重力不计)。
分析:从O点向各个方向发射的粒子在磁场中做匀速圆周运动的
场中做圆周运动的半径介于a/2到a之间,从发射粒子
到粒子全部离开磁场经历的时间恰好为粒子在磁场中
做圆周运动周期的四分之一。求最后离开磁场的粒子 从粒子源射出时的(1)速度的大小;(2)速度方向与y轴 正方向夹角的正弦值。
(2010全国新课标1卷,25)如图所示,在0≤x≤a、o≤y≤a/2范围内有垂直于xoy平面向外的匀 强磁场,磁感应强度大小为B。坐标原点O处有一个粒子源,在某时刻发射大量质量为m、电 荷量为q的带正电粒子,它们的速度大小相同,速度方向均在xoy平面内,与y轴正方向的夹角 分布在0~9 0 0 范围内。己知粒子在磁场中做圆周运动的半径介于a/2到a之间,从发射粒子到
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
考点4.6 临界与极值问题考点4.6.1 “放缩圆”方法解决极值问题1、圆的“放缩”当带电粒子射入磁场的方向确定,但射入时的速度v 大小或磁场的强弱B 变化时,粒子做圆周运动的轨道半径r 随之变化.在确定粒子运动的临界情景时,可以以入射点为定点,将轨道半径放缩,作出一系列的轨迹,从而探索出临界条件.如图所示,粒子进入长方形边界OABC 形成的临界情景为②和④.1. (多选)如图所示,左、右边界分别为PP ′、QQ ′的匀强磁场的宽度为d ,磁感应强度大小为B ,方向垂直纸面向里.一个质量为m 、电荷量为q 的微观粒子,沿图示方向以速度v 0垂直射入磁场.欲使粒子不能从边界QQ ′射出,粒子入射速度v 0的最大值可能是( )A.Bqd mB.(2+2)Bqd mC.(2-2)Bqd mD.2Bqd 2m2. (2016·全国卷Ⅲ,18)平面OM 和平面ON 之间的夹角为30°,其横截面(纸面)如图所示,平面OM 上方存在匀强磁场,磁感应强度大小为B ,方向垂直于纸面向外。
一带电粒子的质量为m ,电荷量为q (q >0)。
粒子沿纸面以大小为v 的速度从OM 的某点向左上方射入磁场,速度与OM 成30°角。
已知该粒子在磁场中的运动轨迹与ON 只有一个交点,并从OM 上另一点射出磁场。
不计重力。
粒子离开磁场的出射点到两平面交线O 的距离为( )A.mv 2qBB.3mv qBC.2mv qBD.4mv qB3. (多选)长为L 的水平极板间,有垂直纸面向内的匀强磁场,如下图所示,磁感应强度为B ,板间距离也为L ,板不带电,现有质量为m ,电荷量为q 的带正电粒子(不计重力),从左边极板间中点处垂直磁感线以速度v 水平射入磁场,欲使粒子不打在极板上,可采用的办法是( )A 、使粒子的速度v <BqL 4mB 、使粒子的速度v >5BqL 4mC 、使粒子的速度v >BqL mD 、使粒子速度BqL 4m <v <5BqL 4m4. 如图所示,边长为L 的正方形ABCD 区域内存在磁感应强度方向垂直于纸面向里、大小为B 的匀强磁场,一质量为m 、带电荷量为-q的粒子从AB 边的中点处垂直于磁感应强度方向射入磁场,速度方向与AB 边的夹角为30°.若要求该粒子不从AD 边射出磁场,则其速度大小应满足( )A .v ≤2qBL mB .v ≥2qBL mC .v ≤qBL mD .v ≥qBL m5. 如图所示,条形区域AA ′、BB ′中存在方向垂直于纸面向外的匀强磁场,磁感应强度为B ,AA ′、BB ′为磁场边界,它们相互平行,条形区域的长度足够长,宽度为d .一束带正电的某种粒子从AA ′上的O 点以大小不同的速度沿着AA ′成60°角方向射入磁场,当粒子的速度小于某一值v 0时,粒子在磁场区域内的运动时间为定值t 0;当粒子速度为v 1时,刚好垂直边界BB ′射出磁场.不计粒子所受重力.求:(1) 粒子的比荷q m; (2) 带电粒子的速度v 0和v 1.6. 如图所示,两个同心圆,半径分别为r 和2r ,在两圆之间的环形区域内存在垂直纸面向里的匀强磁场,磁感应强度为B .圆心O 处有一放射源,放出粒子的质量为m ,带电荷量为q ,假设粒子速度方向都和纸面平行.(1) 图中箭头表示某一粒子初速度的方向,OA 与初速度方向夹角为60°,要想使该粒子经过磁场第一次通过A 点,则初速度的大小是多少?(2) 要使粒子不穿出环形区域,则粒子的初速度不能超过多少?7.如图所示,M、N为两块带等量异种电荷的平行金属板,两板间电压可取从零到某一最大值之间的各种数值.静止的带电粒子带电荷量为+q,质量为m(不计重力),从点P经电场加速后,从小孔Q进入N板右侧的匀强磁场区域,磁感应强度大小为B,方向垂直于纸面向外,CD为磁场边界上的一绝缘板,它与N板的夹角为θ=45°,孔Q到板的下端C 的距离为L,当M、N两板间电压取最大值时,粒子恰垂直打在CD板上,求:(1)两板间电压的最大值U m;(2)CD板上可能被粒子打中的区域的长度x;(3)粒子在磁场中运动的最长时间t m.8.如图所示,OP曲线的方程为:y=1-0.4 6.25-x(x,y单位均为m),在OPM区域存在水平向右的匀强电场,场强大小E1=200N/C(设为I区),PQ右边存在范围足够大的垂直纸面向内的匀强磁场,磁感应强度为B=0.1T(设为Ⅱ区),与x轴平行的刚上方(包括PN存在竖直向上的匀强电场,场强大小E2=100N/C(设为Ⅲ区),PN的上方h=3.125m处有一足够长的紧靠y轴水平放置的荧光屏AB,OM的长度为a=6.25m。
今在曲线OP上同时由静止释放质量m=1.6×10-25 kg,电荷量e=1.6×10-19C的带正电的粒子2000个(在OP上按x均匀分布)。
不考虑粒子之间的相互作用,不计粒子重力,求:(1)粒子进入Ⅱ区的最大速度值;(2)粒子打在荧光屏上的亮线的长度和打在荧光屏上的粒子数;(3)粒子从出发到打到荧光屏上的最长时间。
考点4.6.2 “旋转圆”方法解决极值问题2.定圆“旋转”当带电粒子射入磁场时的速率v大小一定,但射入的方向变化时,粒子做圆周运动的轨道半径r是确定的.在确定粒子运动的临界情景时,可以以入射点为定点,将轨迹圆旋转,作出一系列轨迹,从而探索出临界条件,如图所示为粒子进入单边界磁场时的情景.【例题】如图所示,在0≤x≤3a区域内存在与xy平面垂直的匀强磁场,磁感应强度的大小为B.在t=0时刻,一位于坐标原点的粒子源在xy平面内发射出大量同种带电粒子,所有粒子的初速度大小相同,方向与y轴正方向的夹角分布在0-180°范围内.已知沿y轴正方向发射的粒子在t=t0时刻刚好从磁场边界上P(3a,a)点离开磁场.求:⑴、粒子在磁场中做圆周运动的半径R及粒子的比荷q/m;⑵、此时刻仍在磁场中的粒子的初速度方向与y轴正方向夹角的取值范围;⑶、从粒子发射到全部粒子离开磁场所用的时间.9. (多选)如图所示,在0≤x ≤b 、0≤y ≤a 的长方形区域中有一磁感应强度大小为B 的匀强磁场,磁场的方向垂直于xOy 平面向外。
O 处有一个粒子源,在某时刻发射大量质量为m 、电荷量为q 的带正电粒子,它们的速度大小相同,速度方向均在xOy 平面内的第一象限内。
已知粒子在磁场中做圆周运动的周期为T ,最先从磁场上边界飞出的粒子经历的时间为T 12,最后从磁场中飞出的粒子经历的时间为T 4。
不计粒子的重力及粒子间的相互作用,则( )A . 粒子射入磁场的速度大小v =2qBa mB . 粒子圆周运动的半径r =2aC . 长方形区域的边长满足关系b a =3+1D . 长方形区域的边长满足关系b a=210. 如图所示,在屏MN 的上方有磁感应强度为B 的匀强磁场,磁场方向垂直纸面向里.P为屏上的一个小孔.PC 与MN 垂直.一群质量为m 、带电量为-q 的粒子(不计重力),以相同的速率v ,从P 处沿垂直于磁场的方向射入磁场区域.粒子入射方向在与磁场B 垂直的平面内,且散开在与PC 夹角为θ的范围内.则在屏MN 上被粒子打中的区域的长度为( )A . 2mv qB B. 2mv cos θqBB . 2mv (1-sin θ)qB D. 2mv (1-cos θ)qB11. (多选)如图,一粒子发射源P 位于足够大绝缘板AB 的上方d 处,能够在纸面内向各个方向发射速率为v 、电荷量为q 、质量为m 的带正电的粒子,空间存在垂直纸面的匀强磁场,不考虑粒子间的相互作用和粒子重力。
已知粒子做圆周运动的半径大小恰好为d ,则( BC )A . 能打在板上的区域长度是2dB . 能打在板上的区域长度是(3+1)dC . 同一时刻发射出的带电粒子打到板上的最大时间差为7πd 6vD . 同一时刻发射出的带电粒子打到板上的最大时间差为πqd 6mv12. 如图所示,边界OA 与OC 之间分布有垂直纸面向里的匀强磁场,边界OA 上有一粒子源S .某一时刻,粒子源S 向平行于纸面的各个方向发射出大量带正电荷的同种粒子(不计粒子的重力及粒子间的相互作用),所有粒子的初速度大小相同,经过一段时间有大量粒子从边界OC 射出磁场.已知∠AOC =60°,从边界OC 射出的粒子在磁场中运动的最短时间等于T 6(T 为粒子在磁场中运动的周期),则从边界OC 射出的粒子在磁场中运动的最长时间为( )A.T 3B.T 2C.2T 3D.5T 313. (多选)如图所示,宽d = 2cm 的有界匀强磁场,纵向范围足够大,磁感应强度的方向垂直纸面向内.现有一群带正电的粒子从O 点以相同的速率沿纸面不同方向进入磁场,若粒子在磁场中做匀速圆周运动的轨道半径均为r = 5cm ,则 ( )A . 右边界:-4cm <y ≤4cm 的范围内有粒子射出B . 右边界:y >4cm 和y <-4cm 的范围内有粒子射出C . 左边界:y >8cm 的范围内有粒子射出D . 左边界:0<y ≤8cm 的范围内有粒子射出14. 如图所示,半径为R 的圆形区域内有一垂直纸面向里的匀强磁场,P 为磁场边界上的一点.大量质量为m 、电荷量为q 的带正电粒子,在纸面内沿各个方向以相同速率v 从P 点射入磁场.这些粒子射出磁场时的位置均位于PQ 圆弧上,PQ 圆弧长等于磁场边界周长的13.不计粒子重力和粒子间的相互作用,则该匀强磁场的磁感应强度大小为( ) A.3mv 2qR B.mv qR C.3mv qR D.23mv 3qR15. (多选)如图所示,O 点有一粒子源,在某时刻发射大量质量为m 、电荷量为q 的带正电的粒子,它们的速度大小相等、速度方向均在xOy 平面内.在直线x =a 与x =2a 之间存在垂直于xOy 平面向外的磁感应强度为B 的匀强磁场,与y 轴正方向成60°角发射的粒子恰好垂直于磁场右边界射出.不计粒子的重力和粒子间的相互作用力.关于这些粒子的运动,下列说法正确的是( ).A . 粒子的速度大小为2aBq mB 、粒子的速度大小为aBq mC 、与y 轴正方向成120°角射出的粒子在磁场中运动的时间最长D 、与y 轴正方向成90°角射出的粒子在磁场中运动的时间最长16. 如图所示,在矩形区域abcd 内充满垂直纸面向里的匀强磁场,磁感应强度为B .在ad 边中点O 的粒子源,在t =0时刻垂直于磁场发射出大量的同种带电粒子,所有粒子的初速度大小相同,方向与Od 的夹角分布在0~180°范围内.已知沿Od 方向发射的粒子在t =t 0时刻刚好从磁场边界cd 上的P 点离开磁场,ab =1.5L ,bc =3L ,粒子在磁场中做圆周运动的半径R =L ,不计粒子的重力和粒子间的相互作用,求:(1) 粒子在磁场中的运动周期T ;(2) 粒子的比荷;(3) 粒子在磁场中运动的最长时间.17. 如图所示,在xOy 坐标系坐标原点O 处有一点状的放射源,它向xOy 平面内的x 轴上方各个方向发射α粒子,α粒子的速度大小均为v 0,在0<y <d 的区域内分布有指向y 轴正方向的匀强电场,场强大小为2032mv E qd ,其中q 与m 分别为α粒子的电量和质量;在d <y <2d 的区域内分布有垂直于xOy 平面向里的匀强磁场,mn 为电场和磁场的边界.ab 为一块很大的平面感光板垂直于xOy 平面且平行于x 轴,放置于y =2d 处,如图所示.观察发现此时恰好无粒子打到ab 板上.(不考虑α粒子的重力及粒子间的相互作用),求:(1) α粒子通过电场和磁场边界mn 时的速度大小及距y 轴的最大距离;(2) 磁感应强度B 的大小;(3) 将ab 板至少向下平移多大距离才能使所有的粒子均能打到板上?此时ab 板上被α粒子打中的区域的长度.考点4.6.3 最小磁场区域求解问题18.一带电粒子,质量为m、电荷量为q,以平行于Ox轴的速度v从y轴上的a点射入图中第Ⅰ象限所示的区域(下图所示).为了使该粒子能从x轴上的b点以垂直于Ox轴的速度v射出,可在适当的地方加一个垂直于xOy平面、磁感应强度为B的匀强磁场.若此磁场仅分布在一个圆形区域内,试求这圆形磁场区域的最小半径,重力忽略不计.19.在如图所示的平面直角坐标系xOy中,有一个圆形区域的匀强磁场(图中未画出),磁场方向垂直于xOy平面,O点为该圆形区域边界上的一点.现有一质量为m、带电荷量为+q的带电粒子(不计重力)从O点以初速度v0沿x轴正方向进入磁场,已知粒子经过y轴上P点时速度方向与y轴正方向夹角为θ=30°,OP=L,求:(1)磁感应强度的大小和方向;(2)该圆形磁场区域的最小面积.20.如图所示,MN为绝缘板,CD为板上两个小孔,AO为CD的中垂线,在MN的下方有匀强磁场,方向垂直纸面向外(图中未画出),质量为m电荷量为q的粒子(不计重力)以某一速度从A点平行于MN的方向进入静电分析器,静电分析器内有均匀辐向分布的电场(电场方向指向O点),已知图中虚线圆弧的半径为R,其所在处场强大小为E,若离子恰好沿图中虚线做圆周运动后从小孔C垂直于MN进入下方磁场.(1)求粒子运动的速度大小;(2)粒子在磁场中运动,与MN板碰撞,碰后以原速率反弹,且碰撞时无电荷的转移,之后恰好从小孔D进入MN上方的一个三角形匀强磁场,从A点射出磁场,则三角形磁场区域最小面积为多少?MN上下两区域磁场的磁感应强度大小之比为多少?(3)粒子从A点出发后,第一次回到A点所经过的总时间为多少?21.电子对湮灭是指电子“e﹣”和正电子“e+”碰撞后湮灭,产生伽马射线的过程,电子对湮灭是正电子发射计算机断层扫描(PET)及正子湮灭能谱学(PAS)的物理基础.如图所示,在平面直角坐标系xOy上,P点在x轴上,且=2L,Q点在负y轴上某处.在第Ⅰ象限内有平行于y轴的匀强电场,在第Ⅱ象限内有一圆形区域,与x、y轴分别相切于A、C 两点,=L,在第Ⅳ象限内有一未知的圆形区域(图中未画出),未知圆形区域和圆形区域内有完全相同的匀强磁场,磁场方向垂直于xOy平面向里.一束速度大小为v0的电子束从A点沿y轴正方向射入磁场,经C点射入电场,最后从P点射出电场区域;另一束速度大小为的正电子束从Q点沿与y轴正向成45°角的方向射入第Ⅳ象限,而后进入未知圆形磁场区域,离开磁场时正好到达P点,且恰好与从P点射出的电子束正碰发生湮灭,即相碰时两束粒子速度方向相反.已知正负电子质量均为m、电量均为e,电子的重力不计.求:(1)圆形区域内匀强磁场磁感应强度B的大小和第Ⅰ象限内匀强电场的场强E的大小;(2)电子子从A点运动到P点所用的时间;(3)Q点纵坐标及未知圆形磁场区域的最小面积S.22.如图所示的直角坐标系中,在直线x=-2l0到y轴区域内存在着两个大小相等、方向相反的有界匀强电场,其中x轴上方的电场方向沿y轴负方向,x轴下方的电场方向沿y轴正方向。