分式提高训练题
初中数学分式方程的应用培优训练(精选40道习题 附答案详解)
(2)若商店按售价为每个书包 元,销售完这两批书包,总共获利多少元?
15.某服装加工厂计划加工4000套运动服,在加工完1600套后,采用了新技术,工作效率比原计划提高 ,结果共用了18天完成全部任务.求原计划每天加工多少套运动服.
16.为落实“美丽抚顺”的工作部署,市政府计划对城区道路进行了改造,现安排甲、乙两个工程队完成.已知甲队的工作效率是乙队工作效率的 倍,甲队改造360米的道路比乙队改造同样长的道路少用3天.
13.科幻小说《流浪地球》的销量急剧上升.为应对这种变化,某网店分别花20000元和30000元先后两次购进该小说,第二次的数量比第一次多500套,且两次进价相同.
(1)该科幻小说第一次购进多少套?每套进价多少元?
(2)根据以往经验:当销售单价是25元时,每天的销售量是250套;销售单价每上涨1元,每天的销售量就减少10套.网店要求每套书的利润不低于10元且不高于18元.
11.小明家用 元网购的 型口罩与小磊家用 元在药店购买的 型口罩的数量相同, 型与 型口罩的单价之和为 元,求 两种口罩的单价各是多少元?
12.某市为治理污水,需要铺设一段全长为 的污水排放管道,为了尽量减少施工对城市交通所造成的影响,实际施工时每天的工效比原计划增加 ,结果提前 天完成这一任务,实际每天铺设多长管道?
(1)甲,乙两公司单独完成此项工程,各需多少天?
(2)若让一个公司单独完成这项工程,哪个公司的施工费较少?
6.甲、乙两人做某种机械零件,已知甲每小时比乙多做5个,甲做80个所用的时间与乙做60个所用的时间相等,问甲、乙两人每小时各做多少个零件?(用列方程的方法解答)
7.某超市预测某饮料有发展前途,用1600元购进一批饮料,面市后果然供不应求,又用6000元购进这批饮料,第二批饮料的数量是第一批的3倍,但单价比第一批贵2元.那么第一批饮料进货单价多少元?
八年级分式培优习题
八年级分式培优习题一、填空题1、下列分式中,有意义的分式是()A、 B、 C、 D、2、下列各分式中,最简分式是()A、 B、 C、 D、3、下列各分式中,当x取何值时,分式有意义?()A、 B、 C、 D、4、下列各分式中,分式的值等于零的是()A、 B、 C、 D、5、下列各分式中,分式的值不存在的是()A、 B、 C、 D、二、解答题6、请解以下分式方程:(1)(2)61、请解以下分式方程:(1)(2)611、请解以下分式方程:(1)(2)6111、请解以下分式方程:(1)(2)请解以下分式方程:(1)(2)八年级培优计划一、目标:通过培优,使优生更上一层楼,提高优生的学习能力和思维能力,提高他们的竞争意识和一定的应试技巧,但也帮助他们发现不足,进一步提高他们学习的自觉性,以真正取得理想的成绩。
二、具体措施:1、思想方面培优辅差。
做好学生的思想工作,经常和学生谈心,关心他们,关爱他们,让学生觉得老师是重视他们的,激发他们学习的积极性。
了解学生们的学习态度、学习习惯、学习方法等。
从而根据学生的思想心态进行相应的辅导。
定期与学生家长、班主任沟通了解学生的家庭、生活、思想等各方面的情况,以利于教师做好学生的思想引导工作。
2、培优辅差内容:数学方面:在讲完新课后,编拟一些较高思维层次的专题知识渗透到教学中,培养优生的发散思维能力、探究能力和创新思维能力。
3、辅差内容:对差生主要从以下几个方面进行:1)认真备课,设计好每一节课的层次教学,利用多种多样的教学手段吸引差生的注意力,让差生有机会表现自己,多设计一些对应差生的问题,提高差生的学习信心。
2)经常与家长,了解差生各方面的情况,对症下药,讲究方法。
3)采用“一帮一”的方法,安排学习优秀的学生对后进生进行辅导训练。
并开展“手拉手”活动,让优生和差生结成对子。
4)注意保持和蔼可亲的态度去面对学生,不能对他们采用强硬的态度和手段。
这样会使他们对老师既亲近又尊重,更愿意接近老师并乐于接受教育。
鲁教版2020-2021学年度八年级数学上册第二章分式与分式方程期末复习能力提升训练题(含答案)
鲁教版2020-2021学年度八年级数学上册第二章分式与分式方程期末复习能力提升训练题(含答案)一.选择题:1.在盒子里放有三张分别写有整式2,x+3,5的卡片,从中随机抽取两张卡片,把两张卡片上的整式分别作为分子和分母,则能组成分式的概率是()A.B.C.D.2.同时使分式有意义,又使分式无意义的x的取值范围是()A.x≠﹣4,且x≠﹣2B.x=﹣4,或x=2C.x=﹣4D.x=23.分式中,当x=﹣a时,下列结论正确的是()A.分式的值为零B.分式无意义C.若a≠﹣时,分式的值为零D.若a≠时,分式的值为零4.已知===,则=()A.B.C.D.5.下列分式的约分中,正确的是()A.=﹣B.=1﹣yC.=D.=6.若数a使得关于x的分式方程﹣=5有正数解,且使得关于y的不等式组有解,那么符合条件的所有整数a的个数为()A.1B.2C.3D.47.以下给出三个结论()(1)若1﹣(x﹣1)=x,则2﹣x﹣1=2x;(2)若,则;(3)若x﹣,则x﹣1=﹣1.其中正确的结论共有()A.0个B.1个C.2个D.3个8.若分式方程有增根,则a的值是()A.﹣2B.0C.2D.0或﹣29.一个圆柱形容器的容积为Vm3,开始用一根小水管向容器内注水,水面高度达到容器高度一半后,改用一根口径为小水管2倍的大水管注水,向容器中注满水的全过程共用时间t分钟.设小水管的注水速度为x立方米/分钟,则下列方程正确的是()A.+=t B.+=tC.•+•=t D.+10.甲、乙两人同时从圆形跑道(圆形跑道的总长小于700m)上一直径两端A,B相向起跑,第一次相遇时离A点100m,第二次相遇时离B点60m,则圆形跑道的总长为()A.240m B.360m C.480m D.600m二.填空题:11.观察下列分式:,,,,,…,猜想第n个分式是.12.若式子有意义,则x的取值范围是.13.若分式的值为0,则x的值是.14.不改变分式的值,将分式的分子、分母的各项系数都化为整数,则=.15.约分的结果是.16.若关于x的方程=无解,则m的值是.17.分式方程=1的解是x=.18.解分式方程+=时,设=y,则原方程化为关于y的整式方程是.19.若解关于x的方程产生增根,则m的值为.20.为了美化校园环境,某中学今年春季购买了A,B两种树苗在校园四周栽种,已知A种树苗的单价比B种树苗的单价多10元,用600元购买A种树苗的棵数恰好与用450元购买B种树苗的棵数相同.若设A种树苗的单价为x元,则可列出关于x的方程为.三.解答题:21.我们知道:分式和分数有着很多的相似点,如类比分数的基本性质,我们得到了分式的基本性质,等等.小学里,把分子比分母小的数叫做真分数.类似的,我们把分子的次数小于分母的次数的分式称为真分式,反之,称为假分式.对于任何一个假分式都可以化成整式与真分式的和的形式.如:==+=1+.(1)请写出分式的基本性质;(2)下列分式中,属于真分式的是;A.B.C.﹣D.(3)将假分式,化成整式和真分式的形式.22.约分(1)(2)23.计算题①|﹣2|﹣(﹣1)0+(﹣)﹣2+(﹣1)2019②(2x﹣3)2﹣(2x+3)(2x﹣3)③④(x2y﹣2xy2+y3)÷y+(x+2y)(x﹣y)24.计算:.25.已知关于x的分式方程+=(1)已知m=4,求方程的解;(2)若该分式方程无解,试求m的值.26.(1)解方程:.(2)解不等式组:.27.整体思想就是通过研究问题的整体形式从面对问题进行整体处理的解题方法.如此题设“=a,=b”得方程解得∴利用整体思想解决问题:采采家准备装修一厨房,若甲,乙两个装修公司,合做需6周完成,甲公司单独做4周后,剩下的由乙公司来做,还需9周才能完成,求甲、乙公司单独完成装修任务各需多少周?解:设甲公司单独完成需x周,乙公司单独完成需y周,依题意得:28.我区在一项工程招标时,接到甲、乙两个工程队的投标书,从投标书中得知:每施工一天,甲工程队要1.1万元,乙工程队要0.8万元,工程小组根据甲、乙两队标书的测算,有三种方案:(A)甲队单独完成这个工程,刚好如期完成;(B)乙队单独完成这个工程要比规定时间多用5天;(C)**********,剩下的工程由乙队单独做,也正好如期完成.方案C中“星号”部分被损毁了.已知,一个同学设规定的工期为x天,根据题意列出方程:(1)请将方案(C)中“星号”部分补充出来;(2)你认为哪个方案节省工程款,请说明你的理由.参考答案:一.选择题:1.在盒子里放有三张分别写有整式2,x+3,5的卡片,从中随机抽取两张卡片,把两张卡片上的整式分别作为分子和分母,则能组成分式的概率是()A.B.C.D.解:分母含有字母的式子是分式,整式2,x+3,中,抽到x+3做分母时组成的都是分式,共有3×2=6种情况,其中x+3分母的情况有2种,所以能组成分式的概率==.故选:A.2.同时使分式有意义,又使分式无意义的x的取值范围是()A.x≠﹣4,且x≠﹣2B.x=﹣4,或x=2C.x=﹣4D.x=2解:由题意得:x2+6x+8≠0,且(x+1)2﹣9=0,(x+2)(x+4)≠0,x+1=3或﹣3,x≠﹣2且x≠﹣4,x=2或x=﹣4,∴x=2,故选D.3.分式中,当x=﹣a时,下列结论正确的是()A.分式的值为零B.分式无意义C.若a≠﹣时,分式的值为零D.若a≠时,分式的值为零解:由3x﹣1≠0,得x≠,故把x=﹣a代入分式中,当x=﹣a且﹣a≠时,即a≠﹣时,分式的值为零.故选:C.4.已知===,则=()A.B.C.D.解:∵===,∴b=2a,d=2c,f=2e,把b=2a,d=2c,f=2e代入===,故选:C.5.下列分式的约分中,正确的是()A.=﹣B.=1﹣yC.=D.=解:A.=,此选项约分错误;B.不能约分,此选项错误;C.==,此选项正确;D.==,此选项错误;故选:C.6.若数a使得关于x的分式方程﹣=5有正数解,且使得关于y的不等式组有解,那么符合条件的所有整数a的个数为()A.1B.2C.3D.4解:解方程﹣=5,得:x=,∵分式方程的解为正数,∴a+2>0,即a>﹣2,又x≠1,∴≠1,即a≠2,则a>﹣2且a≠2,∵关于y的不等式组有解,∴a﹣1≤y<6﹣2a,即a﹣1<6﹣2a,解得:a<,综上,a的取值范围是﹣2<a<,且a≠2,则符合题意的整数a的值有﹣1、0、1,3个,故选:C.7.以下给出三个结论()(1)若1﹣(x﹣1)=x,则2﹣x﹣1=2x;(2)若,则;(3)若x﹣,则x﹣1=﹣1.其中正确的结论共有()A.0个B.1个C.2个D.3个解:(1)方程两边都乘2得2﹣x+1=2x,错误;(2)由于不确定x+1是否为0,所以不能两边都除以,错误;(3)方程两边都乘x﹣1得x(x﹣1)﹣1=﹣1,错误.故选:A.8.若分式方程有增根,则a的值是()A.﹣2B.0C.2D.0或﹣2解:方程两边都乘(x+a)(x﹣2),得x+a+3(x﹣2)(x+a)=(a﹣x)(x﹣2),∵原方程有增根,∴最简公分母(a+x)(x﹣2)=0,∴增根是x=2或﹣a,当x=2时,方程化为:2+a=0,解得:a=﹣2;当x=﹣a时,方程化为﹣a+a=2a(﹣a﹣2),即a(a+2)=0,解得:a=0或﹣2.当a=﹣2时,原方程可化为+3=,化为整式方程得,1+3(x﹣2)=﹣x﹣2,即:x=,不存在增根,故不符合题意,当a=0时,原方程可化为,化为整式方程得,x+3x(x﹣2)=﹣x(x﹣2),解得x=或x=0,此时,有增根为x=0,∴a=0符合题意,故选:B.9.一个圆柱形容器的容积为Vm3,开始用一根小水管向容器内注水,水面高度达到容器高度一半后,改用一根口径为小水管2倍的大水管注水,向容器中注满水的全过程共用时间t分钟.设小水管的注水速度为x立方米/分钟,则下列方程正确的是()A.+=t B.+=tC.•+•=t D.+解:设小水管的注水速度为x立方米/分钟,可得:,故选:C.10.甲、乙两人同时从圆形跑道(圆形跑道的总长小于700m)上一直径两端A,B相向起跑,第一次相遇时离A点100m,第二次相遇时离B点60m,则圆形跑道的总长为()A.240m B.360m C.480m D.600m解:如图,设圆形跑道总长为2s,又设甲乙的速度分别为v,v′,再设第一次在C点相遇,根据题意得:化简得:,解此方程得S=0(舍去)或S=240.所以2S=480米.经检验是方程的解;故选:C.二.填空题:11.观察下列分式:,,,,,…,猜想第n个分式是.解:由分析可得第n项的分母应为x n+1,分子为:,第n个分式是,故答案为:.12.若式子有意义,则x的取值范围是x≠3.解:∵式子有意义,∴x的取值范围是:x﹣3≠0,解得:x≠3.故答案为:x≠3.13.若分式的值为0,则x的值是﹣1.解:由分式的值为0,得x+1=0且x﹣1≠0.解得x=﹣1,故答案为:﹣1.14.不改变分式的值,将分式的分子、分母的各项系数都化为整数,则=.解:==,故答案为:.15.约分的结果是﹣.解:=﹣=﹣,故答案为:.16.若关于x的方程=无解,则m的值是1.解:去分母得:x﹣1=m,由分式方程无解,得到x﹣2=0,即x=2,把x=2代入整式方程得:m=1,故答案为:117.分式方程=1的解是x=1.解:=1,去分母,得3x=x+2.整理得2x=2,解方程得x=1.经检验x=1是原分式方程的解.故原分式方程的解是x=1.故答案为:1.18.解分式方程+=时,设=y,则原方程化为关于y的整式方程是y2﹣y+1=0.解:设=y,则原方程化为y+﹣=0两边都乘以y,得y2﹣y+1=0,故答案为:y2﹣y+1=0.19.若解关于x的方程产生增根,则m的值为3.解:方程两边同乘x﹣1得:x+3=m+1,解得:x=m﹣2,方程产生增根,当x﹣1=0,即x=1时,方程产生增根,∴m﹣2=1,∴m=3.故答案为:3.20.为了美化校园环境,某中学今年春季购买了A,B两种树苗在校园四周栽种,已知A种树苗的单价比B种树苗的单价多10元,用600元购买A种树苗的棵数恰好与用450元购买B种树苗的棵数相同.若设A种树苗的单价为x元,则可列出关于x的方程为=.解:设A种树苗的单价为x元,则B种树苗的单价为(x﹣10)元,所以用600元购买A 种树苗的棵数是,用450元购买B种树苗的棵数是.由题意,得=.故答案是:=.三.解答题:21.我们知道:分式和分数有着很多的相似点,如类比分数的基本性质,我们得到了分式的基本性质,等等.小学里,把分子比分母小的数叫做真分数.类似的,我们把分子的次数小于分母的次数的分式称为真分式,反之,称为假分式.对于任何一个假分式都可以化成整式与真分式的和的形式.如:==+=1+.(1)请写出分式的基本性质分式的分子和分母乘(或除以)同一个不等于0的整式,分式的分式值不变.;(2)下列分式中,属于真分式的是C;A.B.C.﹣D.(3)将假分式,化成整式和真分式的形式.解:(1)分式的分子和分母乘(或除以)同一个不等于0的整式,分式的分式值不变.(2)根据题意得:选项C的分子次数是0,分母次数是1,分子的次数小于分母的次数是真分式.而其他选项是分子的次数均不小于分母的次数的分式,故ABD选项是假分式.故选C.(3)=m﹣1+22.约分(1)(2)解:(1)原式==;(2)原式===.23.计算题①|﹣2|﹣(﹣1)0+(﹣)﹣2+(﹣1)2019②(2x﹣3)2﹣(2x+3)(2x﹣3)③④(x2y﹣2xy2+y3)÷y+(x+2y)(x﹣y)解:①原式=2﹣﹣1+9﹣1=9﹣;②原式=4x2﹣12x+9﹣(4x2﹣9)=4x2﹣12x+9﹣4x2+9=﹣12x+18;③原式=﹣••(﹣)=;④原式=x2﹣2xy+y2+x2﹣xy+2xy﹣2y2=2x2﹣xy﹣y2.24.计算:.解:原式=,=,=,=﹣1.25.已知关于x的分式方程+=(1)已知m=4,求方程的解;(2)若该分式方程无解,试求m的值.解:分式方程去分母得:2(x+2)+mx=x﹣1,整理得:(m+1)x=﹣5.(1)当m=4时,(4+1)x=5,解得:x=﹣1经检验:x=﹣1是原方程的解.(2)∵分式方程无解,∴m+1=0或(x+2)(x﹣1)=0,当m+1=0时,m=﹣1;当(x+2)(x﹣1)=0时,x=﹣2或x=1.当x=﹣2时m=;当x=1是m=﹣6,∴m=﹣1或﹣6或时该分式方程无解.26.(1)解方程:.(2)解不等式组:.解:(1)去分母,得1=3(x﹣3)﹣x.(1分)去括号,得1=3x﹣9﹣x.(2分)解得x=5.(3分)经检验,x=5 是原方程的解.(4分)(2)解不等式(1)得:x≥1;…(1分)解不等式(2)得:x<5;…(2分)所以不等式组的解集为1≤x<5.…(4分)27.整体思想就是通过研究问题的整体形式从面对问题进行整体处理的解题方法.如此题设“=a,=b”得方程解得∴利用整体思想解决问题:采采家准备装修一厨房,若甲,乙两个装修公司,合做需6周完成,甲公司单独做4周后,剩下的由乙公司来做,还需9周才能完成,求甲、乙公司单独完成装修任务各需多少周?解:设甲公司单独完成需x周,乙公司单独完成需y周,依题意得:解:设甲公司单独完成需x周,乙公司单独完成需y周,依题意得:设=a,=b,原方程化为:②×3﹣①×2得:27b﹣12b=1∴b=③将③代入②得:4a+9×=1∴a=∴∴甲公司单独完成需10周,乙公司单独完成需15周.28.我区在一项工程招标时,接到甲、乙两个工程队的投标书,从投标书中得知:每施工一天,甲工程队要1.1万元,乙工程队要0.8万元,工程小组根据甲、乙两队标书的测算,有三种方案:(A)甲队单独完成这个工程,刚好如期完成;(B)乙队单独完成这个工程要比规定时间多用5天;(C)**********,剩下的工程由乙队单独做,也正好如期完成.方案C中“星号”部分被损毁了.已知,一个同学设规定的工期为x天,根据题意列出方程:(1)请将方案(C)中“星号”部分补充出来甲、乙两队合作4天;(2)你认为哪个方案节省工程款,请说明你的理由.解:(1)根据题意及所列的方程可知被损毁的部分为:甲、乙两队合作4天;故答案为:甲、乙两队合作4天;(2)设规定的工期为x天,根据题意列出方程:,解得:x=20.经检验:x=20是原分式方程的解.这三种施工方案需要的工程款为:(A)1.1×20=22(万元);(B)0.8×(20+5)=20(万元);(C)4×1.1+20×0.8=20.4(万元).综上所述,B方案可以节省工程款。
分式计算题分类训练(5种类型50道)—2024学年八年级数学上册专题训练+备考提分专项训练(解析版)
分式计算题分类训练(5种类型50道)【答案】(1)23x ;(2)5ac −【分析】(1)根据分式乘法法则,可得答案;(2)根据分式的除法,除以一个分式等于乘以这个分式的倒数,可得答案;【详解】解:(1)3324423263x y xy y xx y x ⋅==; (2)32233222222254422425105ab a b ab cd ab cd bd ccd c a b a b c ac −÷=⋅=−=−−. 【点睛】本题考查了分式的乘除法,根据法则计算是解题关键. 2442a a a a −++【答案】(1)12;(2)a【分析】(1)由分式的除法运算法则进行计算,即可得到答案; (2)由分式的乘法运算法则进行计算,即可得到答案.【详解】解:(1)原式=21x x +14x x +=12;(2)原式=()22a a a +−()222a a −+=2a a −; 【点睛】本题考查了分式的乘法、除法运算法则,解题的关键是掌握运算法则,正确的进行化简.【答案】(1)2152()ab a b +;(2)2(2)x x y x y +−+ 【分析】(1)先对分子、分母分解因式,再约分,即可求解;(2)先对分子、分母分解因式,再把除法化为乘法,然后约分即可求解.【详解】解:(1)原式=()()()2332510a b a b ab a b a b −⋅−+ =2352ab a b ⋅+ =2152()ab a b +;(2)原式=()()()()22222y x y x x yx x y x y +−−÷++=()()()()22222y x y x x x y x y x y +−+⋅−+ =2(2)x x y x y +−+. 【点睛】本题主要考查分式的乘除法,掌握因式分解以及约分是解题的关键.【答案】(1)2(1)(2)a a a −−+;(2)7m m −+【分析】(1)先把分式的分子分母因式分解,再约分化简即可;(2)先把分式的分子分母因式分解,再除法变乘法,最后约分化简即可.【详解】(1)222441214a a a a a a −+−⋅−+−22(2)1(1)(2)(2)a a a a a −−=⋅−−+ 22(2)(1)(1)(2)(2)a a a a a −−=−−+2(1)(2)a a a −=−+;(2)2211497m m m ÷−−()221(7)749(7)(7)m m m m m m m −=−⋅−=−−+−7mm =−+.【点睛】本题考查分式的乘除运算,一般都是先把分子分母因式分解,最后约分化简.【答案】(1)224a ab+(2)22239x x x --+【分析】(1)根据分式的乘法运算法则进行计算即可;(2)根据除以一个数等于乘以这个数的相反数进行计算即可.【详解】(1)解:22234246a b a b a b ab −⋅− =3a 2b2(a −2b )∙(a +2b)(a −2b)6ab (2)4a a b += 224a ab =+;(2)2222133218412x x x x x x −+−÷−−2(1)4(3)2(3)(3)3(1)x x x x x x --=×+-- 2(1)3(3)x x x -=+22239x x x --+=.【点睛】本题考查了分式的乘法运算以及除法运算,熟练掌握相关运算法则是解本题的关键.【答案】(1)22b(2)2−【分析】(1)直接根据分式的乘除运算法则解答即可;(2)分式的分子、分母先分解因式,把除法转化为乘法,再约分即可得到答案.【详解】(1)原式2222245353422a b c d d cd ab abc b =⋅⋅=;(2)原式()()()()()2992332993a a a a a a a +−++=⋅⋅=−−−++.【点睛】本题考查了分式的乘除,熟练掌握分式的乘除运算法则是解题的关键.【答案】(1)234a c −;(2)21−−ab b . 【分析】分式相乘的法则是:用分子的积作为积的分子,分母的积作为积的分母,并将乘积化为既约分式或整式,作分式乘法时,也可先约分后计算.【详解】(1)解:原式2232162b a a bc a b ⎛⎫− ⎪⎝=⋅⎭⋅ 3221216a b ab c =−234a c =−(2)解:原式()22122()a b ab ab b a −=−⋅⋅−()2222()ab a b b a ab −=−−()1b a b =−−21ab b =−− 【点睛】本题考查分式的乘除运算.分式的除法运算实质上是乘法运算.掌握分式的乘法运算法则是解题关键.【答案】(1)()()()()3242x x x x −++−(2)22aa −+【分析】根据分式的乘除混合计算法则求解即可.【详解】(1)解:原式()()()()()()2232444322x x x x x x x x −+−=⋅⋅+−−+−()()()()3242x x x x −+=+−;(2)解:原式()()()()()211221112a a a a a a a −++−=⋅⋅+−+22aa −=+.【点睛】本题主要考查了分式的乘除混合计算,熟知相关计算法则是解题的关键.【答案】(1)2a −(2)12x x ++【分析】(1)根据平方差公式,十字相乘法,完全平方公式等进行分解因式,再计算;(2)根据平方差公式,十字相乘法,完全平方公式等进行分解因式,再计算.【详解】(1)原式()()()()()244214222a a a a a a a +−−=⋅⋅+−−−42a a −=−.(2)原式()()()()()()()()2314444322x x x x x x x x x x −−++−=⋅⋅+−−+−12x x +=+. 【点睛】本题考查了分式的乘除混合运算,正确分解因式是关键,属于基础题.【答案】(1)42b a -(2)-2【分析】(1)先将除法转化为乘法,再约分即可得出答案;(2)先利用完全平方公式整理,将除法化为乘法,最后约分即可得出答案.【详解】(2)原式()()()()()2992332993a a a a a a a +−++=⋅⋅=−−−++.【点睛】本题考查了分式的乘除,熟练掌握运算法则是解题的关键.【答案】(1)a b +(2)x y −【分析】(1)根据同分母分式的运算法则计算即可;(2)根据同分母分式的运算法则计算即可.【详解】(1)解:原式()()a b a b a b a b +−==+−.(2)解:原式222x y xy x y x y +=−−− 222x y y x y x −+=−()2x y x y −=−x y =−.【点睛】本题考查了同分母分式的加减法以及平方差公式,熟练掌握同分母分式的加减法法则是解题的关键.【答案】(1)1x +(2)12x y +【分析】(1(2)先将异分母分式化为同分母分式,再进行同分母分式加减运算即可;【详解】(1)原式2221311x x x x x +−=+−−22131x x x x ++−=−22121x x x +−=−()()()2111x x x +=−−11x x −=+; (2)原式()()2222422x y x y x y x y x −++−−+=2224y xy x −−=12x y =+. 【点睛】本题考查了异分母分式相加减的运算,熟练掌握运算法则并你能将异分母分式互为同分母分式是解题的关键.【答案】(1)21m m −(2)224x x −【分析】(1)根据分式与整式的加法进行计算即可求解;(2)根据异分母的加法进行计算即可求解.【详解】(1)解:111m m ++−()()11111m m m m +−=+−−2111m m +−=−21m m =−; (2)解:2242x x x x −−− ()()()2222x x x x x −+=+−22224x x x x −−=−224x x =−.【点睛】本题考查了分式的加减计算,熟练掌握分式的运算法则是解题的关键.【答案】(1)3a +(2)221212a a a a −−++【分析】(1)先将分子分母能因式分解的进行因式分解,再通分计算即可;(2)先将分子分母能因式分解的进行因式分解,再通分计算即可.【详解】(1)解:22193a a a −−−()()21333a a a a =−+−− ()()()()233333a a a a a a +=−+−+− ()()2333a a a a −−=+− ()()333a a a −=+− 13a =+;(2)解:221121a a a a a a −−++++()()21111a a a a a −−=+++ ()()()()()2211111a a a a a a −−+=+++()()()21211a a a −+=+221212a a a a =−−++.【点睛】本题主要考查了分式的混合运算,解题的关键是掌握分式混合运算的运算顺序和运算法则.【答案】(1)221x −−;(2)2x x −+【分析】(1)根据异分母分式相加减法则,异分母分式相加减,先通分,分母都变为()()11x x +−,变为同分母分式,再加减计算即可;(2)根据异分母分式相加减法则,异分母分式相加减,先通分,使前两项分数的分母都变为()()22x x +−,变为同分母分式,再加减计算,约分化简,再把1−这项写成同分母的形式22x x +−+,再加减计算即可.【详解】(1)原式()()()()111111x x x x x x −+=−+−+−()()()1111x x x x −−+=+−221x −=−;(2)原式()()()()()22412222x x x x x x +=−−+−−+()()()22122x x x −=−+−2222x x x +=−++2x x =−+. 【点睛】本题考查了异分母分式相加减,熟练掌握异分母分式相加减法则是解题的关键.【答案】(1)a b +(2)21m m +【分析】(1)先通分计算括号内,再根据分式的除法法则进行计算即可;(2)先算除法,再通分进行加法运算即可.【详解】(1)解:原式()2222a ab b ab a b a b ab −+=⋅−+()()2a b ab ab b a a b −=⋅+−a ba b −=+;(2)原式()()()()23313321m m m m m m −+=−+⋅+−+111m m =−++ 2111m m −+=+21m m =+.【点睛】本题考查分式的混合运算,解题的关键是掌握分式的混合运算法则,正确的计算.【答案】(1)26m +(2)11x −【分析】(1)通分计算加减法,再约分计算乘除法即可求解; (2)通分计算加减法,再约分计算乘除法即可求解.【详解】(1)解:原式()22224523m m m m m ⎛⎫−=−⋅ ⎪−−−−⎝⎭ ()222923m m m m −−=⋅−−()()()332223m m m m m +−−=⋅−−26m =+;(2)解:原式22121x x x x x x ⎛⎫++=÷− ⎪⎝⎭211x x x x +−=÷()()111x x x x x +=⋅+−11x =− 【点睛】本题考查分式的混合运算.异分母分式的加减运算关键是通分,分式的乘除运算关键是将分子分母因式分解后进行约分.【答案】3x − 【分析】先将括号内的两个式子通分并化简,然后将除法改为乘法,分子分母调换位置,最后再约分,可得最终化简结果.【详解】解:2569122x x x x −+⎛⎫−÷ ⎪++⎝⎭ 22569222x x x x x x +−+⎛⎫=−÷ ⎪+++⎝⎭()23322x x x x −−=÷++()23223x x x x −+=+−g13x =−.【点睛】本题考查了用公式法因式分解、约分、通分、分式的化简等知识点.熟知分式的化简步骤是解题的关键,同时要将结果化为最简分式或整式.【答案】232a a −++【分析】根据分式的混合运算顺序和运算法则化简原式,即可求解.【详解】解:22231211a a a a a a −⎛⎫÷−+ ⎪+++⎝⎭ ()()22231111a a a a a a −⎛⎫−=÷− ⎪+++⎝⎭()()()()221221a a a a a a −+=⋅+−+()()12a a a =−++ 232aa a =−++.【点睛】本题主要考查分式的化简,解题的关键是掌握分式的混合运算顺序和运算法则.【答案】1 【分析】通分,计算括号内,再将除法变成乘法,约分即可.【详解】解:原式()()2a ab a b a a b −−=⋅−1=.【点睛】本题考查分式的混合运算.熟练掌握相关运算法则,是解题的关键.【答案】2241x xx ++【分析】再括号外的分式2乘法运算即可化简原式.【详解】解:231111x x x x x x ⎛⎫⋅ ⎭−⎝−−++⎪ ()()()()()()31111111x x x x x x x x x +−−−+=⋅−++22331x x x x x +−+=+2241x x x +=+.【点睛】本题考查分式的混合运算,熟练掌握分式的混合运算法则并正确求解是解答的关键.【答案】1aa −【分析】先计算括号里边的式子,通分化成同分母的分式相加,再计算除法运算即可. 【详解】解:+⎛⎫+÷ ⎪−−−+⎝⎭2a 11a a 1a 1a 2a 1=(a +1a −1+1(a −1)2)÷a a −1=a 2(a−1)2÷a a−1 =a 2(a−1)2×a−1a 1aa =−.【点睛】此题考查学生分式运算,以及完全平方公式、平方差公式的运用,解答此题的关键是把分式化到最简.【答案】26x + 【分析】先通分括号内的式子,然后将括号外的除法转化为乘法,再约分即可.【详解】解:532224x x x x −⎛⎫+−÷ ⎪−−⎝⎭ ()()()2252223x x x x x +−−−=⋅−− ()222923x x x x −−=⋅−− ()()()332223x x x x x +−−=⋅−− ()23x =+ 26x =+.【点睛】本题考查分式的混合运算,熟练掌握运算法则是解答本题的关键.【答案】2x +,1.【分析】首先把括号内的分式进行通分、相减,把除法转化为乘法,即可化简,最后代入数值计算即可.【详解】解:原式()22121x x x x +−=⨯+− 2x =+,当=1x −时,原式121=−+=.【点睛】本题主要考查分式的化简求值,解题的关键是熟练掌握分式混合运算顺序和运算法则.【答案】1x −,4 【分析】先计算括号内加法,再计算除法即可得到化简结果,再把字母的值代入计算即可.【详解】解:22121124x x x x −+⎛⎫+÷ ⎪−−⎝⎭ 222121224x x x x x x −−+⎛⎫=+÷ ⎪−−−⎝⎭()()()211222x x x x x −−=÷−+− ()()()222121x x x x x +−−=⋅−− 21x x +=− 当3x =−时, 原式32113144−+−===−−− 【点睛】此题考查了分式的化简求值,熟练掌握分式的运算法则是解题的关键.【答案】1x −,2−(答案不唯一) 【分析】根据分式的减法和除法可以化简题目中的式子,然后从1−,0,1和2中选一个使得原分式有意义的值代入化简后的式子,即可解答本题.【详解】解: 原式211(2)(2)1(2)x x x x x −−+−=⋅−−2212x x x x −+=⋅−−21x x +=−,∵1x ≠,2x ≠±∴当0x =时,原式02201+==−−(答案不唯一).【点睛】本题考查分式的化简求值,解答本题的关键是掌握分式混合运算法则.【答案】2,当2m =时,值为12−【分析】先根据分式混合运算的法则把原式进行化简,再选取合适的m 的值代入进行计算即可.【详解】解:22221369m m m m −⎛⎫+÷ ⎪−−+⎝⎭()()2323321m m m m −+−=⋅−−()()231321m m m m −−=⋅−−32m −=, 3010m m −≠−≠,,31m m ∴≠≠,,∴当2m =时,原式23122−==−【点睛】本题考查的是分式的化简求值,熟知分式混合运算的法则是解题的关键.【答案】3a b −+,11− 【分析】先根据分式混合运算的法则把原式进行化简,再求出a 、b 的值代入进行计算即可.【详解】解:原式()()()()2232251=222a b a b a b b a a b a b a b a ⎡⎤−+−÷−−⎢⎥−−−⎣⎦ ()()()2222531=224a b a b a a b a b a b −−−÷−−−()()222321=29a b a b a a b a b a −−−−⋅−()()()()23321=32a b a b a a b a b a b a −−+−−−⋅()31=3a b a a b a −−+ ()()()=3333b a b a a b a b a a +−++− 23a b =−+, 解方程组51a b a b +=⎧⎨−=−⎩得23a b =⎧⎨=⎩,当2,3a b ==时,原式有意义,∴原式2223311=−=−+⨯.【点睛】本题考查了分式的化简求值,掌握分式混合运算的法则是解题的关键.【答案】4【分析】根据2222244x y x y A x xy y x y −+=⋅+++,即可化简求值. 【详解】解:∵2222244x y x y A x xy y x y −+÷=+++ ∴()()()22222224422x y x y x y x y x y x y A x xy y x y x y x y x y +−−++−=⋅=⋅=++++++ 当2,1x y ==时,2112214A −==+⨯ 【点睛】本题考查分式的化简求值.将分子分母正确的进行因式分解是解题关键.【答案】2a +,5【分析】根据分式的减法和除法可以化简题目中的式子,然后从2−,2,3中选取一个使得原分式有意义的值代入化简后的式子即可. 【详解】解:22224a a a a a ⎛⎫−÷ ⎪−−⎝⎭ ()()22222222a a a a a a a a +−⎛⎫−=−⨯ ⎪−−⎝⎭()()22222a a a a a +−=⋅−2a =+,∵要使分式有意义,a 不能取0和2±,∴当3a =时,原式325=+=.【点睛】本题考查分式的化简求值,解答本题的关键是明确分式除法和减法的运算法则.【答案】26x −−;6− 【分析】直接将括号里面通分运算,再利用分式的混合运算法则化简得出答案.【详解】解:233139x x x +⎛⎫+÷ ⎪−−⎝⎭ ()()333333x x x x x ++−=÷−+− ()()33363x x x +−=−⋅− ()23x =−+26x =−−,当()()330x x +−=,即3x =或3x =−时,分式没有意义,当0x =时,原式266x =−−=−.【点睛】此题主要考查了分式的化简求值,正确掌握分式的混合运算是解题关键.【答案】()122x −;14042【分析】先根据分式混合运算法则进行化简,然后再代入数据求值即可. 【详解】解:2142422x x x x x +⎛⎫+÷ ⎪+−+⎝⎭ ()2142222x x x x x ⎡⎤++÷⎢⎥+−+⎣⎦=()()()()()()224222222222x x x x x x x x x ⎡⎤−++÷⎢⎥+−+−⎣⎦++= ()()22422224x x x x x ++=⋅+−+()122x =−,当2023x =时,原式()112202324042==⨯−.【点睛】本题主要考查了分式化简求值,解题的关键是熟练掌握分式混合运算法则,准确计算.【答案】3a +【分析】先根据分式的加法法则进行计算,再根据分式的除法法则把除法变成乘法,算乘法,最后代入求出答案即可.【详解】解:()()()()23333233231339323323a a a a a a a a a a a a a a a a −+−+−+−−⎛⎫+÷=⋅=⋅=+ ⎪−−−−−−⎝⎭,当3=a 时,原式33=+=【点睛】本题考查了分式的化简求值,能正确根据分式的运算法则进行化简是解此题的关键.【答案】(1)无解(2)无解【分析】(1)去分母,化为整式方程求解,注意检验;(2)去分母,化为整式方程求解,注意检验;【详解】(1)解:2216124x x x ++=−−−,两边同时乘以2(4)−x ,得22(2)16(4)x x −++=−−, 44164x −−+=,2x =,2x =时,240x −=∴原方程无解.(2)解:两边同时乘以2(9)x −,得32(3)12x x −++=,39x =,3x =,3x =时,290x -=∴原方程无解.【点睛】本题考查分式方程的求解;掌握分式方程的求解步骤,注意检验是解题的关键.【答案】(1) 1.5x =(2)无解【分析】(1)先去分母变分式方程为整式方程,然后解整式方程,最后对方程的解进行检验即可;(2)先去分母变分式方程为整式方程,然后解整式方程,最后对方程的解进行检验即可.【详解】(1)解:2111x x x +=−−, 去分母得:12x x +−=,移项合并同类项得:23x =,系数化为1得: 1.5x =,检验:把 1.5x =代入1x −得:1.510.50−=≠,∴ 1.5x =是原方程的解.(2)解:2216124x x x −−=+−,去分母得:()222164x x −−=−,去括号得:2244164x x x −+−=−,移项合并同类项得:48x −=,系数化为1得:2x =−,检验:把2x =−代入得:()2240−−=,∴2x =−是原方程的增根,∴原方程无解. 【点睛】本题主要考查了解分式方程,解题的关键是熟练掌握解分式方程的一般步骤,准确计算,注意最后要对方程的解进行检验.【答案】(1)4x =;(2)原分式方程无解.【分析】(1)方程两边乘以最简公分母()22x x −,把分式方程转化成整式方程求解即可; (2)方程两边乘以最简公分母()()22x x +−,把分式方程转化成整式方程求解即可.【详解】(1)解:()21522x x x x +=−, 方程两边同乘()22x x −,得482510x x −+=−,解得:4x =,检验:当4x =时,()22160x x −=≠,4x ∴=是原方程的解,∴原方程的解为4x =;(2)解:2224162424x x x x x −++=+−−,()()()()2221622222x x x x x x +−−=+−+−,()()22162222x x x x x x −+−=+−+−,方程两边都乘()()22x x +−,得:()()222216x x −−+=,解得:2x =−,检验:当2x =−时,()()220x x +−=,∴2x =−是增根,即原分式方程无解.【点睛】本题考查解分式方程,熟练掌握解分式方程的方法是解题的关键. ) ).【答案】见解析【详解】解:(1),去分母,方程两边同时乘以x (x ﹣1),得:x2﹣2(x ﹣1)=x (x ﹣1),x2﹣2x+2=x2﹣x ,﹣x=﹣2,x=2,经检验:x=2是原分式方程的解;(2)去分母,方程两边同时乘以x2﹣1,得:(x+1)2﹣4=x2﹣1,x2+2x+1﹣4=x2﹣1,2x=2,x=1,经检验:x=1不是原分式方程的解,原分式方程无解.【点评】本题是解分式方程,明确解分式方程的步骤:①去分母;②求出整式方程的解;③检验;④得出结论;注意去分母时,要同时乘以所有分母的最简公分母,解分式方程时,一定要检验.【答案】(1)1x =(2)2x =【分析】(1)两分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解;(2)两分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.【详解】(1)去分母,得32x x +−−,解,得1x =,经检验知1x =是分式方程的解;(2)原方程变形得()()23111111x x x x +=+−+− 去分母,得()()213111x x −++=, 解,得2x =,经检验知2x =是原方程的解.【点睛】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.。
八年级数学下册考前百分专题强化训练---分式
八年级数学下册百分专题强化训练分式专题一:分式的概念、分式有意义、无意义、值为零1.在下列式子x 2、31)(y x +、35-π、12-a x 中,分式有 。
2.代数式23x-、)(y x +、y x -4、a b 35、π12+x 中,分式有( )A .1个B .2个C .3个D .4个 3.下列式子:①xy 2;②b a +2;③ax --4;④22y xy -.其中是分式的有( )A .2个B .3个C .4个D .5个 4.无论X 取何值,分式总有意义的是( )A.122+x xB. 1+x xC. 112-xD. 21x x + 5.使分式2x x +有意义的x 的取值范围是( ) A .2x = B . 2x ≠ C . 2x ≠- D . 2x > 6.当x = 时,分式33x x --无意义;当x = 时,分式321x -无意义. 7.使分式2x +12x -1无意义的x 的值是( )A .x =-12B .x =12C .x ≠-12D .x ≠ 128.分式112+-x x 的值为0,则( )A..x=-1 B .x=1 C .x=±1 D .x=0 9.若分式632---x x x 的值为零,则x 的值为( )A.±3B.3C.-3D.以上答案均不正确10.若分式122--x x 的值为0,则x= ;分式11x x -+的值为零,则x 的值为 。
11.若分式11x x --的值为0,则x= ;如果分式2x x-的值为0,那么x = 。
12.当x ≠ 时,分式21+-x x 有意义;当x= 时,分式33+-x x 的值为零。
当m = 时,关于x 的分式方程213x m x +=--无解专题二:构造分式1.写出一个含有字母x 的分式(要求:不论x 取任何实数,该分式都有意义,且值为负) 。
2.先从下列代数式:6+3x 、2、4+a 、3b 、c 中任选二个,组成一个整式为 ,再选二个,组成一个分式为 。
鲁教版2020-2021学年度八年级数学上册第二章分式与分式方程期末复习培优提升训练题(含答案)
鲁教版2020-2021学年度八年级数学上册第二章分式与分式方程期末复习培优提升训练题(含答案)1.自然数a,b,c,d满足=1,则等于()A.B.C.D.2.“五一”江北水城文化旅游节期间,几名同学包租一辆面包车前去旅游,面包车的租价为180元,出发时又增加了两名同学,结果每个同学比原来少摊了3元钱车费,设实际参加游览的同学共x人,则所列方程为()A.B.C.D.3.甲、乙、丙三名打字员承担一项打字任务,已知如下信息如果每小时只安排1名打字员,那么按照甲、乙、丙的顺序至完成工作任务,共需()A.13小时B.13小时C.14小时D.14小时4.若=2,则=5.•=.6.在小学阶段,我们知道可以将一个分数拆分成两个分数的和(差)的形式,例如,=.类似地,我们也可以把一个较复杂的分式拆分成两个较简单,并且分子次数小于分母次数的分式的和或者差的形式.例如=,仿照上述方法,若分式可以拆分成的形式,那么(B+1)﹣(A+1)=.7.直接写出结果:(1)=;(2)=.8.已知=,则代数式的值是.9.若数a使关于x的不等式组有且只有四个整数解,且使关于y的方程=2的解为非负数,则符合条件的所有整数a的和为.10.已知:,则(y﹣x)的值是.11.方程组的解是.12.①已知x=3是方程=1的一个根,则a=;②已知x=1是方程的一个增根,则k=.13.甲做90个机器零件所用的时间和乙做120个所用的时间相等,又知甲、乙两人每小时共做35个机器零件,问甲、乙每小时各做多少个机器零件.解:设甲每小时做x个机器零件,则乙每小时做个机器零件,依题意可列方程.14.阅读下列材料:通过小学的学习我们知道,分数可分为“真分数”和“假分数”.而假分数都可化为带分数,如:==2+=2.我们定义:在分式中,对于只含有一个字母的分式,当分子的次数大于或等于分母的次数时,我们称之为“假分式”;当分子的次数小于分母的次数时,我们称之为“真分式”.如:,这样的分式就是假分式;再如:,这样的分式就是真分式.类似的,假分式也可以化为带分式(即:整式与真分式的和的形式).如:==1﹣;再如:===x+1+.解决下列问题:(1)分式是分式(填“真分式”或“假分式”);(2)假分式可化为带分式的形式;(3)如果分式的值为整数,那么x的整数值为.15.约分(1)(2).16.通分,,.17.自学下面材料后,解答问题.分母中含有未知数的不等式叫做分式不等式.如:>0;<0等.那么如何求出它们的解集呢?根据我们学过的有理数除法法则可知:两数相除,同号得正,异号得负.其字母表达式为:(1)若a>0,b>0,则>0;若a<0,b<0,则>0;(2)若a>0,b<0,则<0;若a<0,b>0,则<0.反之:①若>0,则或②若<0,则或.根据上述规律,①求不等式<0的解集.②直接写出不等式解集为x>3或x<1的最简分式不等式.18.已知关于x的分式方程﹣2=的解是正数,求m的取值范围.19.探索发现:=1﹣;=﹣;=﹣…根据你发现的规律,回答下列问题:(1)=,=;(2)利用你发现的规律计算:+++…+(3)灵活利用规律解方程:++…+=.20.解方程:.21.若解关于x的分式方程+=会产生增根,求m的值.参考答案:1.自然数a,b,c,d满足=1,则等于()A.B.C.D.解:=1,只有a、b、c、d自然数都相等的时候,等式才成立,即:a =b=c=d=2;将a、b、c、d结果代入=.故选:D.2.“五一”江北水城文化旅游节期间,几名同学包租一辆面包车前去旅游,面包车的租价为180元,出发时又增加了两名同学,结果每个同学比原来少摊了3元钱车费,设实际参加游览的同学共x人,则所列方程为()A.B.C.D.解:设实际参加游览的同学共x人,根据题意得:﹣=3.故选:D.3.甲、乙、丙三名打字员承担一项打字任务,已知如下信息如果每小时只安排1名打字员,那么按照甲、乙、丙的顺序至完成工作任务,共需()A.13小时B.13小时C.14小时D.14小时解:设甲单独完成任务需要x小时,则乙单独完成任务需要(x﹣5)小时,则=.解得x=20经检验x=20是原方程的根,且符合题意.则丙的工作效率是.所以一轮的工作量为:++=.所以4轮后剩余的工作量为:1﹣=.所以还需要甲、乙分别工作1小时后,丙需要的工作量为:﹣﹣=.所以丙还需要工作小时.故一共需要的时间是:3×4+2+=14小时.故选:C.4.若=2,则=解:由=2,得x+y=2xy则===.故答案为.5.•=.解:•=.故答案为:.6.在小学阶段,我们知道可以将一个分数拆分成两个分数的和(差)的形式,例如,=.类似地,我们也可以把一个较复杂的分式拆分成两个较简单,并且分子次数小于分母次数的分式的和或者差的形式.例如=,仿照上述方法,若分式可以拆分成的形式,那么(B+1)﹣(A+1)=.解:=+==,∵=,∴=,则,解得:,所以(B+1)﹣(A+1)=3﹣2=,故答案为:.7.直接写出结果:(1)=;(2)=.解:(1)=1+=;(2)=a+=a+=.8.已知=,则代数式的值是9.解:∵=,∴a﹣b=3ab,∴原式===9.故答案为9.9.若数a使关于x的不等式组有且只有四个整数解,且使关于y的方程=2的解为非负数,则符合条件的所有整数a的和为1.解:,解①得,x<5;解②得,∴不等式组的解集为;∵不等式有且只有四个整数解,∴,解得,﹣2<a≤2;解分式方程得,y=2﹣a(a≠1);∵方程的解为非负数,∴2﹣a≥0即a≤2;综上可知,﹣2<a≤2且a≠1,∵a是整数,∴a=﹣1,0,2;∴﹣1+0+2=1故答案为1.10.已知:,则(y﹣x)的值是4.解:∵,∴,则有;方程组可化为:,解得.经检验:是原方程的解.∴(y﹣x)=4.故答案为:4.11.方程组的解是.解:原方程组化为令x+y+z=k,代入得由(1)+(2)+(3)得由(4)分别减去(1)(2)(3)得由(5)×(6)×(7)得(8)由(8)分别除以(5)(6)(7)得将(9)(10)(11)代入x+y+z=k,得,从而原方程组的解为:.故答案为:.12.①已知x=3是方程=1的一个根,则a=3;②已知x=1是方程的一个增根,则k=﹣1.解:①把x=3代入原方程,得,解得a=3,经检验,a=3是分式方程的解.②方程两边都乘(x+1)(x﹣1),得x(x+1)+k(x+1)=x(x﹣1),把x=1代入得,k=﹣1.13.甲做90个机器零件所用的时间和乙做120个所用的时间相等,又知甲、乙两人每小时共做35个机器零件,问甲、乙每小时各做多少个机器零件.解:设甲每小时做x个机器零件,则乙每小时做(35﹣x)个机器零件,依题意可列方程.解:甲做90个机器零件所用的时间为:,乙做120个所用的时间为:.所列方程为:=.14.阅读下列材料:通过小学的学习我们知道,分数可分为“真分数”和“假分数”.而假分数都可化为带分数,如:==2+=2.我们定义:在分式中,对于只含有一个字母的分式,当分子的次数大于或等于分母的次数时,我们称之为“假分式”;当分子的次数小于分母的次数时,我们称之为“真分式”.如:,这样的分式就是假分式;再如:,这样的分式就是真分式.类似的,假分式也可以化为带分式(即:整式与真分式的和的形式).如:==1﹣;再如:===x+1+.解决下列问题:(1)分式是真分式(填“真分式”或“假分式”);(2)假分式可化为带分式1﹣的形式;(3)如果分式的值为整数,那么x的整数值为0,﹣2,2,﹣4.解:(1)分式是真分式;(2)假分式=1﹣;(3)==2﹣.所以当x+1=3或﹣3或1或﹣1时,分式的值为整数.解得x=2或x=﹣4或x=0或x=﹣2.故答案为:(1)真;(2)1﹣;(3)0,﹣2,2,﹣4.15.约分(1)(2).解:(1)=;(2)==.16.通分,,.解:它们的最简公分母是3(x﹣3)2(x+3),,,.17.自学下面材料后,解答问题.分母中含有未知数的不等式叫做分式不等式.如:>0;<0等.那么如何求出它们的解集呢?根据我们学过的有理数除法法则可知:两数相除,同号得正,异号得负.其字母表达式为:(1)若a>0,b>0,则>0;若a<0,b<0,则>0;(2)若a>0,b<0,则<0;若a<0,b>0,则<0.反之:①若>0,则或②若<0,则或.根据上述规律,①求不等式<0的解集.②直接写出不等式解集为x>3或x<1的最简分式不等式.(1)解:由题意得:或第一个不等式组无解,第二个的解集为﹣1<x<2,则原分式不等式的解集为﹣1<x<2.(2)或等,18.已知关于x的分式方程﹣2=的解是正数,求m的取值范围.解:去分母可得:3x﹣2(x﹣6)=m∴3x﹣2x+12=m∴x=m﹣12将x=m﹣12代入最简公分母可知:m﹣12﹣6≠0,∴m≠18∵分式方程的解是正数,∴m﹣12>0,∴m>12∴m的取值范围为m>12且m≠1819.探索发现:=1﹣;=﹣;=﹣…根据你发现的规律,回答下列问题:(1)=﹣,=﹣;(2)利用你发现的规律计算:+++…+(3)灵活利用规律解方程:++…+=.解:(1)=﹣,=﹣;(2)原式=1﹣+﹣+﹣+…+﹣=1﹣=;(3)(﹣+﹣+…+﹣)=,(﹣)=﹣=,=,解得x=50,经检验,x=50为原方程的根.故答案为﹣,﹣.20.解方程:.解:设y=,则原方程可化为:y﹣=1;两边同乘以y整理得y2﹣y﹣2=0,解得y1=2,y2=﹣1.当y1=2时,=2,化为;2x2+x﹣1=0,解得x1=﹣1,x2=;当y2=﹣1时,=﹣1,化为;x2﹣x+1=0,∵△<0,∴此方程无实数根;经检验x1=﹣1,x2=都是原方程的根∴原方程的根是x1=﹣1,x2=.21.若解关于x的分式方程+=会产生增根,求m的值.解:去分母得:2x+4+mx=3x﹣6,由分式方程有增根,得到(x+2)(x﹣2)=0,解得:x=2或x=﹣2,当x=2时,4+4+2m=0,即m=﹣4;当x=﹣2时,﹣2m=﹣12,即m=6,综上,m的值是﹣4或6。
中考数学复习《分式方程》专项提升训练(附答案)
中考数学复习《分式方程》专项提升训练(附答案)学校:___________班级:___________姓名:___________考号:___________一、选择题1.下列关于x 的方程,是分式方程的是( )A.3+x 2-3=2+x 5B.2x -17=x 2C.x π+1=2-x 3D.12+x =1-2x2.分式方程2x -2+3x 2-x=1的解为( ) A.x =1 B.x =2 C.x =13D.x =0 3.若x =3是分式方程a -2x -1x -2=0的解,则a 的值是( ) A.5 B.-5 C.3 D.-34.分式方程x +1x +1x -2=1的解是( ) A.x =1 B.x =-1 C.x =3 D.x =-35.分式方程x x -1-1=3(x -1)(x +2)的解为( ) A.x =1 B.x =2 C.x =-1D.无解6.解分式方程1x -5﹣2=35-x,去分母得( ) A.1﹣2(x ﹣5)=﹣3 B.1﹣2(x ﹣5)=3C.1﹣2x ﹣10=﹣3D.1﹣2x +10=37.如果分式方程113122=x++-x a+无解,那么a 的值为( )A.2B.﹣2C.2或﹣2D.﹣2或48.解分式方程2x +1+3x -1=6x 2-1分以下几步,其中错误的一步是( ) A.方程两边分式的最简公分母是(x -1)(x +1)B.方程两边都乘以(x -1)(x +1),得整式方程2(x -1)+3(x +1)=6C.解这个整式方程,得x=1D.原方程的解为x=19.某生态示范园计划种植一批梨树,原计划总产量30万千克,为了满足市场需求,现决定改良梨树品种,改良后平均每亩产量是原来的1.5倍,总产量比原计划增加了6万千克,种植亩数减少了10亩,则原来平均每亩产量是多少万千克?设原来平均每亩产量为x 万千克,根据题意,列方程为( )A.30x ﹣361.5x =10B.30x ﹣301.5x=10 C.361.5x ﹣30x =10 D.30x +361.5x=10 10.某工程队承接了60万平方米的荒山绿化任务,为了迎接雨季的到来,实际工作时每天的工作效率比原计划提高了25%,结果提前30天完成了这一任务. 设实际工作时每天绿化的面积为x 万平方米,则下面所列方程中正确的是( ) A.60x -60(1+25%)x =30 B.60(1+25%)x -60x=30 C.60×(1+25%)x -60x =30 D.60x -60×(1+25%)x=30 二、填空题11.下列方程:①x -12=16;②x ﹣2x =3;③x (x -1)x =1;④4-x π=π3;⑤3x +x -25=10;⑥1x +2y=7,其中是整式方程的有 ,是分式方程的有 . 12.若关于x 的方程211=--ax a x 的解是x=2,则a= . 13.方程2x +13-x =32的解是 . 14.关于x 的方程2x +a x -1=1的解满足x >0,则a 的取值范围是________. 15.A ,B 两市相距200千米,甲车从A 市到B 市,乙车从B 市到A 市,两车同时出发,已知甲车速度比乙车速度快15千米/小时,且甲车比乙车早半小时到达目的地.若设乙车的速度是x 千米/小时,则根据题意,可列方程____________________.16.对于实数a ,b ,定义一种新运算⊗为:a ⊗b =1a -b 2,这里等式右边是实数运算.例如:1⊗3=11-32=﹣18,则方程x ⊗(﹣2)=2x -4﹣1的解是__________. 三、解答题17.解分式方程:xx-1﹣2x=1;18.解分式方程:2x-3=3x;19.解分式方程:1-xx-2=x2x-4﹣1;20.解分式方程:xx-1-1=3(x-1)(x+2)21.对于分式方程x-3x-2+1=32-x,小明的解法如下:解:方程两边同乘(x﹣2) 得x﹣3+1=﹣3①解得x=﹣1②检验:当x=﹣1时,x﹣2≠0③所以x=﹣1是原分式方程的解.小明的解法有错误吗?若有错误,错在第几步?请你帮他写出正确的解题过程.22.当x为何值时,分式的值比分式的值小2?23.某小区为了排污,需铺设一段全长为720米的排污管道,为减少施工对居民生活的影响,须缩短施工时间,实际施工时每天铺设管道的长度是原计划的1.2倍,结果提前2天完成任务,求原计划每天铺设管道的长度.24.随着中国特色社会主义进入新时代,作为“中国名片”的高速铁路也将踏上自己的新征程,跑出发展新速度,这就意味着今后外出旅行的路程与时间将大大缩短,但也有不少游客根据自己的喜好依然选择乘坐普通列车;已知从A地到某市的高铁行驶路程是400千米,普通列车的行驶路程是高铁行驶路程的1.3倍,请完成以下问题:(1)普通列车的行驶路程为多少千米?(2)若高铁的平均速度(千米/时)是普通列车平均速度(千米/时)的2.5倍,且乘坐高铁所需时间比乘坐普通列车所需时间缩短3小时,求普通列车和高铁的平均速度.25.某中学在商场购买甲、乙两种不同的足球,购买甲种足球共花费2000元,购买乙种足球共花费1400元,购买甲种足球数量是购买乙种足球数量的2倍,且购买一个乙种足球比购买一个甲种足球多花20元(1)求购买一个甲种足球,一个乙种足球各需多少元?(2)这所学校决定再次购买甲、乙两种足球共50个,预算金额不超过3000元.去到商场时恰逢该商场对两种足球的售价进行调整,甲种足球售价比第一次购买时提高了10%,乙种足球售价比第一次购买时降低了10%,如果该学校此次需购买20个乙种足球,请问该学校购买这批足球所用金额是否会超过预算?答案1.D2.A3.A4.A5.D6.A7.D8.D9.A10.C11.答案为:①④⑤,②③⑥.12.答案为:54 .13.答案为:x=1.14.答案为:a<-1 且a≠-2.15.答案为:200x﹣200x+15=12.16.答案为:x=517.解:去分母得x2﹣2x+2=x2﹣x解得x=2检验:当x=2时,x(x﹣1)≠0故x=2是原方程的解;18.解:(1)方程两边乘x(x﹣3),得2x=3(x﹣3).解得x=9.检验:当x=9时,x(x﹣3)≠0.所以,原方程的解为x=9;19.解:去分母,得2(1﹣x)=x﹣(2x﹣4),解得x=﹣2 检验:当x=﹣2时,2(x﹣2)≠0故x=﹣2是原方程的根;20.解:方程两边同乘(x-1) (x+2)得x(x+2)-(x-1) (x+2)=3化简,得 x+2=3解得x=1检验:x=1时(x-1) (x+2)=0,x=1不是分式方程的解所以原分式方程无解.21.解:有错误,错在第①步,正确解法为:方程两边同乘(x﹣2)得x﹣3+x﹣2=﹣3解得x=1经检验x=1是分式方程的解所以原分式方程的解是x=1.22.解:由题意,得﹣=2,解得,x=4经检验,当x=4时,x﹣3=1≠0,即x=4是原方程的解.故当x=4时,分式的值比分式的值小2.23.解:设原计划每天铺设管道x米.由题意,得.解得x=60.经检验,x=60是原方程的解.且符合题意.答:原计划每天铺设管道60米.24.解:(1)普通列车的行驶路程为:400×1.3=520(千米);(2)设普通列车的平均速度为x千米/时,则高铁的平均速度为2.5千米/时则题意得:=﹣3,解得:x=120经检验x=120是原方程的解则高铁的平均速度是120×2.5=300(千米/时)答:普通列车的平均速度是120千米/时,高铁的平均速度是300千米/时.25.解:(1)设购买一个甲种足球需要x元=×2,解得,x=50经检验,x=50是原分式方程的解∴x+20=70即购买一个甲种足球需50元,一个乙种足球需70元;(2)设这所学校再次购买了y个乙种足球70(1﹣10%)y+50(1+10%)(50﹣y)≤3000解得,y≤31.25∴最多可购买31个足球所以该学校购买这批足球所用金额不会超过预算.。
分式的概念、性质及提升训练
分式的概念、性质及运算提升训练一、知识纵横:分式包括分式的概念、分式的基本性质、分式的运算、简单的分式方程等主要内容. 从整式到分式,我们可以形象地说是从“平房”到了“楼房”.在脚手架上活动,无疑增加了难点,体现在:解分式问题总是在分式有意义的前提下进行的,因此必须考虑字母取值范围;分式运算中的通分和约分是技巧性较强的工作,需要灵活处理.分式的运算与分数的运算相似,是以分式的基本性质、运算法则、通分和约分为基础,是以整式的变形、因式分解为工具.分式的加减运算是分式运算的难点,突破这一难点的关键是能根据问题的特点恰当地通分,常用通分的策略与技巧有: 1.化整为零,分组通分; 2,步步为营,分步通分; 3.减轻负担,先约分再通分; 4.裂项相消后通分等二、典型例题:1.(1)当2(1)(3)_________32m m m m m --=-+时,分式的值为零; (2)要使分式xx -11有意义,则x 的取值范围是 . 思路点拨 对于(2) 当分式的分母不为零时,分式有意义,由于分式是繁分式,因此考虑问题应细致周密.注:在新事物面前,人们往往习惯于把它们与原有的、熟知的事物相比,这里蕴涵的思想方法就是类比.学习分式时,应注意:(1)分式与分数的概念、性质、运算的类比;(2)整数可以看做是分数的特殊情形,但整式却不是分式的特殊情形; (3)分式需要讨论宇母的取值范围,这是分式区别于整式的关键所在. 2. 已知122432+--=--+x Bx A x x x ,其中A 、B 为常数,则4A -B 的值为( ) A .7 B .9 C .13 D .53.计算下列各式: (1)443224211b a a b a a b a b a ++++++-;(2)xyz y x z xy z zxy x z y zx y yzx z y x yz x ---+++++-+--++)()()(222222;(3)1)1(21221122122233233-+--+-+++++-x x x x x x x x x x(4))2)(2())(()2)(2())(()2)(2())((z y x x z y z y z x x z y z y x y x y z z y x z y x x z x y +--+--+-+-+--+-++---思路点拨 因各分式复杂,故须观察各式中分母的特点,恰当运用通分的相关策略与技巧.对于(1),分步通分;对于(2),拆项再通分;对于(3),先约分再通分;(4)注意到分母与分子的项与项之间的关系,如x -2y+z=(x -y)-(y -z),采用换元法简化式子. 4.解下列分式方程(组):(1)821261949819965--+--=--+--x x x x x x x x ; (2)⎪⎪⎪⎩⎪⎪⎪⎨⎧=+=+=+514131a c ca c b bcb a ab5. (1)n 为自然数,若n+6|n 3+1996,则称n 为1996的吉祥数,如4+6|43+1996,4就是1996年的一个吉祥数.试求1996年的所有吉祥数的和. (2)计算:500099009999500010050002002250001001122222222+-++-+++-++-k k k思路点拔 (1)由于n 3+1996的次数高于n+6的次数,所以,通过变形将两个整式整除的问属转化为一个分式的问题来解决,是解本例的关键;(2)首尾配对,考查一般情形,把数值计算转化为分式的运算三、巩固运用:1.(1)要使分式aa a 231142++-没有意义,则a 的值为 .(2)若5-a 和2)4(+b 互为相反数,则)2()11()(422b ab a b a ab b a b a ab++÷⎥⎦⎤⎢⎣⎡+÷-+-的值为.2.已知x 为整数,且918232322-++-++x x x x 为整数,则所有符合条件的x 值的和为 . 3.已知2+x a 与2-x b的和等于442-x x ,则a = ,b = . 4.学校用一笔钱买奖品,若以1枝钢笔和2本日记本为一份奖品,则可买60份奖品;若以1枝钢笔和3本日记本为一份奖品,则可买50份奖品.那么,这笔钱全部用来买钢笔可以买 枝.5.已知式子1)1)(8(-+-x x x 的值为0,则x 的值为( )A .±1B .-lC .8D .-1或8 6.化简)5)(4(1)4)(3(1)3)(2(1)2)(1(1+++++++++++x x x x x x x x 的结果是( )A .5642++x x B .5632++x x C .5622++x x D .5612++x x7.若x 取整数,则使分式1236-+x x 的值为整数的x 值有( ) A .3个 B .4个 C .6个 D .8个 8.若a 、b 、c 满足a+b+c=0,abc=8,则cb a 111++的值是( ) A .正数 B .负数 C .零 D .正数或负数 9.计算下列各题:(1)1814121111842+-+-+-+--x x x x x ;(2)22323972431111x x x x x x x x x ++++++--+--; (3)abbc ac c ba ac ab bc b ac bc ac ab a cb +---++----+---222;10.(1)火车长为400米,通过隧道(从火车头进入隧道至车尾离开隧道)需10分 钟,若每分钟速度增加0.1千米,则只需9分钟.求隧道长.(2)甲乙两个公司用相同的价格购粮,他们各购两次,已知两次的价格不同,甲公司每次购粮1万千克,乙公司每次用1万元购粮,那么两次平均价格较低的是哪个公司?11.(1)某工程,甲队单独做所需天数是乙、丙两队合做所需天数的a 倍,乙队独做所需天数是甲,丙两队合做所需天数的b 倍,丙队独做所需天数是甲、乙两队合做所需天数的c 倍,求111111+++++c b a 的值. (2)已知A =56789012344567890123,B=56789012364567890124,试比较A 与B 的大小.12.已知正整数n 大于30,且使得4n 一1整除2002n ,求n 的值.。
分式复习专题训练
分式复习专题训练一、选择题1、如果分式360x y x yx y -+=,那么,应满足( ) A .x y =2B 。
x y ≠-C .x y x y =≠-2且D .x y y =≠20且 2.若把分式xyy x 2+中的x 和y 都扩大3倍,那么分式的值( ) A .扩大3倍 B .不变 C .缩小3倍 D .缩小6倍3.若y x 23=,则2232yx 等于( ) A .94 B .827 C .278 D .49 4.下列分式中最简分式是( ) A.a b b a -- B.a b a b 2233++ C.a a m m ++222 D.a a a2311++- 5.分式 -+--12122x x x 约分,等于( ) A.1-x B.x x -+11 C.--+11x x D.11-+x x 6.下列各式中正确的是( )A .22222363x y x y ⎛⎝ ⎫⎭⎪=B .242222a a b a a b +⎛⎝ ⎫⎭⎪=+C .m n m n m n m n +-⎛⎝ ⎫⎭⎪=+-333()()D .x y x y x y x y -+⎛⎝ ⎫⎭⎪=-+22222 7.计算b a b b a ++-22得( ) A .22a b b a b -++ B .22a b a b++ C .a +b D .a -b 8.若0≠-=y x xy ,则分式xy 11-的值为( )A . B .x y - C .1 D .-1 9.若关于x 的分式方程2344m x x=+--无解,则m 的值为( ).A .-2 B .2 C .±2 D.4 10.下列变形正确的是( )A .x y x y x y x y -+--=-+B .x y x y x y x y -+-=--+C .x y x y x y x y -++=---D .x y x y x y x y-+-=---+ 二、填空题1. 当x 时,分式)2)(3(3+--x x x 无意义;当x___________时,分式 的值为0. 2、 已知113x y -=。
《分式与分式方程》单元提高训练题(培优卷)
《分式与分式方程》单元提高训练题(培优卷)一.选择题(共10小题)1.某工厂现在平均每天比原计划多生产50台机器,现在生产400台机器所需时间比原计划生产450台机器所需时间少1天,设现在平均每天生产x台机器,则下列方程正确的是()A.﹣=1B.﹣=1C.﹣=50D.﹣=502.为迎接建党一百周年,某校举行歌唱比赛.901班啦啦队买了两种价格的加油棒助威,其中缤纷棒共花费30元,荧光棒共花费40元,缤纷棒比荧光棒少20根,缤纷棒单价是荧光棒的1.5倍.若设荧光棒的单价为x元,根据题意可列方程为()A.﹣=20B.﹣=20C.﹣=20D.﹣=203.若关于x的一元一次不等式组的解集为x≥6,且关于y的分式方程+=2的解是正整数,则所有满足条件的整数a的值之和是()A.5B.8C.12D.154.已知关于x的不等式组有解,且关于y的分式方程=4﹣有正整数解,则所有满足条件的整数a的值的个数为()A.2B.3C.4D.55.某施工队计划修建一个长为600米的隧道,第一周按原计划的速度修建,一周后以原来速度的1.5倍修建,结果比原计划提前一周完成任务,若设原计划一周修建隧道x米,则可列方程为()A.=+2B.=﹣2C.=+1D.=﹣16.若整数a使关于x的不等式组有且只有两个整数解,且关于y的分式方程﹣=﹣2的解为正数,则满足上述条件的a的和为()A.3B.4C.5D.67.若数m使关于x的不等式组有解且至多有3个整数解,且使关于x的分式方程有整数解,则满足条件的所有整数m的个数是()A.5B.4C.3D.28.若关于x的一元一次不等式组有且仅有3个整数解,且关于x的分式方程+=1有正数解,则所有满足条件的整数a的和为()A.12B.13C.14D.159.甲、乙、丙三名打字员承担一项打字任务,已知如下信息如果每小时只安排1名打字员,那么按照甲、乙、丙的顺序至完成工作任务,共需()A.13小时B.13小时C.14小时D.14小时10.设x<0,x﹣=,则代数式的值()A.1B.C.D.二.填空题(共10小题)11.若关于x的一元一次不等式组的解集为x≥5,且关于y的分式方程+=﹣1有非负整数解,则符合条件的所有整数a的和为.12.中秋、国庆“双节”前,某酒店推出甲,乙两种包装的月饼,其中甲种包装有五仁饼3个,莲蓉饼3个,豆沙饼2个,乙种包装有五仁饼1个,莲蓉饼1个,豆沙饼2个,每种包装每盒月饼的成本价为该盒中所有月饼的成本价之和.已知每个五仁饼与每个莲蓉饼的成本价之比为5:4,每盒乙包装月饼售价98元,利润率是40%,两种包装的月饼共50盒总价6123元,总利润率是30%.中秋节后,为降价促销,甲种包装每盒每类月饼各少装一个,乙种包装每盒少装月饼后售价降为原来的一半,利润率不变,那么这样包装的两种月饼共50盒的总成本是元(其中甲种包装少装月饼后的盒数与节前50盒中甲种包装月饼的盒数相同,当然乙种包装盒数也相同).13.若数a使关于x的不等式组有且只有四个整数解,且使关于y的方程=2的解为非负数,则符合条件的所有整数a的和为.14.已知x2﹣5x+1=0,则的值是.15.已知,则=.16.已知实数x,y,z,a满足x+a2=2010,y+a2=2011,z+a2=2012,且xyz=6,则代数式++﹣﹣﹣的值等于.17.“非洲猪瘟”本是一种只在家畜之间传播的瘟疫,但最近已严重威胁到广大人民群众的生命安全,现我市有一组检疫工作人员(工作人员每人每天生猪检疫的效率相等),需对甲、乙两个生猪养殖场的所有生猪逐一检疫,已知,甲养殖场的生猪比乙养殖场的生猪多1倍.上午全部工作人员在甲养殖场检疫,为了尽快完成检疫,下午所有工作人员的平均工作效率提高了20%,但下午有一人因事离开,剩下的工作人员的一半仍留在甲养殖场(上、下午的工作时间相等),到下班前刚好把甲养殖场的生猪检疫完毕,另一半工作人员去乙养殖场检疫,到下班前还剩下一小部分生猪未检疫,最后由6人以提高前的检疫速度,再用不到半天的工作时间就完成了检疫.则这组工作人员最多有人.18.临近端午,甲、乙两生产商分别承接制作白粽,豆沙粽和蛋黄粽的任务(三种粽子都有成品,甲生产商安排200名工人制作白粽和豆沙粽,每人只能制作其中一种粽子,乙生产商安排100名工人制作蛋黄粽,其中豆沙粽的人均制作数量比白粽的人均制作数量少15个,蛋黄粽的人均制作数量比豆沙粽的人均制作数量少20%,若本次制作的白粽、豆沙粽和蛋黄粽三种粽子的人均制作数量比白粽的人均制作数用少20%,且豆沙粽的人均制作量为偶数个,则本次可制作的粽子数量最多为个.19.依据如图流程图计算﹣,需要经历的路径是(只填写序号),输出的运算结果是.20.设2016a3=2017b3=2018c3,abc>0,且=+ +,则++=三.解答题(共10小题)21.市政府为美化城市环境,计划在某区城种植树木2000棵,由于青年志愿者的加入,实际每天植树棵数是原计划的2倍,结果提前4天完成任务.求实际每天植树多少棵?22.某体育用品商店计划购进一些篮球和排球.已知每个篮球的进价和每个排球的进价的和为200元,用2400元购进的篮球数量是用800元购进排球数量的2倍.(1)求每个篮球和每个排球的进价各是多少元;(2)若该体育用品商店计划购进篮球和排球共40个,且购进的总费用不超过3800元,则该体育用品商店最多可以购进篮球多少个?23.岳阳市区某中学为了创建“书香校园”,今年春季购买了一批图书,其中科普类图书平均每本的价格比文学类图书平均每本的价格多5元,已知学校用20000元购买的科普类图书的本数与用15000元购买的文学类图书的本数相等.(1)求学校购买的科普类图书和文学类图书平均每本的价格各是多少元?(2)学校计划在五月份再添置600本这两类图书,且费用不超过10000元,问最多可以购买科普类图书多少本?24.为了抗击“新型肺炎”,我市某医药器械厂接受了生产一批高质量医用口罩的任务,任务要求在30天之内(含30天)生产A型和B型两种型号的口罩共200万只.在实际生产中,由于受条件限制,该工厂每天只能生产一种型号的口罩.已知该工厂每天可生产A 型口罩的个数是生产B型口罩的2倍,并且加工生产40万只A型口罩比加工生产50万只B型口罩少用6天.(1)该工厂每天可加工生产多少万只B型口罩?(2)若生产一只A型口罩的利润是0.8元,生产一只B型口罩的利润是1.2元,在确保准时交付的情况下,如何安排工厂生产可以使生产这批口罩的利润最大?25.)已知(x+a)(x+b)=x2+mx+n.(1)若a=﹣3,b=2,则m=,n=;(2)若m=﹣2,,求的值;(3)若n=﹣1,当时,求m的值.26.小红、小刚、小明三位同学在讨论:当x取何整数时,分式的值是整数?小红说:这个分式的分子、分母都含有x,它们的值均随x取值的变化而变化,有点难.小刚说:我会解这类问题:当x取何整数时,分式的值是整数?3是x+1的整数倍即可,注意不要忘记负数哦.小明说:可将分式与分数进行类比.本题可以类比小学里学过的“假分数”,当分子大于分母时,可以将“假分数”化为一个整数与“真分数”的和.比如:==2+(通常写成带分数:2).类比分式,当分子的次数大于或等于分母次数时,可称这样的分式为“假分式”,若将化成一个整式与一个“真分式”的和,就转化成小刚说的那类问题了!小红、小刚说:对!我们试试看!…(1)解决小刚提出的问题;(2)解决他们共同讨论的问题.27.已知非零实数a、b满足等式,求的值.28.阅读下面的材料,并解答后面的问题材料:将分式拆分成一个整式与一个分式(分子为整数)的和(差)的形式.解:由分母为x+1,可设3x2+4x﹣1=(x+1)(3x+a)+b.因为(x+1)(3x+a)+b=3x2+ax+3x+a+b=3x2+(a+3)x+a+b,所以3x2+4x﹣1=3x2+(a+3)x+a+b.所以,解得.所以==﹣=3x+1﹣.这样,分式就被拆分成了一个整式3x+1与一个分式的差的形式.根据你的理解解决下列问题:(1)请将分式拆分成一个整式与一个分式(分子为整数)的和(差)的形式;(2)若分式拆分成一个整式与一个分式(分子为整数)的和(差)的形式为:5m﹣11+,求m2+n2+mn的最小值.29.近年来,安全快捷、平稳舒适的中国高铁,为世界高速铁路商业运营树立了新的标杆.随着中国特色社会主义进入新时代,作为“中国名片”的高速铁路也将踏上自己的新征程,跑出发展新速度,这就意味着今后外出旅行的路程与时间将大大缩短,但也有不少游客根据自己的喜好依然选择乘坐普通列车;已知从A地到某市的高铁行驶路程是400千米,普通列车的行驶路程是高铁行驶路程的1.3倍,请完成以下问题:(1)普通列车的行驶路程为多少千米?(2)若高铁的平均速度(千米/时)是普通列车平均速度(千米/时)的2.5倍,且乘坐高铁所需时间比乘坐普通列车所需时间缩短3小时,求普通列车和高铁的平均速度.。
第七章分式的加减提高训练
《分式的加减》提高试题一.选择题: 1.分式121,11,121222++-+-x x x x x 的最简公分母是( )。
A.22)1(+xB. )1)(1(22-+x xC.22)1()1(-+x xD.4)1(-x 2.已知022=-+x x ,那么xx x x +-+221的值为( )。
A. 2 B.23C.21D. 23-3.计算aa x x 33--+的结果是( )A.x6 B.x5 C.axx a 33+ D.axaa x 622+-4.计算2222223223y x y x xy y x yx y x --+-++-+的结果是( )A.2224yx y x -+ B. yx +2 C. yx -2 D.2222yx y x --5.已知0132=+-x x ,则 221xx +的值是( )A. 11B. 7C.9D.36.计算:4214121111xx x x ++++++-的正确结果是( ) A.418x + B.418x - C.818x - D.818x+ 7.已知1=k ,则方程x k kx +=+1的解情况为( )。
A.无解B. 有唯一解C.有有限个解D.任何有理数是它的解。
8.关于x 的方程3)27(-=-x a 的根是负数,那么a 所能取的最大整数是( )。
A. 3B. 2C. 1D. 0 9.如果把分式yx xy +2中的y x ,都扩大10倍,那么分式的值( )A. 扩大10倍B. 縮小10倍C. 不变D. 扩大100倍 10.在公式[])1,0(,)1(2≠≠-+=n n d n a n s 中,如果用a n s ,,表示d,则( )。
A.)1(22-+n a ns B.)1(2--n n an s C.)1(22--n a ns D.nn an s )1)(2(--二、填空题:11.241,21,4aa a a ----的最简公分母 --------------------。
2013-2014年分式方程的分类训练提升课程4(新人教版)
第四课--分式方程的分类学习训练--4类型一.行程问题1、从甲地到乙地有两条公路:一条是全长600Km的普通公路,另一条是全长480Km的高速公路.某客车在高速公路上行驶的平均速度比在普通公路上快45Km,由高速公路从甲地到乙地所需的时间是由普通公路从甲地到乙地所需时间的一半,求该客车由高速公路从甲地到乙地所需要的时间.2、某部由驻地到距离30千米的地方去执行任务,由于情况发生了变化,急行军速度必需是原计划的1.5倍,才能按要求提前2小时到达,求急行军的速度.3、轮船顺水航行80千米所需要的时间和逆水航行60千米所用的时间相同.已知水流的速度是3千米/时,求轮船在静水中的速度.类型二.工程问题1、一台甲型拖拉机4天耕完一块地的一半,加一天乙型拖拉机,两台合耕,1天耕完这块地的另一半.乙型拖拉机单独耕这块地需要几天?2、某市为治理污水,需要铺设一段全长3000米的污水输送管道,为了尽量减少施工对城市交通造成的影响,实际施工时每天的工效比原计划增加25%,结果提前30天完成了任务,实际每天铺设多长管道?3、某煤矿现在平均每天比原计划多采330吨,已知现在采煤33000吨煤所需的时间和原计划采23100吨煤的时间相同,问现在平均每天采煤多少吨.类型三.利润问题2、某商品的标价比成本高p%,当该商品降价出售,为了不亏本,降价幅度不得超过d%,请用p表示d.3、一个批发兼零售的文具店规定:凡一次购买铅笔300枝以上,(不包括300枝),可以按批发价付款,购买300枝以下,(包括300枝)只能按零售价付款.小明来该店购买铅笔,如果给八年级学生每人购买1枝,那么只能按零售价付款,需用120元,如果购买60枝,那么可以按批发价付款,同样需要120元,(1)这个八年级的学生总数在什么范围内?(2)若按批发价购买6枝与按零售价购买5枝的款相同,那么这个学校八年级学生有多少人?二、课后巩固:1、甲、乙两个清洁队共同参与了城中垃圾场的清运工作.甲队单独工作2天完成总量的三分之一,这时增加了乙队,两队又共同工作了1天,总量全部完成.那么乙队单独完成总量需要( )A.6天 B.4天 C.3天 D.2天2、炎炎夏日,甲安装队为A 小区安装66台空调,乙安装队为B 小区安装60台空调,两队同时开工且恰好同时完工,甲队比乙队每天多安装2台.设乙队每天安装x 台,根据题意,下面所列方程中正确的是( )A .66602x x =- B .66602x x =- C .66602x x =+ D .66602x x=+3、有两块面积相同的试验田,分别收获蔬菜900kg 和1500kg ,已知第一块试验田每亩收获蔬菜比第二块少300kg ,求第一块试验田每亩收获蔬菜多少千克.设一块试验田每亩收获蔬菜x kg ,根据题意,可得方程( ) A .9001500300x x=+ B .9001500300x x =-C .9001500300x x =+D .9001500300x x =- 4、进入防汛期后,某地对河堤进行了加固.该地驻军在河堤加固的工程中出色完成了任5、甲、乙两个施工队共同完成某居民小区绿化改造工程,乙队先单独做2天后,再由两队合作10天就能完成全部工程.已知乙队单独完成此项工程所需天数是甲队单独完成此项工程所需天数的45,求甲、乙两个施工队单独完成此项工程各需多少天?通过这段对话,请你求出该地驻军原来每天加固的米数.6、南水北调东线工程已经开工,某施工单位准备对运河一段长2240m 的河堤进行加固,由于采用新的加固模式,现在计划每天加固的长度比原计划增加了20m ,因而完成河堤加固工程所需天数将比原计划缩短2天,若设现在计划每天加固河堤x m ,则得方程为 .7、某超级市场销售一种计算器,每个售价48元.后来,计算器的进价降低了4%,但售价未变,从而使超市销售这种计算器的利润提高了5%.这种计算器原来每个进价是多少元?(利润=售价-进价,利润率100%=⨯利润进价)8、某市在旧城改造过程中,需要整修一段全长2400m 的道路.为了减少施工对城市交通所造成的影响,实际工作效率比原计划提高了20%,结果提前8小时完成任务.求原计划每小时修路的长度.若设原计划每小时修x m ,则根据题意可得方程 .9、今年4月18日,我国铁路实现了第六次大提速,这给旅客的出行带来了更大的方便.例如,京沪线全长约1500公里,第六次提速后,特快列车运行全程所用时间比第五次提速后少用871小时.已知第六次提速后比第五次提速后的平均时速快了40公里,求第五次提速后和第六次提速后的平均时速各是多少?11、张明与李强共同清点一批图书,已知张明清点完200本图书所用的时间与李强清点完300本图书所用的时间相同,且李强平均每分钟比张明多清点10本,求张明平均每分钟清点图书的数量.。
人教版八年级数学上册《15.3 分式方程》提升训练题-附带答案
人教版八年级数学上册《15.3 分式方程》提升训练题-附带答案学校:班级:姓名:考号:1.某口罩厂工人一天可包装口罩3000箱,现厂里需要提前供货,要求工人每小时比原计划多装20%,这样可以提前4小时完成任务,求原计划每小时装多少箱口罩?2.A,B两种机器人都被用来搬运化工原料,A型机器人每小时搬运的化工原料是B型机器人每小时搬运的化工原料的1.5倍,A型机器人搬运900kg所用时间比B型机器人搬运800kg所用时间少1小时.两种机器人每小时分别搬运多少化工原料?3.为了让老师和学生有一个更加舒适的教学环境,重庆一中决定为教学楼更换空调.已知甲安装队为南楼安装55台空调,乙安装队为北楼安装50台空调,两队同时开工,恰好同时完成任务,甲队比乙队每天多安装两台,求甲、乙两队每天安装的台数分别是多少?4.为了营造“创建文明城区、共享绿色家园”的良好氛围,房山某社区计划购买甲、乙两种树苗进行社区绿化,已知用1200元购买甲种树苗与用1000元购买乙种树苗的棵树相同,乙种树苗比甲种树苗每棵少20元,问甲种树苗每棵多少元?5.小王开车从甲地到乙地,去时走A线路,全程约100千米,返回时走B路线,全程约60千米.小王开车去时的平均速度比返回时的平均速度快20千米/小时,所用时间却比返回时多15分钟.若小王返回时的平均车速不低于70千米/小时,求小王开车返回时的平均速度.6.科技创新加速中国高铁技术发展,某建筑集团承担一座高架桥的铺设任务,在合同期内高效完成了任务,这是记者与该集团工程师的一段对话:记者:你们是用9天完成4800米长的高架桥铺设任务的?工程师:是的,我们铺设600米后,采用新的铺设技术,这样每天铺设长度是原来的2倍.通过这段对话,请你求出该建筑集团原来每天铺设高架桥的长度.7.为了改善社区环境,某社区计划对3600平方米的区域进行绿化,社区委员会对甲乙两个工程队考查发现,甲队每天能完成的绿化面积是乙队每天能完成绿化面积的1.5倍,如果两队各自独立完成社区的绿化任务,甲队比乙队少用10天,求甲乙两个工程队每天各能完成多少绿化面积.8.某市从今年1月1日起调整居民用水价格,每立方米水费上涨20%.小明家去年12月份的水费是50元,而今年6月份的水费则是72元.已知小明家今年6月份的用水量比去年12月份的用水量多了5m3.(1)求今年居民用水的价格;(2)随着夏季高温到来,小明家7月份用水量至少比6月份增加20%.若小明家计划将7月份的水费控制在100元以内,则按计划小明家7月份最多可用水多少立方米?(结果精确到1m3)9.某商场第一次用11000元购进某款拼装机器人进行销售,很快销售一空,商家又用24000元第二次购进同款机器人,所购进数量是第一次的2倍,但单价贵了10元.(1)求该商家第一次购进机器人多少个?(2)若所有机器人都按相同的标价销售,要求全部销售完毕的利润率不低于20%(不考虑其它因素),那么每个机器人的标价至少是多少元?10.新冠肺炎疫情暴发后,某医疗设备公司紧急复工,但受疫情影响,医用防护服生产车间仍有7人不能到厂工作,为了应对疫情,在每个工人每小时完成的工作量不变的前提下,已复工的工人加班生产,每天的工作时间由原来8个小时增加到10个小时.该公司原来每天能生产防护服800套,现在每天能生产防护服650套.(1)求该公司原来生产防护服的工人有多少人?(2)复工10天后,未到的7名工人到岗且同时加入了生产,每天生产时间仍然为10小时.为了支援灾区,公司复工后决定生产15500套防护服,问至少还需要多少天才能完成任务?11.某乡在推进村村通公路某项目建设中,计划修建公路15千米.已知甲队单独完成修建公路所需得时间是乙队得1.5倍,甲队每天比乙队少修0.5千米.(1)求甲、乙两队单独完成修建公路各需多少天?(2)已知甲队每天的工作费用是4000元,乙队每天的工作费用是5000元,若该工程由甲乙两队合作完成,且工程的总费用不超过52000元,求乙队至少要工作多少天?12.骑自相车旅行越来越受到人们的喜爱,顺风车行经营的A型车2016年4月份销售总额为3.2万元,今年经过改造升级后A型车每辆销售比去年增加400元,若今年4月份与去年4月份卖出的A型车数量相同,则今年4月份A型车销售总额将比去年4月份销售总额增加25%.(1)求今年4月份A型车每辆销售价多少元(用列方程的方法解答);(2)该车行计划5月份新进一批A型车和B型车共50辆,且B型车的进货数量不超过A型车数量的两倍,应如何进货才能使这批车获利最多?A、B两种型号车的进货和销售价格如表:A型车B型车进货价格(元/辆)1100 1400销售价格(元/辆)今年的销售价格240013.某市为创建全国文明城市,开展“美化绿化城市”活动,计划经过若干年使城区绿化总面积新增360万平方米.自2018年初开始实施后,实际每年绿化面积是原计划的1.5倍,这样可提前4年完成任务.(1)实际每年绿化面积为多少万平方米?(2)为加大创建力度,市政府决定从2021年起加快绿化速度,要求不超过3年完成,那么实际平均每年绿化面积至少还要增加多少万平方米?14.在某市实施城中村改造的过程中,某工程队承包了一项10000m2的拆迁工程.由于准备工作充分,实际拆迁效率比原计划提高了25%,且提前2天完成了任务.(1)求工程队平均每天实际拆迁的工程量;(2)为了尽量减少拆迁工作给市民带来的不便,在拆迁了2天后,工程队决定加快推进拆迁工作,确保将余下的拆迁任务在5天内完成,那么工程队平均每天至少再多拆迁的工程量是多少?15.甲、乙两辆汽车同时分别从A、B两城沿同一条高速公路匀速驶向C城.已知A、C两城的距离为360km,B、C两城的距离为320km,甲车比乙车的速度快10km/h,结果两辆车同时到达C城.设乙车的速度为xkm/h.(1)根据题意填写下表:行驶的路程(km)速度(km/h)所需时间(h)甲车360乙车320 x(2)求甲、乙两车的速度.16.某中学在百货商场购进了A、B两种品牌的篮球,购买A品牌篮球花费了2400元,购买B品牌篮球花费了1950元,且购买A品牌篮球数量是购买B品牌篮球数量的2倍,已知购买一个B品牌篮球比购买一个A品牌篮球多花50元.(1)求购买一个A品牌、一个B品牌的篮球各需多少元?(2)该学校决定再次购进A、B两种品牌篮球共30个,恰逢百货商场对两种品牌篮球的售价进行调整,A 品牌篮球售价比第一次购买时提高了10%,B品牌篮球按第一次购买时售价的9折出售,如果这所中学此次购买A、B两种品牌篮球的总费用不超过3200元,那么该学校此次最多可购买多少个B品牌篮球?17.为支援灾区,某校爱心活动小组准备用筹集的资金购买A,B两种型号的学习用品共1 000件.已知B 型学习用品的单价比A型学习用品的单价多10元,用180元购买B型学习用品的件数与用120元购买A 型学习用品的件数相同.(1)求A,B两种学习用品的单价各是多少元?(2)若购买这批学习用品的费用不超过28 000元,则最多购买B型学习用品多少件?18.重庆某轻轨工程指挥部,要对某轻轨路段工程进行招标,接到了甲、乙两个工程队的投标书.根据投标书所知,甲队单独完成这项工程所需天数是乙队单独完成这项工程所需天数的23;若由甲队先做20天,剩下的工程再由甲、乙两队合作60天完成.(1)求甲、乙两队单独完成这项工程各需多少天?(2)已知甲队每天的施工费用为9.2万元,乙队每天的施工费用为6.8万元.工程预算的施工费用为1000万元.若在甲、乙工程队工作效率不变的情况下使施工时间最短,那么预算的施工费用是否够用?若不够用,需追加预算多少万元?19.铭润超市用5000元购进一批新品种的苹果进行试销,由于销售状况良好,超市又调拨11000元资金购进该品种苹果,但这次的进货价比试销时每千克多了0.5元,购进苹果数量是试销时的2倍.(1)试销时该品种苹果的进货价是每千克多少元?两次共购进多少苹果?(2)如果超市将该品种苹果按每千克10元的定价出售,当大部分苹果售出后,余下的500千克按定价的六折售完,那么超市在这两次苹果销售中共盈利多少元?参考答案1.解:设原计划每小时装x箱口罩.3000 x −4=30001.2x解得:x=125经检验,x=125是原方程的解.答:原计划每小时装125箱口罩.2.解:设B型机器人每小时搬运x kg化工原料,则A型机器人每小时搬运1.5x kg化工原料,由题意得900 1.5x +1=800x解此分式方程得:x=200经检验x=200是分式方程的解,且符合题意当x=200时答:A型机器人每小时搬运300kg化工原料,B型机器人每小时搬运200kg化工原料. 3.解:设乙队每天安装x台,则甲队每天安装(x+2)台.由题意得:55x+2=50x解得:x=20.经检验:x=20是原方程的根则x+2=22.答:甲队每天安装22台,乙队每天安装20台4.解:设甲种树苗每棵x元.依题意列方程:1200x =1000x−20解得:x=120经检验x=120是所列方程的解且符合题意答:甲种树苗每棵120元.5.解:设小王开车返回时的平均速度为x千米/小时100 x+20−60x=1560x2−140x+4800=0x1=60,x2=80经检验:x1=60,x2=80都是原方程的根,但是x1=60,不正确,应舍去.答:小王开车返回时的平均速度是80千米/小时.6.解:设该建筑集团原来每天铺设高架桥x米,则采用新的铺设技术后每天铺设高架桥2x米依题意,得:600x +4800−6002x=9解得:x=300经检验,x=300是原方程的解,且符合题意.答:该建筑集团原来每天铺设高架桥300米.7.解:设乙队每天能完成的绿化面积为xm2,则甲队每天能完成的绿化面积为1.5xm2由题意得:3600x =36001.5x+10解得x=120经检验,x=120是所列方程的根则1.5x=1.5×120=180(m2)答:甲队每天能完成的绿化面积为180m2,乙队每天能完成的绿化面积为120m2 .8.(1)解:设去年12月份居民用水的价格为x元/m3,则今年居民用水的价格为(1+20%)x元/m3依题意得:72(1+20%)x﹣50x=5解得:x=2经检验,x=2是原方程的解,且符合题意∴(1+20%)x=(1+20%)×2=2.4(元/m3).答:今年居民用水的价格为2.4元/m3.(2)解:设小明家7月份可用水m立方米依题意得:{m≥722.4×(1+20%)2.4m<100解得:36≤m<41 23.∵m为整数∴m可以取的最大值为41.答:按计划小明家7月份最多可用水41立方米.9.(1)解:设该商家第一次购进机器人x个依题意得:11000x +10= 240002x解得x=100.经检验x=100是所列方程的解,且符合题意.答:该商家第一次购进机器人100个(2)解:设每个机器人的标价是a元.则依题意得:(100+200)a﹣11000﹣24000≥(11000+24000)×20% 解得a≥1190.答:每个机器人的标价至少是1190元10.(1)设原来生产防护服的工人有x人由题意得解得:x=20.经检验,x=20是原方程的解.答:原来生产防护服的工人有20人;(2)设还需要生产y天才能完成任务.每人每小时生产防护服的数量为: 8008×20=5套10×650+20×5×10y≥15500解得x≥9答:至少还需要生产9天才能完成任务.11.(1)解:设乙队单独完成需x天,则甲队单独完成需1.5x天依题意得:15x −151.5x=0.5解得:x=10经检验:x=10是原方程得解,且符合题意(2)解:设乙队要工作m天,依题意得:4000(15−1510m)+5000m≤52000解得:m≥8答:甲队单独完成需要15天,乙队单独完成需要10天;乙队至少要工作8天12.(1)解:设去年A型车每辆x元,那么今年每辆(x+400)元,根据题意得:32000 x = 32000(1+25%)x+400解得:x=1600经检验,x=1600是方程的解.答:今年A型车每辆2000元(2)解:设今年5月份进A型车m辆,则B型车(50﹣m)辆,获得的总利润为y元根据题意得:50﹣m≤2m解得:m≥16 23∵y=(2000﹣1100)m+(2400﹣1400)(50﹣m)=﹣100m+50000∴y随m 的增大而减小∴当m=17时,可以获得最大利润.答:进货方案是A型车17辆,B型车33辆13.(1)解:设原计划每年绿化面积为x万平方米,则实际每年绿化面积为1.5x万平方米根据题意得:360x −3601.5x=4解得:x=30经检验,x=30是原分式方程的解∴1.5x=45.答:实际每年绿化面积45万平方米.(2)解:设平均每年绿化面积增加a万平方米根据题意得:45×3+3(45+a)≥360解得:a≥30.答:平均每年绿化面积至少增加30万平方米.14.(1)解:设工程队原计划平均每天拆迁 xm 2根据题意,得: 10000x −10000(1+25%)x =2解得: x =1000经检验, x =1000 是原分式方程的解且符合题意∴(1+25%)×1000=1250(m 2)答:工程队平均每天实际拆迁的工程量为 1250m 2 .(2)解:设工程队现在平均每天多拆迁 ym 2根据题意,得: 5(1250+y)≥10000−2×1250解不等式得: y ≥250 .答:工程队平均每天至少再多拆迁的工程量是 250m 2 .15.(1)x+10 360x+10 320x(2)解:乙的速度是x 千米/时,甲的速度是(x+10)千米/时,依题意得:360x+10 = 320x解得x=80经检验:x=80是原方程的解x+10=90答:甲的速度是90千米/时,乙的速度是80千米/时16.(1)解:设购买一个A 品牌的篮球需x 元,则购买一个B 品牌的篮球需(x+50)元,由题意得 2400x = 1950x+50 ×2解得:x=80经检验x=80是原方程的解x+50=130.答:购买一个A 品牌的篮球需80元,购买一个B 品牌的篮球需130元(2)解:设此次可购买a 个B 品牌篮球,则购进A 品牌篮球(30﹣a )个,由题意得80×(1+10%)(30﹣a )+130×0.9a ≤3200解得a ≤19 929∵a 是整数∴a 最大等于19答:该学校此次最多可购买19个B 品牌篮球17.(1)解:设A 型学习用品的单价是x 元,根据题意得 180x+10 =120x ,解得x=20,经检验,x=20是原方程的解,且满足题意,所以x+10=20+10=30.答:A 型学习用品的单价是20元,B 型学习用品的单价是30元 (2)解:设可以购买B 型学习用品a 件,则购买A 型学习用品(1 000-a)件,由题意,得20(1 000-a)+30a ≤28 000,解得a ≤800.答:最多购买B 型学习用品800件18.(1)解:设乙队单独完成这项工程需要x 天,则甲队单独完成这项工程需要 23 x 天.根据题意,得 202x 3 +60×( 12x 3 + 1x )=1解得:x=180.经检验,x=180是原方程的根.∴2x 3 = 23 ×180=120答:甲、乙两队单独完成这项工程分别需120天和180天(2)解:设甲、乙两队合作完成这项工程需要y 天则有y ( 1120 + 1180 )=1解得 y=72.需要施工费用:72×(9.2+6.8)=1152(万元).∵1152>1000.∴工程预算的施工费用不够用,需追加预算152万元19.(1)解:设试销时该品种苹果的进价是每千克x 元,则第二次购进该品种苹果的进价是每千克(x +0.5)元根据题意得:5000x ×2=11000x+0.5解得:x =5经检验,x =5是原方程的根,且符合题意.5000÷5+11000÷(5+0.5)=1000+2000=3000(千克)答:试销时该品种苹果的进价是每千克5元,两次共购进3000千克苹果;(2)解:10×(3000−500)+10×0.6×500−5000−11000=28000−16000=12000(元). 答:超市在这两次苹果销售中共盈利12000元。
分式方程拓展训练培优提高
分式方程拓展训练培优提高分式方程拓展训练一、分式方程的特殊解法1.交叉相乘法例1:解方程:$\frac{1}{x}=\frac{3}{x+2}$解法:交叉相乘得到$x(x+2)=3$,化简后得到$x^2+2x-3=0$,解得$x=1$或$x=-3$,但$x=-3$不符合原方程的定义域,所以解为$x=1$。
2.化归法例2:解方程:$\frac{12}{x-1}-\frac{2}{x-1}=\frac{1}{x-1}$解法:通分得到$\frac{10}{x-1}=\frac{1}{x-1}$,解得$x=11$。
3.左边通分法例3:解方程:$\frac{x-8}{x-7}-\frac{1}{x+7-x}=\frac{8}{x-7-x}$解法:左边通分得到$\frac{(x-8)-(x+7)}{(x-7)(x+7)}=\frac{8}{-2x}$,化简得到$-x^2+2x-15=0$,解得$x=3$或$x=-5$,但$x=-5$不符合原方程的定义域,所以解为$x=3$。
4.分子对等法例4:解方程:$\frac{1}{a}+\frac{1}{a-1}=\frac{b}{x}+\frac{1}{x-1}$,其中$a\neq b$解法:分子对等得到$\frac{x-1+a-1}{ax(a-1)}=\frac{bx+1+abx-ab}{x(x-1)ax(a-1)}$,化简得到$abx^2+(a+b-2)bx+a-1=0$,由于$a\neq b$,所以系数$a+b-2=0$,解得$a=1$,代入原方程得到$x=2$。
5.观察比较法例5:解方程:$\frac{4x}{5x-2}+\frac{17}{5x-2}=\frac{5x+24}{4x}$解法:观察到分母都含有$5x-2$,设$5x-2=t$,则原方程化为$\frac{4}{t}+\frac{17}{t}=\frac{t+24}{4(t+2)}$,化简得到$t^2-50t+76=0$,解得$t=2$或$t=48$,代回得到$x=\frac{4}{5}$或$x=\frac{50}{9}$,但$x=\frac{50}{9}$不符合原方程的定义域,所以解为$x=\frac{4}{5}$。
《10.5分式方程--应用》专题提升训练(二)2020—2021学年 苏科版八年级数学下册
八年级数学苏科版下册《10.5分式方程--应用》专题提升训练(二)1.甲、乙两车分别从A、B两地同时出发,沿同一公路相向而行,开往B、A两地.已知甲车每小时比乙车每小时多走20km,且甲车行驶350km所用的时间与乙车行驶250km所用的时间相同.甲、乙两车的速度各是多少km/h?2.某所学校有A、B两班师生前往一个农庄参加植树活动.已知A班每天植树量是B班每天植树量的1.5倍,A班植树300棵所用的天数比B班植树240棵所用的天数少2天,求A、B两班每天各植树多少棵?3.甲、乙两个工程队同时参与一项工程建设,共同施工15天完成该项工程的,乙队另有任务调走,甲队又单独施工30天完成了剩余的工程.(1)若乙队单独施工,需要多少天才能完成该项工程?(2)若乙队参与该项工程施工的时间不超过13天,则甲队至少施工多少天才能完成该项工程?4.为庆祝中国共产党成立100周年,扬州漆器厂接到制作960件漆器纪念贺礼订单,为了尽快完成任务,该厂实际每天制作的件数比原来每天多50%,结果提前10天完成任务.原来每天制作多少件?5.我县为了改善县区内交通环境,对解放路进行了改造,需要铺设排污管道,其中一段长300米,铺设120米后,为了尽可能减少施工对交通所造成的影响,后来每天的工作量比原计划增加20%,结果完成这一任务共用了27天,求原计划每天铺设排污管道多少米.6.为满足防护新冠疫情需要,现有甲乙两种机器同时开工制造口罩.甲加工90个口罩所用的时间与乙加工120个口罩所用的时间相等,已知甲乙两种机器每秒钟共加工35个口罩,求甲乙两种机器每秒各加工多少个口罩?7.“垃圾分一分,环境美十分”.某校为积极响应有关垃圾分类的号召,从百货商场购进了A,B两种品牌的垃圾桶作为可回收垃圾桶和其他垃圾桶.已知B品牌垃圾桶比A品牌垃圾桶每个贵50元,用4000元购买A品牌垃圾桶的数量是用3000元购买B品牌垃圾桶数量的2倍.(1)求购买一个A品牌、一个B品牌的垃圾桶各需多少元?(2)若该中学决定再次准备用不超过6000元购进A,B两种品牌垃圾桶共50个,恰逢百货商场对两种品牌垃圾桶的售价进行调整:A品牌按第一次购买时售价的九折出售,B品牌比第一次购买时售价提高了20%,那么该学校此次最多可购买多少个B品牌垃圾桶?8.学校田径队的小勇同学参加了两次有氧耐力训练,每一次训练内容都是在400米环形跑道上慢跑10圈.若第二次慢跑速度比第一次慢跑速度提高了20%,则第二次比第一次提前5分钟跑完.(1)小勇同学一次有氧耐力训练慢跑多少米?(2)小勇同学两次慢跑的速度各是多少?9.生活垃圾处理是关系民生的基础性公益事业,加强生活垃圾分类处理,维护公共环境和节约资源是全社会共同的责任.某小区购进A型和B型两种分类垃圾桶,购买A型垃圾桶花费了2500元,购买B型垃圾桶花费了2000元,且购买A型垃圾桶数量是购买B 型垃圾桶数量的2倍,已知购买一个B型垃圾桶比购买一个A型垃圾桶多花30元.(1)求购买一个A型垃圾桶、一个B型垃圾桶各需多少元?(2)若小区一次性购买A型,B型垃圾桶共60个,要使总费用不超过4000元,最少要购买多少个A型垃圾桶?10.我市计划对城区居民供暖管道进行改造,该工程若由甲队单独施工,则恰好在规定时间内完成;若由乙队单独施工,则完成工程所需天数是规定天数的1.5倍,如果由甲乙两队先合作15天,那么余下的工程由甲队单独完成还需要5天.(1)这项工程的规定天数是多少天?(2)已知甲队每天的施工费用是6500元,乙队每天的施工费用是3500元.为了缩短工期,工程指挥部最终决定该工程由甲、乙两队合作,则该工程的施工费用是多少?11.某一工程可以由甲、乙两个工程队进行施工.如果甲队单独完成这项工程刚好如期完成;如果乙队单独完成这项工程要比甲队多用4天;如果甲、乙两队合做3天,余下的工程由乙队单独做也正好如期完成.请列分式方程求出规定工期为多少天?12.某水果经销商购买了一批A,B两种型号包装的修文“贵长牌”猕猴桃,其中每箱A 型猕猴桃的单价比B型的单价少50元,已知该公司用2000元购买A型猕猴桃的箱数与用3000元购买B型的箱数相等.(1)求该公司购买的A,B型猕猴桃每箱的单价各是多少元?(2)若该经销商购买A,B两种型号的猕猴桃共20箱,且购买的总费用为2400元,求购买了多少箱A型猕猴桃?13.某商店第一次用600元购进一款中性笔若干支,第二次又用750元购进该款中性笔,但这次每支中性笔的进价比第一次多1元,所购进的中性笔数量与第一次相同.(1)求第一次每支中性笔的进价是多少元?(2)若要求这两次购进的中性笔按同一价格全部销售完毕后获利不低于450元,求每支中性笔售价至少是多少元?14.某开发公司生产的960件新产品需要精加工后才能投放市场.现有甲、乙两个工厂都想加工这批产品,已知甲厂单独加工这批产品比乙工厂单独加工完这批产品多用20天,而甲工厂每天加工的数量是乙工厂每天加工数量的,甲、乙两个工厂每天各能加工多少个新产品?15.在新冠肺炎疫情发生后,某企业加快转型步伐,引进A,B两种型号的机器生产防护服,已知一台A型机器比一台B型机器每小时多加工20套防护服,且一台A型机器加工800套防护服与一台B型机器加工600套防护服所用时间相等.(1)每台A,B型号的机器每小时分别加工多少套防护服?(2)如果该企业计划安排A,B两种型号的机器共10台,一起加工一批防护服,为了如期完成任务,要求这10台机器每小时加工的防护服不少于720件,则至少需要安排几台A型机器?参考答案1.解:设乙车的速度是xkm/h,则甲车的速度是(x+20)km/h,依题意得:=,解得:x=50,经检验,x=50是原方程的解,且符合题意,∴x+20=70.答:甲车的速度是70km/h,乙车的速度是50km/h.2.解:设B班每天植树x棵,那么A班每天植树1.5x棵,依题意,得=﹣2,解之得x=20,经检验,x=20是原方程的解则当x=20时,1.5x=30.答:A班每天植树30棵,B班每天植树20棵.3.解:(1)因甲队单独施工30天完成该项工程的,所以甲队单独施工90天完成该项工程.设乙队单独施工需要x天才能完成该项工程,则.解得x=30.经检验x=30是所列方程根.(2)设甲队施工y天完成该项工程,则.解得y≥51.所以y最小值=51.答:(1)若乙队单独施工,需要30天才能完成该项工程;(2)若乙队参与该项工程施工的时间不超过13天,则甲队至少施工51天才能完成该项工程.4.解:设原来每天制作x件,根据题意得:﹣=10,解得:x=32,经检验x=32是原方程的解,答:原来每天制作32件.5.解:设原计划每天铺设排污管道x米,由题意可得:,解得:x=10,经检验,x=10是原方程的解,答:原计划每天铺设排污管道10米.6.解:设甲每秒加工x个口罩,则乙每秒加工(35﹣x)个口罩.由题意得:=,解得:x=15,经检验:x=15是原方程的根,且x=15,35﹣x=20符合题意,答:甲每秒加工15个口罩,乙每天加秒20个口罩.7.解:(1)设购买一个A品牌垃圾桶需x元,则购买一个B品牌垃圾桶需(x+50)元,依题意,得:=2×,解得:x=100,经检验,x=100是原方程的解,且符合题意,∴x+50=150.答:购买一个A品牌垃圾桶需100元,购买一个B品牌垃圾桶需150元.(2)设该学校此次购买m个B品牌垃圾桶,则购买(50﹣m)个A品牌垃圾桶,依题意,得:100×0.9(50﹣m)+150×(1+20%)m≤6000,解得:m≤16.因为m是正整数,所以m最大值是16.答:该学校此次最多可购买16个B品牌垃圾桶.8.解:(1)400×10=4000(米),答:小勇同学一次有氧耐力训练慢跑4000米;(2)设第一次慢跑速度为x米/分,则第二次慢跑速度为1.2x米/分,由题意得:﹣=5,解得:x=,经检验:x=是原分式方程的解,且符合题意,1.2×=160,答:第一次慢跑速度为米/分,则第二次慢跑速度为160米/分.9.解:(1)设购买一个A型垃圾桶需x元,则一个B型垃圾桶需(x+30)元,由题意得:=×2,解得:x=50,经检验:x=50是原方程的解,且符合题意,则x+30=80,答:购买一个A型垃圾桶需50元,一个B型垃圾桶需80元.(2)设小区一次性购买A型垃圾桶y个,则购买B型垃圾桶(60﹣y)个,由题意得:50y+80(60﹣y)≤4000,解得y≥27.答:最少要购买27个A型垃圾桶.10.解:(1)设这项工程规定x天完成,15+5=20(天),根据题意得:,解得:x=30,经检验:x=30是原方程的解,且符合题意,答:这项工程规定30天完成.(2)总施工费用:(元),答:该工程的施工费用是180000元.11.解:设规定工期为x天,则甲队单独完成这项工程需x天,乙队单独完成这项工程需(x+4)天,依题意得:+=1,整理得:x﹣12=0,解得:x=12,经检验,x=12是原方程的解,且符合题意.答:规定工期为12天.12.解:(1)设该公司购买的A型猕猴桃每箱的单价为x元,则购买的B型猕猴桃每箱的单价为(x+50)元,依题意得:=,解得:x=100,经检验,x=100是原方程的解,且符合题意,∴x+50=150.答:该公司购买的A型猕猴桃每箱的单价为100元,购买的B型猕猴桃每箱的单价为150元.(2)设购买了m箱A型猕猴桃,则购买了(20﹣m)箱B型猕猴桃,依题意得:100m+150(20﹣m)=2400,解得:m=12.答:购买了12箱A型猕猴桃.13.解:(1)设第一次每支中性笔的进价是x元,则第二次每支中性笔的进价是(x+1)元,依题意得:=,解得:x=4,经检验,x=4是原方程的解且符合题意.答:第一次每支中性笔的进价是4元.(2)第一次购进中性笔的数量为600÷4=150(支),∴第二次购进中性笔150支.设每支中性笔售价为y元,依题意得:(150+150)y﹣600﹣750≥450,解得:y≥6.答:每支中性笔售价至少是6元.14.解:设乙每天加工新产品x件,则甲每天加工新产品x件.根据题意得﹣=20,解得x=24,经检验,x=24符合题意,则x=24×=16,所以甲、乙两个工厂每天各能加工16个、24个新产品;15.解:(1)设每台B型号的机器每小时加工x套防护服,则每台A型号的机器每小时加工(x+20)套防护服,依题意得:,解得:x=60,经检验,x=60是原方程的解,且符合题意,∴x+20=80.答:每台A型号的机器每小时加工80套防护服,每台B型号的机器每小时加工60套防护服.(2)设需要安排m台A型机器,则安排(10﹣m)台B型机器,依题意得:80m+60(10﹣m)≥720,解得:m≥6.答:至少需要安排6台A型机器.。
八年级上数学:分式运算专项训练提升--1
分式的运算专项训练提升--1第一部分:分式的乘除运算一、自主完成1.下列各式中,计算正确的是( )A .m n m m ÷=B .1m n m n ÷⨯=C .111m m m m ÷÷=D .3211m m m÷÷= 2.2221a b b ÷ = .3.232()3a b c -=_____ ______.4.化简322()()x yxzyz y x z ÷- ,结果是 () A .222y z x B .523x y z - C .344x y z - D .432x z z5.下列计算中,错误的是 ()A .332628()y y x x -=- B .36224416()39b b c c =-C .22222()x y x y x y x y --=++ D .24236()nn n b ba a =-6.计算:(1)222212111a a a a a a a a --÷++++ ; (2)233()()()24b b ba a a -÷- .二、典例精析例题1 计算:22136932x x x x x x +-÷-+-+ .例题2 计算:22326123()()y y xy x x ÷- .三、归纳提炼分式的乘除混合运算一般是统一为乘法运算,如果有乘方,还应根据分式乘方法则先乘方,即把分子、分母分别乘方,然后再进行乘除运算.同样要注意的地方有:一是要确定好结果的符号;二是运算顺序不能颠倒.四、当堂检测1.计算22234()()()x y y y x x÷- 得 ( ) A .5x B .x 5y C .y 5 D .xy 52.计算2()x y y y x x÷- 的结果是 ( ) A .y - B .2x y - C .x yD .2x y 3.计算2243312()()22a a b a b b -÷- 的值等于 ( ) A .9a - B .9a C .36a - D .36a4.计算:2223x y mn ·2254m n xy ÷53xym n. 5.计算:2222()()64y y x x ÷-.6.计算:24911214223x x x x -÷--- . 7.计算:2221644168282m m m m m m m ---÷++++ .第二部分:分式的加减运算一、自主完成1.已知公式12111f f f =+(12f f ≠),若已知f 、2f ,则表示1f 的公式是 . 2.化简222()a b ab b a b -+÷-的结果是_____ _______.3.计算37444x x y yx y y x x y ++----得 ()A .264x yx y +-- B .264x yx y +- C .-2 D .24.化简11()()x y y x -÷-的结果是 () A .1 B .xy C .yx D .-15.计算:(1)42()a a a a +-÷; (2)22211()961313a a a a a a -÷++++.二、典例精析例题1 计算:13(1)224aa a --÷--.例题2 计算:22[()]33x y x yx y x x y x x +----÷+.三、归纳提炼对于一般的分式混合运算来讲,其运算顺序与整式混合运算一样,是先乘方,再乘除,最后算加减,如果遇括号要先算括号里面的.在此基础上,有时也应该根据具体问题的特点,灵活应变,注意数学思想方法的运用,如类比思想、整体思想、转化思想等.四、当堂检测1.直接写出结果:(1)a a b b÷-= ;(2)2n n m m m n n --=- . 2.计算:=⎪⎭⎫ ⎝⎛--+÷--252423x x x x ________________. 3.计算:1()a b a b b a a b+÷=--+________________. 4.计算:1(1)122a a a +÷=--________________. 5.计算11()x x x x-÷-的结果为 ( ) A .1 B .211x x -- C .11x - D .11x + 6.计算11(1)(1)a a +÷-的结果为 ( ) A .11a a +- B .11a a -+ C .221a a - D .221a a - 7.计算:23111x x x x -⎛⎫÷+- ⎪--⎝⎭.8.计算:2223189218a a a a a +-÷-+-+. 9.计算:2221()2444x x x x x x x x+----+- .。
分式提升训练题(2)
分式提升训练(二)命题老师:叶煌伟一、选择题:1.己知22114x x+=,且x>1,则21x x -的值为 ( )A . 4B . -4C . 23D 、-23 2. 已知的值是:则,且都不为k k bc a a c b c b a c b a ,0,,=+=+=+ ( ) A 2 B -1 C 2或-1 D 33.对于非零的两个实数a 、b ,规定11a b b a⊕=-.若1(1)1x ⊕+=则x 的值为( ) A. 23 B. 1 C. 21- D. 214.世界上著名的莱布尼茨三角形如图所示:则排在第10行从左边数第3个位置上的数是 ( )A .1132B .1360C .1495D .16605.已知611=-b a , 则ab b a bab a 7222+---的值等于( ) A.58 B.58- C.54 D.54- 6.已知2231x A Bx x x x-=+--,其中A 、B 为常数,那么A B +的值是( )A. 2-B. 2C. 4D. 4-7.关于x 的方程abx b x a -=++2(a ≠b)的解为 A. x=a -bB. x=a+bC. x=2abD. x=b -a8.x 的取值范围是( ) A. x ≠-1B. x ≠-2C. x ≠-1且x ≠-2D. x ≠19.汽车从甲地开往乙地,每小时行驶1v km ,t 小时可以到达,如果每小时多行驶2v km ,那么可以提前到达的小时数为 ( ) (A(B )(C(D10.把分式ba a-2的a 和b 都变为原来的n 倍,那么分式的值( ) A.变为原来的n 倍 B.变为原来的2n 倍 C.不变 D.变为原来的4n 倍11( ).A 3B 7C 9D 1112.已知:11+=x a (x≠0且x≠-1),)(1211a a -÷=,)(2311a a -÷=,…,)(1n n 11--÷=a a ,则2012a 等于( ) A.x B. x +113A B C .2 D .-214.当x b ≠-时,25a xbx +=--成立 ,则22a b -=( ) A 、0 B 、1 C 、99.25 D 、99.75 15.若20 10a b b c ==,,则a bb c++的值为( ). (A )1121 (B)2111 (C )11021 (D )21011二、填空题:162x =时,分式无意义,则a = ,当6a <时,使分式无意义的的值共有 个.17.若对于任何实数x,,则c 的取值范围为18.如果记()1x y f x x ==+,并且()1f 表示当x = 1时y 的值,即()111112f ==+;12f ⎛⎫⎪⎝⎭表示当12x =时y 的值,即111212312f ⎛⎫== ⎪⎝⎭+;()f a 表示当x = a 时y 的值,即()1a f a a =+.计算: ()()()()()()111101220092010201020092f f f f f f f f f ⎛⎫⎛⎫⎛⎫++⋅⋅⋅++++++⋅⋅⋅++= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.19.若x 是不等于1的实数,我们把称为x 的差倒数,如2的差倒数是-1的差倒数为,现已知,2x 是1x 的差倒数,3x 是2x 的差倒数,是3x 的差倒数,…,依次类推,则2012x = .20.一组按规律排列的式子:3x y ,52x y -,73x y,94x y -,…,(0xy ≠),则第2011个式子是________(n 为正整数). 21.观察下面一列分式,x 1-,22x ,34x -,48x ,516x-,……,根据你的发现它的第8项是___________,第n 项是___________。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第八章 分式提高训练题
1. 甲、乙两人从两地同时出发,若相向而行,则a 小时相遇;若同向而行,则b 小时甲追上乙,那么甲的速度是乙的速度的( ) A.b b a +倍 B. b a b + C.a b a b -+倍 D. a
b a b +-倍 2. 观察如图1的图形(每个正方形的边长均为1)和相应的等式,探究其中的规律:
① 1×21=1-2
1 ② 2×32=2-3
2 ③ 3×43=3-4
3 ④4×54=4-5
4 ……
(1) 写出第五个等式,并在图2给出的五个正方形上画出与之对应的图形;
(2) 猜想并写出与第n 个图形相对应的等式.
(数形结合,根据规律画图,由特殊到一般找出分式的表达式)
3. 已知y 1=2x ,y 2=
12y ,y 3=22y ,…,y 2006=20052y ,求y 1·y 2006的值.
4.已知x 2-5x +1=0,求x 2+
21x 的值.
5.已知a 、b 、c 为实数,
b a ab +=61,
c b bc +=81,a c ca +=101.求分式ca
bc ab abc ++的值.
……
6.已知a 、b 均为正数,且
a 1+
b 1=-b a +1.求(a b )2+(b a )2的值.
7.计算:
)1(1+a a +)2)(1(1++a a +)3)(2(1++a a +…+)
2006)(2005(1++a a 。
8.已知x y =43,求y x x ++y x y --2
22
y x y -的值.
9.若x +y=4,xy=3,求
x y +y x 的值.
10.已知a +b -c=0,2a -b+2c=0(c ≠0),求
c
b a
c b a 235523+-+-的值.
11.请你阅读下列计算过程,再回答问题: 132--x x -x -13=)1)(1(3-+-x x x -1
3-x (A) =)1)(1(3-+-x x x -)
1)(1()1(3-++x x x (B) =x -3-3(x+1) (C)
=-2x -6
(1)上述计算过程中,从哪一步开始出现错误: ;
(2)从(B)到(C)是否正确: ;若不正确,错误的原因是 ;
(3) 请你写出正确解答.
12.已知a +b +c=0.求a(
b 1+
c 1)+b(a 1+c 1)+c(a 1+b
1)的值.
13.若x +x 1=3,求1
242
++x x x 的值.
14.已知x 2
-5x -2002=0,求21)1()2(23-+---x x x 的值.
15.若b+
c 1=1,c+a 1=1,求b
ab 1+。
16.已知
a c
b +=b
c a +=c b a +,求))()((c b c a b a abc +++的值.
17.已知
)5)(2(14--+x x x =5-x A +2
-x B ,求A 、B 的值.
18.已知abc=1,求
1++a ab a +1++b bc b +1
++c ac c 的值.
19.观察下面一列有规律的数:31,82,153,244,355,48
6…根据其规律可知第n 个数应是 _______________ (n 为整数)
20.阅读下列材料:
关于x 的分式方程x +
x 1=c +c 1的解是x 1=c ,x 2=c
1; x -x 1= c -c 1,即x +x 1-=c+c 1-的解是x 1=c ,x 2=-c
1; x +x 2=c +c 2的解是x 1=c ,x 2=c
2; x +x 3=c +c 3的解是x 1=c ,x 2=c
3. (1) 请观察上述方程与解的特征,比较关于x 的方程x +x m =c +c m (m ≠0)与它的关系,猜想它的解是什么,并利用方程解的概念进行验证.
(2) 由上述的观察,比较,猜想,验证可以的出结论;
如果方程的左边是未知数与其倒数的倍数的和,方程右边形式与左边的完全相同,只是把其中未知数换成某个常数.
那请你利用这个结论解关于x 的方程:x +
12-x =a+1
2-a
21.阅读下列材料 方程
11+x -x 1=21-x -3
1-x 的解为x=1, 方程x 1-11-x =31-x -4
1-x 的解为x=2, 方程11-x -21-x =41-x -51-x 的解为x=3,… (1) 请你观察上述方程与解的特征,写出能反映上述方程一般规律的方程,并求出这个方程
的解.
(2) 根据(1)中所求得的结论,写出一个解为-5的分式方程.
22.如果设y=221x x +=f(x),并且f(1)表示当x=1时,y 的值,即f(1)=11122
+=2
1, f(21)表示当x=21时y 的值,即f(21)=2221121⎪⎭
⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=51…… 那么f(1)+f(2)+f(21)+f(3)+f(31)+…+f(n)+f(n
1)= _______. (结果用含有n 的代数式表示,n 为正整数)。