分式专项训练及答案

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【答案】D
【解析】
【分析】先分别进行幂的乘方、同底数幂的乘法、同底数幂的除法运算,然后再进行合并同类项即可.
【详解】原式=a2×3+a2+3-a2-(-3)
=a6+a5-a5
=a6,
故选D.
【点睛】本题考查了有关幂的运算,熟练掌握“幂的乘方,底数不变,指数相乘”、“同底数幂的乘法,底数不变,指数相加”、“同底数幂的除法,底数不变,指数相减”是解题的关键.
3.关于分式 ,下列说法不正确的是( )
A.当x=0时,分式没有意义
B.当x>5时,分式的值为正数
C.当x<5时,分式的值为负数
D.当x=5时,分式的值为0
【答案】C
【解析】
【分析】
此题可化转化为分别求当分式等于0、大于0、小于0、无意义时的x的取值范围,分别计算即可求得解.
【详解】
A.当x=0时,分母为0,分式没有意义;正确,但不符合题意.
17.计算 的正确结果是()
A. B. C. D.
【答案】A
【解析】
【分析】
先将后两项结合起来,然后再化成同分母分式,按同分母分式加减的法则计算就可以了.
【详解】

=
=
= .
故选:A.
【点睛】
本题考查了数学整体思想的运用,分式的通分和约分的运用,解答的过程中注意符号的运用以及完全平方公式的运用.
18.一次抽奖活动特等奖的中奖率为 ,把 用科学记数法表示为( )
分式专项训练及答案
一、选择题
1.化简(a﹣1)÷( ﹣1)•a的结果是( )
A.﹣a2B.1C.a2D.﹣1
【答案】A
【解析】
分析:根据分式的混合运算顺序和运算法则计算可得.
详解:原式=(a﹣1)÷ •a
=(a﹣1)• •a
=﹣a2,
故选:A.
点睛:本题主要考查分式的混合运算,解题的关键是掌握分式的混合运算顺序和运算法则.
A. B. C. D.
【答案】A
【解析】
【分析】
先根据有理数的乘方、算术平方根、立方根、负整数指数幂进行计算,再比较数的大小,即可得出选项.
【详解】
解: , , ,

最小的数是 ,
故选: .
【点睛】
本题考查了实数的大小比较法则,能熟记实数的大小比较法则的内容是解此题的关键.
15.下列各式:① ;② ;③ ;④ ;⑤ ;其中运算正确的个数有()个.
2.在等式 中,“ ”内的代数式为()
A. B. C. D.
【答案】D
【解析】
【分析】
首先利用零指数幂性质将原式化简为 ,由此利用同底数幂的乘除法法则进一步进行分析即可得出答案.
【详解】
,则原式化简为: ,
∴ ,
故选:D.
【点睛】
本题主要考查了零指数幂的性质与同底数幂的乘除法运算,熟练掌握相关概念是解题关键.
【详解】
11.华为 手机搭载了全球首款7纳米制程芯片,7纳米就是0.000000007米.数据0.000000007用科学记数法表示为( ).
A. B. C. D.
【答案】D
【解析】
【分析】
由科学记数法知 ;
【详解】
解: ;
故选:D.
【点睛】
本题考查科学记数法;熟练掌握科学记数法 中 与 的意义是解题的关键.
【详解】
12.化简 的结果是( )
A. B. C.a﹣bD.b﹣a
【答案】B
【解析】
【分析】
原式分子分母提取公因式变形后,约分即可得到结果.
【详解】
原式= =
故答案选B.
【点睛】
本题考查的知识点是约分,解题的关键是熟练的掌握约分.
13.若代数式 有意义,则实数 的取值范围是()
A. B. 且 C. D. 且
【详解】
A. ,计算正确,不符合题意;
B. ,原选项计算错误,符合题意;
C. ,计算正确,不符合题意;
D. ,计算正确,不符合题意.
故选:B.
【点睛】
此题主要考查了幂的运算,熟练掌握运算法则是解题的关键.
9.下列运算中,正确的是()
A. B. C. D.
【答案】D
【解析】
【分析】
根据实数的加法对A进行判断;根据同底数幂的乘法对B进行判断;根据负整数指数幂的意义对C进行判断;根据同底数幂的除法对D进行判断.
【解析】
【分析】先计算(-a)2,然后再进行约分即可得.
【详解】
=
=b,
故选A.
【点睛】本题考查了分式的乘法,熟练掌握分式乘法的运算法则是解题的关键.
8.下列运算错误的是()
A. B. C. D.
【答案】B
Leabharlann Baidu【解析】
【分析】
直接运用同底数幂的乘法运算法则、单项式除以单项式运算法则、积的乘方与幂的乘方运算法则以及负整数指数幂的意义分别计算得出答案再进行判断即可.
A. B. C. D.
【答案】D
【解析】
【分析】
绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.
【详解】
0.00002=2×10﹣5.
故选D.
【点睛】
本题考查了用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.
【答案】B
【解析】
【分析】
根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,可以求出x的范围.
【详解】
根据题意得: ,
解得:x≥0且x≠1.
故选:B.
【点睛】
此题考查分式有意义的条件,二次根式有意义的条件,解题关键在于掌握分母不为0;二次根式的被开方数是非负数.
14.下列各数中最小的是()
A.5×107B.5×10﹣7C.0.5×10﹣6D.5×10﹣6
【答案】B
【解析】
【分析】
科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.
【详解】
解:A、2与 不能合并,所以A选项错误;
B、x6÷x3=x3,所以B选项错误;
C、2-1= ,所以C选项错误;
D、a3•a2=a5,所以D选项正确.
故选:D.
【点睛】
此题考查实数的运算,负整数指数幂,同底数幂的乘法与除法,解题关键在于掌握先算乘方,再算乘除,然后进行加减运算;有括号先算括号.
B.当x>5时,分式的值为正数;正确,但不符合题意
C.当0<x<5时,分式的值为负数;当x=0是分式没有意义,当x<0时,分式的值为负数,原说法错误,符合题意.
D.当x=5时,分式的值为0;正确,但不符合题意.
故选:C.
【点睛】
本题主要考查分式的性质的运用,注意分式中分母不为0的隐性条件.
4.若化简 的结果为 ,则“ ”是( )
A.1B.2C.3D.4
【答案】B
【解析】
【分析】
分别利用负整数指数幂、零指数幂、积的乘方、同底数幂的除法等对各式进行运算,即可做出判断.
【详解】
解:① ,故①正确;
② ,故②错误;
③ ,故③错误;
④ ,故④错误;
⑤ ,故⑤正确;
∴运算正确的个数有2个,
故选:B.
【点睛】
本题主要考查了负整数指数幂、零指数幂、积的乘方和同底数幂的除法,熟练掌握相关的运算法则是解题的关键.
19.分式 的值为 ,则 的取值为()
A. B. C. D.
【答案】C
【解析】
【分析】
分式值为0,则分子为0,且分母不为0即可
【详解】
要使分式 的值为0

解得:x=-1
故选:C
【点睛】
本题考查分式方程为0的情况,注意在涉及到分式方程时,我们都需要考虑分母不为0的情况.
20.斑叶兰被列为国家二级保护植物,它的一粒种子重约0.0000005克.将0.0000005用科学记数法表示为( )
6.要使分式 有意义, 应满足的条件是()
A. B. C. D.
【答案】C
【解析】
【分析】
直接利用分式有意义的条件得出答案.
【详解】
要使分式 有意义,
则x-1≠0,
解得:x≠1.
故选:C.
【点睛】
此题考查分式有意义的条件,正确把握分式的定义是解题关键.
7.计算 的结果为
A. B. C. D.
【答案】A
10.生物学家发现某种花粉的直径约为0.0000036毫米,数据0.0000036用科学记数法可表示为()
A. B. C. D.
【答案】A
【解析】
【分析】
绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.
16.式子 的值不可能等于()
A.﹣2B.﹣1C.0D.1
【答案】C
【解析】
【分析】
根据分式的加减运算,对式子进行化简,然后根据分式有意义,即可得出答案.
【详解】
解:
= ,
分式的值不能为0,因为只有a=b=c时,分母才为0,此时分式没意义,
故选:C.
【点睛】
本题主要考察了分式的加减运算以及分式有意义的定义,解题的关键是分式的加减运算要正确进行通分,以及注意分式的分母不能为零.
A. B. C. D.
【答案】D
【解析】
【分析】
根据题意列出算式,然后利用分式的混合运算法则进行计算.
【详解】
解:由题意得: ,
故选:D.
【点睛】
本题考查了分式的混合运算,熟练掌握运算法则是解题的关键.
5.计算(a2)3+a2·a3-a2÷a-3的结果是( )
A.2a5-aB.2a5- C.a5D.a6
相关文档
最新文档