matlab对卡尔曼滤波的仿真实现
容积卡尔曼滤波 matlab
容积卡尔曼滤波 (Volume Kalman Filter) Matlab一、介绍容积卡尔曼滤波是一种用于估计流体容积或液体浓度的滤波算法。
它结合了卡尔曼滤波和流体力学模型,能够在不完全和有噪声的传感器数据下,准确估计容积或浓度的变化。
在工业自动化、化学工程、医疗设备等领域中,容积卡尔曼滤波被广泛应用。
二、卡尔曼滤波简介卡尔曼滤波是一种用于估计系统状态的递归滤波算法。
它利用系统模型和测量数据,通过递推计算,得到对系统状态的最优估计。
卡尔曼滤波的基本思想是将系统状态建模为高斯分布,并利用贝叶斯定理进行状态更新。
它在估计问题中具有很强的优势,能够有效地处理系统模型不完全、传感器噪声和测量不确定性等问题。
三、容积卡尔曼滤波原理容积卡尔曼滤波通过结合流体力学模型和卡尔曼滤波算法,实现对容积或浓度的准确估计。
它的基本原理如下:1.系统模型:容积或浓度的变化可以由流体力学方程描述,例如质量守恒方程。
将这个方程离散化,可以得到一个状态转移矩阵。
2.测量模型:通过传感器测量容器内的压力、流速等参数,得到测量值。
将测量值与状态进行线性组合,得到观测模型。
3.卡尔曼滤波算法:利用系统模型和测量模型,通过递推计算,得到对容积或浓度的最优估计。
卡尔曼滤波算法包括预测和更新两个步骤,预测步骤用于计算状态的先验估计,更新步骤用于根据测量值进行状态的后验估计。
四、容积卡尔曼滤波的实现在Matlab中,可以使用以下步骤实现容积卡尔曼滤波:1. 定义系统模型根据容器的流体力学方程,将其离散化为状态转移矩阵。
例如,对于一个一维的容器,可以使用以下代码定义状态转移矩阵:A = [1];2. 定义测量模型根据传感器的输出和系统状态的关系,定义观测模型。
例如,对于一个压力传感器,可以使用以下代码定义观测模型:C = [1];3. 初始化卡尔曼滤波器定义初始状态估计值和协方差矩阵。
例如,可以使用以下代码初始化卡尔曼滤波器:x_hat = [0];P = [1];4. 预测步骤根据系统模型,计算状态的先验估计和协方差矩阵。
matlab 自适应卡尔曼滤波
matlab 自适应卡尔曼滤波自适应卡尔曼滤波是一种基于卡尔曼滤波算法的扩展,用于跟踪非线性系统的状态。
在传统的卡尔曼滤波中,假设系统是线性的,并且系统的噪声和测量噪声是已知的。
然而,在实际应用中,往往会遇到非线性系统或未知的噪声情况,这就需要使用自适应卡尔曼滤波方法来处理。
自适应卡尔曼滤波的基本思想是通过一种递归算法,根据系统的状态和测量值的变化来调整卡尔曼滤波的参数。
具体步骤如下:1. 初始化卡尔曼滤波模型的参数,包括状态向量、状态转移矩阵、测量矩阵、过程噪声协方差矩阵、测量噪声协方差矩阵等。
2. 根据当前的测量值和状态向量,计算预测的状态向量和状态转移矩阵。
3. 通过当前的测量值和预测的状态向量,计算卡尔曼增益。
4. 更新状态向量和状态协方差矩阵。
5. 根据更新后的状态向量,重新计算过程噪声协方差矩阵和测量噪声协方差矩阵。
6. 重复步骤2到5,直到滤波结束。
自适应卡尔曼滤波的关键在于如何根据当前的测量值和状态向量来调整滤波模型的参数,以适应实际系统的变化。
常见的自适应卡尔曼滤波算法包括扩展卡尔曼滤波(EKF)、无迹卡尔曼滤波(UKF)和粒子滤波等。
在MATLAB中,可以使用现有的工具箱或编写自己的函数来实现自适应卡尔曼滤波。
MATLAB提供了kalmanfilt函数用于实现标准的卡尔曼滤波,同时也可以根据需要自定义滤波模型和参数。
它还提供了ekf, ukf和pf函数分别用于实现扩展卡尔曼滤波、无迹卡尔曼滤波和粒子滤波算法。
下面是一个简单的MATLAB示例,演示了如何使用kalmanfilt函数实现自适应卡尔曼滤波:matlab% 定义系统的状态转移矩阵和测量矩阵A = [1 0.1; 0 1];C = [1 0];% 定义过程噪声协方差矩阵和测量噪声协方差矩阵Q = [0.01 0; 0 0.01];R = 0.1;% 创建kalman滤波器对象kf = kalmanfilt(A, C, Q, R);% 初始化状态向量和状态协方差矩阵x0 = [0; 0];P0 = eye(2);% 生成模拟数据N = 100;x_true = zeros(2, N);y = zeros(1, N);for k = 1:Nx_true(:, k) = A * x_true(:, k-1) + sqrtm(Q) * randn(2, 1);y(k) = C * x_true(:, k) + sqrt(R) * randn(1);end% 使用kalman滤波器滤波数据x_est = zeros(2, N);for k = 1:Nx_est(:, k) = kf(y(k));end% 绘制真实值和估计值的对比图figure;hold on;plot(1:N, x_true(1, :), 'b-', 'LineWidth', 2);plot(1:N, x_true(2, :), 'r-', 'LineWidth', 2);plot(1:N, x_est(1, :), 'k', 'LineWidth', 2);plot(1:N, x_est(2, :), 'm', 'LineWidth', 2);legend('True x1', 'True x2', 'Estimate x1', 'Estimate x2');hold off;以上示例中,定义了一个二维状态向量和一个一维测量向量,并根据这两个向量构建了卡尔曼滤波模型的参数。
MATLAB技术卡尔曼滤波教程
MATLAB技术卡尔曼滤波教程MATLAB技术:卡尔曼滤波教程随着现代科技的发展,数据处理和信号滤波成为许多领域研究的重要环节。
其中,卡尔曼滤波作为一种常用的最优估计方法,被广泛应用于控制与导航、机器人、经济学以及信号处理等众多领域。
本文将为读者简要介绍MATLAB中的卡尔曼滤波原理与实现方法。
一、卡尔曼滤波简介卡尔曼滤波由Rudolph E. Kalman在1960年代初提出,其基本思想是通过综合当前观测数据和已知系统动态方程,估计出系统状态的最优解。
卡尔曼滤波通过联合考虑信号的测量和系统模型的不确定性,提供了一种在噪声干扰存在下的最优估计方法。
卡尔曼滤波的核心思想是建立一种递推的状态估计过程,即通过使用上一步的估计结果以及当前时刻的观测数据,预测下一步的状态。
卡尔曼滤波算法分为两个主要步骤:预测(时间更新)和更新(测量更新)。
预测步骤利用系统的动态模型和上一步的状态估计,计算出当前时刻状态的预测值以及预测误差协方差矩阵。
更新步骤则通过结合当前时刻的实际观测数据和预测值,计算出当前时刻的状态估计值和更新后的误差协方差矩阵。
二、MATLAB中的卡尔曼滤波工具箱为了解决卡尔曼滤波的数学推导与实现问题,MATLAB提供了专门的卡尔曼滤波工具箱。
该工具箱提供了丰富的函数和工具,使得用户可以方便地进行卡尔曼滤波算法的实现与仿真。
首先,用户需要定义系统的动态模型和测量模型,并设置初始状态以及误差协方差矩阵。
MATLAB中提供了`kalman`函数用于实现卡尔曼滤波的状态更新与估计。
其次,用户可以利用`kalman`函数进行滤波的仿真实验。
通过输入实际观测数据以及系统模型,用户可以获得滤波后的状态估计值和误差协方差矩阵。
此外,用户还可以根据系统模型的不同,选择不同的卡尔曼滤波算法(如扩展卡尔曼滤波、无迹卡尔曼滤波等)。
三、实例演示:基于MATLAB的卡尔曼滤波仿真为了更好地理解和掌握MATLAB中的卡尔曼滤波工具箱,我们将通过一个简单的实例演示其用法。
自适应卡尔曼滤波matlab
自适应卡尔曼滤波matlab自适应卡尔曼滤波(Adaptive Kalman Filtering)是一种常用的估计和滤波技术,常用于处理不确定性和噪声存在的系统。
在这篇文章中,我将详细介绍自适应卡尔曼滤波的原理和应用,并探讨如何在MATLAB中实现该算法。
自适应卡尔曼滤波是卡尔曼滤波器的一种扩展形式,它通过动态调整滤波器的参数,以适应不断变化的系统条件和噪声水平。
与传统的卡尔曼滤波相比,自适应卡尔曼滤波具有更好的鲁棒性和适应性。
自适应卡尔曼滤波的关键思想是根据观测数据的特点动态调整系统模型的参数。
在传统的卡尔曼滤波中,系统模型的参数通常是固定的,但在实际应用中,系统的动态特性和外部环境的变化可能导致模型参数的不确定性。
自适应卡尔曼滤波通过监测观测数据的统计特性,自动调整系统模型的参数,以提高滤波器的性能。
在MATLAB中实现自适应卡尔曼滤波可以分为以下几个步骤:1. 定义系统模型:首先需要定义系统的状态变量、测量变量以及系统的状态转移方程和测量方程。
这些方程描述了系统的动态特性和观测模型。
2. 初始化滤波器:在开始滤波之前,需要初始化滤波器的状态向量和协方差矩阵。
状态向量表示系统的状态变量,协方差矩阵表示对状态变量估计的不确定性。
3. 预测步骤:根据系统的状态转移方程和当前的状态估计,进行状态的预测。
预测的结果是对系统下一时刻状态的估计。
4. 更新步骤:根据测量方程和当前的观测值,更新状态估计和协方差矩阵。
更新的结果是对系统当前状态的更准确估计。
5. 自适应调整:根据观测数据的统计特性,自适应地调整滤波器的参数。
这个步骤是自适应卡尔曼滤波与传统卡尔曼滤波的主要区别之一。
自适应卡尔曼滤波在许多领域都有广泛的应用。
例如,在目标跟踪中,通过自适应调整滤波器的参数,可以更好地适应目标运动的变化和观测噪声的不确定性。
在信号处理中,自适应卡尔曼滤波可以用于去除信号中的噪声和干扰,提高信号的质量。
自适应卡尔曼滤波是一种强大的估计和滤波技术,能够有效处理不确定性和噪声存在的系统。
卡尔曼滤波 正弦函数 matlab
一、介绍卡尔曼滤波卡尔曼滤波是一种用于估计系统状态的线性动态系统的方法。
它是由朗迪·卡尔曼在1960年提出的。
卡尔曼滤波是一种递归滤波器,通过使用过去时刻的状态和测量,以及系统动态的模型,来预测当前时刻的状态。
二、卡尔曼滤波原理1. 状态更新步骤:在状态更新步骤中,卡尔曼滤波使用系统的动态方程来预测下一个时刻的状态。
这一步骤包括预测状态、预测状态协方差和计算卡尔曼增益。
2. 测量更新步骤:在测量更新步骤中,卡尔曼滤波使用最新的测量值来修正之前的预测。
这一步骤包括计算测量预测、计算残差、计算卡尔曼增益和更新状态估计。
三、正弦函数及其在卡尔曼滤波中的应用正弦函数是一种周期性变化的函数,具有良好的数学性质和广泛的应用。
在卡尔曼滤波中,正弦函数可以用于模拟系统的动态特性,对系统的状态进行预测和更新。
四、matlab中的卡尔曼滤波实现matlab是一种用于科学计算和工程应用的高级技术计算语言和交互环境。
在matlab中,可以很方便地实现和应用卡尔曼滤波算法。
1. 使用matlab进行线性动态系统建模在matlab中,可以使用state-space模型来表示线性动态系统的状态空间方程。
通过定义系统的状态方程、测量方程、过程噪声和观测噪声,可以建立系统的状态空间模型。
2. 使用matlab实现卡尔曼滤波算法在matlab中,可以使用kalman滤波器函数来实现卡尔曼滤波算法。
首先需要定义系统的状态转移矩阵、测量矩阵、过程噪声协方差矩阵和观测噪声协方差矩阵。
然后利用kalman滤波器函数,输入系统模型和测量值,即可得到卡尔曼滤波器的输出。
3. 使用matlab对正弦函数进行卡尔曼滤波在matlab中,可以构建一个包含正弦函数的模拟系统,并对其进行卡尔曼滤波。
通过比较卡尔曼滤波的结果和真实正弦函数的值,可以评估卡尔曼滤波算法的性能。
五、结论卡尔曼滤波是一种用于估计系统状态的有效方法,在很多领域都有广泛的应用。
卡尔曼滤波原理及应用matlab仿真
卡尔曼滤波原理及应用matlab仿真卡尔曼滤波(Kalman Filter)是一种最优估计算法,由美国工程师卡尔曼发明并命名。
它是一种递归算法,适用于线性以及线性化的系统。
卡尔曼滤波可以通过已知的状态方程和观测方程来计算未知的状态量,同时考虑到测量误差和系统噪声。
卡尔曼滤波的核心思想是通过已知的状态方程和观测方程来递归地更新估计值和协方差矩阵。
估计值是对状态量的估计,协方差矩阵是表示估计值的不确定性的指标,它受到测量误差和系统噪声的影响。
通过不断迭代的过程,最终得到最优的状态估计值。
卡尔曼滤波主要应用于控制系统、导航、信号处理、图像处理等领域,它可以用于预测未来的状态量和优化估计结果,提高系统的稳定性和精度。
在自主导航系统中,卡尔曼滤波可以通过传感器捕捉环境信息,实现机器人的定位、控制和路径规划。
Matlab是一种强大的数学计算软件,它提供了丰富的工具箱和函数库,可以实现卡尔曼滤波算法的仿真。
Matlab中的Kalman滤波工具箱可以用于模拟线性系统的状态估计。
通过Matlab软件,可以输入系统的状态方程和观测方程,生成真实值和观测值序列,并使用卡尔曼滤波算法估计状态量,同时展示状态量的收敛过程和误差分析。
在实际应用中,卡尔曼滤波需要针对具体的问题进行调整和优化,例如选择不同的观测量和噪声模型,选择恰当的卡尔曼增益等。
因此,在使用卡尔曼滤波进行估计时需要注意以下几点:1.确定系统的状态方程和观测方程,建立合理的模型。
2.合理估计系统噪声和观测噪声,减小误差对估计结果的影响。
3.选择合适的卡尔曼增益,平衡观测值和实际值对估计的贡献。
4.对估计结果进行误差分析,评估卡尔曼滤波的优势和局限性。
总之,卡尔曼滤波是一种重要的最优估计算法,广泛应用于控制、导航、信号处理等领域。
通过Matlab软件,可以进行卡尔曼滤波算法的仿真,并优化估计结果。
在实际应用中,需要针对具体问题进行调整和优化,以提高估计精度和稳定性。
matlab卡尔曼滤波函数
matlab卡尔曼滤波函数卡尔曼滤波是一种用于估计系统状态的滤波器,其融合了系统模型的预测和测量数据的更新,能够准确地估计出系统的状态。
在Matlab中,可以使用kfilt函数来实现卡尔曼滤波。
kfilt函数是Matlab中提供的卡尔曼滤波器函数之一,其使用方法如下:```matlab[x,P] = kfilt(meas,H,R,x0,P0,A,Q)```其中,输入参数为:- `meas`:测量数据- `H`:测量矩阵,表示测量值与状态的线性关系- `R`:测量噪声的协方差矩阵- `x0`:初始状态- `P0`:初始状态的协方差矩阵- `A`:状态转移矩阵,表示状态的预测模型- `Q`:过程噪声的协方差矩阵输出结果为:- `x`:滤波后的状态估计值- `P`:滤波后的状态估计值的协方差矩阵下面我们详细介绍一下kfilt函数的用法。
1. 首先,准备好系统的测量数据`meas`、测量矩阵`H`、测量噪声的协方差矩阵`R`、初始状态`x0`、初始状态的协方差矩阵`P0`、状态转移矩阵`A`和过程噪声的协方差矩阵`Q`。
通常情况下,测量数据是实际测量到的数据,测量矩阵H是状态和测量之间的线性关系矩阵,测量噪声的协方差矩阵R 用于描述测量噪声的统计特性。
初始状态x0表示系统状态的初始估计值,初始状态的协方差矩阵P0用于描述初始状态估计的不确定性。
状态转移矩阵A表示系统状态的预测模型,过程噪声的协方差矩阵Q用于描述状态转移过程中的噪声的统计特性。
2. 调用kfilt函数进行卡尔曼滤波。
```matlab[x,P] = kfilt(meas,H,R,x0,P0,A,Q)```使用kfilt函数对测量数据进行滤波处理,得到滤波后的状态估计值x和状态估计值的协方差矩阵P。
3. 分析滤波结果。
通过分析滤波后的状态估计值x和状态估计值的协方差矩阵P,可以得到对系统状态的估计结果。
以上就是使用Matlab中的kfilt函数进行卡尔曼滤波的基本步骤。
自适应扩展卡尔曼滤波matlab
自适应扩展卡尔曼滤波matlab自适应扩展卡尔曼滤波(Adaptive Extended Kalman Filter,AEKF)是一种用于非线性系统状态估计的滤波算法。
本文将介绍AEKF算法的原理、步骤和实现方法,并结合MATLAB 编写代码进行演示。
一、扩展卡尔曼滤波原理扩展卡尔曼滤波(Extended Kalman Filter,EKF)是一种用于非线性系统状态估计的滤波算法。
它通过使用线性化系统模型的方式将非线性系统转换为线性系统,在每个时间步骤中用线性卡尔曼滤波器进行状态估计。
然而,EKF仅限于具有凸多边形测量特性的问题,并且对线性化过程误差敏感。
为了解决这些问题,AEKF通过自适应更新协方差矩阵的方式提高了滤波器的性能。
AEKF通过测量残差的方差更新协方差矩阵,从而提高了滤波器对非线性系统的适应能力。
AEKF算法的步骤如下:1. 初始化状态向量和协方差矩阵。
2. 根据系统的非线性动力学方程和测量方程计算预测状态向量和协方差矩阵。
3. 计算测量残差,即测量值与预测值之间的差值。
4. 计算测量残差的方差。
5. 判断测量残差的方差是否超过预设阈值,如果超过,则更新协方差矩阵。
6. 利用更新后的协方差矩阵计算最优滤波增益。
7. 更新状态向量和协方差矩阵。
8. 返回第2步,进行下一次预测。
二、AEKF算法的MATLAB实现下面,我们将使用MATLAB编写AEKF算法的代码,并通过一个实例进行演示。
首先,定义非线性系统的动力学方程和测量方程。
在本例中,我们使用一个双摆系统作为非线性系统模型。
```matlabfunction x_next = nonlinear_dynamics(x_current, u)% Nonlinear system dynamicstheta1 = x_current(1);theta2 = x_current(2);d_theta1 = x_current(3);d_theta2 = x_current(4);g = 9.8; % Gravitational accelerationd_theta1_next = d_theta1 + dt * (-3*g*sin(theta1) - sin(theta1-theta2) ...+ 2*sin(theta1-theta2)*(d_theta2^2 + d_theta1^2*cos(theta1-theta2))) .../ (3 - cos(2*(theta1-theta2)));d_theta2_next = d_theta2 + dt * (2*sin(theta1-theta2)*(2*d_theta2^2 ...+ d_theta1^2*cos(theta1-theta2) + g*cos(theta1) +g*cos(theta1-theta2))) .../ (3 - cos(2*(theta1-theta2)));theta1_next = theta1 + dt * d_theta1_next;theta2_next = theta2 + dt * d_theta2_next;x_next = [theta1_next; theta2_next; d_theta1_next;d_theta2_next];endfunction y = measurement_model(x)% Measurement model, measure the angles of the double pendulumtheta1 = x(1);theta2 = x(2);y = [theta1; theta2];end```然后,定义AEKF算法的实现。
卡尔曼滤波 matlab算法
卡尔曼滤波 matlab算法卡尔曼滤波是一种用于状态估计的数学方法,它通过将系统的动态模型和测量数据进行融合,可以有效地估计出系统的状态。
在Matlab中,实现卡尔曼滤波算法可以通过以下步骤进行:1. 确定系统的动态模型,首先需要将系统的动态模型表示为状态空间方程,包括状态转移矩阵、控制输入矩阵和过程噪声的协方差矩阵。
2. 初始化卡尔曼滤波器,在Matlab中,可以使用“kf = kalmanfilter(StateTransitionModel, MeasurementModel, ProcessNoise, MeasurementNoise, InitialState, 'State', InitialCovariance)”来初始化一个卡尔曼滤波器对象。
其中StateTransitionModel和MeasurementModel分别是状态转移模型和测量模型,ProcessNoise和MeasurementNoise是过程噪声和测量噪声的协方差矩阵,InitialState是初始状态向量,InitialCovariance是初始状态协方差矩阵。
3. 进行预测和更新,在每个时间步,通过调用“predict”和“correct”方法,可以对状态进行预测和更新,得到最优的状态估计值。
4. 实时应用,将测量数据输入到卡尔曼滤波器中,实时获取系统的状态估计值。
需要注意的是,在实际应用中,还需要考虑卡尔曼滤波器的参数调节、性能评估以及对不确定性的处理等问题。
此外,Matlab提供了丰富的工具箱和函数,可以帮助用户更便捷地实现和应用卡尔曼滤波算法。
总的来说,实现卡尔曼滤波算法需要对系统建模和Matlab编程有一定的了解和技能。
希望以上内容能够对你有所帮助。
容积卡尔曼滤波 matlab
容积卡尔曼滤波matlab摘要:1.容积卡尔曼滤波简介2.容积卡尔曼滤波算法原理3.容积卡尔曼滤波算法在MATLAB 中的实现4.容积卡尔曼滤波算法的应用案例5.结论正文:一、容积卡尔曼滤波简介容积卡尔曼滤波(Cubature Kalman Filter,简称CKF)是一种基于卡尔曼滤波理论的非线性滤波算法。
它通过将非线性系统的状态空间模型和观测模型进行离散化,采用立方插值方法对系统状态进行预测和更新,从而实现对非线性系统的状态估计。
相较于传统的卡尔曼滤波,容积卡尔曼滤波具有更好的性能和鲁棒性,被广泛应用于导航定位、目标跟踪、机器人控制等领域。
二、容积卡尔曼滤波算法原理容积卡尔曼滤波算法主要包括两个部分:预测阶段和更新阶段。
1.预测阶段在预测阶段,首先对系统的状态向量进行初始化,然后通过系统动态模型和观测模型,对系统的状态向量进行预测。
具体来说,根据系统的状态转移矩阵、控制矩阵、观测矩阵和过程噪声协方差矩阵,计算预测状态向量的均值和协方差矩阵。
2.更新阶段在更新阶段,根据预测的观测值和观测协方差矩阵,计算观测均值和协方差矩阵。
然后,利用卡尔曼增益公式,结合预测状态向量和观测均值,更新系统的状态向量和协方差矩阵。
三、容积卡尔曼滤波算法在MATLAB 中的实现在MATLAB 中,可以通过以下步骤实现容积卡尔曼滤波算法:1.导入所需库:`import numpy as np;`2.初始化状态向量和协方差矩阵:`x = np.zeros((2,1)); p =np.zeros((2,2));`3.设置系统参数:`F = np.array([[1, 0.1], [0, 1]]); Q = np.array([[0.1, 0], [0, 0.1]]); H = np.array([[1, 0], [0, 1]]);`4.预测阶段:`F_pred = F; Q_pred = Q; x_pred = F_pred @ x; S_pred = F_pred @ P @ F_pred.T + Q_pred;`5.更新阶段:`y=H@x;S_update=H@*****+R;`6.计算卡尔曼增益:`K=*****@np.linalg.inv(S_update);`7.更新状态向量和协方差矩阵:`x = x + K @ (y - H @ x); P = (np.eye(2) - K @ H) @ P;`四、容积卡尔曼滤波算法的应用案例容积卡尔曼滤波算法在各种领域都有广泛应用,例如:1.导航定位:利用GPS、惯性导航等传感器的数据,实现对飞行器、船舶等移动设备的精确定位。
(整理)卡尔曼滤波简介及其算法MATLAB实现代码.
式(2)中,P(k|k-1)是X(k|k-1)对应的covariance,P(k-1|k-1)是X(k-1|k-1)对应的covariance,A’表示A的转置矩阵,Q是系统过程的covariance。式子1,2就是卡尔曼滤波器5个公式当中的前两个,也就是对系统的预测。
首先,我们先要引入一个离散控制过程的系统。该系统可用一个线性随机微分方程(Linear Stochastic Difference equation)来描述:
X(k)=A X(k-1)+B U(k)+W(k)
再加上系统的测量值:
Z(k)=H X(k)+V(k)
上两式子中,X(k)是k时刻的系统状态,U(k)是k时刻对系统的控制量。A和B是系统参数,对于多模型系统,他们为矩阵。Z(k)是k时刻的测量值,H是测量系统的参数,对于多测量系统,H为矩阵。W(k)和V(k)分别表示过程和测量的噪声。他们被假设成高斯白噪声(White Gaussian Noise),他们的covariance分别是Q,R(这里我们假设他们不随系统状态变化而变化)。
现在我们有了现在状态的预测结果,然后我们再收集现在状态的测量值。结合预测值和测量值,我们可以得到现在状态(k)的最优化估算值X(k|k):
X(k|k)= X(k|k-1)+Kg(k) (Z(k)-H X(k|
Kg(k)= P(k|k-1) H’ / (H P(k|k-1) H’ + R)………(4)
现在我们已经得到k时刻的最优温度值了,下一步就是要进入k+1时刻,进行新的最优估算。到现在为止,好像还没看到什么自回归的东西出现。对了,在进入k+1时刻之前,我们还要算出k时刻那个最优值(24.56度)的偏差。算法如下:((1-Kg)*5^2)^0.5=2.35。这里的5就是上面的k时刻你预测的那个23度温度值的偏差,得出的2.35就是进入k+1时刻以后k时刻估算出的最优温度值的偏差(对应于上面的3)。
卡尔曼滤波 matlab代码
卡尔曼滤波matlab代码卡尔曼滤波Matlab 代码卡尔曼滤波是一种递归的状态估计算法,用于估计随时间变化的系统状态,它通过将过去的观测值与预测模型相结合,得出对当前状态的最优估计。
在Matlab中,我们可以利用内置函数或自己编写的函数来实现卡尔曼滤波算法。
首先,我们需要定义一个状态空间模型。
状态空间模型由状态方程和观测方程组成。
状态方程描述了系统状态如何从先前的状态和控制输入中演化到当前状态,观测方程描述了如何从系统状态中得出观测值。
在Matlab中,我们可以使用以下代码定义状态方程和观测方程。
matlab状态方程A = [1 1; 0 1]; 状态转移矩阵B = [0.5; 1]; 控制输入矩阵C = [1 0]; 观测矩阵Q = [0.1 0; 0 0.1]; 状态噪声协方差矩阵R = 1; 观测噪声方差观测方程sys = ss(A, B, C, 0);[K, P, E] = lqr(sys, Q, R); 最优控制器增益矩阵上述代码中,`A`是状态转移矩阵,表示系统状态如何从t-1时刻转移到t 时刻。
`B`是控制输入矩阵,表示控制输入如何影响系统状态的演化。
`C`是观测矩阵,用于将系统状态映射到观测值。
`Q`是状态噪声协方差矩阵,用于描述系统状态的不确定性。
`R`是观测噪声方差,用于描述观测值的不确定性。
接下来,我们可以利用卡尔曼滤波算法来估计系统状态。
在Matlab中,可以使用`kalman`函数来实现卡尔曼滤波。
matlab卡尔曼滤波x0 = [0; 0]; 初始状态估计P0 = eye(2); 初始估计误差协方差矩阵观测值t = 0:0.1:10;u = sin(t);w = sqrt(Q) * randn(size(t));v = sqrt(R) * randn(size(t));x = zeros(2, length(t));y = zeros(1, length(t));for k = 1:length(t)系统模型x(:, k+1) = A * x(:, k) + B * u(k) + w(:, k);y(:, k) = C * x(:, k) + v(:, k);end卡尔曼滤波x_hat = zeros(size(x));P = zeros(size(P0));for k = 1:length(t)预测x_hat(:, k+1) = A * x_hat(:, k) + B * u(k);P = A * P * A' + Q;更新K = P * C' / (C * P * C' + R);x_hat(:, k+1) = x_hat(:, k+1) + K * (y(:, k) - C * x_hat(:, k+1));P = (eye(2) - K * C) * P;end在上述代码中,`x0`和`P0`分别是初始状态估计和初始估计误差协方差矩阵。
传感器数据卡尔曼滤波算法matlab
传感器数据卡尔曼滤波算法matlab【传感器数据卡尔曼滤波算法matlab】一. 介绍传感器在现代科技中发挥着重要的作用,但是由于各种环境因素和传感器自身的误差,传感器数据往往存在噪声和偏差。
要提取精确、可靠的信息,就需要使用滤波算法。
卡尔曼滤波算法是一种常用的滤波算法之一,特别适用于具有线性系统和高斯噪声的问题。
本文将详细介绍如何使用MATLAB实现传感器数据的卡尔曼滤波算法,并分析其优缺点。
二. 卡尔曼滤波算法原理卡尔曼滤波算法通过在观测数据与模型预测之间建立残差求解,不断更新模型预测值,从而得到更精确的数据估计结果。
其核心思想是综合利用系统动力学模型和传感器测量数据,不断校正预测状态。
卡尔曼滤波常用于线性系统,其基本过程包括预测和更新两个步骤:1. 预测(时间更新):基于系统动力学模型,通过上一时刻的状态估计值和过程噪声,预测当前时刻的状态估计值以及系统的协方差矩阵。
2. 更新(测量更新):基于传感器测量数据,通过测量模型,将预测的状态估计值与传感器测量结果进行比较,得到更新后的状态估计值以及更新后的协方差矩阵。
三. 卡尔曼滤波算法MATLAB实现步骤1. 初始化:定义系统模型(状态转移矩阵A,测量矩阵C)、系统噪声协方差矩阵Q和测量噪声协方差矩阵R、初始状态估计值x0以及初始协方差矩阵P0。
2. 预测:根据系统模型和上一时刻的状态估计值,计算当前时刻的状态预测值x_pred和协方差预测值P_pred。
x_pred = A * x + B * uP_pred = A * P * A' + Q其中,u为系统的控制输入。
3. 更新:根据传感器测量结果z,进行状态更新。
K = P_pred * C' * inv(C * P_pred * C' + R)x = x_pred + K * (z C * x_pred)P = (eye(size(A)) K * C) * P_pred其中,K为卡尔曼增益矩阵。
卡尔曼滤波原理及应用-matlab仿真代码
一、概述在信号处理和控制系统中,滤波是一种重要的技术手段。
卡尔曼滤波作为一种优秀的滤波算法,在众多领域中得到了广泛的应用。
其原理简单而高效,能够很好地处理系统的状态估计和信号滤波问题。
本文将对卡尔曼滤波的原理及其在matlab中的仿真代码进行介绍,以期为相关领域的研究者和工程师提供一些参考和帮助。
二、卡尔曼滤波原理1.卡尔曼滤波的基本思想卡尔曼滤波是一种递归自适应的滤波算法,其基本思想是利用系统的动态模型和实际测量值来进行状态估计。
在每次测量值到来时,根据当前的状态估计值和测量值,通过递推的方式得到下一时刻的状态估计值,从而实现动态的状态估计和信号滤波。
2.卡尔曼滤波的数学模型假设系统的状态方程和观测方程分别为:状态方程:x(k+1) = Ax(k) + Bu(k) + w(k)观测方程:y(k) = Cx(k) + v(k)其中,x(k)为系统的状态向量,u(k)为系统的输入向量,w(k)和v(k)分别为状态方程和观测方程的噪声向量。
A、B、C为系统的参数矩阵。
3.卡尔曼滤波的步骤卡尔曼滤波的具体步骤如下:(1)初始化首先对系统的状态向量和协方差矩阵进行初始化,即给定初始的状态估计值和误差协方差矩阵。
(2)预测根据系统的状态方程,利用上一时刻的状态估计值和协方差矩阵进行状态的预测,得到状态的先验估计值和先验协方差矩阵。
(3)更新利用当前时刻的观测值和预测得到的先验估计值,通过卡尔曼增益计算出状态的后验估计值和后验协方差矩阵,从而完成状态的更新。
三、卡尔曼滤波在matlab中的仿真代码下面是卡尔曼滤波在matlab中的仿真代码,以一维线性动态系统为例进行演示。
定义系统参数A = 1; 状态转移矩阵C = 1; 观测矩阵Q = 0.1; 状态方程噪声方差R = 1; 观测噪声方差x0 = 0; 初始状态估计值P0 = 1; 初始状态估计误差协方差生成系统数据T = 100; 时间步数x_true = zeros(T, 1); 真实状态值y = zeros(T, 1); 观测值x_est = zeros(T, 1); 状态估计值P = zeros(T, 1); 状态估计误差协方差初始化x_est(1) = x0;P(1) = P0;模拟系统动态for k = 2:Tx_true(k) = A * x_true(k-1) + sqrt(Q) * randn(); 生成真实状态值y(k) = C * x_true(k) + sqrt(R) * randn(); 生成观测值预测x_pred = A * x_est(k-1);P_pred = A * P(k-1) * A' + Q;更新K = P_pred * C' / (C * P_pred * C' + R);x_est(k) = x_pred + K * (y(k) - C * x_pred);P(k) = (1 - K * C) * P_pred;end绘制结果figure;plot(1:T, x_true, 'b', 1:T, y, 'r', 1:T, x_est, 'g');legend('真实状态值', '观测值', '状态估计值');通过上面的matlab代码可以实现一维线性动态系统的状态估计和滤波,并且绘制出真实状态值、观测值和状态估计值随时间变化的曲线。
卡尔曼滤波原理及应用matlab仿真第二版
《卡尔曼滤波原理及应用matlab仿真第二版》是一本深入探讨卡尔曼滤波原理和其在matlab中应用的专业书籍。
本书通过对卡尔曼滤波原理的详细剖析,加之丰富的matlab仿真实例,为读者提供了深入理解和应用卡尔曼滤波的宝贵资料。
本书的主要内容如下:一、卡尔曼滤波原理1. 基本概念卡尔曼滤波是一种线性最优滤波器,通过融合系统模型和实际观测值,可以对系统状态进行估计。
本书对卡尔曼滤波的基本概念进行了详细阐述,包括状态空间模型、观测模型、预测和更新等基本原理。
2. 数学推导为了帮助读者深入理解卡尔曼滤波原理,本书对卡尔曼滤波的数学推导进行了全面而系统的讲解,包括卡尔曼滤波的求解方程、卡尔曼增益的计算等内容。
3. 算法实现除了理论推导,本书还详细介绍了卡尔曼滤波算法的实现步骤,并结合matlab示例进行了实际演示,帮助读者具体了解卡尔曼滤波在实际应用中的具体操作。
二、matlab仿真应用1. matlab基础本书首先对matlab的基础知识进行了简要介绍,包括matlab的基本语法、矩阵运算、绘图函数等内容,为后续的卡尔曼滤波仿真应用做了铺垫。
2. 卡尔曼滤波仿真通过具体的matlab仿真实例,本书展示了卡尔曼滤波在不同应用场景下的具体应用,包括目标跟踪、航空航天领域、自动驾驶等领域,帮助读者从实际案例中更好地理解卡尔曼滤波的应用方法。
3. 仿真案例分析针对具体的仿真案例,本书进行了详细的分析和讨论,包括数据处理方法、滤波效果评估等内容,帮助读者深入理解卡尔曼滤波在实际应用中的具体操作步骤和注意事项。
三、实战案例与实践1. 行业案例分析本书结合实际行业案例,对卡尔曼滤波在航空航天、汽车驾驶辅助系统、无人机等领域的应用进行了案例分析,帮助读者更好地理解卡尔曼滤波在实际工程中的应用价值。
2. 实战技巧除了理论知识和仿真应用,本书还总结了在实际工程中使用卡尔曼滤波的一些实战技巧,包括滤波参数调整、模型选择、实时数据处理等方面的经验共享,为读者实际应用卡尔曼滤波提供了有益的参考。
卡尔曼滤波原理及应用matlab
卡尔曼滤波原理及应用matlab什么是卡尔曼滤波?卡尔曼滤波(Kalman Filter)是一种递归滤波算法,用于估计系统的状态变量,同时能够考虑到系统中的测量噪声和过程噪声。
它被广泛应用于信号处理、控制系统、导航系统等领域。
1. 卡尔曼滤波原理卡尔曼滤波的基本原理可以简单概括为:先预测系统的状态变量,再通过测量数据对预测结果进行校正,得到更准确的状态估计。
具体步骤如下:(1)初始化:设定系统的初始状态估计值和协方差矩阵。
(2)预测状态:基于系统的动态模型,通过前一时刻的状态估计值和控制输入(如果有),利用状态方程预测当前时刻的状态和协方差。
(3)状态更新:根据当前时刻的测量数据,通过测量方程计算状态的残差,然后利用卡尔曼增益对预测的状态估计进行校正,得到更新后的状态和协方差。
(4)返回第二步,重复进行预测和更新。
卡尔曼滤波的核心在于通过系统模型和测量数据不断进行预测和校正,利用预测的结果和测量数据之间的差异来修正状态估计,从而对真实状态进行有效的估计。
2. 卡尔曼滤波的应用卡尔曼滤波在实际应用中有广泛的领域,下面介绍一些常见的应用场景。
(1)信号处理:在信号处理领域,卡尔曼滤波可用于降噪、信号提取、信号预测等工作。
通过将测量噪声和过程噪声考虑进来,卡尔曼滤波能够对信号进行更精确的估计和分离。
(2)控制系统:在控制系统中,卡尔曼滤波可用于状态估计,即根据系统的输入和输出,通过滤波算法估计系统的状态变量。
这对于控制系统的稳定性和性能提升具有重要意义。
(3)导航系统:卡尔曼滤波在导航系统中被广泛应用。
由于导航系统通常包含多个传感器,每个传感器都有测量误差,卡尔曼滤波能够通过融合多个传感器的测量数据,获得更准确的位置和速度估计。
(4)图像处理:卡尔曼滤波也可用于图像处理中的目标跟踪和运动估计。
通过将目标的位置和速度作为状态变量,将图像的测量数据带入卡尔曼滤波算法,可以实现对目标运动的预测和跟踪。
3. 使用MATLAB实现卡尔曼滤波MATLAB是一种强大的数学建模和仿真工具,也可以用于实现卡尔曼滤波算法。
卡尔曼滤波matlab代码
卡尔曼滤波matlab代码
卡尔曼滤波(Kalman Filter)是一种有效融合测量数据的算法,由德国工程师卡尔曼博士发明,能够处理从随机过程中获得的非完全信息,将历史数据和测量信息进行综合的面向状态的算法。
它利用模型估计和更新未知状态,以达到估计未知状态的目的。
步骤1:设定卡尔曼滤波器:卡尔曼滤波器是利用上一时刻状态估计结果和当前测量值来对当前状态继续估计,因此每次只需输入一个新的测量值,即可完成所有的风险估计。
步骤2:确定状态转移模型:卡尔曼滤波用于处理非完全信息,从未知状态开始,将先验状态估计与新数据进行融合,在此过程中,必须根据状态转移模型确定状态转移参数。
步骤3:建立测量模型:通过测量模型将状态变量转换为可度量的测量量,即各状态变量与其输出测量变量之间的函数关系。
步骤4:在滤波器中实现卡尔曼滤波:。
基于MATLAB的卡尔曼滤波法参数辨识与仿真
基于MATLAB的卡尔曼滤波法参数辨识与仿真童余德周永余陈永冰周岗(海军工程大学电气与信息工程学院导航工程系,武汉 430033)摘要:本文介绍了基于MATLAB的使用卡尔曼滤波法进行参数辨识的设计与仿真方法。
简述了参数辨识的概念和卡尔曼滤波法应用于参数辨识的基本原理,结合实例与最小二乘法进行比较,给出了相应的仿真结果和分析。
关键词:Matlab 参数辨识 卡尔曼滤波法 最小二乘法中图分类号:TP311 TN713 文献标识码:A 文章编号:1003-4862 (2009) 08-0047-04Kalman Filter Parameter Identification andEmulate Based on MatlabTong Yude, Zhou Yongyu, Chen Yongbing, Zhou Gang(College of Naval Architecture and Power, Naval University of Engineering, Wuhan 430033, China)Abstract:This paper introduces the methods of design and simulation of parameter identification using kalman filter theory based on Matlab.This paper also introduces the concept of parameter identification and the basic principle of how to apply kalman filter theory to parameter identification. Finally, according to two examples, the methods of kalman filter theory and least squares used in parameter identification are compared and the simulation and results are also analyzed.Key words: Matlab; parameter identification; kalman filter theory; least squares1 引言系统辨识是根据系统的输入、输出数据辨识“灰色系统”或“黑色系统”。
matlab中卡尔曼滤波
matlab中卡尔曼滤波
卡尔曼滤波是一种用于估计系统状态的算法,它可以通过将系统的动态模型与测量数据相结合,提供对系统状态的最优估计。
在MATLAB中,可以使用内置的函数和工具箱来实现卡尔曼滤波。
首先,你需要定义系统的状态方程和观测方程。
状态方程描述系统状态随时间的演变,而观测方程描述系统状态如何被观测到。
在MATLAB中,你可以使用矩阵和向量来表示这些方程。
接下来,你可以使用`kalman`函数或者`kf`函数来实现卡尔曼滤波。
这些函数可以接受系统的状态方程和观测方程作为输入,并返回滤波后的状态估计值。
另外,MATLAB还提供了一些工具箱,如Control System Toolbox和System Identification Toolbox,这些工具箱中包含了更多高级的卡尔曼滤波函数和工具,可以帮助你更好地实现和调试卡尔曼滤波算法。
在使用卡尔曼滤波时,需要注意参数的选择和调整,如系统噪声和观测噪声的协方差矩阵,这些参数的选择会影响滤波效果。
此
外,对于非线性系统,还可以使用扩展卡尔曼滤波(EKF)或无迹卡尔曼滤波(UKF)来处理。
总之,在MATLAB中实现卡尔曼滤波需要对系统建模和MATLAB 工具的使用有一定的了解,通过合理选择函数和参数,可以实现对系统状态的准确估计。
希望这些信息能够帮助你更好地理解在MATLAB中实现卡尔曼滤波的方法和步骤。
卡尔曼滤波 matlab代码
卡尔曼滤波 matlab代码【实用版】目录一、卡尔曼滤波简介二、卡尔曼滤波算法原理三、MATLAB 代码实现卡尔曼滤波四、总结正文一、卡尔曼滤波简介卡尔曼滤波是一种线性高斯状态空间模型,主要用于估计动态系统的状态,具有良好的实时性、鲁棒性和准确性。
它广泛应用于导航、定位、机器人控制等领域。
二、卡尔曼滤波算法原理卡尔曼滤波主要包括两个部分:预测阶段和更新阶段。
预测阶段:1.初始化状态变量和协方差矩阵。
2.根据系统动态模型,预测系统的状态变量和协方差矩阵。
更新阶段:1.测量系统的状态变量,得到观测数据。
2.根据观测数据和预测的状态变量,计算卡尔曼增益。
3.使用卡尔曼增益,更新状态变量和协方差矩阵。
三、MATLAB 代码实现卡尔曼滤波以下是一个简单的卡尔曼滤波 MATLAB 代码示例:```MATLABfunction [x, P] = kalman_filter(x, P, F, Q, H, R, z)% 初始化x = 初始状态向量;P = 初始协方差矩阵;% 预测阶段F = 系统动态矩阵;Q = 测量噪声协方差矩阵;H = 观测矩阵;R = 观测噪声协方差矩阵;z = 观测数据;% 预测状态变量和协方差矩阵[x_pred, P_pred] = forward_prediction(x, P, F, Q, H, R);% 更新阶段[x_upd, P_upd] = update(x_pred, P_pred, z);% 输出结果x = x_upd;P = P_upd;endfunction [x_pred, P_pred] = forward_prediction(x, P, F, Q, H, R)% 预测状态变量和协方差矩阵x_pred = F * x;P_pred = F * P * F" + Q;endfunction [x_upd, P_upd] = update(x_pred, P_pred, z)% 更新状态变量和协方差矩阵S = H" * P_pred * H;K = P_pred * H" * S^-1;x_upd = x_pred + K * (z - H * x_pred);P_upd = (I - K * H") * P_pred;end```四、总结卡尔曼滤波是一种高效、准确的状态估计方法,适用于各种线性高斯动态系统。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
MATLAB 对卡尔曼滤波器的仿真实现刘丹,朱毅,刘冰武汉理工大学信息工程学院,武汉(430070)E-mail :liudan_ina@摘 要:本文以卡尔曼滤波器原理为理论基础,用MATLAB 进行卡尔曼滤波器仿真、对比卡尔曼滤波器的预测效果,对影响滤波其效果的各方面原因进行讨论和比较,按照理论模型进行仿真编程,清晰地表述了编程过程。
关键词:数字信号处理;卡尔曼滤波器;MATLAB ;仿真过程 中图分类号: TN912.31. 引言随着信息时代和数字世界的到来,数字信号处理已成为当今一门极其重要的学科和技术领域。
数字信号处理已在通信、语音、图像、自动控制、雷达、军事、航空航天、医疗和家用电器等众多领域得到了广泛的应用。
在数字信号处理中,数字滤波占有极其重要的地位,目前对数字滤波器的设计有多种方法,其中著名的MATLAB 软件包在多个研究领域都有着广泛的应用,它的频谱分析[1]和滤波器的分析设计功能很强,从而使数字信号处理变得十分简单、直观。
本文分析了数字滤波器的设计方法,举出了基于MATLAB 软件的信号处理工具在数字滤波器设计中的应用。
2. 卡尔曼滤波基本原理卡尔曼滤波过程实际上是获取维纳解的递推运算过程[2]。
从维纳解导出的卡尔曼滤波器实际上是卡尔曼滤波过程结束后达到稳态的情况,这时Kalman Filtering 的结果与Wiener Solution 是相同的[3]。
具体推导如下:)()1|1(ˆ)|(ˆn Gy n n x f n n x+−−= )|(ˆ)()(n n x n x n e −= 已知由此求c a cG a f F G n e E n ,)1(( ..min )]([)(2−=⎯⎯→⎯==ε由 f G fG,0⇒⎪⎪⎩⎪⎪⎨⎧∂∂=∂∂εε⑴ )]1|1(ˆ)()[()1|1(ˆ)|(ˆ−−−+−−=n n x ac n y n G n n x a n n x可以是时变的,非平稳的随机信号⑵ Q n a n P +−=)1()(2ε均为正数。
⑶ )()()(2n P C R n CP n G +=⑷)()](1[)()(n P n CG n G CPn −−==ε )(n G 是个随时间变化的量,每次输入输出,)(n G 就调整一次,并逐渐逼近Kalman Filter的增益G ,而)1()(−<n n εε,()↓↑→n n ε。
当)1()(−=n n εε时,G n G =)(。
稳态时的误差收敛值ε,由下式给出:0)1(2222222=−+−+a C QR a C Q C a R εε其中,计算滤波估计的流程图如图1所示。
图1 滤波估计流程图可以看出,滤波过程是以不断地“预测—修正”的递推方式进行计算[4],先进行预测值计算,再根据观测值得到的新信息和kalman 增益(加权项),对预测值进行修正。
由滤波值可以得到预测[5],又由预测可以得到滤波,其滤波和预测相互作用,并不要求存储任何观测数据,可以进行实时处理。
3. 程序设计卡尔曼滤波器给出了一个应用状态变量概念的公式。
而且,不同于其他的递归滤波器结构,它只需要记住一步的估计结果。
考虑过程噪声和测量噪声两个随机变量的状态模型称为随机状态模型。
用下面两个方程描述离散状态模型:1)过程方程: (1)()()()x k Ax k Bu k w k +=++其中,()w k 是由于过程模型的不确定性而产生的模型噪声,它可能是最难量化的参数。
2)输出方程:()()()y k Cx k v k =+ 其中,()v k 是测量噪声。
3)过程状态估计:状态估计分为两步,如图2所示。
图2 状态估计一个是两个采样周期之间的状态转移阶段,这个阶段叫做TU(Time Update)阶段:(|1)(1)(1)x k k Ax k Bu k ∧∧−=−+−;另一个是获得()y k 的t时刻过程状态更新阶段,这个阶段叫MU(Measurement Update)阶段.4)噪声过程卡尔曼估计滤波器可以根据控制信号()u k 和测量输出()b y k ,来估计过程输出()y k 和状态变化()x k 。
需要的先验知识包括噪声()w k 、()v k 的方差,以及如果不为零时它们的互相关性。
过程描述(见图3)图3 过程结构框图()xAx b u w =++ 这个式子是有两个输入()u t 和()w t 的状态空间描述,可用ss 函数来计算。
% Process state representationProcess=ss (Ad, [Bd Bd]), C, 0, Te, ‘inputname’,{‘u’ ‘w’},… ‘outputname’,{‘y’};()w t 和()v t 的方差分别为Q 和R 。
N 为()w t 和()v t 的互相关矩阵。
卡尔曼函数根据Q 、R 、N 和过程状态描述计算卡尔曼估计滤波器。
在这个例子中,模型噪声和测量噪声不相关,即0N =。
% noises n=100;w=0.1*randn(n,1); v=0.3*randn(n,1); Q=std(w).ˆ2; R=std(v).ˆ2; Wv=cov(v,w); N=wv(1,2);% kalman estimator[F_kalman,L,P,M]=kalman(process,Q,R);模型描述+测量噪声+卡尔曼滤波器(见图4)测量噪声加上模型输出组成输出信息。
图4 系统结构框图过程输入向量 []T uw v过程输出向量 []T b yy过程可由如下系统表示:0[]0T x Ax B B uw v ⎡⎤⎢⎥=+⎢⎥⎢⎥⎣⎦000[]001T b u C yy x w C v ⎡⎤⎡⎤⎡⎤⎢⎥=+⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎢⎥⎣⎦建立包含测量噪声的一般模型的状态空间描述。
% State representation process + measurement noise a=Ad;b=[Bd Bd [0;0]]; c=[C C];d=[0 0 0;0 0 1];process=ss (a,b,c,d,Te,’inputname’),{‘u’ ‘w’ ‘v’},… ‘outputname’,{‘y’ ‘yb’})然后把这个过程和卡尔曼滤波器联系起来,得到整个过程的状态空间描述,其输入输出如下:输入向量: []Tu w v 输出向量: ˆˆ12ˆTbyy yx x ⎡⎤⎣⎦函数parallel 用来把卡尔曼滤波器和过程联系起来。
然后,函数feedback 用来创建把过程输出b y 当作卡尔曼滤波器输入的反馈环节,最后由状态模型得到输出。
% Parallel placing process + kalman filterSysp=parallel (process, F_kalman,1,1,[ ],[ ]); % yv feedbackSyspb= feedback (sysp,1,4,2,1); % yv input cancellationSyspb=syspb ([1 2 3 4 5], [1 2 3]);4. 仿真结果下列图5、图6和图7分别为控制信号、模拟信号和测量噪声波形图。
图5 控制信号 图6 模拟噪声图7 测量噪声下面分别为有噪声过程(见图8)和无噪声过程曲线。
图8有噪声过程的响应曲线 图9 无噪声过程的响应曲线如果考虑测量噪声(变量0.3),得到图9所示的响应。
卡尔曼滤波器的估计输出接近于无噪声过程的输出(没有测量和模拟噪声)图10 估计过程输出图11 状态估计状态估计也令人满意。
所以,这样的过程避免了使用昂贵的传感器或者可以在测量比较困难或有噪声污染时使用。
5. 误差分析计算各个误差以及误差方差。
% Errors variance calculation% Modeling noisePlot (t,yp-outputs (:,1));Title (‘Modeling noise’);ec1=std (yp-outputs (:,1))% Modeling and measurement noisesPlot (t,yp-outputs (:,2));Title (‘Modeling and measurement noises’);ec2=std (yp-outputs (:,2))%Filtered processPlot (t,yp-outputs (:,3));Title (‘Filtered process’);ec3=std (yp-outputs (:,3))各个误差的图形如下:误差方差为:ec1=0.0637 误差方差为:ec2=0.3204误差方差为:ec3=0.0136图12 误差波形图估计输出信号的误差方差约为测量输出信号误差方差的1/23,约为无测量噪声时输出信号误差方差的1/15。
6. 结论卡尔曼滤波由于其在求解时不需要贮存大量的观测数据,并且当得到新的观测数据时,可随时算得新的参数滤波值,便于实时地处理观测成果,因此,卡尔曼滤波被越来越多地应用于动态数据处理中,尤其是GPS动态数据处理,惯性导航等。
本文以MATLAB6.0为例,介绍卡尔曼滤波器的设计方法,目的是为了熟悉卡尔曼滤波器算法及实现,用MATLAB进行卡尔曼滤波器仿真、对比卡尔曼滤波器的预测效果。
参考文献[1] 李勇.《MATLAB辅助现代工程数字信号处理》【M】. 西安:西安电子科技大学出版社2002年10月[2] Crochiere, Rabiner. Optimum FIR Digital Filter Implementations for Decimation, Interpolation, andNarrow-band Filtering【J】,IEEE Trans.Acoustics,Speech,and Signal Processing. 2005, V ol.23, No.5, pp.444-456.[3] Constantinides. Spectral Transformations for Digital Filters【J】,Proc.Inst.Elec.Engr.2006,V ol.117,pp.1585-1590[4] 姚天任,孙洪.《现代数字信号处理》【M】. 武汉:华中科技大学出版社.1999.11[5] 王友功,薛培鼎.《数字滤波器与信号处理》【M】.北京:电子工业出版社 2003-08Emulation of Kalman Filter with MatlabLiu Dan,Zhu Yi,Liu BingInformation Engineering School,Wuhan University of Technology,Wuhan (430070)AbstractThis paper carries out the Kalman emulation, contrast the forecast effect of Kalman filter, discuss and compare the various reasons that affect the effort of the filter. And programming emulates according to theoretical model, in writing, divide into step according to the course of entire programming to write, have described programming course distinctly.Keywords:Digital signal processing;Kalman Filter;MATLAB;emulation programming。