扩展卡尔曼滤波matlab程序
卡尔曼滤波轨迹预测matlab
卡尔曼滤波是一种由芬兰控制理论专家卡尔曼(R.E.Kalman)于20世纪60年代提出的一种适用于线性动态系统的状态估计方法,它的原理是根据系统的数学模型通过观测数据对系统状态进行动态估计,具有对系统参数模型的误差进行校正、对系统运动的预测与跟踪的优点。
在今天的科学技术发展中,卡尔曼滤波已经广泛应用于航空航天、导航、通信、天文测量、生物医学工程等众多领域。
其中,在轨迹预测方面,卡尔曼滤波可以通过对目标的动态模型进行建模,结合观测数据,实现对目标位置的精确预测。
而在使用matlab进行卡尔曼滤波轨迹预测时,通常需要按照以下步骤进行操作:1. 建立系统模型在matlab中,首先需要根据目标运动的特点建立系统的动态模型。
这个过程通常会涉及到目标的运动方程、动态参数、观测误差等内容。
在建立好系统模型后,可以将系统模型表示为状态方程和观测方程。
2. 初始化滤波器参数在进行卡尔曼滤波之前,需要对滤波器的初始状态进行初始化,这包括系统状态向量的初始估计、系统噪声和观测噪声的协方差矩阵等参数的初始化。
3. 观测数据处理在实际应用中,通常会通过传感器或者其他设备获取目标的观测数据,这些数据需要进行预处理,包括去噪、滤波等操作,以提高滤波器的效果。
4. 卡尔曼滤波预测在完成上述准备工作后,就可以利用matlab中的卡尔曼滤波函数进行轨迹预测了。
这个过程通常包括对观测数据和系统模型进行融合,实现对目标轨迹的准确预测。
5. 评估与调整需要对滤波结果进行评估与调整。
这个过程包括对滤波器参数的调整优化以及与实际观测数据进行对比等步骤,以保证滤波器的准确性与稳定性。
总结来看,matlab在卡尔曼滤波轨迹预测中具有良好的适用性和灵活性,可以帮助用户快速、准确地实现对目标轨迹的预测与跟踪。
但在实际应用中,用户需要根据具体的系统模型和观测数据特点来合理选择滤波参数,以最大程度地发挥卡尔曼滤波的优势。
在进行卡尔曼滤波轨迹预测时,用户除了需要掌握matlab的基本操作以外,更需要对卡尔曼滤波理论有着深刻的理解与应用能力,这样才能更好地利用卡尔曼滤波来实现目标轨迹的准确预测与跟踪,为实际应用提供更好的支持与保障。
基于扩展卡尔曼滤波的目标跟踪定位算法及matlab程序实现
基于扩展卡尔曼滤波的目标跟踪定位算法及matlab程序实现扩展卡尔曼滤波(Extended Kalman Filter,EKF)是一种用于非线性系统状态估计的算法。
在目标跟踪定位中,它可以用于估计目标的运动轨迹。
下面是一个简单的基于扩展卡尔曼滤波的目标跟踪定位算法的描述,以及一个简化的MATLAB程序实现。
算法描述1. 初始化:设置初始状态估计值(例如位置和速度)以及初始的估计误差协方差矩阵。
2. 预测:根据上一时刻的状态估计值和模型预测下一时刻的状态。
3. 更新:结合观测数据和预测值,使用扩展卡尔曼滤波算法更新状态估计值和估计误差协方差矩阵。
4. 迭代:重复步骤2和3,直到达到终止条件。
MATLAB程序实现这是一个简化的示例,仅用于说明扩展卡尔曼滤波在目标跟踪定位中的应用。
实际应用中,您需要根据具体问题和数据调整模型和参数。
```matlab% 参数设置dt = ; % 时间间隔Q = ; % 过程噪声协方差R = 1; % 观测噪声协方差x_est = [0; 0]; % 初始位置估计P_est = eye(2); % 初始估计误差协方差矩阵% 模拟数据:观测位置和真实轨迹N = 100; % 模拟数据点数x_true = [0; 0]; % 真实轨迹初始位置for k = 1:N% 真实轨迹模型(这里使用简化的匀速模型)x_true(1) = x_true(1) + x_true(2)dt;x_true(2) = x_true(2);% 观测模型(这里假设有噪声)z = x_true + sqrt(R)randn; % 观测位置% 扩展卡尔曼滤波更新步骤[x_est, P_est] = ekf_update(x_est, P_est, z, dt, Q, R);end% 扩展卡尔曼滤波更新函数(这里简化为2D一维情况)function [x_est, P_est] = ekf_update(x_est, P_est, z, dt, Q, R)% 预测步骤:无观测时使用上一时刻的状态和模型预测下一时刻状态F = [1 dt; 0 1]; % 状态转移矩阵(这里使用简化的匀速模型)x_pred = Fx_est + [0; 0]; % 预测位置P_pred = FP_estF' + Q; % 预测误差协方差矩阵% 更新步骤:结合观测数据和预测值进行状态更新和误差协方差矩阵更新K = P_predinv(HP_pred + R); % 卡尔曼增益矩阵x_est = x_pred + K(z - Hx_pred); % 更新位置估计值P_est = (eye(2) - KH)P_pred; % 更新误差协方差矩阵end```这个示例代码使用扩展卡尔曼滤波对一个简化的匀速运动模型进行估计。
信号处理 扩展卡尔曼滤波数据融合代码matlab
信号处理扩展卡尔曼滤波数据融合代码matlab 如何使用扩展卡尔曼滤波(Extended Kalman Filter, EKF)进行数据融合的问题,并提供MATLAB代码示例。
引言:现代技术的快速发展使得传感器的数量和种类越来越多。
数据融合是将多个传感器的测量结果进行合并,以得到更准确、更可靠的估计值的过程。
扩展卡尔曼滤波是一种常用的数据融合算法,特别适用于非线性系统的估计。
正文:扩展卡尔曼滤波是对卡尔曼滤波的一种扩展,它利用非线性系统的一阶泰勒展开,以线性化的形式近似非线性系统。
步骤一:构建状态方程和观测方程首先,我们需要构建状态方程和观测方程。
状态方程描述系统的动力学变化,而观测方程描述传感器对状态量的测量。
假设我们有一个非线性系统,其状态方程可以表示为:x(k) = f(x(k-1), u(k-1)) + w(k-1)其中,x(k)是系统在时刻k的状态量,f是非线性函数,u(k-1)是时刻k-1的控制量,w(k-1)是过程噪声。
观测方程可以表示为:z(k) = h(x(k)) + v(k)其中,z(k)是传感器在时刻k的测量值,h是非线性函数,v(k)是观测噪声。
步骤二:线性化模型由于扩展卡尔曼滤波是基于线性化模型的,我们需要对状态方程和观测方程进行线性化处理。
线性化可以使用一阶泰勒展开来近似非线性函数。
具体地,我们可以通过对状态方程和观测方程求一阶偏导数得到线性化模型。
步骤三:初始化滤波器扩展卡尔曼滤波的初始化包括初始化状态量估计和协方差矩阵。
初始状态量估计可以通过系统初始条件提供,而协方差矩阵可以设置为一个足够大的值,表示对初始估计的不确定性。
步骤四:预测步骤在预测步骤中,我们使用状态方程和控制量来预测时刻k的状态量估计。
同时,我们也需要更新状态量的协方差矩阵。
具体地,预测的状态量估计可以表示为:x^(k) = f(x^(k-1), u(k-1))预测的协方差矩阵可以表示为:P^(k) = A * P(k-1) * A' + Q(k-1)其中,x^(k)是时刻k的预测状态量估计,P^(k)是时刻k的预测协方差矩阵,A是状态方程的雅可比矩阵,Q(k-1)是过程噪声的协方差矩阵。
卡尔曼滤波 正弦函数 matlab
一、介绍卡尔曼滤波卡尔曼滤波是一种用于估计系统状态的线性动态系统的方法。
它是由朗迪·卡尔曼在1960年提出的。
卡尔曼滤波是一种递归滤波器,通过使用过去时刻的状态和测量,以及系统动态的模型,来预测当前时刻的状态。
二、卡尔曼滤波原理1. 状态更新步骤:在状态更新步骤中,卡尔曼滤波使用系统的动态方程来预测下一个时刻的状态。
这一步骤包括预测状态、预测状态协方差和计算卡尔曼增益。
2. 测量更新步骤:在测量更新步骤中,卡尔曼滤波使用最新的测量值来修正之前的预测。
这一步骤包括计算测量预测、计算残差、计算卡尔曼增益和更新状态估计。
三、正弦函数及其在卡尔曼滤波中的应用正弦函数是一种周期性变化的函数,具有良好的数学性质和广泛的应用。
在卡尔曼滤波中,正弦函数可以用于模拟系统的动态特性,对系统的状态进行预测和更新。
四、matlab中的卡尔曼滤波实现matlab是一种用于科学计算和工程应用的高级技术计算语言和交互环境。
在matlab中,可以很方便地实现和应用卡尔曼滤波算法。
1. 使用matlab进行线性动态系统建模在matlab中,可以使用state-space模型来表示线性动态系统的状态空间方程。
通过定义系统的状态方程、测量方程、过程噪声和观测噪声,可以建立系统的状态空间模型。
2. 使用matlab实现卡尔曼滤波算法在matlab中,可以使用kalman滤波器函数来实现卡尔曼滤波算法。
首先需要定义系统的状态转移矩阵、测量矩阵、过程噪声协方差矩阵和观测噪声协方差矩阵。
然后利用kalman滤波器函数,输入系统模型和测量值,即可得到卡尔曼滤波器的输出。
3. 使用matlab对正弦函数进行卡尔曼滤波在matlab中,可以构建一个包含正弦函数的模拟系统,并对其进行卡尔曼滤波。
通过比较卡尔曼滤波的结果和真实正弦函数的值,可以评估卡尔曼滤波算法的性能。
五、结论卡尔曼滤波是一种用于估计系统状态的有效方法,在很多领域都有广泛的应用。
卡尔曼滤波器及matlab实现
卡尔曼滤波器及Matlab实现简介卡尔曼滤波器是一种常用于估计系统状态的滤波器,特别适用于具有线性动态模型和高斯噪声的系统。
它通过结合系统的测量值和模型预测的状态来估计系统的状态,并利用测量噪声和模型噪声的特性进行优化。
本文将介绍卡尔曼滤波器的基本原理,并使用Matlab实现一个简单的卡尔曼滤波器。
卡尔曼滤波器的基本原理卡尔曼滤波器的基本原理可以描述为以下步骤:1.初始化卡尔曼滤波器的状态估计值和协方差矩阵。
通常情况下,可以将初始状态设定为系统的初始状态,协方差矩阵设定为一个较大的值。
2.预测步骤:根据系统的动态模型预测下一时刻的状态和协方差矩阵。
3.更新步骤:使用测量值来更新预测的状态和协方差矩阵,得到最优的状态估计值和协方差矩阵。
具体的数学表达式如下:预测步骤:预测的状态估计值:x_k = A*x_(k-1) + B*u_k预测的协方差矩阵:P_k = A*P_(k-1)*A' + Q其中,A是状态转移矩阵,B是输入控制矩阵,u_k是输入控制向量,Q是模型噪声协方差。
更新步骤:测量残差:y_k = z_k - H*x_k残差协方差矩阵:S_k = H*P_k*H' + R卡尔曼增益:K_k = P_k*H'*inv(S_k)更新后的状态估计值:x_k = x_k + K_k*y_k更新后的协方差矩阵:P_k = (I - K_k*H)*P_k其中,H是观测矩阵,z_k是测量值,R是测量噪声协方差。
Matlab实现接下来,我们使用Matlab来实现一个简单的卡尔曼滤波器。
我们假设一个一维运动系统,系统状态为位置,系统模型如下:x_k = x_(k-1) + v_(k-1) * dtv_k = v_(k-1) + a_(k-1) * dt式中,x_k是当前时刻的位置,v_k是当前时刻的速度,a_k是当前时刻的加速度,dt是时间步长。
假设我们只能通过传感器得到位置信息,并且测量噪声服从均值为0、方差为0.1的高斯分布。
自适应扩展卡尔曼滤波matlab
自适应扩展卡尔曼滤波matlab自适应扩展卡尔曼滤波(Adaptive Extended Kalman Filter,AEKF)是一种用于非线性系统状态估计的滤波算法。
本文将介绍AEKF算法的原理、步骤和实现方法,并结合MATLAB 编写代码进行演示。
一、扩展卡尔曼滤波原理扩展卡尔曼滤波(Extended Kalman Filter,EKF)是一种用于非线性系统状态估计的滤波算法。
它通过使用线性化系统模型的方式将非线性系统转换为线性系统,在每个时间步骤中用线性卡尔曼滤波器进行状态估计。
然而,EKF仅限于具有凸多边形测量特性的问题,并且对线性化过程误差敏感。
为了解决这些问题,AEKF通过自适应更新协方差矩阵的方式提高了滤波器的性能。
AEKF通过测量残差的方差更新协方差矩阵,从而提高了滤波器对非线性系统的适应能力。
AEKF算法的步骤如下:1. 初始化状态向量和协方差矩阵。
2. 根据系统的非线性动力学方程和测量方程计算预测状态向量和协方差矩阵。
3. 计算测量残差,即测量值与预测值之间的差值。
4. 计算测量残差的方差。
5. 判断测量残差的方差是否超过预设阈值,如果超过,则更新协方差矩阵。
6. 利用更新后的协方差矩阵计算最优滤波增益。
7. 更新状态向量和协方差矩阵。
8. 返回第2步,进行下一次预测。
二、AEKF算法的MATLAB实现下面,我们将使用MATLAB编写AEKF算法的代码,并通过一个实例进行演示。
首先,定义非线性系统的动力学方程和测量方程。
在本例中,我们使用一个双摆系统作为非线性系统模型。
```matlabfunction x_next = nonlinear_dynamics(x_current, u)% Nonlinear system dynamicstheta1 = x_current(1);theta2 = x_current(2);d_theta1 = x_current(3);d_theta2 = x_current(4);g = 9.8; % Gravitational accelerationd_theta1_next = d_theta1 + dt * (-3*g*sin(theta1) - sin(theta1-theta2) ...+ 2*sin(theta1-theta2)*(d_theta2^2 + d_theta1^2*cos(theta1-theta2))) .../ (3 - cos(2*(theta1-theta2)));d_theta2_next = d_theta2 + dt * (2*sin(theta1-theta2)*(2*d_theta2^2 ...+ d_theta1^2*cos(theta1-theta2) + g*cos(theta1) +g*cos(theta1-theta2))) .../ (3 - cos(2*(theta1-theta2)));theta1_next = theta1 + dt * d_theta1_next;theta2_next = theta2 + dt * d_theta2_next;x_next = [theta1_next; theta2_next; d_theta1_next;d_theta2_next];endfunction y = measurement_model(x)% Measurement model, measure the angles of the double pendulumtheta1 = x(1);theta2 = x(2);y = [theta1; theta2];end```然后,定义AEKF算法的实现。
扩展卡尔曼滤波算法的matlab程序
clear allv=150; %%目标速度v_sensor=0;%%传感器速度t=1; %%扫描周期xradarpositon=0; %%传感器坐标yradarpositon=0; %%ppred=zeros(4,4);Pzz=zeros(2,2);Pxx=zeros(4,2);xpred=zeros(4,1);ypred=zeros(2,1);sumx=0;sumy=0;sumxukf=0;sumyukf=0;sumxekf=0;sumyekf=0; %%%统计的初值L=4;alpha=1;kalpha=0;belta=2;ramda=3-L;azimutherror=0.015; %%方位均方误差rangeerror=100; %%距离均方误差processnoise=1; %%过程噪声均方差tao=[t^3/3 t^2/2 0 0;t^2/2 t 0 0;0 0 t^3/3 t^2/2;0 0 t^2/2 t]; %% the input matrix of process G=[t^2/2 0t 00 t^2/20 t ];a=35*pi/180;a_v=5/100;a_sensor=45*pi/180;x(1)=8000; %%初始位置y(1)=12000;for i=1:200x(i+1)=x(i)+v*cos(a)*t;y(i+1)=y(i)+v*sin(a)*t;endfor i=1:200xradarpositon=0;yradarpositon=0;Zmeasure(1,i)=atan((y(i)-yradarpositon)/(x(i)-xradarpositon))+random('Normal',0,azimutherror,1,1); Zmeasure(2,i)=sqrt((y(i)-yradarpositon)^2+(x(i)-xradarpositon)^2)+random('Normal',0,rangeerror,1,1);xx(i)=Zmeasure(2,i)*cos(Zmeasure(1,i));%%观测值yy(i)=Zmeasure(2,i)*sin(Zmeasure(1,i));measureerror=[azimutherror^2 0;0 rangeerror^2];processerror=tao*processnoise;vNoise = size(processerror,1);wNoise = size(measureerror,1);A=[1 t 0 0;0 1 0 0;0 0 1 t;0 0 0 1];Anoise=size(A,1);for j=1:2*L+1Wm(j)=1/(2*(L+ramda));Wc(j)=1/(2*(L+ramda));endWm(1)=ramda/(L+ramda);Wc(1)=ramda/(L+ramda);%+1-alpha^2+belta; %%%权值if i==1xerror=rangeerror^2*cos(Zmeasure(1,i))^2+Zmeasure(2,i)^2*azimutherror^2*sin(Zmeasure(1,i))^2; yerror=rangeerror^2*sin(Zmeasure(1,i))^2+Zmeasure(2,i)^2*azimutherror^2*cos(Zmeasure(1,i))^2; xyerror=(rangeerror^2-Zmeasure(2,i)^2*azimutherror^2)*sin(Zmeasure(1,i))*cos(Zmeasure(1,i));P=[xerror xerror/t xyerror xyerror/t;xerror/t 2*xerror/(t^2) xyerror/t 2*xyerror/(t^2);xyerror xyerror/t yerror yerror/t;xyerror/t 2*xyerror/(t^2) yerror/t 2*yerror/(t^2)];xestimate=[Zmeasure(2,i)*cos(Zmeasure(1,i)) 0 Zmeasure(2,i)*sin(Zmeasure(1,i)) 0 ]'; endcho=(chol(P*(L+ramda)))';%for j=1:LxgamaP1(:,j)=xestimate+cho(:,j);xgamaP2(:,j)=xestimate-cho(:,j);endXsigma=[xestimate xgamaP1 xgamaP2];F=A;Xsigmapre=F*Xsigma;xpred=zeros(Anoise,1);for j=1:2*L+1xpred=xpred+Wm(j)*Xsigmapre(:,j);endNoise1=Anoise;ppred=zeros(Noise1,Noise1);for j=1:2*L+1ppred=ppred+Wc(j)*(Xsigmapre(:,j)-xpred)*(Xsigmapre(:,j)-xpred)';endppred=ppred+processerror;chor=(chol((L+ramda)*ppred))';for j=1:LXaugsigmaP1(:,j)=xpred+chor(:,j);XaugsigmaP2(:,j)=xpred-chor(:,j);endXaugsigma=[xpred XaugsigmaP1 XaugsigmaP2 ];for j=1:2*L+1Ysigmapre(1,j)=atan(Xaugsigma(3,j)/Xaugsigma(1,j)) ;Ysigmapre(2,j)=sqrt((Xaugsigma(1,j))^2+(Xaugsigma(3,j))^2);endypred=zeros(2,1);for j=1:2*L+1ypred=ypred+Wm(j)*Ysigmapre(:,j);endPzz=zeros(2,2);for j=1:2*L+1Pzz=Pzz+Wc(j)*(Ysigmapre(:,j)-ypred)*(Ysigmapre(:,j)-ypred)';endPzz=Pzz+measureerror;Pxy=zeros(Anoise,2);for j=1:2*L+1Pxy=Pxy+Wc(j)*(Xaugsigma(:,j)-xpred)*(Ysigmapre(:,j)-ypred)';endK=Pxy*inv(Pzz);xestimate=xpred+K*(Zmeasure(:,i)-ypred);P=ppred-K*Pzz*K';xukf(i)=xestimate(1,1);yukf(i)=xestimate(3,1); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%% EKF PRO%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%if i==1ekf_p=[xerror xerror/t xyerror xyerror/t;xerror/t 2*xerror/(t^2) xyerror/t 2*xyerror/(t^2);xyerror xyerror/t yerror yerror/t;xyerror/t 2*xyerror/(t^2) yerror/t 2*yerror/(t^2)];ekf_xestimate=[Zmeasure(2,i)*cos(Zmeasure(1,i)) 0 Zmeasure(2,i)*sin(Zmeasure(1,i)) 0 ]';ekf_xpred=ekf_xestimate;end;F=A;ekf_xpred=F*ekf_xestimate;ekf_ppred=F*ekf_p*F'+processerror;H=[-ekf_xpred(3)/(ekf_xpred(3)^2+ekf_xpred(1)^2) 0 ekf_xpred(1)/(ekf_xpred(3)^2+ekf_xpred(1)^2) 0;ekf_xpred(1)/sqrt(ekf_xpred(3)^2+ekf_xpred(1)^2) 0 ekf_xpred(3)/sqrt(ekf_xpred(3)^2+ekf_xpred(1)^2) 0];ekf_z(1,1)=atan(ekf_xpred(3)/ekf_xpred(1)) ;ekf_z(2,1)=sqrt((ekf_xpred(1))^2+(ekf_xpred(3))^2);PHHP=H*ekf_ppred*H'+measureerror;ekf_K=ekf_ppred*H'*inv(PHHP);ekf_p=(eye(L)-ekf_K*H)*ekf_ppred;ekf_xestimate=ekf_xpred+ekf_K*(Zmeasure(:,i)-ekf_z);traceekf(i)=trace(ekf_p);xekf(i)=ekf_xestimate(1,1);yekf(i)=ekf_xestimate(3,1);errorx(i)=xx(i)+xradarpositon-x(i);errory(i)=yy(i)+yradarpositon-y(i);ukferrorx(i)=xestimate(1)+xradarpositon-x(i);ukferrory(i)=xestimate(3)+yradarpositon-y(i);ekferrorx(i)=ekf_xestimate(1)+xradarpositon-x(i); ekferrory(i)=ekf_xestimate(3)+yradarpositon-y(i);aa(i)=xx(i)+xradarpositon-x(i);;bb(i)=yy(i)+yradarpositon-y(i);sumx=sumx+(errorx(i)^2);sumy=sumy+(errory(i)^2);sumxukf=sumxukf+(ukferrorx(i)^2);sumyukf=sumyukf+(ukferrory(i)^2);sumxekf=sumxekf+(ekferrorx(i)^2);sumyekf=sumyekf+(ekferrory(i)^2);mseerrorx(i)=sqrt(sumx/(i-1));%噪声的统计均方误差mseerrory(i)=sqrt(sumy/(i-1));mseerrorxukf(i)=sqrt(sumxukf/(i-1));%UKF的统计均方误差mseerroryukf(i)=sqrt(sumyukf/(i-1));mseerrorxekf(i)=sqrt(sumxekf/(i-1));%EKF的统计均方误差mseerroryekf(i)=sqrt(sumyekf/(i-1));endfigure(1);plot(mseerrorxukf,'r');hold on;plot(mseerrorxekf,'g');hold on;plot(mseerrorx,'.');hold on;ylabel('MSE of X axis','fontsize',15);xlabel('sample number','fontsize',15);legend('UKF','EKF','measurement error');figure(2)plot(mseerroryukf,'r');hold on;plot(mseerroryekf,'g');hold on;plot(mseerrory,'.');hold on;ylabel('MSE of Y axis','fontsize',15); xlabel('sample number','fontsize',15); legend('UKF','EKF','measurement error');figure(3)plot(x,y);hold on;plot(xekf,yekf,'g');hold on;plot(xukf,yukf,'r');hold on;plot(xx,yy,'m');ylabel(' X ','fontsize',15);xlabel('Y','fontsize',15);legend('TRUE','UKF','EKF','measurements');。
卡尔曼滤波 matlab算法
卡尔曼滤波 matlab算法卡尔曼滤波是一种用于状态估计的数学方法,它通过将系统的动态模型和测量数据进行融合,可以有效地估计出系统的状态。
在Matlab中,实现卡尔曼滤波算法可以通过以下步骤进行:1. 确定系统的动态模型,首先需要将系统的动态模型表示为状态空间方程,包括状态转移矩阵、控制输入矩阵和过程噪声的协方差矩阵。
2. 初始化卡尔曼滤波器,在Matlab中,可以使用“kf = kalmanfilter(StateTransitionModel, MeasurementModel, ProcessNoise, MeasurementNoise, InitialState, 'State', InitialCovariance)”来初始化一个卡尔曼滤波器对象。
其中StateTransitionModel和MeasurementModel分别是状态转移模型和测量模型,ProcessNoise和MeasurementNoise是过程噪声和测量噪声的协方差矩阵,InitialState是初始状态向量,InitialCovariance是初始状态协方差矩阵。
3. 进行预测和更新,在每个时间步,通过调用“predict”和“correct”方法,可以对状态进行预测和更新,得到最优的状态估计值。
4. 实时应用,将测量数据输入到卡尔曼滤波器中,实时获取系统的状态估计值。
需要注意的是,在实际应用中,还需要考虑卡尔曼滤波器的参数调节、性能评估以及对不确定性的处理等问题。
此外,Matlab提供了丰富的工具箱和函数,可以帮助用户更便捷地实现和应用卡尔曼滤波算法。
总的来说,实现卡尔曼滤波算法需要对系统建模和Matlab编程有一定的了解和技能。
希望以上内容能够对你有所帮助。
(整理)卡尔曼滤波简介及其算法MATLAB实现代码.
式(2)中,P(k|k-1)是X(k|k-1)对应的covariance,P(k-1|k-1)是X(k-1|k-1)对应的covariance,A’表示A的转置矩阵,Q是系统过程的covariance。式子1,2就是卡尔曼滤波器5个公式当中的前两个,也就是对系统的预测。
首先,我们先要引入一个离散控制过程的系统。该系统可用一个线性随机微分方程(Linear Stochastic Difference equation)来描述:
X(k)=A X(k-1)+B U(k)+W(k)
再加上系统的测量值:
Z(k)=H X(k)+V(k)
上两式子中,X(k)是k时刻的系统状态,U(k)是k时刻对系统的控制量。A和B是系统参数,对于多模型系统,他们为矩阵。Z(k)是k时刻的测量值,H是测量系统的参数,对于多测量系统,H为矩阵。W(k)和V(k)分别表示过程和测量的噪声。他们被假设成高斯白噪声(White Gaussian Noise),他们的covariance分别是Q,R(这里我们假设他们不随系统状态变化而变化)。
现在我们有了现在状态的预测结果,然后我们再收集现在状态的测量值。结合预测值和测量值,我们可以得到现在状态(k)的最优化估算值X(k|k):
X(k|k)= X(k|k-1)+Kg(k) (Z(k)-H X(k|
Kg(k)= P(k|k-1) H’ / (H P(k|k-1) H’ + R)………(4)
现在我们已经得到k时刻的最优温度值了,下一步就是要进入k+1时刻,进行新的最优估算。到现在为止,好像还没看到什么自回归的东西出现。对了,在进入k+1时刻之前,我们还要算出k时刻那个最优值(24.56度)的偏差。算法如下:((1-Kg)*5^2)^0.5=2.35。这里的5就是上面的k时刻你预测的那个23度温度值的偏差,得出的2.35就是进入k+1时刻以后k时刻估算出的最优温度值的偏差(对应于上面的3)。
matlab simulink 拓展卡尔曼滤波
matlab simulink 拓展卡尔曼滤波概述
拓展卡尔曼滤波(Extended Kalman Filter,EKF)是一种用于非线性系统状态估计的滤波器。
在MATLAB Simulink中,可以使用EKF进行状态估计和参数估计。
下面是一个简单的步骤来说明如何在MATLAB Simulink中实现拓展卡尔曼滤波:
1. 打开MATLAB Simulink并创建一个新模型。
2. 在模型中添加一个EKF模块。
在Simulink库中找到EKF模块,并将其拖动到模型中。
3. 配置EKF模块的参数。
打开EKF模块的参数对话框,配置以下参数:
* 状态转移矩阵A:根据系统模型进行设置。
* 测量矩阵H:根据传感器测量模型进行设置。
* 过程噪声协方差矩阵Q:根据系统噪声模型进行设置。
* 测量噪声协方差矩阵R:根据传感器测量噪声模型进行设置。
4. 添加输入和输出模块。
在模型中添加输入模块(如模拟输入模块)来接收系统的输入信号,并添加输出模块(如模拟输出模块)来输出
估计结果。
5. 连接输入和输出模块到EKF模块。
将输入模块的输出信号连接到EKF模块的输入端口,将EKF模块的输出信号连接到输出模块的输入端口。
6. 运行模型并进行仿真。
点击Simulink窗口中的“运行”按钮,运行模型并进行仿真。
在仿真期间,输入信号将被处理并通过EKF进行状态估计和参数估计,最终输出估计结果。
需要注意的是,拓展卡尔曼滤波器的参数设置对于估计结果的准确性和稳定性至关重要。
因此,需要仔细选择合适的参数并根据实际系统进行验证和调整。
matlab卡尔曼滤波函数
matlab卡尔曼滤波函数概述卡尔曼滤波是一种广泛应用于控制工程、信号处理、计算机视觉和机器人等领域的优化方法,其主要作用是对已知量和未知量的联合分布进行估计。
在matlab中,卡尔曼滤波函数已经被封装好,不需要用户手动构建卡尔曼滤波器。
本文主要介绍matlab中卡尔曼滤波函数的使用方法。
基础知识在介绍卡尔曼滤波函数之前,需要先了解一些与卡尔曼滤波相关的基础知识。
卡尔曼滤波的基本思想是利用系统的数学模型和观测量之间存在的关系来数学建模,采用贝叶斯估计方法,通过迭代逐步优化状态估计值和估计误差协方差矩阵。
卡尔曼滤波主要分为两个步骤:1. 预测在卡尔曼滤波中,预测过程可以通过系统模型对当前状态进行推测。
通常将这个过程称之为时间更新。
这个过程可以同步化到系统的时钟上,使其在系统中能够很好的集成。
2. 更新在得到新观测值之后,就需要将预测的状态值调整到观测值。
这个过程被称为测量更新。
这个过程可以将状态估计误差协方差矩阵逐渐调整为最小值。
卡尔曼滤波的数学公式,即状态估计公式,如下所示:$x_k=\hat{x}_{k|k-1}+K_k(z_k-H_{k}\hat{x}_{k|k-1})$$x_k$为当前状态的估计值;$\hat{x}_{k|k-1}$为预测状态的估计值;$K_k$为卡尔曼增益;$z_k$为当前状态的观测值;$H_{k}$为状态量和观测量的转换矩阵。
使用matlab卡尔曼滤波函数的步骤如下。
1. 定义系统模型在使用卡尔曼滤波函数进行数据处理之前,需要先定义系统模型。
这包括:状态转移模型观测模型过程噪声测量噪声在matlab中,通常使用StateSpace模型定义卡尔曼滤波系统模型。
2. 建立卡尔曼滤波器在定义好系统模型之后,需要调用kalman函数建立卡尔曼滤波器。
语法如下:[x,P]=kalman(sys,z)sys为matlab中定义的StateSpace模型;z为输入数据序列。
返回值x为状态估计值,P为估计值的协方差矩阵。
扩展卡尔曼滤波算法的matlab程序
clear all v=150; %% 目标速度v_sensor=0;%% 传感器速度t=1; %% 扫描周期xradarpositon=0; %% 传感器坐标yradarpositon=0; %%ppred=zeros(4,4);Pzz=zeros(2,2);Pxx=zeros(4,2); xpred=zeros(4,1); ypred=zeros(2,1);sumx=0; sumy=0;sumxukf=0;sumyukf=0; sumxekf=0;sumyekf=0; %%% 统计的初值L=4; alpha=1; kalpha=0; belta=2; ramda=3-L;azimutherror=0.015; %% 方位均方误差rangeerror=100; %% 距离均方误差processnoise=1; %% 过程噪声均方差tao=[t A3/3 22/2 0 0;22/2 tO 0;0 0 tA3/3 tA2/2;0 0 tA2/2 t]; %% the input matrix of processG=[tA2/2 0t 00 tA2/20 t ];a=35*pi/180; a_v=5/100;a_sensor=45*pi/180; x(1)=8000; %% 初始位置y(1)=12000;for i=1:200 x(i+1)=x(i)+v*cos(a)*t; y(i+1)=y(i)+v*sin(a)*t; end for i=1:200xradarpositon=0;yradarpositon=0;Zmeasure(1,i)=atan((y(i)-yradarpositon)/(x(i)-xradarpositon))+random('Normal',0,azimutherror ,1,1);Zmeasure(2,i)=sqrt((y(i)-yradarpositon)A2+(x(i)-xradarpositon)A2)+random('Normal',0,rangeerror ,1,1);xx(i)=Zmeasure(2,i)*cos(Zmeasure(1,i));%% 观测值yy(i)=Zmeasure(2,i)*sin(Zmeasure(1,i));measureerror=[azimutherror A2 0;0 rangeerror A2];processerror=tao*processnoise;vNoise = size(processerror ,1);wNoise = size(measureerror ,1);A=[1 t 0 0;0 1 0 0;0 0 1 t;0 0 0 1];Anoise=size(A,1);for j=1:2*L+1Wm(j)=1/(2*(L+ramda));Wc(j)=1/(2*(L+ramda));endWm(1)=ramda/(L+ramda);Wc(1)=ramda/(L+ramda);%+1-alphaA2+belta; %%% 权值if i==1xerror=rangeerrorA2*cos(Zmeasure(1,i))A2+Zmeasure(2,i)A2*azimutherrorA2*sin(Zmeasure(1,i))A2; yerror=rangeerrorA2*sin(Zmeasure(1,i))A2+Zmeasure(2,i)A2*azimutherrorA2*cos(Zmeasure(1,i))A2; xyerror=(rangeerrorA2-Zmeasure(2,i)A2*azimutherrorA2)*sin(Zmeasure(1,i))*cos(Zmeasure(1,i)); P=[xerror xerror/t xyerror xyerror/t;xerror/t 2*xerror/(tA2) xyerror/t 2*xyerror/(tA2);xyerror xyerror/t yerror yerror/t;xyerror/t 2*xyerror/(t A2) yerror/t 2*yerror/(t A2)];xestimate=[Zmeasure(2,i)*cos(Zmeasure(1,i)) 0 Zmeasure(2,i)*sin(Zmeasure(1,i)) 0 ]'; endcho=(chol(P*(L+ramda)))';%for j=1:LxgamaP1(:,j)=xestimate+cho(:,j);xgamaP2(:,j)=xestimate-cho(:,j);endXsigma=[xestimate xgamaP1 xgamaP2];F=A;Xsigmapre=F*Xsigma;xpred=zeros(Anoise,1);for j=1:2*L+1xpred=xpred+Wm(j)*Xsigmapre(:,j);endNoise1=Anoise;ppred=zeros(Noise1,Noise1);for j=1:2*L+1 ppred=ppred+Wc(j)*(Xsigmapre(:,j)-xpred)*(Xsigmapre(:,j)-xpred)';endppred=ppred+processerror;chor=(chol((L+ramda)*ppred))';for j=1:LXaugsigmaP1(:,j)=xpred+chor(:,j);XaugsigmaP2(:,j)=xpred-chor(:,j);endXaugsigma=[xpred XaugsigmaP1 XaugsigmaP2 ];for j=1:2*L+1Ysigmapre(1,j)=atan(Xaugsigma(3,j)/Xaugsigma(1,j)) ; Ysigmapre(2,j)=sqrt((Xaugsigma(1,j))A2+(Xaugsigma(3,j))A2); endypred=zeros(2,1);for j=1:2*L+1ypred=ypred+Wm(j)*Ysigmapre(:,j);endPzz=zeros(2,2);for j=1:2*L+1Pzz=Pzz+Wc(j)*(Ysigmapre(:,j)-ypred)*(Ysigmapre(:,j)-ypred)';endPzz=Pzz+measureerror;Pxy=zeros(Anoise,2);for j=1:2*L+1Pxy=Pxy+Wc(j)*(Xaugsigma(:,j)-xpred)*(Ysigmapre(:,j)-ypred)';endK=Pxy*inv(Pzz); xestimate=xpred+K*(Zmeasure(:,i)-ypred);P=ppred-K*Pzz*K';xukf(i)=xestimate(1,1);yukf(i)=xestimate(3,1); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%% EKF PRO%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%if i==1ekf_p=[xerror xerror/t xyerror xyerror/t;xerror/t 2*xerror/(t A2) xyerror/t 2*xyerror/(t A2);xyerror xyerror/t yerror yerror/t;xyerror/t 2*xyerror/(tA2) yerror/t 2*yerror/(tA2)];ekf_xestimate=[Zmeasure(2,i)*cos(Zmeasure(1,i)) 0 Zmeasure(2,i)*sin(Zmeasure(1,i)) 0 ]';ekf_xpred=ekf_xestimate;end;F=A;ekf_xpred=F*ekf_xestimate;ekf_ppred=F*ekf_p*F'+processerror;H=[-ekf_xpred(3)/(ekf_xpred(3)A2+ekf_xpred(1)A2) 0 ekf_xpred(1)/(ekf_xpred(3)A2+ekf_xpred(1)A2)0;ekf_xpred(1)/sqrt(ekf_xpred(3)A2+ekf_xpred(1)A2) 0ekf_xpred(3)/sqrt(ekf_xpred(3)A2+ekf_xpred(1)A2) 0];ekf_z(1,1)=atan(ekf_xpred(3)/ekf_xpred(1)) ;ekf_z(2,1)=sqrt((ekf_xpred(1))A2+(ekf_xpred(3))A2);PHHP=H*ekf_ppred*H'+measureerror;ekf_K=ekf_ppred*H'*inv(PHHP);ekf_p=(eye(L)-ekf_K*H)*ekf_ppred;ekf_xestimate=ekf_xpred+ekf_K*(Zmeasure(:,i)-ekf_z);traceekf(i)=trace(ekf_p);xekf(i)=ekf_xestimate(1,1);yekf(i)=ekf_xestimate(3,1);errorx(i)=xx(i)+xradarpositon-x(i);errory(i)=yy(i)+yradarpositon-y(i);ukferrorx(i)=xestimate(1)+xradarpositon-x(i); ukferrory(i)=xestimate(3)+yradarpositon-y(i);ekferrorx(i)=ekf_xestimate(1)+xradarpositon-x(i); ekferrory(i)=ekf_xestimate(3)+yradarpositon-y(i);aa(i)=xx(i)+xradarpositon-x(i);; bb(i)=yy(i)+yradarpositon-y(i);sumx=sumx+(errorx(iF2);sumy=sumy+(errory(i)A2); sumxukf=sumxukf+(ukferrorx(iF2); sumyukf=sumyukf+(ukferrory(i)A2); sumxekf=sumxekf+(ekferrorx(i)A2); sumyekf=sumyekf+(ekferrory(i)A2);mseerrorx(i)=sqrt(sumx/(i-1));% 噪声的统计均方误差mseerrory(i)=sqrt(sumy/(i-1));mseerrorxukf(i)=sqrt(sumxukf/(i-1));%UKF 的统计均方误差mseerroryukf(i)=sqrt(sumyukf/(i-1));mseerrorxekf(i)=sqrt(sumxekf/(i-1));%EKF 的统计均方误差mseerroryekf(i)=sqrt(sumyekf/(i-1));endfigure(1);plot(mseerrorxukf,'r');hold on;plot(mseerrorxekf,'g');hold on;plot(mseerrorx,'.');hold on; ylabel('MSE of X axis','fontsize',15); xlabel('sample number','fontsize',15);legend('UKF','EKF','measurement error');figure(2) plot(mseerroryukf,'r');hold on;plot(mseerroryekf,'g'); hold on;plot(mseerrory,'.');hold on; ylabel('MSE of Y axis','fontsize',15); xlabel('sample number','fontsize',15);legend('UKF','EKF','measurement error');figure(3) plot(x,y); hold on; plot(xekf,yekf,'g'); hold on; plot(xukf,yukf,'r'); hold on; plot(xx,yy,'m'); ylabel(' X ','fontsize',15); xlabel('Y','fontsize',15); legend('TRUE','UKF','EKF','measurements');。
simulink的拓展的卡尔曼滤波
Simulink是MATLAB的一个模块,用于进行动态系统模拟和仿真。
拓展的卡尔曼滤波(Extended Kalman Filter,EKF)是一种用于估计系统状态的迭代算法,尤其适用于非线性系统的状态估计。
在Simulink中实现拓展的卡尔曼滤波器,可以通过以下步骤进行:
1.建立系统模型:在Simulink中,首先需要建立所研究系统的动态模型。
可
以使用Simulink的各种模块库来搭建模型,如连续系统模块、离散系统模块、信号处理模块等。
2.定义状态方程:根据系统模型,定义状态方程来描述系统的动态行为。
状态
方程通常是非线性的,描述了系统状态随时间的变化。
3.定义观测方程:定义观测方程来描述系统状态的可观测性以及观测值与系统
状态之间的关系。
观测方程也是非线性的。
4.初始化参数:根据系统特性和估计要求,初始化卡尔曼滤波器的参数,如初
始状态估计、过程噪声协方差、观测噪声协方差等。
5.迭代更新:通过迭代更新的方式,利用卡尔曼滤波算法进行状态估计。
在每
个时间步,根据当前观测值和状态估计,计算卡尔曼增益,并更新状态估计和误差协方差。
6.输出结果:在Simulink中,可以可视化输出状态估计的结果,以便对系统
进行评估和分析。
需要注意的是,在使用拓展的卡尔曼滤波器时,需要注意系统模型与实际系统的匹配度以及观测方程和状态方程的非线性程度。
同时,根据实际应用的需求,可以对卡尔曼滤波算法进行适当的改进或扩展,以提高估计精度和稳定性。
信号处理 扩展卡尔曼滤波数据融合代码matlab -回复
信号处理扩展卡尔曼滤波数据融合代码matlab -回复信号处理扩展卡尔曼滤波数据融合代码(Matlab)在本文中,我将介绍如何使用Matlab实现信号处理中的扩展卡尔曼滤波数据融合算法。
扩展卡尔曼滤波是一种广泛应用于估计问题的滤波方法,特别适用于非线性系统。
在信号处理中,数据融合是将多个传感器或信息源的数据融合在一起以获得更准确和鲁棒的估计结果的方法。
步骤1: 定义系统模型首先,我们需要定义系统的动力学模型以及我们感兴趣的状态变量。
对于一个简单的例子,假设我们有一个运动的目标,我们想要估计它的位置和速度。
我们可以使用以下状态方程来建模系统的动力学:x(k) = A*x(k-1) + B*u(k) + w(k)其中,x(k)是系统的状态向量,A是状态转移矩阵,B是输入控制矩阵,u(k)是输入控制向量,w(k)是过程噪声。
在这个例子中,我们假设系统是线性的。
步骤2: 定义观测模型接下来,我们需要定义观测模型,它将我们的状态向量映射到观测向量。
在本例中,我们假设我们有两个传感器,每个传感器都可以测量目标的位置。
观测模型可以定义如下:y(k) = H*x(k) + v(k)其中,y(k)是观测向量,H是观测矩阵,v(k)是测量噪声。
在这个例子中,我们假设观测模型是线性的。
步骤3: 初始化变量在实际应用中,我们需要为扩展卡尔曼滤波算法初始化一些变量。
这些变量包括状态向量的初始估计值、协方差矩阵的初始估计值以及过程噪声和测量噪声的协方差矩阵。
步骤4: 实现扩展卡尔曼滤波算法现在我们可以开始实现扩展卡尔曼滤波算法。
算法的核心是通过递推计算状态向量的估计值和协方差矩阵的估计值。
具体步骤如下:a. 预测步骤:- 根据动力学模型预测下一个状态向量的估计值:x(k k-1) = A*x(k-1 k-1) + B*u(k)- 根据动力学模型预测下一个协方差矩阵的估计值:P(k k-1) =A*P(k-1 k-1)*A' + Qb. 更新步骤:- 计算卡尔曼增益:K(k) = P(k k-1)*H'*(H*P(k k-1)*H' + R)^-1- 使用观测值更新状态向量的估计值:x(k k) = x(k k-1) + K(k)*(y(k) - H*x(k k-1))- 使用观测值更新协方差矩阵的估计值:P(k k) = (I - K(k)*H)*P(k k-1)c. 重复步骤a和步骤b,直到所有的观测值都被处理完成。
卡尔曼滤波定位解算matlab代码,TDOA定位的扩展卡尔曼滤波定位算法Matlab源码
卡尔曼滤波定位解算matlab代码,TDOA定位的扩展卡尔曼滤波定位算法Matlab源码TDOA/AOA定位的扩展卡尔曼滤波定位算法Matlab源码(2007-08-24 01:48:23)标签:知识/探索function[MX,MY,SS]=ExtendedKalmanFilter(D1,D2,D3,A1,A2,A3,Flag1,FLAG2,S0,P0,SigmaR,Sigm aAOA)%% TDOA/AOA定位的扩展卡尔曼滤波定位算法%% 此程序为GreenSim团队原创作品,转载请注明%% 输⼊参数列表% D1 基站1和移动台之间的距离% D2 基站2和移动台之间的距离% D3 基站3和移动台之间的距离% A1 基站1测得的⾓度值% A2 基站2测得的⾓度值% A3 基站3测得的⾓度值% Falg1 1×1矩阵,取值1,2,3,表明是以哪⼀个基站作为基准站计算TDOA数据的% FLAG2 N×3矩阵,取值0和1,每⼀⾏表⽰该时刻各基站的AOA是否可选择,% 1表⽰选择AOA数据,FLAG2并⾮⼈为给定,⽽是由LOS/NLOS检测模块确定% S0 初始状态向量,4×1矩阵% P0 预测误差矩阵的初始值,4×4的矩阵% SigmaR ⽆偏/有偏卡尔曼输出距离值的⽅差,由事先统计得到% SigmaAOA 选择AOA数据的⽅差,⽣成AOA数据的规律已知,因此可以确定%% 输出参数列表% MX% MY%% 第⼀步:计算TDOA数据if Flag1==1TDOA1=D2-D1;TDOA2=D3-D1;elseif Flag1==2TDOA1=D1-D2;TDOA2=D3-D2;elseif Flag1==3TDOA1=D1-D3;TDOA2=D2-D3;。
卡尔曼滤波matlab代码
卡尔曼滤波matlab代码
卡尔曼滤波(Kalman Filter)是一种有效融合测量数据的算法,由德国工程师卡尔曼博士发明,能够处理从随机过程中获得的非完全信息,将历史数据和测量信息进行综合的面向状态的算法。
它利用模型估计和更新未知状态,以达到估计未知状态的目的。
步骤1:设定卡尔曼滤波器:卡尔曼滤波器是利用上一时刻状态估计结果和当前测量值来对当前状态继续估计,因此每次只需输入一个新的测量值,即可完成所有的风险估计。
步骤2:确定状态转移模型:卡尔曼滤波用于处理非完全信息,从未知状态开始,将先验状态估计与新数据进行融合,在此过程中,必须根据状态转移模型确定状态转移参数。
步骤3:建立测量模型:通过测量模型将状态变量转换为可度量的测量量,即各状态变量与其输出测量变量之间的函数关系。
步骤4:在滤波器中实现卡尔曼滤波:。
卡尔曼滤波入门、简介及其算法MATLAB实现代码
卡尔曼滤波入门:卡尔曼滤波是用来进行数据滤波用的,就是把含噪声的数据进行处理之后得出相对真值。
卡尔曼滤波也可进行系统辨识。
卡尔曼滤波是一种基于统计学理论的算法,可以用来对含噪声数据进行在线处理,对噪声有特殊要求,也可以通过状态变量的增广形式实现系统辨识。
用上一个状态和当前状态的测量值来估计当前状态,这是因为上一个状态估计此时状态时会有误差,而测量的当前状态时也有一个测量误差,所以要根据这两个误差重新估计一个最接近真实状态的值。
信号处理的实际问题,常常是要解决在噪声中提取信号的问题,因此,我们需要寻找一种所谓有最佳线性过滤特性的滤波器。
这种滤波器当信号与噪声同时输入时,在输出端能将信号尽可能精确地重现出来,而噪声却受到最大抑制。
维纳(Wiener)滤波与卡尔曼(Kalman)滤波就是用来解决这样一类从噪声中提取信号问题的一种过滤(或滤波)方法。
(1)过滤或滤波 - 从当前的和过去的观察值x(n),x(n-1),x(n-2),…估计当前的信号值称为过滤或滤波;(2)预测或外推 - 从过去的观察值,估计当前的或将来的信号值称为预测或外推; (3)平滑或内插 - 从过去的观察值,估计过去的信号值称为平滑或内插;因此,维纳过滤与卡尔曼过滤又常常被称为最佳线性过滤与预测或线性最优估计。
这里所谓“最佳”与“最优”是以最小均方误差为准则的。
维纳过滤与卡尔曼过滤都是解决最佳线性过滤和预测问题,并且都是以均方误差最小为准则的。
因此在平稳条件下,它们所得到的稳态结果是一致的。
然而,它们解决的方法有很大区别。
维纳过滤是根据全部过去的和当前的观察数据来估计信号的当前值,它的解是以均方误差最小条件下所得到的系统的传递函数H(z)或单位样本响应h(n)的形式给出的,因此更常称这种系统为最佳线性过滤器或滤波器。
而卡尔曼过滤是用前一个估计值和最近一个观察数据(它不需要全部过去的观察数据)来估计信号的当前值,它是用状态方程和递推的方法进行估计的,它的解是以估计值(常常是状态变量值)形式给出的。
集合卡尔曼滤波matlab代码
集合卡尔曼滤波matlab代码卡尔曼滤波一直是控制和估计理论中的经典算法之一。
它是一种用于在噪声和不确定性下估计系统状态的递归滤波器。
集合卡尔曼滤波(EKF)是卡尔曼滤波的一种扩展形式,通过考虑非线性函数与噪声及其导数之间的关系,可以应用于非线性问题。
集合卡尔曼滤波包括两个步骤:预测和更新。
在预测步骤中,通过当前状态和状态转移矩阵来预测下一个状态,并计算系统协方差矩阵。
在更新步骤中,将预测值与观察值进行比较,并计算更新后的状态和协方差矩阵。
```matlabfunction [X, P] = EKF(X, P, Z, Q, R, F, H)% 集合卡尔曼滤波% 预测步骤X = F * X; % 预测下一个状态P = F * P * F' + Q; % 计算协方差矩阵% 更新步骤K = P * H' * inv(H * P * H' + R); % 计算卡尔曼增益X = X + K * (Z - H * X); % 计算更新后的状态P = (eye(size(P)) - K * H) * P; % 计算更新后的协方差矩阵end```其中,变量含义如下:- X: 状态向量- P: 状态协方差矩阵- Z: 观测值- Q: 状态噪声协方差矩阵- R: 观测噪声协方差矩阵- F: 状态转移矩阵- H: 观测矩阵可以通过以下代码演示如何使用集合卡尔曼滤波器:```matlab% 初始化参数X = [0; 0]; % 初始状态向量P = eye(2); % 初始协方差矩阵Q = eye(2) * 0.01; % 状态噪声协方差矩阵R = eye(1) * 0.01; % 观测噪声协方差矩阵F = [1 1; 0 1]; % 状态转移矩阵H = [1 0]; % 观测矩阵Z = 1; % 观测值% 输出结果disp('更新后的状态向量:');disp(X);disp('更新后的协方差矩阵:');disp(P);```通过修改参数和观测值,可以应用集合卡尔曼滤波于多种不同的非线性问题中。
卡尔曼滤波 matlab代码
卡尔曼滤波 matlab代码【实用版】目录一、卡尔曼滤波简介二、卡尔曼滤波算法原理三、MATLAB 代码实现卡尔曼滤波四、总结正文一、卡尔曼滤波简介卡尔曼滤波是一种线性高斯状态空间模型,主要用于估计动态系统的状态,具有良好的实时性、鲁棒性和准确性。
它广泛应用于导航、定位、机器人控制等领域。
二、卡尔曼滤波算法原理卡尔曼滤波主要包括两个部分:预测阶段和更新阶段。
预测阶段:1.初始化状态变量和协方差矩阵。
2.根据系统动态模型,预测系统的状态变量和协方差矩阵。
更新阶段:1.测量系统的状态变量,得到观测数据。
2.根据观测数据和预测的状态变量,计算卡尔曼增益。
3.使用卡尔曼增益,更新状态变量和协方差矩阵。
三、MATLAB 代码实现卡尔曼滤波以下是一个简单的卡尔曼滤波 MATLAB 代码示例:```MATLABfunction [x, P] = kalman_filter(x, P, F, Q, H, R, z)% 初始化x = 初始状态向量;P = 初始协方差矩阵;% 预测阶段F = 系统动态矩阵;Q = 测量噪声协方差矩阵;H = 观测矩阵;R = 观测噪声协方差矩阵;z = 观测数据;% 预测状态变量和协方差矩阵[x_pred, P_pred] = forward_prediction(x, P, F, Q, H, R);% 更新阶段[x_upd, P_upd] = update(x_pred, P_pred, z);% 输出结果x = x_upd;P = P_upd;endfunction [x_pred, P_pred] = forward_prediction(x, P, F, Q, H, R)% 预测状态变量和协方差矩阵x_pred = F * x;P_pred = F * P * F" + Q;endfunction [x_upd, P_upd] = update(x_pred, P_pred, z)% 更新状态变量和协方差矩阵S = H" * P_pred * H;K = P_pred * H" * S^-1;x_upd = x_pred + K * (z - H * x_pred);P_upd = (I - K * H") * P_pred;end```四、总结卡尔曼滤波是一种高效、准确的状态估计方法,适用于各种线性高斯动态系统。
卡尔曼滤波器matlab代码
卡尔曼滤波器matlab代码卡尔曼滤波器是一种常用的状态估计算法,它能够根据系统的状态方程和测量方程,以及预测的误差和测量的误差,计算出最优的状态估计值和误差协方差矩阵,从而提高系统的精度和鲁棒性。
以下是卡尔曼滤波器的matlab代码:% 系统模型:% x(k) = A * x(k-1) + B * u(k) + w(k)% y(k) = H * x(k) + v(k)% 初始化模型参数:% 状态转移矩阵:A = [1, 1; 0, 1];% 控制输入矩阵:B = [0.5; 1];% 系统噪声方差:Q = [0.01, 0; 0, 0.1];% 测量噪声方差:R = 1;% 观测矩阵:H = [1, 0];% 初始化状态向量和协方差矩阵:x0 = [0; 0];P0 = [1, 0; 0, 1];% 设置时间和增量:dt = 0.1;t = 0:dt:10;u = sin(t);% 初始化输出向量和卡尔曼增益矩阵:x = zeros(2,length(t));y = zeros(1,length(t));K = zeros(2,length(t));% 执行卡尔曼滤波算法:x(:,1) = x0;for k = 2:length(t)% 预测状态和协方差:x_pre = A * x(:,k-1) + B * u(k-1);P_pre = A * P0 * A' + Q;% 计算卡尔曼增益:K(:,k) = P_pre * H' / (H * P_pre * H' + R);% 更新状态和协方差:x(:,k) = x_pre + K(:,k) * (y(k-1) - H * x_pre); P0 = (eye(2) - K(:,k) * H) * P_pre;% 计算输出:y(k) = H * x(:,k);end% 绘制结果:subplot(2,1,1)plot(t,x(1,:),'r',t,x(2,:),'b')legend('位置','速度')title('状态估计')subplot(2,1,2)plot(t,y,'g',t,u,'m')legend('测量值','控制输入')title('卡尔曼滤波')。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
文件一
% THIS PROGRAM IS FOR IMPLEMENTATION OF DISCRETE TIME PROCESS EXTENDED KALMAN FILTER
% FOR GAUSSIAN AND LINEAR STOCHASTIC DIFFERENCE EQUATION.
% By (R.C.R.C.R),SPLABS,MPL.
% (17 JULY 2005).
% Help by Aarthi Nadarajan is acknowledged.
% (drawback of EKF is when nonlinearity is high, we can extend the % approximation taking additional terms in Taylor's series).
clc; close all; clear all;
Xint_v = [1; 0; 0; 0; 0];
wk = [1 0 0 0 0];
vk = [1 0 0 0 0];
for ii = 1:1:length(Xint_v)
Ap(ii) = Xint_v(ii)*2;
W(ii) = 0;
H(ii) = ‐sin(Xint_v(ii));
V(ii) = 0;
Wk(ii) = 0;
end
Uk = randn(1,200);
Qu = cov(Uk);
Vk = randn(1,200);
Qv = cov(Vk);
C = [1 0 0 0 0];
n = 100;
[YY XX] = EKLMNFTR1(Ap,Xint_v,Uk,Qu,Vk,Qv,C,n,Wk,W,V);
for it = 1:1:length(XX)
MSE(it) = YY(it) ‐ XX(it);
end
tt = 1:1:length(XX);
figure(1); subplot(211); plot(XX); title('ORIGINAL SIGNAL'); subplot(212); plot(YY); title('ESTIMATED SIGNAL');
figure(2); plot(tt,XX,tt,YY); title('Combined plot');
legend('original','estimated');
figure(3); plot(MSE.^2); title('Mean square error');
子文件::function [YY,XX] =
EKLMNFTR1(Ap,Xint_v,Uk,Qu,Vk,Qv,C,n,Wk,W,V);
Ap(2,:) = 0;
for ii = 1:1:length(Ap)‐1
Ap(ii+1,ii) = 1;
end
inx = 1;
UUk = [Uk(inx); 0; 0; 0; 0];
PPk = (Xint_v*Xint_v');
VVk = [Vk(inx); 0; 0; 0; 0];
Qv = V*V';
for ii = 1:1:length(Xint_v)
XKk(ii,1) =
Xint_v(ii)^2; % FIRST STEP end
PPk = Ap*PPk*Ap'; % SECOND STEP
Kk = PPk*C'*inv( (C*PPk*C') + (V*Qv*V') ); % THIRD STEP
for ii = 1:1:length(Xint_v)
XUPK(ii,1) = XKk(ii)^2 + UUk(ii); % UPPER EQUATIONS.
Zk(ii,1) = cos(XUPK(ii)) +
VVk(ii); % UPPER EQUATIONS.
end
for ii = 1:1:length(XKk)
XBARk(ii,1) = XKk(ii) + Kk(ii)*(Zk(ii) ‐
(cos(XKk(ii)))) ; % FOURTH STEP
end
II = eye(5,5);
Pk = ( II ‐ Kk*C)*PPk; % FIFTH STEP
%‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐
%‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐
for ii = 1:1:n
UUk = [Uk(ii+1); 0; 0; 0; 0];
PPk = XBARk*XBARk';
VVk = [Vk(ii+1); 0; 0; 0; 0];
XKk = exp(‐XBARk); % FIRST STEP
PPkM = Ap*PPk*Ap'; % SECOND STEP
Kk = PPkM*C'*inv( (C*PPkM*C') + (V*Qv*V') ); % THIRD STEP
for nn = 1:1:length(XBARk)
XUPK(nn) = exp(‐XKk(nn)) + UUk(nn); % UPPER EQUATIONS.
Zk(nn) = cos(XUPK(nn)) + VVk(nn); % UPPER EQUATIONS.
end
for in = 1:1:length(XUPK)
XNEW(in) = XBARk(in) + Kk(in)*(Zk(in) ‐ cos(XBARk(in))); % FOURTH STEP
end
II = eye(5,5);
Pk = (II ‐ Kk*C)*PPkM; % FIFTH STEP
XBARk = XNEW;
OUTX(ii) = XBARk(1,1);
OUTY(ii) = Zk(1,1);
end
YY = OUTY;
XX = OUTX;。