数理统计第二次作业汇编

合集下载

概率论与数理统计习题二答案

概率论与数理统计习题二答案

概1、将一颗骰子抛掷两次,以X 1表示两次所得点数之和,以X 2表示两次得到的点数的最小者,试分别求X 1和X 2的分布律。

解:X 1可取2、3、4、5、6、7、8、9、10、11、123616161)1,1()2(1=⨯===P X P36261616161)"1,2""2,1(")3(1=⨯+⨯=⋃==P X P363616161616161)"1,3""2,2""3,1(")4(1=⨯+⨯+⨯=⋃⋃==P X P ……2P (X 2=1)=P ("1,6""1,5""1,4""1,3""1,2""6,1""5,1""4,1""3,1""2,1""1,1"⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃)=36112求X 的分布律。

解:X 可取0、1、2{}310380C C X P ==157={}15713102812===C C C X P {}15123101822===C C C X P 3、进行重复独立试验。

设每次试验成功的概率为)10(<<p p(1) 将试验进行到出现一次成功实验为止,以X 表示所需试验的次数,此时称X 服从参数为p 的几何分布。

求X 的分布律。

(2) 将试验进行到出现r 次成功为止,以Y 表示所需试验的次数,此时称Y 服从参数为r 、p 的巴斯卡分布。

求Y 的分布律。

解:(1){},......2,1,)1(1=-==-k p p k X P k (k-1次未成功,最后一次成功)(2){},......1,,)1(11+=-==---r r k p p C k X P rk r r k解:(1)是 (2)不是,因概率之和不为15、(1)设随机变量X 的分布律为{}N k Nak X P .....,2,1,===试确定常数a(2)设随机变量X 的分布律为{}.....2,1,32=⎪⎭⎫⎝⎛⋅==k b k X P k试确定常数b(3)设随机变量X 的分布律为{}0......2,1,0,!>=⋅==λλk k c k X P k为常数,试确定常数c 解:(1){}111====∑∑==a Nak X P Nk Nk , 1=∴a (2){}1231323211==-=⎪⎭⎫⎝⎛⋅==∑∑∞=∞=b b b k X P k kk , 21=∴b(3){}1!==⋅==∑∑∞=∞=λλe c k c k X P k kk , λ-=∴e c6、设随机变量X 的分布律为{}5,4,3,2,1,15===k kk X P 其分布函数为)(x F ,试求:(1)⎭⎬⎫⎩⎨⎧<<2521X P , (2){}21≤≤X P , (3)⎪⎭⎫⎝⎛51F 解:(1){}{}212521=+==⎭⎬⎫⎩⎨⎧<<X P X P X P 51152151=+=(2){}21≤≤X P {}{}21=+==X P X P 51152151=+= (3)⎪⎭⎫⎝⎛51F051=⎭⎬⎫⎩⎨⎧≤=X P7、一大楼装有5个同类型的供水设备。

概率论与数理统计浙大四版习题答案第二章汇编

概率论与数理统计浙大四版习题答案第二章汇编

第二章 随机变量及其分布1.[一] 一袋中有5只乒乓球,编号为1、2、3、4、5,在其中同时取三只,以X 表示取出的三只球中的最大号码,写出随机变量X 的分布律解:X 可以取值3,4,5,分布律为1061)4,3,2,1,5()5(1031)3,2,1,4()4(1011)2,1,3()3(352435233522=⨯====⨯====⨯===C C P X P C C P X P C C P X P 中任取两球再在号一球为中任取两球再在号一球为号两球为号一球为也可列为下表 X : 3, 4,5 P :106,103,101 3.[三] 设在15只同类型零件中有2只是次品,在其中取三次,每次任取一只,作不放回抽样,以X 表示取出次品的只数,(1)求X 的分布律,(2)画出分布律的图形。

解:任取三只,其中新含次品个数X 可能为0,1,2个。

3522)0(315313===C C X P 3512)1(31521312=⨯==C C C X P 351)2(31511322=⨯==C C C X P 再列为下表X : 0, 1, 2 P :351,3512,3522 4.[四] 进行重复独立实验,设每次成功的概率为p ,失败的概率为q =1-p (0<p <1) (1)将实验进行到出现一次成功为止,以X 表示所需的试验次数,求X 的分布律。

(此时称X 服从以p 为参数的几何分布。

)(2)将实验进行到出现r 次成功为止,以Y 表示所需的试验次数,求Y 的分布律。

(此时称Y 服从以r, p 为参数的巴斯卡分布。

)(3)一篮球运动员的投篮命中率为45%,以X 表示他首次投中时累计已投篮的次数,写出X 的分布律,并计算X 取偶数的概率。

解:(1)P (X=k )=q k -1pk=1,2,……(2)Y=r+n={最后一次实验前r+n -1次有n 次失败,且最后一次成功},,2,1,0,)(111 ===+=-+--+n p q C p p q C n r Y P r n n n r r n n n r 其中 q=1-p ,或记r+n=k ,则 P {Y=k }= ,1,,)1(11+=----r r k p p C rk r r k (3)P (X=k ) = (0.55)k -10.45k=1,2…P (X 取偶数)=311145.0)55.0()2(1121===∑∑∞=-∞=k k k k X P 6.[六] 一大楼装有5个同类型的供水设备,调查表明在任一时刻t 每个设备使用的概率为0.1,问在同一时刻(1)恰有2个设备被使用的概率是多少?0729.0)9.0()1.0()2(322525225=⨯⨯===-C q p C X P(2)至少有3个设备被使用的概率是多少?00856.0)1.0()9.0()1.0()9.0()1.0()3(5554452335=⨯+⨯⨯+⨯⨯=≥C C C X P(3)至多有3个设备被使用的概率是多少?3225415505)9.0()1.0()9.0(1.0)9.0()3(⨯⨯+⨯⨯+=≤C C C X P99954.0)9.0()1.0(2335=⨯⨯+C(4)至少有一个设备被使用的概率是多少?40951.059049.01)0(1)1(=-==-=≥X P X P[五] 一房间有3扇同样大小的窗子,其中只有一扇是打开的。

概率论与数理统计第2章作业题解(初稿)(精编文档).doc

概率论与数理统计第2章作业题解(初稿)(精编文档).doc

【最新整理,下载后即可编辑】第二章作业题解:2.1 掷一颗匀称的骰子两次, 以X 表示前后两次出现的点数之和, 求X 的概率分布, 并验证其满足(2.2.2) 式. 解:并且,361)12()2(====X P XP ;362)11()3(====X P X P ; 363)10()4(====X P X P ;364)9()5(====X P X P ; 365)8()6(====X P X P ;366)7(==X P 。

即36|7|6)(k k X P --== (k =2,3,4,5,6,7,8,9,10,11,12) 2.2 设离散型随机变量的概率分布为,2,1,}{ ===-k ae k X P k 试确定常数a . 解:根据1)(0==∑∞=k k XP ,得10()1kkk k aea e ∞∞--====∑∑,即1111=---e ae 。

故 1-=e a2.3 甲、乙两人投篮时, 命中率分别为0.7 和0.4 , 今甲、乙各投篮两次, 求下列事件的概率:(1) 两人投中的次数相同; (2) 甲比乙投中的次数多. 解:分别用)2,1(,=i B A i i 表示甲乙第一、二次投中,则12121212()()0.7,()()0.3,()()0.4,()()0.6,P A P A P A P A P B P B P B P B ======== 两人两次都未投中的概率为:0324.06.06.03.03.0)(2121=⨯⨯⨯=B B A A P ,两人各投中一次的概率为:2016.06.04.03.07.04)()()()(1221211212212121=⨯⨯⨯⨯=+++B B A A P B B A A P B B A A P B B A A P 两人各投中两次的概率为:0784.0)(2121=B B A A P 。

所以:(1)两人投中次数相同的概率为3124.00784.02016.00324.0=++ (2) 甲比乙投中的次数多的概率为:12121221121212121212()()()()()20.490.40.60.490.3620.210.360.5628P A A B B P A A B B P A A B B P A A B B P A A B B ++++=⨯⨯⨯+⨯+⨯⨯=2.4 设离散型随机变量X 的概率分布为5,4,3,2,1,15}{===k kk X P ,求 )31()1(≤≤X P)5.25.0()2(<<X P解:(1)52153152151)31(=++=≤≤X P(2))2()1()5.25.0(=+==<<X P X P X P 51152151=+=2.5 设离散型随机变量X 的概率分布为,,3,2,1,21}{ ===k k X P k,求 };6,4,2{)1( =X P}3{)2(≥X P 解:31)21211(21212121}6,4,2{)1(422642=++⨯=++== X P41}2{}1{1}3{)2(==-=-=≥X P X P X P2.6 设事件A 在每次试验中发生的概率均为0.4 , 当A 发生3 次或3 次以上时, 指示灯发出 信号, 求下列事件的概率:(1) 进行4 次独立试验, 指示灯发出信号; (2) 进行5 次独立试验, 指示灯发出信号.解:(1))4()3()3(=+==≥X P X P X P1792.04.06.04.04334=+⨯=C (2) )5()4()3()3(=+=+==≥X P X P X P X P31744.04.06.04.06.04.054452335=+⨯+⨯=C C .2.7 某城市在长度为t (单位:小时) 的时间间隔内发生火灾的次数X 服从参数为0.5t 的泊松分布, 且与时间间隔的起点无关, 求下列事件的概率: (1) 某天中午12 时至下午15 时未发生火灾;(2) 某天中午12 时至下午16 时至少发生两次火灾. 解:(1) ()!kP X k e k λλ-==,由题意,0.53 1.5,0k λ=⨯==,所求事件的概率为 1.5e -.(2)(2)110!1!P X e e e e λλλλλλλ----≥=--=--, 由题意,0.54 1.5λ=⨯=,所求事件的概率为213e --.2.8 为保证设备的正常运行, 必须配备一定数量的设备维修人员. 现有同类设备180 台, 且各台设备工作相互独立, 任一时刻发生故障的概率都是0.01,假设一台设备的故障由一人进行修理,问至少应配备多少名修理人员, 才能保证设备发生故障后能得到及时修理的概率不小于0.99?解:设应配备m 名设备维修人员。

数理统计与概率论习题二答案.ppt

数理统计与概率论习题二答案.ppt

F ) 1 3( F () x 不 是 分 布 函 数 . 3
0.5ex , x 0 2.4 设随机变量X的分布函数 F( x) 0.8 , 0 x 1 1, x 1
求(1)P{X=0};(2)P(X<0);(3)P(0<X≤1.5);(4)P(X>3) 解 ( 1 ) P { X 0 } F ( 0 )l i m F ( x )
41设xn01求下列随机变量y的概率密度e??y2212?解2xxxfxex???????11212?????由yyxx??????????????????1?????yyyy1y2x122211y22???????yyfe??218122?????????yey2
2.1 某人投篮两次,设A={恰有一次投中},B={至少有一 次投中},C={两次都投中},D={两次都没投中},又设随 机变量X为投中的次数,试用X表示事件A,B,C,D.进一步 问A,B,C,D中哪些是互不相容事件?哪些是对立事件? {X1 } B {X1 } 解 A

x 1
l i m F ( x )l i m 0 . 3 0 . 3 F ( 1 ) 2 2
x 1
F ( xx ) 在 1 处 不 右 连 续 . 2 F () x 不 是 分 布 函 数 . 2
2.2 指出下列函数是否是分布函数?
x 0, (3 )F ) c o sx , x0 3(x 1, x0
2.6 一批零件中有8个正品和2个次品,安装机器时从这 批零件中任取一个.如果每次取出的次品不再放回去, 用X表示在取得正品以前已取出的次品数,求X的分布列 及分布函数. 解 X所有的取值为0,1,2 8 4 2 8 8 P { X0 } PX { 1 } 1 0 5 1 0 9 4 5

概率论与数理统计答案(人民邮电版)汇编

概率论与数理统计答案(人民邮电版)汇编
答案:
(1)因为事件 A,B 互不相容,所以 P(AB)=0
P() P(∪)
=0,P(̅|̅)=
=
=0.25
̅
P(AB)
P(A |B)=
P(B)
̅̅
̅̅̅̅̅̅
P()
1-P(B)
(2) P(A)=0.3<P(B)=0.6,可知 A ⊂B,P(AB)=P(A)=0.3,
P() P()
(2)A,B 有包含关系情况时,
求 P(A-B)
答案:
(1)A,B 互不相容,P(A-B)=P(A)-P(AB)=0.4
(2)当 A,B 有包含关系时,由于 P(A)=0.4>P(B)=0.3,所以 A⊃B,
所以 P(A-B)=P(A)-P(B)=0.1
1
4. 已知 P(A)=P(B)=P(C)=0.25,P(AB)=0,P(AC)=P(BC)=16求:
(2) P(B)= × =
20
(3) P(C)=7×7×2=49
(4) P(D)=7×7=49=7
3. 一个盒子中装有 6 只杯子,其中有 2 只是不合格品,现在作不放回抽样;接连取 2 次,
每次随机地取 1 只,试求下列事件的概率;
(1)2 只都是合格品;
(2)1 只是合格品,1 只是不合格品;
“A2345”,…,
“10JQKA”,但 5
张牌的花色不完全一样)

(3) 事件 C=“仅有一对”。
5
41 13
答案:
(1)P(A)=
1 ( 1 )4
10
4
(2)P(B)=
5
52
5
52
=
33
=16660
128

概率论与数理统计及其应用(第二版)详细完整版习题解答

概率论与数理统计及其应用(第二版)详细完整版习题解答
P( A B ) = P[( S − A) B ] = P( B ) − P( AB) = 0.375 ,
___
P( AB) = 1 − P( AB) − 0.875 ,
___
P[( A ∪ B )( AB)] = P[( A ∪ B )( S − AB)] = P( A ∪ B ) − P[( A ∪ B )( AB)] = 0.625 − P( AB) = 0.5
解:设“讯号通过通讯线 i 进入计算机系统”记为事件 Ai (i = 1,2,3,4) , “进入讯号被无误差地接受”记为事件 B 。则根据全概率公式有
4
P( B ) = ∑ P( Ai ) P( B | Ai ) = 0.4 × 0.9998 + 0.3 × 0.9999 + 0.1× 0.9997 + 0.2 × 0.9996
1 1 1 1 1 C1 2 2 3 1 3 1 36 1 1 2 C 2 C 3 C1 C 3 C1 ;或者 。 × × × × × = = = 6 11 10 9 8 7 6 332640 9240 A11 9240
12 ,据统计,对于某一种疾病的两种症状:症状 A 、症状 B ,有 20% 的人只有症状 A, 有 30%的人只有症状 B, 有 10%的人两种症状都有, 其他的人两种症状都没有。在患这种病的人群中随机地选一人,求 (1)该人两种症状都没有的概率; (2)该人至少有一种症状的概率; (3)已知该人有症状 B,求该人有两种症状的概率。 解: (1)根据题意,有 40%的人两种症状都没有,所以该人两种症状 都没有的概率为 1 − 20 % − 30 % − 10 % = 40 % ; (2)至少有一种症状的概率为 1 − 40% = 60% ; (3)已知该人有症状 B,表明该人属于由只有症状 B 的 30%人群或 者两种症状都有的 10%的人群,总的概率为 30%+10%=40%,所以在 已知该人有症状 B 的条件下该人有两种症状的概率为

16秋北交《概率论与数理统计》在线作业二

16秋北交《概率论与数理统计》在线作业二

北交《概率论与数理统计》在线作业二一、单选题(共30 道试题,共75 分。

)1. 一批10个元件的产品中含有3个废品,现从中任意抽取2个元件,则这2个元件中的废品数X的数学期望为()A. 3/5B. 4/5C. 2/5D. 1/5正确答案:2. 现考察某个学校一年级学生的数学成绩,现随机抽取一个班,男生21人,女生25人。

则样本容量为( )A. 2B. 21C. 25D. 46正确答案:3. 某市有50%住户订日报,有65%住户订晚报,有85%住户至少订这两种报纸中的一种,则同时订两种报纸的住户的百分比是A. 20%B. 30%C. 40%D. 15%正确答案:4. 设随机事件A,B及其和事件A∪B的概率分别是0.4,0.3和0.6,则B的对立事件与A 的积的概率是A. 0.2B. 0.5C. 0.6D. 0.3正确答案:5. 甲乙两人投篮,命中率分别为0.7,0.6,每人投三次,则甲比乙进球数多的概率是A. 0.569B. 0.856C. 0.436D. 0.683正确答案:6. 三人独立破译一密码,他们能单独译出的概率分别为1/5,1/3,1/4,则此密码被译出的概率是A. 2/5B. 3/4C. 1/5D. 3/5正确答案:7. 电路由元件A与两个并联的元件B、C串联而成,若A、B、C损坏与否是相互独立的,且它们损坏的概率依次为0.3,0.2,0.1,则电路断路的概率是A. 0.325B. 0.369C. 0.496D. 0.314正确答案:8. 已知全集为{1,3,5,7},集合A={1,3},则A的对立事件为A. {1,3}B. {1,3,5}C. {5,7}D. {7}正确答案:9. 一种零件的加工由两道工序组成,第一道工序的废品率为p,第二刀工序的废品率为q,则该零件加工的成品率为( )A. 1-p-qB. 1-pqC. 1-p-q+pqD. (1-p)+(1-q)正确答案:10. 甲、乙两人独立的对同一目标各射击一次,其命中率分别为0.6和0.5,现已知目标被命中,则它是甲射中的概率是()。

真题模拟考试:202204183 概率论与数理统计(经管类)真题模拟汇编

真题模拟考试:202204183 概率论与数理统计(经管类)真题模拟汇编

真题模拟考试:202204183 概率论与数理统计(经管类)真题模拟汇编202204183 概率论与数理统计(经管类)真题模拟07-271、设总体X服从泊松分布,,其中λ>0为未知参数,x1,x2,…,x n为样本,,下面说法中错误的是 ( )(单选题)A.B.C.D.试题答案:D2、若随机变量X的方差存在,由切比雪夫不等式可得P{|X-E(X)|>1}≤ ( )(单选题)A. D(X)B.C.D.试题答案:A3、设E(X)=1,D(2X)=1,则E(X2-1)=(单选题)试题答案:暂无答案4、设x1,x2,···,xn是来自总体X的样本,X~N(0,1).则服从 ( )(单选题)A.B.C. N(0,1)D. N(0,n)试题答案:B5、设x~N(μ,σ2),且,未知,样本容量为n,对均值做区间估计,置信度为95%的置信区间是 ( )(单选题)A.B.C.D.试题答案:A202204183 概率论与数理统计(经管类)真题模拟07-261、30.将0,1,2,…,9等10个数字中随机地、有放回地接连抽取4个数字,则“8”至少出现一次的概率为(单选题)A. 0.1C. 0.4D. 0.6561试题答案:B2、下列函数中,可以作为某个二维连续型随机变量的密度函数的是(单选题)A.B.C.D.试题答案:B3、设是μ0次独立重复A出现的次数,p是事件A在每次试验中出现的概率,则对任意ε>0,均有 ( )(单选题)A. 0B. -1C. >0D. 不存在试题答案:A4、若随机变量X的方差存在,由切比雪夫不等式可得P{|X-E(X)|>1}≤ ( )(单选题)B.C.D.试题答案:A5、若随机变量X的方差存在,由切比雪夫不等式可得 ( )(单选题)A. D(X)B. 1C.D.试题答案:C202204183 概率论与数理统计(经管类)真题模拟07-251、设x1,x2,x3,x4是来自总体N(μ.σ2)的样本,其中μ已知,但σ未知,则下面的随机变量中,不是统计量的是 ( )(单选题)A.B.C.D.试题答案:D2、28.设随机变量X~U(2,4),则P{3<X<4}=(单选题)A. P{2.25<X<3.25}B. P{1.5<X<2.5}C. P{3.5<X<4.5}D. P{4.5<X<5.5}试题答案:A3、(X,Y)的联合分布律为下面错误的是 ( )(单选题)A.B.C.D.试题答案:C4、设总体X~Nμ.σ2),x1,x2,···,x n为其样本.,则服从( ) (单选题)A.B.C. t(n-1)D. t(n)试题答案:A5、下列命题中错误的是 ( )(单选题)A.B.C.D.试题答案:D202204183 概率论与数理统计(经管类)真题模拟07-241、设总体X~N(μ,σ2),抽取容量为”的样本,在置信度为1-σ时,σ2的置信区间为( ) (单选题)A.B.C.D.试题答案:A2、设E(X)=1,D(2X)=1,则E(X2-1)=(单选题)试题答案:暂无答案3、26.设随机变量X的概率密度为则常数a=(单选题)A. -10B.C.D. 10试题答案:D4、32.设随机事件A与事件B互不相容,P(A)=0.4,P(B)=0.2,则P(A|B)= (单选题)A. 0B. 0.2C. 0.4D. 0.5试题答案:A5、若E(X),E(Y)都存在,则下面命题中错误的是 ( )(单选题)A. E(X+y)=E(X)+E(y)B. E(X - Y)=E(X) - E(Y)C. E(6X)=6E(X)D. E(Xy)=E(X)E(y)试题答案:D202204183 概率论与数理统计(经管类)真题模拟07-231、样本x1,x2,…,x n取自总体x,且E(X)=μ,D(X)=σ2,则总体方差σ2的无偏估计量是( )(单选题)A.B.C.D.试题答案:B2、设总体X服从区间[-2,4]上的均匀分布,x1,x2,···,x n为其样本,则( )(单选题)A. n/3B. 1/3C. 3/nD. 3试题答案:C3、若D(X)=16,D(Y)=25,P XY=0.4,则D(2X-Y)= ( )(单选题)A. 57B. 37C. 48试题答案:A4、29.已知随机变量X的概率密度为f x(x),令Y=一2X,则Y的概率密度f Y(y)为(单选题)A. 2fx(-2y)B.C.D. 1/2fx(-y/2)试题答案:D5、设x~N(μ,σ2),且,未知,样本容量为n,对均值做区间估计,置信度为95%的置信区间是 ( )(单选题)A.B.C.D.试题答案:A202204183 概率论与数理统计(经管类)真题模拟07-221、29.设A,B为随机事件,则(AUB)A=(单选题)A. ABC. BD. AUB试题答案:B2、若D(X)=16,D(Y)=25,P XY=0.4,则D(2X-Y)= ( )(单选题)A. 57B. 37C. 48D. 84试题答案:A3、设x1,x2,x3,x4是来自总体N(μ.σ2)的样本,其中μ已知,但σ未知,则下面的随机变量中,不是统计量的是 ( )(单选题)A.B.C.D.试题答案:D4、31.设随机变量A与B互不相容,且P(A)>0,P(B)>0,则(单选题)A. P(A)=1一P(B)B. P(AB)=P(A)P(B)C. P(AUB)=1D.试题答案:D5、下列命题中错误的是 ( )(单选题)A.B.C.D.试题答案:D202204183 概率论与数理统计(经管类)真题模拟07-211、设总体X服从泊松分布,,其中λ>0为未知参数,x1,x2,…,x n为样本,,下面说法中错误的是 ( )(单选题)A.B.C.D.试题答案:D2、已知E(X)=-1,D(X)=3,则E[3(X2-2)]= ( )(单选题)A. 9B. 6C. 30D. 36试题答案:B3、24.设一批产品共有1 000件,其中有50件次品,从中随机地、有放回地抽取500件产品,X表示抽到次品的件数,则P{X=3}=(单选题)A.B.C.D.试题答案:C4、(X,Y)的联合分布律为下面错误的是 ( )(单选题)A.B.C.D.试题答案:C5、29.已知随机变量X的概率密度为f x(x),令Y=一2X,则Y的概率密度f Y(y)为(单选题)A. 2fx(-2y)B.C.D. 1/2fx(-y/2)试题答案:D202204183 概率论与数理统计(经管类)真题模拟07-191、32.设随机事件A与事件B互不相容,P(A)=0.4,P(B)=0.2,则P(A|B)=(单选题)A. 0B. 0.2C. 0.4D. 0.5试题答案:A2、30.将0,1,2,…,9等10个数字中随机地、有放回地接连抽取4个数字,则“8”至少出现一次的概率为(单选题)A. 0.1B. 0.3439C. 0.4D. 0.6561试题答案:B3、29.设A,B为随机事件,则(AUB)A=(单选题)A. ABB. AC. BD. AUB试题答案:B4、由D(X+y)=D(X)+D(y),即可以断定 ( )(单选题)A. x和Y不相关B. x和Y相互独立C.D.试题答案:A5、设x1,x2,x3,x4是来自总体N(μ.σ2)的样本,其中μ已知,但σ未知,则下面的随机变量中,不是统计量的是 ( )(单选题)A.B.C.D.试题答案:D202204183 概率论与数理统计(经管类)真题模拟07-181、X服从参数为1的泊松分布,则有 ( )(单选题)A.B.C.D.试题答案:C2、若E(X),E(Y)都存在,则下面命题中错误的是 ( )(单选题)A. E(X+y)=E(X)+E(y)B. E(X - Y)=E(X) - E(Y)C. E(6X)=6E(X)D. E(Xy)=E(X)E(y)试题答案:D3、设是μ0次独立重复A出现的次数,p是事件A在每次试验中出现的概率,则对任意ε>0,均有 ( )(单选题)A. 0B. -1C. >0D. 不存在试题答案:A4、若X服从泊松分布P(3),则 ( )(单选题)A. 1B. 1/9C. 1/3D. 3试题答案:A5、32.设随机事件A与事件B互不相容,P(A)=0.4,P(B)=0.2,则P(A|B)= (单选题)A. 0B. 0.2C. 0.4D. 0.5试题答案:A202204183 概率论与数理统计(经管类)真题模拟07-17设是未知参数θ的一个估计量,n是样本容量,若对任何一个ε>o,有,则是θ的()(单选题)A. 极大似然估计B. 矩估计C. 有效估计D. 相合估计试题答案:D2、若E(X),E(Y)都存在,则下面命题中错误的是 ( )(单选题)A. E(X+y)=E(X)+E(y)B. E(X - Y)=E(X) - E(Y)C. E(6X)=6E(X)D. E(Xy)=E(X)E(y)试题答案:D3、下列函数中,可以作为某个二维连续型随机变量的密度函数的是(单选题)A.B.C.D.试题答案:B已知E(X)=-1,D(X)=3,则E[3(X2-2)]= ( )(单选题)A. 9B. 6C. 30D. 36试题答案:B5、若随机变量X的方差存在,由切比雪夫不等式可得P{|X-E(X)|>1}≤ ( ) (单选题)A. D(X)B.C.D.试题答案:A202204183 概率论与数理统计(经管类)真题模拟07-16 1、下列命题中错误的是 ( )(单选题)A.B.C.试题答案:D2、设二维随机变量(X,Y)的分布律为则P{X十Y-2}=( )(单选题)A. 0.3B. 0.4C. 0.5D. 0.2试题答案:A3、设x~N(μ,σ2),且,未知,样本容量为n,对均值做区间估计,置信度为95%的置信区间是 ( )(单选题)A.B.C.D.试题答案:A4、若随机变量X的方差存在,由切比雪夫不等式可得P{|X-E(X)|>1}≤ ( )(单选题)A. D(X)C.D.试题答案:A5、设总体X~N(μ,σ2),抽取容量为”的样本,在置信度为1-σ时,σ2的置信区间为( ) (单选题)A.B.C.D.试题答案:A202204183 概率论与数理统计(经管类)真题模拟07-151、26.设随机变量X的概率密度为则常数a=(单选题)A. -10B.C.D. 10试题答案:D2、设x1,x2,···,xn是来自总体X的样本,X~N(0,1).则服从 ( ) (单选题)A.B.C. N(0,1)D. N(0,n)试题答案:B3、设E(X)=1,D(2X)=1,则E(X2-1)=(单选题)试题答案:暂无答案4、若x服从[0,2]上的均匀分布,则 ( )(单选题)A. 1/2B. 1/3C. 1/12D. 1/4试题答案:B5、已知E(X)=-1,D(X)=3,则E[3(X2-2)]= ( )(单选题)A. 9B. 6D. 36试题答案:B202204183 概率论与数理统计(经管类)真题模拟07-141、X服从参数为1的泊松分布,则有 ( )(单选题)A.B.C.D.试题答案:C2、设总体X~Nμ.σ2),x1,x2,···,x n为其样本.,则服从( )(单选题)A.B.C. t(n-1)D. t(n)试题答案:A3、24.设一批产品共有1 000件,其中有50件次品,从中随机地、有放回地抽取500件产品,X表示抽到次品的件数,则P{X=3}=(单选题)B.C.D.试题答案:C4、若随机变量X的方差存在,由切比雪夫不等式可得P{|X-E(X)|>1}≤ ( ) (单选题)A. D(X)B.C.D.试题答案:A5、25.下列各函数中是随机变量分布函数的为(单选题)A.B.C.D.试题答案:B202204183 概率论与数理统计(经管类)真题模拟07-11 1、样本x1,x2,…,x n取自总体x,且E(X)=μ,D(X)=σ2,则总体方差σ2的无偏估计量是( )(单选题)A.B.C.D.试题答案:B2、设E(X)=1,D(2X)=1,则E(X2-1)=(单选题)试题答案:暂无答案3、下列函数中可以作为某个二维随机变量的分布函数的是 ( )(单选题)A.B.C.D.试题答案:D4、若E(X),E(Y)都存在,则下面命题中错误的是 ( )(单选题)A. E(X+y)=E(X)+E(y)B. E(X - Y)=E(X) - E(Y)C. E(6X)=6E(X)D. E(Xy)=E(X)E(y)试题答案:D5、若随机变量X的方差存在,由切比雪夫不等式可得 ( )(单选题)A. D(X)B. 1C.D.试题答案:C202204183 概率论与数理统计(经管类)真题模拟07-10 1、若D(X)=16,D(Y)=25,P XY=0.4,则D(2X-Y)= ( )(单选题)A. 57B. 37C. 48D. 84试题答案:A2、下列函数中,可以作为某个二维连续型随机变量的密度函数的是(单选题)A.B.C.D.试题答案:B3、29.已知随机变量X的概率密度为f x(x),令Y=一2X,则Y的概率密度f Y(y)为(单选题)A. 2fx(-2y)B.C.D. 1/2fx(-y/2)试题答案:D4、设总体X~N(μ,σ2),抽取容量为”的样本,在置信度为1-σ时,σ2的置信区间为( ) (单选题)A.B.C.D.试题答案:A5、设x~N(μ,σ2),且,未知,样本容量为n,对均值做区间估计,置信度为95%的置信区间是 ( )(单选题)A.B.C.D.试题答案:A202204183 概率论与数理统计(经管类)真题模拟07-091、25.下列各函数中是随机变量分布函数的为(单选题)A.B.C.D.试题答案:B2、34.抛一枚不均匀硬币.正面朝上的概率为.将此硬币连抛4次,则恰好3次正面朝上的概率是(单选题)A.B.C.试题答案:C3、设是未知参数θ的一个估计量,n是样本容量,若对任何一个ε>o,有,则是θ的()(单选题)A. 极大似然估计B. 矩估计C. 有效估计D. 相合估计试题答案:D4、(X,Y)的联合分布律为下面错误的是 ( )(单选题)A.B.C.D.试题答案:C5、设二维随机变量(x,y)的概率密度为则k=( )(单选题)A. 4B. 3D. 6试题答案:C202204183 概率论与数理统计(经管类)真题模拟07-061、设总体X服从泊松分布,,其中λ>0为未知参数,x1,x2,…,x n为样本,,下面说法中错误的是 ( )(单选题)A.B.C.D.试题答案:D2、28.设随机变量X~U(2,4),则P{3<X<4}=(单选题)A. P{2.25<X<3.25}B. P{1.5<X<2.5}C. P{3.5<X<4.5}D. P{4.5<X<5.5}试题答案:A3、(X,Y)的联合分布律为下面错误的是 ( )(单选题)A.B.C.D.试题答案:C4、下列命题中错误的是 ( )(单选题)A.B.C.D.试题答案:D5、X服从参数为1的泊松分布,则有 ( )(单选题)A.B.C.D.试题答案:C202204183 概率论与数理统计(经管类)真题模拟07-051、28.设随机变量X~U(2,4),则P{3<X<4}=(单选题)A. P{2.25<X<3.25}B. P{1.5<X<2.5}C. P{3.5<X<4.5}D. P{4.5<X<5.5}试题答案:A2、样本x1,x2,…,x n取自总体x,且E(X)=μ,D(X)=σ2,则总体方差σ2的无偏估计量是( )(单选题)A.B.C.D.试题答案:B3、设x~N(μ,σ2),且,未知,样本容量为n,对均值做区间估计,置信度为95%的置信区间是 ( )(单选题)A.B.C.D.试题答案:A4、26.设随机变量X的概率密度为则常数a=(单选题)A. -10B.C.D. 10试题答案:D5、下列函数中,可以作为某个二维连续型随机变量的密度函数的是(单选题)A.B.C.D.试题答案:B202204183 概率论与数理统计(经管类)真题模拟07-04 1、下列函数中可以作为某个二维随机变量的分布函数的是 ( )(单选题)A.C.D.试题答案:D2、(X,Y)的联合分布律为下面错误的是 ( )(单选题)A.B.C.D.试题答案:C3、若x服从[0,2]上的均匀分布,则 ( )(单选题)A. 1/2B. 1/3C. 1/12D. 1/4试题答案:B4、已知E(X)=-1,D(X)=3,则E[3(X2-2)]= ( ) (单选题)B. 6C. 30D. 36试题答案:B5、34.抛一枚不均匀硬币.正面朝上的概率为.将此硬币连抛4次,则恰好3次正面朝上的概率是(单选题)A.B.C.D.试题答案:C202204183 概率论与数理统计(经管类)真题模拟12-261、28.设随机变量X~U(2,4),则P{3<X<4}=(单选题)A. P{2.25<X<3.25}B. P{1.5<X<2.5}C. P{3.5<X<4.5}D. P{4.5<X<5.5}试题答案:A2、26.设随机变量X的概率密度为则常数a=(单选题)A. -10B.C.D. 10试题答案:D3、设x1,x2,···,xn是来自总体X的样本,X~N(0,1).则服从 ( )(单选题)A.B.C. N(0,1)D. N(0,n)试题答案:B4、设x1,x2,x3,x4是来自总体N(μ.σ2)的样本,其中μ已知,但σ未知,则下面的随机变量中,不是统计量的是 ( )(单选题)A.B.C.D.试题答案:D5、设x~N(μ,σ2),且,未知,样本容量为n,对均值做区间估计,置信度为95%的置信区间是 ( )(单选题)A.B.C.D.试题答案:A202204183 概率论与数理统计(经管类)真题模拟12-271、下列函数中可以作为某个二维随机变量的分布函数的是 ( )(单选题)A.B.C.D.试题答案:D2、29.已知随机变量X的概率密度为f x(x),令Y=一2X,则Y的概率密度f Y(y)为(单选题)A. 2fx(-2y)B.D. 1/2fx(-y/2)试题答案:D3、设a,b,c为常数,E(X)=a,E(X2)=b,则D(cX)= ( )(单选题)A.B.C.D.试题答案:C4、25.下列各函数中是随机变量分布函数的为(单选题)A.B.C.D.试题答案:B5、设x~N(μ,σ2),且,未知,样本容量为n,对均值做区间估计,置信度为95%的置信区间是 ( )(单选题)A.C.D.试题答案:A202204183 概率论与数理统计(经管类)真题模拟12-281、总体X服从正态分布N(μ,1),其中μ为未知参数,x1,x2,…,x n为样本,下面关于μ的四个无偏估计中,有效性最好的是 ( )(单选题)A.B.C.D.试题答案:D2、34.抛一枚不均匀硬币.正面朝上的概率为.将此硬币连抛4次,则恰好3次正面朝上的概率是(单选题)A.B.C.D.试题答案:C3、已知E(X)=-1,D(X)=3,则E[3(X2-2)]= ( )(单选题)A. 9B. 6C. 30D. 36试题答案:B4、样本x1,x2,…,x n取自总体x,且E(X)=μ,D(X)=σ2,则总体方差σ2的无偏估计量是( )(单选题)A.B.C.D.试题答案:B5、下列函数中,可以作为某个二维连续型随机变量的密度函数的是(单选题)A.B.C.D.试题答案:B202204183 概率论与数理统计(经管类)真题模拟12-29 1、26.设随机变量X的概率密度为则常数a=(单选题)A. -10B.C.D. 10试题答案:D2、27.设连续型随机变量x的概率密度为则P{一1≤X≤1}=(单选题)A. 0B. 0.25C. 0.5D. 1试题答案:B3、设E(X)=1,D(2X)=1,则E(X2-1)=(单选题)试题答案:暂无答案4、设x~N(μ,σ2),且,未知,样本容量为n,对均值做区间估计,置信度为95%的置信区间是 ( )(单选题)A.B.C.D.试题答案:A5、设二维随机变量(X,Y)的分布律为则P{X十Y-2}=( )(单选题)A. 0.3B. 0.4C. 0.5D. 0.2试题答案:A202204183 概率论与数理统计(经管类)真题模拟12-301、设x1,x2,···,xn是来自总体X的样本,X~N(0,1).则服从 ( )(单选题)A.B.C. N(0,1)D. N(0,n)试题答案:B2、设总体X服从区间[-2,4]上的均匀分布,x1,x2,···,x n为其样本,则( ) (单选题)A. n/3B. 1/3C. 3/nD. 3试题答案:C3、25.下列各函数中是随机变量分布函数的为(单选题)A.B.C.D.试题答案:B4、29.已知随机变量X的概率密度为f x(x),令Y=一2X,则Y的概率密度f Y(y)为(单选题)A. 2fx(-2y)B.D. 1/2fx(-y/2)试题答案:D5、已知E(X)=-1,D(X)=3,则E[3(X2-2)]= ( )(单选题)A. 9B. 6C. 30D. 36试题答案:B202204183 概率论与数理统计(经管类)真题模拟12-31 1、已知E(X)=-1,D(X)=3,则E[3(X2-2)]= ( )(单选题)A. 9B. 6C. 30D. 36试题答案:B2、设总体X~Nμ.σ2),x1,x2,···,x n为其样本.,则服从( )(单选题)B.C. t(n-1)D. t(n)试题答案:A3、(X,Y)的联合分布律为下面错误的是 ( )(单选题)A.B.C.D.试题答案:C4、总体X服从正态分布N(μ,1),其中μ为未知参数,x1,x2,…,x n为样本,下面关于μ的四个无偏估计中,有效性最好的是 ( )(单选题)A.B.C.D.试题答案:D5、设x1,x2,x3,x4是来自总体N(μ.σ2)的样本,其中μ已知,但σ未知,则下面的随机变量中,不是统计量的是 ( )(单选题)A.B.C.D.试题答案:D202204183 概率论与数理统计(经管类)真题模拟01-011、27.设连续型随机变量x的概率密度为则P{一1≤X≤1}=(单选题)A. 0B. 0.25C. 0.5D. 1试题答案:B2、由D(X+y)=D(X)+D(y),即可以断定 ( )(单选题)A. x和Y不相关B. x和Y相互独立C.D.试题答案:A3、设是未知参数θ的一个估计量,n是样本容量,若对任何一个ε>o,有,则是θ的()(单选题)A. 极大似然估计B. 矩估计C. 有效估计D. 相合估计试题答案:D4、若X服从泊松分布P(3),则 ( )(单选题)A. 1B. 1/9C. 1/3D. 3试题答案:A5、29.设A,B为随机事件,则(AUB)A=(单选题)A. ABB. AC. B试题答案:B202204183 概率论与数理统计(经管类)真题模拟01-021、下列函数中可以作为某个二维随机变量的分布函数的是 ( )(单选题)A.B.C.D.试题答案:D2、设x1,x2,x3,x4是来自总体N(μ.σ2)的样本,其中μ已知,但σ未知,则下面的随机变量中,不是统计量的是 ( )(单选题)A.B.C.D.试题答案:D3、若x服从[0,2]上的均匀分布,则 ( )(单选题)A. 1/2C. 1/12D. 1/4试题答案:B4、29.已知随机变量X的概率密度为f x(x),令Y=一2X,则Y的概率密度f Y(y)为(单选题)A. 2fx(-2y)B.C.D. 1/2fx(-y/2)试题答案:D5、34.抛一枚不均匀硬币.正面朝上的概率为.将此硬币连抛4次,则恰好3次正面朝上的概率是(单选题)A.B.C.D.试题答案:C202204183 概率论与数理统计(经管类)真题模拟01-031、若X服从泊松分布P(3),则 ( )A. 1B. 1/9C. 1/3D. 3试题答案:A2、设a,b,c为常数,E(X)=a,E(X2)=b,则D(cX)= ( ) (单选题)A.B.C.D.试题答案:C3、已知E(X)=-1,D(X)=3,则E[3(X2-2)]= ( )(单选题)A. 9B. 6C. 30D. 36试题答案:B4、25.下列各函数中是随机变量分布函数的为A.B.C.D.试题答案:B5、设E(X)=1,D(2X)=1,则E(X2-1)=(单选题)试题答案:暂无答案202204183 概率论与数理统计(经管类)真题模拟01-04 1、设二维随机变量(X,Y)的分布律为则P{X十Y-2}=( )(单选题)A. 0.3B. 0.4C. 0.5D. 0.2试题答案:A2、29.设A,B为随机事件,则(AUB)A=(单选题)。

西南大学201下6年春《数理统计》作业及答案(已整理)(共5次)(1)

西南大学201下6年春《数理统计》作业及答案(已整理)(共5次)(1)

西南大学2016年春《数理统计》作业及答案(已整理)第一次作业1、设总体X 服从正态分布),(2σμN ,其中μ已知,2σ未知,n X X X ,,,21 为其样本,2≥n ,则下列说法中正确的是( )。

(A )∑=-ni iXn122)(μσ是统计量 (B )∑=ni i X n122σ是统计量 (C )∑=--ni iXn 122)(1μσ是统计量 (D )∑=ni iX n12μ是统计量2、设两独立随机变量)1,0(~N X ,)9(~2χY ,则YX 3服从( )。

3、设两独立随机变量)1,0(~N X ,2~(16)Y χ服从( )。

4、设n X X ,,1 是来自总体X 的样本,且μ=EX ,则下列是μ的无偏估计的是( ).5、设4321,,,X X X X 是总体2(0,)N σ的样本,2σ未知,则下列随机变量是统计量的是( ).(A )3/X σ; (B )414ii X=∑; (C )σ-1X ; (D )4221/ii Xσ=∑6、设总体),(~2σμN X ,1,,n X X L 为样本,S X ,分别为样本均值和标准差,则下列正确的是( ).7、设总体X 服从两点分布B (1,p ),其中p 是未知参数,15,,X X ⋅⋅⋅是来自总体的简单随机样本,则下列随机变量不是统计量为( )( A ) . 12X X +( B ){}max ,15i X i ≤≤( C ) 52X p +( D )()251X X -8、设1,,n X X ⋅⋅⋅为来自正态总体2(,)N μσ的一个样本,μ,2σ未知。

则2σ的最大似然估计量为( )。

(A )∑=-n i i X n 12)(1μ (B )()211∑=-n i i X X n (C )∑=--n i i X n 12)(11μ(D )()∑=--n i iX X n 1211 答案:1、(D );2、 )(C ;3、)(C ;4、)(A ;5、(B );6、() ;C 7、( C ) ;8、(B )。

考研数学一(概率论与数理统计)历年真题试卷汇编2(题后含答案及解析)

考研数学一(概率论与数理统计)历年真题试卷汇编2(题后含答案及解析)

考研数学一(概率论与数理统计)历年真题试卷汇编2(题后含答案及解析)题型有:1. 选择题 2. 填空题 3. 解答题选择题下列每题给出的四个选项中,只有一个选项符合题目要求。

1.(16年)设随机变量X~N(μ,σ2)(σ>0),记p=P{X≤μ+σ2},则A.p随着μ的增加而增加.B.p随着σ的增加而增加.C.p随着μ的增加而减少.D.p随着σ的增加而减少.正确答案:B 涉及知识点:概率论与数理统计2.(97年)设两个相互独立的随机变量X和Y的方差分别为4和2,则随机变量3X一2Y的方差是A.8B.16C.28D.44正确答案:D 涉及知识点:概率论与数理统计3.(00年)设二维随机变量(X,Y)服从二维正态分布,则随机变量ξ=X+Y 与η=X—Y不相关的充分必要条件为A.E(X)=E(Y)B.E(X2)一[E(X)]2=E(Y2)一[E(Y)]2C.E(X2)=E(Y2)D.E(X2)+[E(X)]2=E(Y2)+[E(Y)]2正确答案:B 涉及知识点:概率论与数理统计4.(01年)将一枚硬币重复掷n次,以X和Y分别表示正面向上和反面向上的次数,则X和Y的相关系数等于A.一1B.0C.D.1正确答案:A 涉及知识点:概率论与数理统计5.(04年)设随机变量X1,X2,…,Xn(n>1)独立同分布,且其方差σ2>0,令Y=,则A.B.C.D.正确答案:A 涉及知识点:概率论与数理统计6.(07年)设随机变N(X,Y)服从二维正态分布,且X与Y不相关,fX(x),fY(y)分别表示X,Y的概率密度,则在Y=y的条件下,X的条件概率密度fX Y(x|y)为A.fX(x).B.fY(y).C.fX(x)fY(y).D.正确答案:A 涉及知识点:概率论与数理统计7.(08年)设随机变量X~N(0,1),Y~N(1,4),且相关系数ρXY=1,则A.P{Y=一2X—1}=1B.P{Y=2X一1}=1C.P{Y=一2X+1}=1D.P{Y=2X+1}=1正确答案:D 涉及知识点:概率论与数理统计8.(09年)设随机变量X的分布函数为F(x)=0.3φ(x)+其中φ(x)为标准正态分布的分布函数,则EX=A.0.B.0.3.C.0.7.D.1.正确答案:C 涉及知识点:概率论与数理统计9.(11年)设随机变量X与Y相互独立,且EX与EY存在,记U=max{X,Y),V=min{X,Y),则E(UV)=A.EU.EV.B.EX.EY.C.EU.EY.D.EX.EV.正确答案:B 涉及知识点:概率论与数理统计填空题10.(87年)已知连续型随机变量X的概率密度为则EX=______,DX=________.正确答案:1;涉及知识点:概率论与数理统计11.(90年)已知随机变量X服从参数为2的泊松分布,且随机变量Z=3X 一2,则EZ=______.正确答案:4.涉及知识点:概率论与数理统计12.(91年)设随机变量X服从均值为2、方差为σ2的正态分布,且P{2<X<4}=0.3,则P{X<0}=_______.正确答案:0.2.涉及知识点:概率论与数理统计13.(92年)设随机变量X服从参数为1的指数分布,则E(X+e-2X)=__________.正确答案:涉及知识点:概率论与数理统计14.(95年)设X表示10次独立重复射击命中目标的次数,每次射中目标的概率为0.4,则E(X2)=_______正确答案:18.4.涉及知识点:概率论与数理统计15.(96年)设ξ和η是两个相互独立且均服从正态分布N(0,)的随机变量,则E(|ξ-η|)=________正确答案:涉及知识点:概率论与数理统计16.(04年)设随机变量X服从参数为λ的指数分布,则=_______.正确答案:涉及知识点:概率论与数理统计17.(08年)设随机变量服从参数为1的泊松分布,则P{X=EX2}=_____.正确答案:涉及知识点:概率论与数理统计18.(10年)设随机变量X的概率分布为P{X=k}=k=0,1,2,…,则EX2=_________.正确答案:2 涉及知识点:概率论与数理统计19.(11年)设二维随机变量(X,Y)服从正态分布N(μ,μ;σ2,σ2;0),则E(XY2)=______.正确答案:μ3+μσ2.涉及知识点:概率论与数理统计解答题解答应写出文字说明、证明过程或演算步骤。

概率论与数理统计-(2)

概率论与数理统计-(2)

第二篇 网络助学平台测试题汇编阶段测验一一、单项选择题1.在一批由90件正品,3件次品组成的产品中,不放回接连抽取两件产品,问第一件取正品,第二件取次品的概率( )。

A .0.0216 B .0.0316 C .0.0251 D .0:0.03262.设某种动物有出生起活20岁以上的概率为80%,活25岁以上的的概率为40%.如果现在有一个20岁的这种动物,问它能活25岁以上的概率( )?A .0.25B .0.5C .0.6D .0.753.甲乙两人相约8-12点在预定地点会面.先到的人等候另一人30分钟后离去,求甲乙两人能会面的概率( ). A .15/64 B .5/62 C .11/53 D .12/534.、在一个均匀陀螺的圆周上均匀地刻上(0,4)上的所有实数,旋转陀螺,求陀螺停下来后,圆周与桌面的接触点位于[0.5,1]上的概率( ) (提示:陀螺及刻度的均匀性,它停下来时其圆周上的各点与桌面接触的可能性相等). A.1/2 B.1/4 C.1/8 D.1/165.在1~9的整数中可重复的随机取6个数组成6位数,求6个数完全不同的概率为( ). A.0.06 B .0.08 C .0.11 D. 0.126. 在1~9的整数中可重复的随机取6个数组成6位数,求6个数不含奇数的概率为( ). A.46/96 B.45/95 C.45/96 D.1—46/967.在1~9的整数中可重复的随机取6个数组成6位数,6个数中5恰好出现4次的概率为( ).A.64898CB.624898C C.624698C D.524698C8. 将N 个球随机地放入n 个盒子中(n>N),那么每个盒子最多有一个球的概率( ).A.Nn N)L(n )1(--n n B .Nn 1)N L(n )1(---n nC.Nn 1)N L(n )1(-+-n n D.Nn 1)LNn(n -9. 将N 个球随机地放入n 个盒子中(n>N),那么某指定的盒子中恰有m(m<N)个球的概率为( ).A .Nm N n )1(n C mN -- B.Nm N n )1(n C mN -+C.N1m N n )1(n C m N -+- D.Nm 1N n )1(n C mN -+-10. 在箱中装有100个产品,其中有3个次品,为检查产品质量,从这箱产品中任意抽5个,求抽得5个产品中恰有一个次品的概率( ).A.0.128 B .0.138 C.0.238 D.0.14811. 实验室共有40台同类仪器,其中有5台仪器不能正常工作.某班实验课随机取其中的34台做实验,求取到的不能正常工作的仪器台数 X 的分布列( ).A.P(X=k)=34403435k 5C C C k-,k=0,1,…,5 B. P(X=k)=34403434k 5C C C k-,k=0,1,…,5C. P(X=k)= 34403535k 5C C C k -,k=0,1,…,5 D. P(X=k)=344035k 5C C C k,k=0,1,…,512.设随机变量X 的密度函数为⎩⎨⎧≤≤+=其他10),1()( 0,x X Ax x f 计算根率P (-1<x<21) ( )。

《概率论与数理统计》第二补充题答案解读

《概率论与数理统计》第二补充题答案解读

《概率论与数理统计》第二章补充题答案1.一袋中有5只乒乓球,编号为1,2,3,4,5,在其中同时取3只,以X 表示取出的3只球中的最大号码,写出随机变量X 的分布律. 【解】353524353,4,51(3)0.1C 3(4)0.3C C (5)0.6C X P X P X P X ==========2.设在15只同类型零件中有2只为次品,在其中取3次,每次任取1只,作不放回抽样,以X 表示取出的次品个数,求: (1) X 的分布律;(2) X 的分布函数并作图; (3)13{},{1},{12}22P X P X P X ≤<≤<<.【解】313315122133151133150,1,2.C 22(0).C 35C C 12(1).C 35C 1(2).C 35X P X P X P X ==========(2) 当x <0时,F (x )=P (X ≤x )=0当0≤x <1时,F (x )=P (X ≤x )=P (X =0)=2235当1≤x <2时,F (x )=P (X ≤x )=P (X =0)+P (X =1)=3435当x ≥2时,F (x )=P (X ≤x )=1 故X 的分布函数0,022,0135()34,12351,2x x F x x x <⎧⎪⎪≤<⎪=⎨⎪≤<⎪⎪≥⎩(3)1122()(),2235333434(1)()(1)0223535341(12)(2)(1)(2)10.3535P X F P X F F P X F F P X ≤==<≤=-=-=<<=--==--=3.射手向目标独立地进行了3次射击,每次击中率为0.8,求3次射击中击中目标的次数的分布律及分布函数,并求3次射击中至少击中2次的概率. 【解】设X 表示击中目标的次数.则X =0,1,2,3.31232233(0)(0.2)0.008(1)C 0.8(0.2)0.096(2)C (0.8)0.20.384(3)(0.8)0.512P X P X P X P X ============0,00.008,01()0.104,120.488,231,3x x F x x x x <⎧⎪≤<⎪⎪=≤<⎨⎪≤<⎪≥⎪⎩(2)(2)(3)0.896P X P X P X ≥==+==4.(1) 设随机变量X 的分布律为P {X =k }=!k akλ,其中k =0,1,2,…,λ>0为常数,试确定常数a . (2) 设随机变量X 的分布律为P {X =k }=a/N , k =1,2,…,N ,试确定常数a . 【解】(1) 由分布律的性质知1()e !kk k P X k a a k λλ∞∞======∑∑故 ea λ-=(2) 由分布律的性质知111()NNk k aP X k a N======∑∑即 1a =.5.甲、乙两人投篮,投中的概率分别为0.6,0.7,今各投3次,求: (1) 两人投中次数相等的概率; (2) 甲比乙投中次数多的概率.【解】分别令X 、Y 表示甲、乙投中次数,则X~b (3,0.6),Y~b (3,0.7)(1) ()(0,0)(1,1)(2,2)P X Y P X Y P X Y P X Y ====+==+==+(3,3)P X Y ==33121233(0.4)(0.3)C 0.6(0.4)C 0.7(0.3)=++22223333C (0.6)0.4C (0.7)0.3(0.6)(0.7)+0.32076=(2) ()(1,0)(2,0)(3,0)P X Y P X Y P X Y P X Y >===+==+==+ (2,1)(3,1)(3,2)P X Y P X Y P X Y ==+==+==12322333C 0.6(0.4)(0.3)C (0.6)0.4(0.3)=++ 33221233(0.6)(0.3)C (0.6)0.4C 0.7(0.3)++ 31232233(0.6)C 0.7(0.3)(0.6)C (0.7)0.3+=0.2436.设某机场每天有200架飞机在此降落,任一飞机在某一时刻降落的概率设为0.02,且设各飞机降落是相互独立的.试问该机场需配备多少条跑道,才能保证某一时刻飞机需立即降落而没有空闲跑道的概率小于0.01(每条跑道只能允许一架飞机降落)?【解】设X 为某一时刻需立即降落的飞机数,则X ~b (200,0.02),设机场需配备N 条跑道,则有()0.01P X N ><即 2002002001C(0.02)(0.98)0.01k k k k N -=+<∑利用泊松近似2000.02 4.np λ==⨯= 41e 4()0.01!kk N P X N k -∞=+≥<∑ 查表得N ≥9.故机场至少应配备9条跑道.7.有一繁忙的汽车站,每天有大量汽车通过,设每辆车在一天的某时段出事故的概率为0.0001,在某天的该时段内有1000辆汽车通过,问出事故的次数不小于2的概率是多少(利用泊松定理)?【解】设X 表示出事故的次数,则X ~b (1000,0.0001)(2)1(0)(1)P X P X P X ≥=-=-=0.10.11e0.1e --=--⨯8.设事件A 在每一次试验中发生的概率为0.3,当A 发生不少于3次时,指示灯发出信号, (1) 进行了5次独立试验,试求指示灯发出信号的概率; (2) 进行了7次独立试验,试求指示灯发出信号的概率. 【解】(1) 设X 表示5次独立试验中A 发生的次数,则X ~6(5,0.3)5553(3)C (0.3)(0.7)0.16308kk k k P X -=≥==∑(2) 令Y 表示7次独立试验中A 发生的次数,则Y~b (7,0.3)7773(3)C (0.3)(0.7)0.35293k k k k P Y -=≥==∑9.某公安局在长度为t 的时间间隔内收到的紧急呼救的次数X 服从参数为(1/2)t 的泊松分布,而与时间间隔起点无关(时间以小时计).(1) 求某一天中午12时至下午3时没收到呼救的概率;(2) 求某一天中午12时至下午5时至少收到1次呼救的概率. 【解】(1)32(0)eP X -== (2) 52(1)1(0)1eP X P X -≥=-==-10.设P {X =k }=kkkp p --22)1(C , k =0,1,2P {Y =m }=mmmp p --44)1(C , m =0,1,2,3,4分别为随机变量X ,Y 的概率分布,如果已知P {X ≥1}=59,试求P {Y ≥1}.【解】因为5(1)9P X ≥=,故4(1)9P X <=. 而 2(1)(0)(1)P X P X p <===-故得 24(1),9p -=即 1.3p =从而 465(1)1(0)1(1)0.8024781P Y P Y p ≥=-==--=≈ 11.某教科书出版了2000册,因装订等原因造成错误的概率为0.001,试求在这2000册书中恰有5册错误的概率.【解】令X 为2000册书中错误的册数,则X~b (2000,0.001).利用泊松近似计算,20000.0012np λ==⨯=得 25e 2(5)0.00185!P X -=≈= 12.进行某种试验,成功的概率为34,失败的概率为14.以X 表示试验首次成功所需试验的次数,试写出X 的分布律,并计算X 取偶数的概率. 【解】1,2,,,X k =113()()44k P X k -==(2)(4)(2)P X P X P X k =+=++=+321131313()()444444k -=++++213141451()4==- 13.有2500名同一年龄和同社会阶层的人参加了保险公司的人寿保险.在一年中每个人死亡的概率为0.002,每个参加保险的人在1月1日须交12元保险费,而在死亡时家属可从保险公司领取2000元赔偿金.求: (1) 保险公司亏本的概率;(2) 保险公司获利分别不少于10000元、20000元的概率. 【解】以“年”为单位来考虑.(1) 在1月1日,保险公司总收入为2500×12=30000元. 设1年中死亡人数为X ,则X~b (2500,0.002),则所求概率为(200030000)(15)1(14)P X P X P X >=>=-≤由于n 很大,p 很小,λ=np =5,故用泊松近似,有514e 5(15)10.000069!kk P X k -=>≈-≈∑(2) P (保险公司获利不少于10000)(30000200010000)(10)P X P X =-≥=≤510e 50.986305!kk k -=≈≈∑即保险公司获利不少于10000元的概率在98%P (保险公司获利不少于20000)(30000200020000)(5)P X P X =-≥=≤55e 50.615961!kk k -=≈≈∑即保险公司获利不少于20000元的概率约为62%14.已知随机变量X 的密度函数为f (x )=A e -|x |, -∞<x <+∞,求:(1)A 值;(2)P {0<X <1}; (3) F (x ). 【解】(1) 由()d 1f x x ∞-∞=⎰得||1e d 2e d 2x x A x A x A ∞∞---∞===⎰⎰故 12A =. (2) 11011(01)e d (1e )22x p X x --<<==-⎰(3) 当x <0时,11()e d e 22x x x F x x -∞==⎰ 当x ≥0时,0||0111()e d e d e d 222x x x x x F x x x x ---∞-∞==+⎰⎰⎰ 11e 2x-=-故 1e ,02()11e 02xx x F x x -⎧<⎪⎪=⎨⎪-≥⎪⎩15.设某种仪器内装有三只同样的电子管,电子管使用寿命X 的密度函数为f (x )=⎪⎩⎪⎨⎧<≥.100,0,100,1002x x x求:(1) 在开始150小时内没有电子管损坏的概率; (2) 在这段时间内有一只电子管损坏的概率;(3) F (x ). 【解】(1) 15021001001(150)d .3P X x x ≤==⎰ 33128[(150)]()327p P X =>==(2) 1223124C ()339p ==(3) 当x <100时F (x )=0当x ≥100时()()d xF x f t t -∞=⎰100100()d ()d x f t t f t t -∞=+⎰⎰2100100100d 1xt t x==-⎰ 故 1001,100()0,0x F x xx ⎧-≥⎪=⎨⎪<⎩ 16.在区间[0,a ]上任意投掷一个质点,以X 表示这质点的坐标,设这质点落在[0,a ]中任意小区间内的概率与这小区间长度成正比例,试求X 的分布函数. 【解】 由题意知X ~∪[0,a ],密度函数为1,0()0,x af x a⎧≤≤⎪=⎨⎪⎩其他 故当x <0时F (x )=0 当0≤x ≤a 时01()()d ()d d xx xx F x f t t f t t t a a-∞====⎰⎰⎰当x >a 时,F (x )=1即分布函数0,0(),01,x x F x x a a x a<⎧⎪⎪=≤≤⎨⎪>⎪⎩ 17.设随机变量X 在[2,5]上服从均匀分布.现对X 进行三次独立观测,求至少有两次的观测值大于3的概率. 【解】X ~U [2,5],即1,25()30,x f x ⎧≤≤⎪=⎨⎪⎩其他5312(3)d 33P X x >==⎰故所求概率为22333321220C ()C ()33327p =+= 18.设顾客在某银行的窗口等待服务的时间X (以分钟计)服从指数分布1()5E .某顾客在窗口等待服务,若超过10分钟他就离开.他一个月要到银行5次,以Y 表示一个月内他未等到服务而离开窗口的次数,试写出Y 的分布律,并求P {Y ≥1}. 【解】依题意知1~()5X E ,即其密度函数为51e ,0()50,xx f x -⎧>⎪=⎨⎪≤⎩x 0 该顾客未等到服务而离开的概率为25101(10)e d e 5x P X x -∞->==⎰2~(5,e )Y b -,即其分布律为225525()C (e )(1e ),0,1,2,3,4,5(1)1(0)1(1e )0.5167kk k P Y k k P Y P Y ----==-=≥=-==--=19.某人乘汽车去火车站乘火车,有两条路可走.第一条路程较短但交通拥挤,所需时间X 服从N (40,102);第二条路程较长,但阻塞少,所需时间X 服从N (50,42). (1) 若动身时离火车开车只有1小时,问应走哪条路能乘上火车的把握大些? (2) 又若离火车开车时间只有45分钟,问应走哪条路赶上火车把握大些? 【解】(1) 若走第一条路,X~N (40,102),则406040(60)(2)0.977271010x P X P Φ--⎛⎫<=<== ⎪⎝⎭若走第二条路,X~N (50,42),则506050(60)(2.5)0.993844X P X P Φ--⎛⎫<=<== ⎪⎝⎭++故走第二条路乘上火车的把握大些.(2) 若X~N (40,102),则404540(45)(0.5)0.69151010X P X P Φ--⎛⎫<=<== ⎪⎝⎭若X~N (50,42),则504550(45)( 1.25)44X P X P Φ--⎛⎫<=<=- ⎪⎝⎭1(1.25)0.1056Φ=-= 故走第一条路乘上火车的把握大些. 20.设X ~N (3,22),(1) 求P {2<X ≤5},P {-4<X ≤10},P {|X |>2},P {X >3}; (2) 确定c 使P {X >c }=P {X ≤c }. 【解】(1) 23353(25)222X P X P ---⎛⎫<≤=<≤⎪⎝⎭11(1)(1)1220.841310.69150.5328ΦΦΦΦ⎛⎫⎛⎫=--=-+ ⎪ ⎪⎝⎭⎝⎭=-+=433103(410)222X P X P ----⎛⎫-<≤=<≤ ⎪⎝⎭770.999622ΦΦ⎛⎫⎛⎫=--=⎪ ⎪⎝⎭⎝⎭(||2)(2)(2)P X P X P X >=>+<-323323222215151122220.691510.99380.6977X X P P ΦΦΦΦ-----⎛⎫⎛⎫=>+< ⎪ ⎪⎝⎭⎝⎭⎛⎫⎛⎫⎛⎫⎛⎫=--+-=+- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭=+-=333(3)()1(0)0.522X P X P Φ->=>=-=- (2) c=321.由某机器生产的螺栓长度(cm )X ~N (10.05,0.062),规定长度在10.05±0.12内为合格品,求一螺栓为不合格品的概率. 【解】10.050.12(|10.05|0.12)0.060.06X P X P ⎛-⎫->=>⎪⎝⎭1(2)(2)2[1(2)]0.0456ΦΦΦ=-+-=-=22.一工厂生产的电子管寿命X (小时)服从正态分布N (160,2σ),若要求P {120<X ≤200}≥0.8,允许σ最大不超过多少? 【解】120160160200160(120200)X P X P σσσ---⎛⎫<≤=<≤⎪⎝⎭404040210.8ΦΦΦσσσ-⎛⎫⎛⎫⎛⎫=-=-≥⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭故 4031.251.29σ≤= 23.设随机变量X 分布函数为F (x )=e ,0,(0),00.xt A B x ,x λ-⎧+≥>⎨<⎩(1) 求常数A ,B ;(2) 求P {X ≤2},P {X >3}; (3) 求分布密度f (x ).【解】(1)由00lim ()1lim ()lim ()x x x F x F x F x →+∞→+→-=⎧⎪⎨=⎪⎩得11A B =⎧⎨=-⎩(2) 2(2)(2)1e P X F λ-≤==-33(3)1(3)1(1e )e P X F λλ-->=-=--=(3) e ,0()()0,0x x f x F x x λλ-⎧≥'==⎨<⎩24.设随机变量X 的概率密度为f (x )=⎪⎩⎪⎨⎧<≤-<≤.,0,21,2,10,其他x x x x 求X 的分布函数F (x ),并画出f (x )及F (x ).【解】当x <0时F (x )=0当0≤x <1时0()()d ()d ()d xxF x f t t f t t f t t -∞-∞==+⎰⎰⎰20d 2xx t t ==⎰当1≤x<2时()()d xF x f t t -∞=⎰111122()d ()d ()d d (2)d 132222212xx f t t f t t f t tt t t tx x x x -∞==+=+-=+--=-+-⎰⎰⎰⎰⎰当x ≥2时()()d 1xF x f t t -∞==⎰故 220,0,012()21,1221,2x x x F x x x x x <⎧⎪⎪≤<⎪=⎨⎪-+-≤<⎪⎪≥⎩25.设随机变量X 的密度函数为(1) f (x )=||x ae-,λ>0;(2) f (x )=⎪⎩⎪⎨⎧<≤<<.,0,21,1,10,2其他x x x bx试确定常数a ,b ,并求其分布函数F (x ). 【解】(1) 由()d 1f x x ∞-∞=⎰知||021e d 2e d x x aa x a x λλλ∞∞---∞===⎰⎰故 2a λ=即密度函数为 e ,02()e 02xx x f x x λλλλ-⎧>⎪⎪=⎨⎪≤⎪⎩当x ≤0时1()()d e d e 22xxx x F x f x x x λλλ-∞-∞===⎰⎰当x >0时0()()d e d e d 22xxx x F x f x x x x λλλλ--∞-∞==+⎰⎰⎰11e 2xλ-=-故其分布函数11e ,02()1e ,02xx x F x x λλ-⎧->⎪⎪=⎨⎪≤⎪⎩(2) 由12201111()d d d 22b f x x bx x x x ∞-∞==+=+⎰⎰⎰得 b =1即X 的密度函数为2,011(),120,x x f x x x<<⎧⎪⎪=≤<⎨⎪⎪⎩其他当x ≤0时F (x )=0 当0<x <1时0()()d ()d ()d xxF x f x x f x x f x x -∞-∞==+⎰⎰⎰2d 2xx x x ==⎰当1≤x <2时01211()()d 0d d d x xF x f x x x x x x x -∞-∞==++⎰⎰⎰⎰312x=- 当x ≥2时F (x )=1 故其分布函数为20,0,012()31,1221,2x x x F x x x x ≤⎧⎪⎪<<⎪=⎨⎪-≤<⎪⎪≥⎩26.求标准正态分布的上α分位点,(1)α=0.01,求z α; (2)α=0.003,求z α,/2z α.【解】(1) ()0.01P X z α>=, 1()0.01z αΦ-=即 ()0.09z αΦ= 故 2.33z α= (2) 由()0.003P X z α>=得1()0.003z αΦ-= 即 ()0.997z αΦ= 查表得 2.75z α= 由/2()0.0015P X z α>=得/21()0.0015z α-Φ= 即 /2()0.9985z αΦ=查表得 /2 2.96z α=27.设P {X =k }=(12)k, k =1,2,…,令 1,1,.X Y X ⎧=⎨-⎩当取偶数时当取奇数时求随机变量X 的函数Y 的分布律. 【解】(1)(2)(4)(2)P Y P X P X P X k ===+=++=+242111()()()222111()/(1)443k =++++=-=2(1)1(1)3P Y P Y =-=-==28.设X ~N (0,1).(1) 求Y =e X 的概率密度; (2) 求Y =2X 2+1的概率密度; (3) 求Y =|X |的概率密度.【解】(1) 当y ≤0时,()()0Y F y P Y y =≤=当y >0时,()()(e )(ln )x Y F y P Y y P y P X y =≤=≤=≤ln ()dyX f x x -∞=⎰故 2/2ln d ()1()(ln ),0d y Y Y x F y f y f y y y y -===> (2)2(211)1P Y X =+≥=当y ≤1时()()0Y F y P Y y =≤=当y >1时2()()(21)Y F y P Y y P X y =≤=+≤212y P X P X ⎛-⎛⎫=≤=≤ ⎪ ⎝⎭⎝()dX f x x =故 d ()()d Y Y X X f y F y f f y ⎤⎛==+⎥⎥⎝⎦(1)/4,1y y --=>(3) (0)1P Y ≥=当y ≤0时()()0Y F y P Y y =≤=当y >0时()(||)()Y F y P X y P y X y =≤=-≤≤ ()d yX yf x x -=⎰故d()()()()d Y Y X X f y F y f y f y y==+-2/2,0y y -=>29.设随机变量X ~U (0,1),试求:(1) Y =e X 的分布函数及密度函数; (2) Z =-2ln X 的分布函数及密度函数. 【解】(1) (01)1P X <<=故 (1e e )1XP Y <=<= 当1y ≤时()()0Y F y P Y y =≤=当1<y <e 时()(e )(ln )X Y F y P y P X y =≤=≤ln 0d ln yx y ==⎰当y ≥e 时()(e )1X Y F y P y =≤= 即分布函数0,1()ln ,1e 1,e Y y F y y y y ≤⎧⎪=<<⎨⎪≥⎩故Y 的密度函数为11e ,()0,Y y y f y ⎧<<⎪=⎨⎪⎩其他 (2) 由P (0<X <1)=1知(0)1P Z >=当z ≤0时,()()0Z F z P Z z =≤=当z >0时,()()(2ln )Z F z P Z z P X z =≤=-≤/2(ln )(e )2z z P X P X -=≤-=≥/21/2e d 1e z z x --==-⎰ 即分布函数-/20,0()1-e ,Z z z F z z ≤⎧=⎨>⎩0故Z 的密度函数为/21e ,0()20,z Z z f z z -⎧>⎪=⎨⎪≤⎩030.设随机变量X 的密度函数为f (x )=22,0π,π0,.xx ⎧<<⎪⎨⎪⎩其他试求Y =sin X 的密度函数. 【解】(01)1P Y <<=当y ≤0时,()()0Y F y P Y y =≤=当0<y <1时,()()(sin )Y F y P Y y P X y =≤=≤(0arcsin )(πarcsin π)P X y P y X =<≤+-≤<arcsin π220πarcsin 22d d ππyy x x x x -=+⎰⎰222211arcsin 1πarcsin ππy y =+--()() 2arcsin πy =当y ≥1时,()1Y F y = 故Y 的密度函数为22,01π()10,Y y f y y⎧<<⎪=-⎨⎪⎩其他 31.设随机变量X 的分布函数如下:⎪⎩⎪⎨⎧≥<+=.)3(,)2(,)1(,11)(2x x x x F试填上(1),(2),(3)项.【解】由lim ()1x F x →∞=知②填1。

概率论与数理统计第二章课后习题及参考答案

概率论与数理统计第二章课后习题及参考答案

概率论与数理统计第二章课后习题及参考答案1.离散型随机变量X 的分布函数为⎪⎪⎩⎪⎪⎨⎧≥<≤<≤--<=≤=.4,1,42,7.0,21,2.0,1,0)()(x x x x x X P x F 求X 的分布律.解:)0()()(000--==x F x F x X P ,∴2.002.0)01()1()1(=-=----=-=F F X P ,5.02.07.0)02()2()2(=-=--==F F X P ,3.07.01)04()4()4(=-=--==F F X P ,∴X 的分布律为2.设k a k X P 3()(==, ,2,1=k ,问a 取何值时才能成为随机变量X 的分布律.解:由规范性,a a a n n k k 2321]32(1[32lim )32(11=--=⋅=+∞→∞+=∑,∴21=a ,此时,k k X P 32(21)(⋅==, ,2,1=k .3.设离散型随机变量X 的分布律为求:(1)X 的分布函数;(2)21(>X P ;(3))31(≤≤-X P .解:(1)1-<x 时,0)()(=≤=x X P x F ,11<≤-x 时,2.0)1()()(=-==≤=X P x X P x F ,21<≤x 时,7.0)1()1()()(==+-==≤=X P X P x X P x F ,2≥x 时,1)2()1()1()()(==+=+-==≤=X P X P X P x X P x F ,∴X 的分布函数为⎪⎪⎩⎪⎪⎨⎧≥<≤<≤--<=.2,1,21,7.0,11,2.0,1,0)(x x x x x F .(2)方法1:8.0)2()1()21(==+==>X P X P X P .方法2:8.02.01)21(121(1)21(=-=-=≤-=>F X P X P .(3)方法1:1)2()1()1()31(==+=+-==≤≤-X P X P X P X P .方法2:101)01()3()31(=-=---=≤≤-F F X P .4.一制药厂分别独立地组织两组技术人员试制不同类型的新药.若每组成功的概率都是0.4,而当第一组成功时,每年的销售额可达40000元;当第二组成功时,每年的销售额可达60000元,若失败则分文全无.以X 记这两种新药的年销售额,求X 的分布律.解:设=i A {第i 组取得成功},2,1=i ,由题可知,1A ,2A 相互独立,且4.0)()(21==A P A P .两组技术人员试制不同类型的新药,共有四种可能的情况:21A A ,21A A ,21A A ,21A A ,相对应的X 的值为100000、40000、60000、0,则16.0)()()()100000(2121====A P A P A A P X P ,24.0)()()()40000(2121====A P A P A A P X P ,24.0)()()()60000(2121====A P A P A A P X P ,36.0)()()()0(2121====A P A P A A P X P ,∴X 的分布律为5.对某目标进行独立射击,每次射中的概率为p ,直到射中为止,求:(1)射击次数X 的分布律;(2)脱靶次数Y 的分布律.解:(1)由题设,X 所有可能的取值为1,2,…,k ,…,设=k A {射击时在第k 次命中目标},则k k A A A A k X 121}{-== ,于是1)1()(--==k p p k X P ,所以X 的分布律为1)1()(--==k p p k X P , ,2,1=k .(2)Y 的所有可能取值为0,1,2,…,k ,…,于是Y 的分布律为1)1()(--==k p p k Y P , ,2,1,0=k .6.抛掷一枚不均匀的硬币,正面出现的概率为p ,10<<p ,以X 表示直至两个面都出现时的试验次数,求X 的分布律.解:X 所有可能的取值为2,3,…,设=A {k 次试验中出现1-k 次正面,1次反面},=B {k 次试验中出现1-k 次反面,1次正面},由题知,B A k X ==}{,=AB ∅,则)1()(1p p A P k -=-,p p B P k 1)1()(--=,p p p p B P A P B A P k X P k k 11)1()1()()()()(---+-=+=== ,于是,X 的分布律为p p p p k X P k k 11)1()1()(---+-==, ,3,2=k .7.随机变量X 服从泊松分布,且)2()1(===X P X P ,求)4(=X P 及)1(>X P .解:∵)2()1(===X P X P ,X 100000060000400000P0.160.240.240.36∴2e e2λλλλ--=,∴2=λ或0=λ(舍去),∴224e 32e !42)4(--===X P .)1()0(1)1(1)1(=-=-=≤-=>X P X P X P X P 222e 31e 2e 1----=--=.8.设随机变量X 的分布函数为⎩⎨⎧<≥+-=-.0,0,0,e )1(1)(x x x x F x 求:(1)X 的概率密度;(2))2(≤X P .解:(1)⎩⎨⎧<≥='=-.0,0,0,e )()(x x x x F x f x ;(2)2e 31)2()2(--==≤F X P .9.设随机变量X 的概率密度为xx Ax f e e )(+=-,求:(1)常数A ;(2))3ln 210(<<X P ;(3)分布函数)(x F .解:(1)⎰⎰+∞∞--+∞∞-+==xAx x f xx d e e d )(1A A x A x x x 2|e arctan d e 21e 2π==+=∞+∞-∞+∞-⎰,∴π2=A .(2)61|e arctan 2d e e 12)3ln 210(3ln 213ln 210==+=<<⎰-x x x x X P ππ.(3)xxxx xx t t f x F e arctan 2d e e 12d )()(ππ=+==⎰⎰∞--∞-.10.设连续型随机变量X 的分布函数为⎪⎪⎩⎪⎪⎨⎧>≤<-+-≤=.a x a x a a x B A a x x F ,1,,arctan ,,0)(其中0>a ,试求:(1)常数A ,B ;(2)概率密度)(x f .解:(1)∵2arcsin (lim )0()(0)(π⋅-=+=+-=-=+-→B A a x B A a F a F a x ,1)(lim )0()(2==+==⋅++→x F a F a F B A a x π,∴21=A ,π1=B .(2)⎪⎩⎪⎨⎧≥<-='=.a x a x x a x F x f ,0,,1)()(22π.11.设随机变量X 的概率密度曲线如图所示,其中0>a .(1)写出密度函数的表达式,求出h ;(2)求分布函数)(x F ;(3)求)2(a X aP ≤<.解:(1)由题设知⎪⎩⎪⎨⎧≤≤-=其他.,0,0,)(a x x ah h x f ∵2d )(d )(10ah x x a h h x x f a=-==⎰⎰∞+∞-,∴ah 2=,从而⎪⎩⎪⎨⎧≤≤-=其他.,0,0,22)(2a x x a a x f .y hO a x(2)0<x 时,0d 0d )()(===⎰⎰∞-∞-xxt t t f x F ,a x <≤0时,220202d )22(d 0d )()(a x a x t t a a t t t f x F xx-=-+==⎰⎰⎰∞-∞-,a x ≥时,1)(=x F ,∴X 的分布函数为⎪⎪⎩⎪⎪⎨⎧≥<≤-<=.a x a x axa x x x F ,1,0,2,0,0)(22.(3)41411(1)2()()2(=--=-=≤<a F a F a X a P .12.设随机变量X 在]6,2[上服从均匀分布,现对X 进行三次独立观察,试求至少有两次观测值大于3的概率.解:由题意知⎪⎩⎪⎨⎧≤≤=其他.,0,62,41)(x x f ,记3}{>=X A ,则43d 41)3()(63==>=⎰x X P A P ,设Y 为对X 进行三次独立观测事件}3{>X 出现的次数,则Y ~43,3(B ,所求概率为)3()2()2(=+==≥Y P Y P Y P )(()(333223A P C A P A P C +=3227)43(41)43(333223=+⋅=C C .13.设随机变量X 的概率密度为⎩⎨⎧<<=其他.,0,10,3)(2x x x f 以Y 表示对X 的三次独立重复观察中事件}21{≤X 出现的次数,求:(1)}21{≤X 至少出现一次的概率;(2)}21{≤X 恰好出现两次的概率.解:由题意知Y ~),3(p B ,其中81d 3)21(2102==≤=⎰x x X P p ,(1)}21{≤X 至少出现一次的概率为512169)811(1)1(1)0(1)1(33=--=--==-=≥p Y P Y P .(2)}21{≤X 恰好出现两次的概率为51221811(81()1()2(223223=-=-==C p p C Y P .14.在区间],0[a 上任意投掷一个质点,以X 表示这个质点的坐标.设这个质点落在],0[a 中任意小区间内的概率与这个小区间的长度成正比例.试求X 的分布函数.解:0<x 时,事件}{x X ≤表示X 落在区间],0[a 之外,是不可能事件,此时0)()(=≤=x X P x F ;a x ≤≤0时,事件}{x X ≤发生的概率等于X 落在区间],0[x 内的概率,它与],0[x 的长度x 成正比,即x k x X P x F =≤=)()(,a x =时,1)(=≤x X P ,所以a k 1=,则此时ax x F =)(;a x ≥时,事件}{x X ≤是必然事件,有1)(=x F ,综上,⎪⎪⎩⎪⎪⎨⎧≥<≤<=,a x a x a x x x F ,1,0,,0,0)(.15.设X ~),2(2σN ,又3.0)42(=<<X P ,求)0(>X P .解:)24222()42(σσσ-<-<-=<<X P X P 3.0)0(2(=Φ-Φ=σ,∴8.03.0)0(2(=+Φ=Φσ,∴8.02(2(1)0(1)0(=Φ=-Φ-=≤-=>σσX P X P .16.设X ~)4,10(N ,求a ,使得9.0)10(=<-a X P .解:)10()10(a X a P a X P <-<-=<-)22102(a X a P <-<-=)2()2(a a -Φ-Φ=9.01)2(2=-Φ=a,∴95.02(=Φa,查标准正态分布表知645.12=a,∴290.3=a .17.设X ~)9,60(N ,求分点1x ,2x ,使得X 分别落在),(1x -∞,),(21x x ,),(2∞x 的概率之比为3:4:5.解:由题知5:4:3)(:)(:)(2211=><<<x X P x X x P x X P ,又∵1)()()(2211=>+<<+<x X P x X x P x X P ,∴25.041)(1==<x X P ,33.031)(21==<<x X x P ,125)(2=>x X P ,则5833.0127)(1)(22==>-=≤x X P x X P .∴25.0)360()360360()(111=-Φ=-<-=<x x X P x X P ,查标准正态分布表知03601<-x ,∴03601>--x ,则75.0)360(1)360(11=-Φ-=--Φx x 查标准正态分布表,有7486.0)67.0(=Φ,7517.0)68.0(=Φ,75.02)68.0()67.0(=Φ+Φ,∴675.0268.067.03601=+=--x ,即975.571=x .∵5833.0)360(360360()(222=-Φ=-≤-=≤x x X P x X P ,查标准正态分布表知5833.0)21.0(=Φ,∴21.03602=-x ,即63.602=x .18.某高校入学考试的数学成绩近似服从正态分布)100,65(N ,如果85分以上为“优秀”,问数学成绩为“优秀”的考生大致占总人数的百分之几?解:设X 为考生的数学成绩,则X ~)100,65(N ,于是)85(1)85(≤-=>X P X P )1065851065(1-≤--=X P 0228.09772.01)2(1=-=Φ-=,即数学成绩为“优秀”的考生大致占总人数的2.28%.19.设随机变量X 的分布律为求2X Y =的分布律.解:Y 所有可能的取值为0,1,4,9,则51)0()0(====X P Y P ,307)1()1()1(==+-===X P X P Y P ,51)2()4(=-===X P Y P ,3011)3()9(====X P Y P ,∴Y 的分布律为20.设随机变量X 在)1,0(上服从均匀分布,求:(1)X Y e =的概率密度;(2)X Y ln 2-=的概率密度.解:由题设可知⎩⎨⎧<<=其他.,0,10,1)(x x f ,(1)当0≤y 时,=≤}{y Y ∅,X 2-1-013P5161511513011Y 0149P51307513011∴0)()(=≤=y Y P y F Y ,0)(=y f Y ;e 0<<y 时,)e ()()(y P y Y P y F X Y ≤=≤=)(ln )ln (y F y X P X =≤=,此时,yy f y y y F y F y f X XY X 1)(ln 1)(ln )(ln )()(=='⋅'='=;e ≥y 时,1)()(=≤=y Y P y F Y ,0)(=y f Y ;∴⎪⎩⎪⎨⎧<<=其他.,0,e 0,1)(y y y f Y .(2)当0≤y 时,=≤}{y Y ∅,∴0)()(=≤=y Y P y F Y ,0)(=y f Y ;当0>y 时,)e ()ln 2()()(2y Y X P y X P y Y P y F -≥=≤-=≤=)e (1)e (122y X y F X P ---=<-=,此时,222e 21)e ()e ()()(yy yX Y X F y F y f ---='⋅'-='=;∴⎪⎩⎪⎨⎧≤>=-.0,0,0,e 21)(2y y y f yY .21.设X ~)1,0(N ,求:(1)X Y e =的概率密度;(2)122+=X Y 的概率密度;(3)X Y =的概率密度.解:由题知22e 21)(x X xf -=π,+∞<<∞-x ,(1)0≤y 时,=≤=}e {y Y X ∅,∴0)()(=≤=y Y P y F Y ,0)(=y f Y ;0>y 时,)(ln )ln ()e ()()(y F y X P y P y Y P y F X X Y =≤=≤=≤=,此时,2)(ln 2e 21)(ln 1)(ln )(ln )()(y X XY X y f y y y F y F y f -=='⋅'='=π;综上,⎪⎩⎪⎨⎧≤>=-.0,0,0,e 21)(2)(ln 2y y y f y Y π.(2)1<y 时,=≤+=}12{2y X Y ∅,∴0)()(=≤=y Y P y F Y ;1≥y 时,21()12()()(22-≤=≤+=≤=y X P y X P y Y P y F Y )2121(-≤≤--=y X y P 当1=y 时,0)(=y F Y ,故1≤y 时,0)(=y F Y ,0)(=y f Y ;当1>y 时⎰⎰------==210221212d e22d e21)(22y x y y x Y x x y F ππ,此时,41e)1(21)()(---='=y Y Y y y F y f π,综上,⎪⎩⎪⎨⎧≤>-=--.1,0,1,e )1(21)(41y y y y f y Y π.(3)0<y 时,=≤=}{y X Y ∅,∴0)()()(=≤=≤=y X P y Y P y F Y ,0≥y 时,)()()()(y X y P y X P y Y P y F Y ≤≤-=≤=≤=)()(y F y F X X --=,0=y 时,0)(=y F Y ,∴0≤y 时,有0)(=y F Y ,0)(=y f Y ;0>y 时,22e 22)()()()()(y X X Y Y Y yf y f y F y F y f -=-+=-'+'=π,综上,⎪⎩⎪⎨⎧≤>=-.0,0,0,e 22)(22y y y f yY π.22.(1)设随机变量X 的概率密度为)(x f ,+∞<<∞-x ,求3X Y =的概率密度.(2)设随机变量X 的概率密度为⎩⎨⎧>=-其他.,00,e )(x x f x 求2X Y =的概率密度.解:(1)0=y 时,0)()(=≤=y Y P y F Y ,0)(=y f Y ;0≠y 时,)()()()()(333y F y X P y X P y Y P y F X Y =≤=≤=≤=,3233331())(()()(-⋅=''='=y y f y y F y F y f XY Y ;∴⎪⎩⎪⎨⎧=≠=-.0,0,0),(31)(332y y y f y y f Y .(2)由于02≥=X Y ,故当0<y 时,}{y Y ≤是不可能事件,有0)()(=≤=y Y P y F Y ;当0≥y 时,有)()(()()()(2y F y F y X y P y X P y Y P y F X X Y --=≤≤-=≤=≤=;因为当0=y 时,0)0()0()(=--=X X Y F F y F ,所以当0≤y 时,0)(=y F Y .将)(y F Y 关于y 求导数,即得Y 的概率密度为⎪⎩⎪⎨⎧≤>-+=.0,0,0)],()([21)(y y y f y f y y f X X Y ,⎪⎩⎪⎨⎧≤>+=-.0,0,0),e e (21y y y y y.23.设随机变量X 的概率密度为⎪⎩⎪⎨⎧<<=其他.,0,0,2)(2ππx xx f 求X Y sin =的概率密度.解:由于X 在),0(π内取值,所以X Y sin =的可能取值区间为)1,0(,在Y 的可能取值区间之外,0)(=y f Y ;当10<<y 时,使}{y Y ≤的x 取值范围是),arcsin []arcsin ,0(ππy y - ,于是}arcsin {}arcsin 0{}{ππ<≤-≤<=≤X y y X y Y .故)arcsin ()arcsin 0()()(ππ<≤-+≤<=≤=X y P y X P y Y P y F Y ⎰⎰-+=ππyX y X x x f x x f arcsin arcsin 0d )(d )(⎰⎰-+=ππππyy x xx xarcsin 2arcsin 02d 2d 2,上式两边对y 求导,得22222121)arcsin (21arcsin 2)(yyy yyy f Y -=--+-=ππππ;综上,⎪⎩⎪⎨⎧<<-=其他.,0,10,12)(2y y y f Y π.。

数理统计第二次作业

数理统计第二次作业

数理统计作业(二)1.作业要求:使用工具生成两组二维正态分布的样本,参数的具体值自己定。

(1)计算每个样本的均值,离差阵(2)用马氏距离构造分离曲面2.具体操作:(1)使用MATLAB生成了两组二维正态分布的样本样本1:指定样本满足均值向量为(1, 2)协方差矩阵为(1, 0; 0, 2)的二维正态分布首先指定样本的均值向量:再指定样本的协方差矩阵:生成满足分布的样本:样本2:指定样本满足均值向量为(5, 1)协方差矩阵为(7 1; 1 8)的二维正态分布首先指定样本的均值向量:再指定样本的协方差矩阵:生成满足分布的样本:(3)使用MATLAB求两个样本的均值向量(4)使用MATLAB求两个样本的离差阵:(5)使用MATLAB绘制两个样本的散点图:其中样本1使用红色,样本2使用蓝色:(注,x1与y1是样本1的两个坐标,得到的命令为,这条指令的意思是取全部行,第一列)得到的散点图如下:(5)下面计算使用马氏距离得到的分离曲面:分离曲面的方程为:ω(x)=0其中ω(x)的表达式为:ω(x)=d2(x,G2)−d2(x,G1)其中G1,G2分别代表两个样本所属的总体。

使用MATLAB得到其表达式的具体形式:(注:x_1, x_2为任一点的坐标,是一个变量,在MATLAB中的设置命令为)该曲面的方程结果为:(其中,x = (x_1, x_2)’, conj指共轭复数)ω(x)=− (conj(x1)− 1)∗(x1− 1)− (conj(x2)− 1)∗(x155−7∗x255+255)− (conj(x1)− 5)∗(x255−8∗x155+3955)− (x22− 1)∗(conj(x2)− 2)=0使用MATLAB绘制出分离曲线:(截图太小可以放大看一下,就是先hold on然后使用ezplot(‘曲线的方程’)即可。

)得到的结果图如下:计算回报错误率:在matlab中新建脚本:w.m,写入内容如下:(注意,需要删除原先的syms变量w)function [s] = w(x1, x2)s = - (conj(x1) - 1)*(x1 - 1) - (conj(x2) - 1)*(x1/55 - (7*x2)/55 + 2/55) - (conj(x1) - 5)*(x2/55 - (8*x1)/55 + 39/55) - (x2/2 -1)*(conj(x2) - 2);运行w.m脚本在实时命令窗口中输入以下命令来使用回报法统计回报错判率:for i=1:15if w(R1(i, 1), R1(i, 2)) < 0m1 = m1 + 1;endif w(R2(i, 1), R2(i, 2)) > 0m2 = m2 + 1;endend得到结果如下所示:故使用回报法算得回报错判率为20%,另外,可以直接在图上数圈,也可以计算回报错判率。

数理统计作业答案

数理统计作业答案

1、设总体X 服从正态分布),(2σμN ,其中μ已知,2σ未知,n X X X ,,,21 为其样本,2≥n ,则下列说法中正确的是(D )。

(A )∑=-ni i X n122)(μσ是统计量 (B )∑=ni i X n122σ是统计量(C )∑=--ni iX n 122)(1μσ是统计量 (D )∑=ni iX n12μ是统计量2、设两独立随机变量)1,0(~N X,)9(~2χY ,则YX 3服从( C )。

3、设两独立随机变量)1,0(~N X,2~(16)Y χ,则C )。

4、设n X X ,,1 是来自总体X 的样本,且μ=EX,则下列是μ的无偏估计的是( A ).5、设4321,,,X X X X 是总体2(0,)N σ的样本,2σ未知,则下列随机变量是统计量的是( B ).(A )3/X σ; (B )414ii X=∑; (C )σ-1X ; (D )4221/ii Xσ=∑6、设总体),(~2σμN X ,1,,n X X L 为样本,S X ,分别为样本均值和标准差,则下列正确的是( C ). 7、设总体X 服从两点分布B (1,p ),其中p 是未知参数,15,,X X ⋅⋅⋅是来自总体的简单随机样本,则下列随机变量不是统计量为( C ) ( A ) . 12X X +( B ){}max ,15i X i ≤≤( C ) 52X p + ( D )()251X X -8、设1,,n X X ⋅⋅⋅为来自正态总体2(,)N μσ的一个样本,μ,2σ未知。

则2σ的最大似然估计量为( B )。

(A )∑=-n i i X n 12)(1μ (B )()211∑=-n i i X X n (C )∑=--n i i X n 12)(11μ(D )()∑=--n i iX X n 1211 9、设总体),(~2σμN X ,1,,n X X ⋅⋅⋅为样本,S X ,分别为样本均值和标准差,则)X Sμ-服从( D )分布.10、设1,,n X X ⋅⋅⋅为来自正态总体2(,)N μσ的一个样本,μ,2σ未知。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档