气垫弹簧振子的简谐振动实验报告

合集下载

简谐振动实验的实验报告

简谐振动实验的实验报告

简谐振动实验的实验报告一、实验目的1、观察简谐振动的现象,加深对简谐振动特性的理解。

2、测量简谐振动的周期和频率,研究其与相关物理量的关系。

3、掌握测量简谐振动参数的实验方法和数据处理技巧。

二、实验原理简谐振动是一种理想化的振动形式,其运动方程可以表示为:$x= A\sin(\omega t +\varphi)$,其中$A$为振幅,$\omega$为角频率,$t$为时间,$\varphi$为初相位。

在本次实验中,我们通过研究弹簧振子的振动来探究简谐振动的特性。

根据胡克定律,弹簧的弹力$F =kx$,其中$k$为弹簧的劲度系数,$x$为弹簧的伸长量。

当物体在光滑水平面上振动时,其运动方程为$m\ddot{x} = kx$,解这个方程可得$\omega =\sqrt{\frac{k}{m}}$,振动周期$T = 2\pi\sqrt{\frac{m}{k}}$。

三、实验仪器1、气垫导轨及附件。

2、滑块。

3、弹簧。

4、光电门计时器。

5、砝码。

6、米尺。

四、实验步骤1、安装实验装置将气垫导轨调至水平,通气后检查滑块是否能在导轨上自由滑动。

将弹簧一端固定在气垫导轨的一端,另一端连接滑块。

2、测量弹簧的劲度系数$k$挂上不同质量的砝码,测量弹簧的伸长量,根据胡克定律计算$k$的值。

3、测量简谐振动的周期$T$让滑块在气垫导轨上做简谐振动,通过光电门计时器记录振动的周期。

改变滑块的质量,重复测量。

4、记录实验数据详细记录每次测量的质量、伸长量、周期等数据。

五、实验数据及处理|滑块质量$m$(kg)|弹簧伸长量$x$(m)|劲度系数$k$(N/m)|振动周期$T$(s)||||||| 010 | 005 | 200 | 063 || 020 | 010 | 200 | 090 || 030 | 015 | 200 | 109 || 040 | 020 | 200 | 126 |根据实验数据,以滑块质量$m$为横坐标,振动周期$T$的平方为纵坐标,绘制图像。

气轨上的弹簧简谐振动实验报告

气轨上的弹簧简谐振动实验报告

气轨上弹簧振子的简谐振动目的要求:(1)用实验方法考察弹簧振子的振动周期与系统参量的关系并测定弹簧的劲度系数和有效质量。

(2)观测简谐振动的运动学特征。

(3)测量简谐振动的机械能。

仪器用具:气轨(自带米尺,2m,1mm),弹簧两个,滑块,骑码,挡光刀片,光电计时器,电子天平(0.01g),游标卡尺(0.05mm),螺丝刀。

实验原理:(一)弹簧振子的简谐运动过程:质量为 m1的质点由两个弹簧与连接,弹簧的劲度系数分别为k1和 k2,如下图所示:当 m1偏离平衡位置 x时,所受到的弹簧力合力为令 k=,并用牛顿第二定律写出方程解得X=Asin()即其作简谐运动,其中在上式中,是振动系统的固有角频率,是由系统本身决定的。

m=m 1+m0是振动系统的有效质量, m 0是弹簧的有效质量,A是振幅,是初相位,A和由起始条件决定。

系统的振动周期为通过改变测量相应的 T,考察 T 和的关系,最小二乘法线性拟合求出 k和(二)简谐振动的运动学特征:将()对 t 求微分)可见振子的运动速度 v 的变化关系也是一个简谐运动,角频率为,振幅为,而且 v 的相位比 x 超前 . 消去 t,得v2=v02(v2−v2)x=A时,v=0,x=0 时,v 的数值最大,即实验中测量 x和 v 随时间的变化规律及 x和 v 之间的相位关系。

从上述关系可得(三)简谐振动的机械能:振动动能为系统的弹性势能为则系统的机械能式中:k 和 A均不随时间变化。

上式说明机械能守恒,本实验通过测定不同位置 x上 m 1的运动速度 v,从而求得和,观测它们之间的相互转换并验证机械能守恒定律。

(四)实验装置:1.气轨设备及速度测量实验室所用气轨由一根约 2m 长的三角形铝材做成,气轨的一端堵死,另一端送入压缩空气,气轨的两个方向上侧面各钻有两排小孔,空气从小孔喷出。

把用合金铝做成的滑块放在气轨的两个喷气侧面上,滑块的表面经过精加工与这两个侧面精确吻合,滑块与气轨之间就会形成一层很薄的气垫,使滑块漂浮在气垫上,因此滑块受到的摩擦力很小。

弹簧振子简谐运动实验报告

弹簧振子简谐运动实验报告

弹簧振子简谐运动实验报告一、实验目的1、观察弹簧振子的运动,理解简谐运动的特征。

2、测量弹簧振子的周期,探究周期与振子质量、弹簧劲度系数的关系。

3、学会使用实验仪器进行数据测量和处理。

二、实验原理弹簧振子是一个理想化的物理模型,它由一个轻质弹簧和一个质量可忽略不计的小球组成。

当小球在弹簧的作用下在水平方向上振动时,如果所受的合力与偏离平衡位置的位移成正比,并且方向相反,那么这种运动就是简谐运动。

根据胡克定律,弹簧的弹力 F = kx,其中 k 是弹簧的劲度系数,x是弹簧的伸长或压缩量。

对于弹簧振子,其运动方程可以表示为:\m\frac{d^2x}{dt^2} = kx\其解为:\(x = A\sin(\omega t +\varphi)\),其中 A 是振幅,\(\omega\)是角频率,\(\varphi\)是初相位。

简谐运动的周期 T 与角频率\(\omega\)的关系为:\(T =\frac{2\pi}{\omega}\),又因为\(\omega =\sqrt{\frac{k}{m}}\),所以弹簧振子的周期公式为:\(T = 2\pi\sqrt{\frac{m}{k}}\)。

三、实验仪器1、气垫导轨、光电门、数字计时器。

2、不同劲度系数的弹簧。

3、不同质量的滑块。

四、实验步骤1、将气垫导轨调至水平,开启气源。

2、把弹簧一端固定在气垫导轨的一端,另一端连接滑块,使滑块在气垫导轨上做水平方向的振动。

3、在滑块上安装遮光片,调整光电门的位置,使其能够准确测量滑块通过的时间。

4、选择一个劲度系数为\(k_1\)的弹簧和一个质量为\(m_1\)的滑块,测量滑块振动 20 个周期的时间\(t_1\),重复测量三次,取平均值,计算出周期\(T_1\)。

5、保持弹簧劲度系数不变,更换质量为\(m_2\)的滑块,重复步骤 4,测量周期\(T_2\)。

6、保持滑块质量不变,更换劲度系数为\(k_2\)的弹簧,重复步骤 4,测量周期\(T_3\)。

实验十 气轨上弹簧振子的简谐振动_北大物院普物实验报告

实验十 气轨上弹簧振子的简谐振动_北大物院普物实验报告
实验十气轨上弹簧振子的简谐振动
一、实验数据及数据处理
1.弹簧振子的振动周期 和振幅 的关系
将测量结果列表如下:
10.00
1.89219
1.89198
1.89202
1.89184
1.89341
1.89333
1.8925±0.0003
20.00
1.89485
1.89485
1.89480
1.89595
1.89641
0.01487
0.00754
0.00863
0.01034
0.01492
0.00755
0.00863
0.01030
0.01490
0.00752
0.00851
0.01016
0.01436
0.00752
0.00851
0.01014
0.01446
0.00750
0.00854
0.01015
0.01440
0.00753
1.89588
1.8955±0.0003
30.00
1.89699
1.89778
1.89814
1.89733
1.89774
1.89784
1.8976±0.0002
40.00
1.89967
1.89992
1.90009
1.89862
1.89899
1.89915
1.8994±0.0002
表格1
从测量结果可以看出,振幅不同时,弹簧振子振动周期基本是相同的,但是不同振幅下的振动周期还是有所区别的,可以看出,振幅越大时,振动周期会越大。这是因为振子在振动时存在阻尼的缘故。阻尼的存在使得运动周期变长。定性的来看,振幅越大,在距平衡位置同样远处速度越大,则其受的阻尼也会越大,故其受到阻尼的影响将越大,且其受到阻尼影响运动的路程也更长,则其周期将越长。实际上,根据理论分析,如果阻尼完全不存在,即振子严格做简谐振动时,振动周期应该是与振幅完全无关的。

气垫导轨上弹簧振子振动的研究

气垫导轨上弹簧振子振动的研究

气垫导轨上弹簧振子振动的研究力学实验最困难的问题就是摩擦力对测量的影响。

气垫导轨就是为消除摩擦而设计的力学实验的装置,它使物体在气垫上运动,避免物体与导轨表面的直接接触,从而消除运动物体与导轨表的摩擦,也就是说,物体受到的摩擦阻力几乎可以忽略。

利用气垫导轨可以进行许多力学实验,如测速度、加速度,验证牛顿第二定律、动量守恒定律,研究简谐振动、阻尼振动等,本实验采用气垫导轨研究弹簧振子的振动。

一、必做部分:简谐振动[实验目的]1.测量弹簧振子的振动周期t。

2.求弹簧的倔强系数k和有效质量m0。

[仪器仪器]气垫导轨、滑块、额外砝码、弹簧、光电门、数字毫秒计。

[实验原理]在水平的气垫导轨上,两个相同的弹簧中间系一滑块,滑块做往返振动,如图13-1所示。

如果不考虑滑块运动的阻力,那么,滑块的振动可以看成是简谐振动。

设立质量为m1的滑块处在平衡位置,每个弹簧的弯曲量为x0,当m1距平衡点x时,m1只受到弹性力?k1(x?x0)与?k1(x?x0)的作用,其中k1是弹簧的倔强系数。

根据牛顿第二定律,其运动方程为图13-1简谐运动原理图?(1)?k1(x?x0)?k1(x?x0)?m?x令k?2k1方程(1)的意指x?asin?(0t??0)(2)表明滑块就是搞四极振动。

式中:a―振幅;?0―初增益。

0km(3)0叫做振动系统的固有频率。

而m?m1?m0(4)式中:m―振动系统的有效质量;m0―弹簧的有效质量;m1―滑块和砝码的质量。

0由振动系统本身的性质所同意。

振动周期t与?0存有以下关系:t?2??0?2?m1?m0m?2?kk(5)在实验中,我们改变m1,测出相应的t,考虑t与m的关系,从而求出k和m0。

[实验内容]1.按气垫导轨和计时器的使用方法和要求,将仪器调整到正常工作状态。

2.测量图13-1右图的弹簧振子的振动周期t,重复测量6次,与t适当的振动系统的有效率质量就是m?m1?m0,其中m1就是滑块本身(未加砝码块)的质量,m0为弹簧的有效率质量。

弹簧振子的简谐振动

弹簧振子的简谐振动

弹簧振子的简谐振动【实验目的】:1.测量弹簧振子的振动周期T2.求弹簧的劲度系数k 和有效质量m【实验器材】:气垫导轨、滑块、附加砝码、弹簧、秒表【实验原理】:1.弹簧振子的简谐运动方程质量为m 1的质点由两个弹簧拉着, 弹簧的劲度系数分别为k 当m 偏离平衡位置的距离为x 时, 它受弹簧作用力并用牛顿第二定律写出方程−kx = mx ¨方程的解为:x = A sin(ω0t + ϕ0) 即物体作简谐振动, 其中ω0 =kmω0是振动系统的固有角频率. m = m 1 + m 0 是振动系统的有效质量, m 0是弹簧的有效质量. A 是振幅, φ0是初相位, ω0有系统本身决定, A 和φ0由初始条件决定. 系统的振动周期: T =2πω0= 2π,mk=2πm 1 + m 0k在实验中改变质量,测出相应的T ,考虑T 与m 的关系,从而求出劲度系数与有效质量【实验过程】:1.将各装置装好并调到工作状态2.将滑块从平衡位置拉到某一合适位置,然后放手让滑块振动与此同时按下秒表,当振子振动10个周期时再按下秒表,记录下时间,重复测量10次得到每次的振动周期如下表所示: 次数 1 2 3 4 5 6 7 8 9 10 T/s 1.7531.7531.7531.7541.7431.7531.7561.7531.7501.7563.称量滑块质量为319.748g ,四个砝码的质量为67.862g ,六个砝码的质量为100.087g ,将四个砝码对称地放到滑块的两边,重复过程2,得到下表一的数据。

将六个砝码对称地放到滑块的两边,同样重复过程2,得到下表二的数据。

表一:次数 1 2 3 4 5 6 7 8 9 10T/s 1.922 1.932 1.934 1.934 1.919 1.925 1.925 1.918 1.928 1.929表二:次数 1 2 3 4 5 6 7 8 9 10T/s 2.004 2.019 1.984 2.000 1.996 1.994 1.997 1.994 1.985 1.9974.用逐差法处理上述数据得弹簧等效劲度系数k=4.39N/m弹簧等效质量m=0.218g丁朝阳2012301020025。

气垫弹簧振子的简谐振动实验报告

气垫弹簧振子的简谐振动实验报告

××大学实验报告学院:×× 系:物理系专业:×× 年级:××级姓名:×× 学号:×× 实验时间:×× 指导教师签名:_______________实验四:气垫弹簧振子的简谐振动一.实验目的与要求:1. 考察弹簧振子的振动周期与振动系统参量的关系。

2. 学习用图解法求出等效弹簧的倔强系数和有效质量。

3. 学会气垫调整与试验方法。

二.实验原理:1.弹簧的倔强系数弹簧的伸长量x 与它所受的拉力成正比 F=kx k=XF 2.弹簧振子的简谐运动方程根据牛顿第二定律,滑块m 1 的运动方程为-k 1(x+x 01)-k 2(x-x 02)=m 22dt x d ,即-(k 1+k 2)x=m 22dtxd式中,m=m 1+m 0(系统有效质量),m 0是弹簧有效质量,m 1是滑块质量。

令k=k 1+k 2,则-kx= m 22dtxd解为x=A sin (ω0t+ψ),ω0=mk =mk k 21而系统振动周期T 0=2ωπ=2πk m当m 0《 m 1时,m 0=3sm ,m s 是弹簧的实际质量(m 0与m s 的关系可简单写成m 0=3m s )。

本实验通过改变m 1测出相应的T ,以资考察T 和m 的关系,从而求出m 0和k 。

三.主要仪器设备:气垫导轨、滑块(包括挡光刀片)、光电门、测时器、弹簧。

四.实验内容及实验数据记录: 1.气垫导轨水平的调节使用开孔挡光片,智能测时器选在2pr 功能档。

让光电门A 、B 相距约60cm(取导轨中央位置),给滑块以一定的初速度(Δt 1和Δt 2控制在20-30ms 内),让它在导轨上依次通过两个光电门.若在同一方向上运动的Δt 1和Δt 2的相对误差小于3%,则认为导轨已调到水平.否则重新调整水平调节旋钮。

2.研究弹簧振子的振动周期与振幅的关系先将测时器设置于6pd (测周期)功能档。

实验报告弹簧振子的简谐运动

实验报告弹簧振子的简谐运动

实验报告弹簧振子的简谐运动本实验主要研究弹簧振子的简谐运动,探究其运动规律、振动周期等物理特性。

通过大量测试数据的分析和比较,得到一系列准确的实验结果,为进一步研究弹簧振子在物理学中的应用打下了坚实的实验基础。

首先,我们需要知道什么是弹簧振子。

在物理学中,弹簧振子是指以弹簧为主要构件的简谐振动系统。

简谐振动是指物体在平衡位置附近做来回振动的运动状态,其特点是周期性、振幅相等、周期时间相等等。

实验过程中,我们需要利用一种称为“托线法”的测量方式,即将一个弹簧振子的末端挂于一根轻质托线上,并调整托线为竖直状态,然后加以激励,使其作简谐振动。

通过测量振子的振幅、周期等参数,可以得到弹簧振子的运动规律。

对于弹簧振子的运动规律,我们可以通过实验采集的数据进行分析和推导。

例如,我们可以通过测量振幅和时间的关系,得到振子的加速度。

同时,我们还可以利用弹簧振子的重要物理特性——弹性系数,计算出其振动周期。

在实验室中,我们可以通过不同的测量方法,不断验证弹簧振子的运动规律,最终得到更加准确的实验结果。

此外,在实验过程中,我们还要注意控制实验环境的干扰因素,以确保实验数据的准确性和可靠性。

例如,我们需要保持实验室的温度、湿度等环境参数稳定,防止外部扰动对实验数据的影响。

并且,我们还需要对实验装置进行维护和校准,以确保测试时的设备状态和运行性能。

总之,弹簧振子的简谐运动是物理学中一个重要的实验课题,研究其运动规律可以为我们更全面地理解和应用简谐振动提供帮助。

通过本实验的学习和探究,我们不仅提高了理论知识的掌握程度,还加强了实验技能和数据处理能力。

相信这些能力的提升可以让我们更好地解决实际问题,为科学技术的发展作出更大的贡献。

气轨上的弹簧简谐振动实验报告

气轨上的弹簧简谐振动实验报告

气轨上弹簧振子的简谐振动目的要求:(1)用实验方法考察弹簧振子的振动周期与系统参量的关系并测定弹簧的劲度系数和有效质量。

(2)观测简谐振动的运动学特征。

(3)测量简谐振动的机械能。

仪器用具:气轨(自带米尺,2m,1mm),弹簧两个,滑块,骑码,挡光刀片,光电计时器,电子天平(0.01g),游标卡尺(0.05mm),螺丝刀。

实验原理:(一)弹簧振子的简谐运动过程:质量为 m1的质点由两个弹簧与连接,弹簧的劲度系数分别为k1和 k2,如下图所示:当 m1偏离平衡位置 x时,所受到的弹簧力合力为令 k=,并用牛顿第二定律写出方程解得X=Asin()即其作简谐运动,其中在上式中,是振动系统的固有角频率,是由系统本身决定的。

m=m 1+m0是振动系统的有效质量, m 0是弹簧的有效质量,A是振幅,是初相位,A和由起始条件决定。

系统的振动周期为通过改变测量相应的 T,考察 T 和的关系,最小二乘法线性拟合求出 k和(二)简谐振动的运动学特征:将()对 t 求微分)可见振子的运动速度 v 的变化关系也是一个简谐运动,角频率为,振幅为,而且 v 的相位比 x 超前 . 消去 t,得x=A时,v=0,x=0 时,v 的数值最大,即实验中测量 x和 v 随时间的变化规律及 x和 v 之间的相位关系。

从上述关系可得(三)简谐振动的机械能:振动动能为系统的弹性势能为则系统的机械能式中:k 和 A均不随时间变化。

上式说明机械能守恒,本实验通过测定不同位置 x上 m 1的运动速度 v,从而求得和,观测它们之间的相互转换并验证机械能守恒定律。

(四)实验装置:1.气轨设备及速度测量实验室所用气轨由一根约 2m 长的三角形铝材做成,气轨的一端堵死,另一端送入压缩空气,气轨的两个方向上侧面各钻有两排小孔,空气从小孔喷出。

把用合金铝做成的滑块放在气轨的两个喷气侧面上,滑块的内表面经过精加工与这两个侧面精确吻合,滑块与气轨之间就会形成一层很薄的气垫,使滑块漂浮在气垫上,因此滑块受到的摩擦力很小。

气垫导轨上的实验——弹簧振子的简谐振动

气垫导轨上的实验——弹簧振子的简谐振动

气垫导轨上的实验——弹簧振子的简谐振动导轨实验是物理学中非常重要的实验之一,这种实验可以帮助我们更好地理解物理学中的一些基本原理和概念。

本文将介绍气垫导轨上的实验——弹簧振子的简谐振动。

实验介绍气垫导轨是一种高精度的实验装置,采用此装置可以消除重力、摩擦等因素的影响,实现真正意义上的理想运动。

弹簧振子是物理学中的一种经典问题。

在本实验中,我们将利用气垫导轨上的弹簧振子来研究简谐振动的基本特征。

具体来说,我们将观察弹簧振子的振动周期、振幅等参数,分析这些参数与弹簧振子的基本特性之间的关系。

实验原理弹簧振子的运动可以近似地看作一种简谐振动。

简谐运动是指物体在恒定张力或弹力作用下,沿着一条直线或固定曲线做往返运动的一类运动形式。

弹簧振子的振动就是一种典型的简谐振动。

在弹簧振子的振动过程中,弹簧的弹性力是其运动的主导因素。

弹簧的弹性势能与其弹性形变的平方成正比,同时其弹性恢复力与其形变量成正比。

因此,我们可以通过测量弹簧振子的振幅与周期来确定弹簧的劲度系数和质量。

实验装置实验需要使用的装置有气垫导轨、弹簧振子、平衡砝码、计时器等。

实验步骤1.将弹簧挂在气垫导轨上。

2.调整弹簧长度和质量,使其达到稳定的振动状态。

3.测量弹簧振子的振幅和周期。

4.根据测量数据,计算弹簧的劲度系数和质量。

实验结果与分析弹簧振子的周期T可以通过震动次数n和时间t的比值来计算,即T = t / n。

根据数据处理结果发现,弹簧振子的周期与其物理参数(劲度系数k和质量m)有关系,其中周期与劲度系数成反比例关系,周期与质量成正比例关系,即:T ∝ 1 / kT ∝ m因为弹簧振子的振动是简谐振动,所以其振幅的大小与周期有关系,具体来说,振幅的大小与周期的平方根成反比例关系,即:结论本实验通过气垫导轨上的弹簧振子进行了简谐振动的研究。

结果表明,弹簧振子的周期与劲度系数成反比例关系,周期与质量成正比例关系,振幅的大小与周期的平方根成反比例关系。

在气垫导轨上研究简谐振动和阻尼振动试验

在气垫导轨上研究简谐振动和阻尼振动试验

弹簧不变改变滑块质量
得到三组数据,制作图像,探究质量与周 期之间的关系。作 质量-周期的图像:
作 质量-周期平方 的图像:
滑块质量不变改变弹簧
得到三组数据,制作图像,探究劲度系数 与周期之间的关系。由于使用更大劲度系 数的弹簧会导致振子周期变小,所以我们 作 劲度系数倒数-周期的图像:
作 劲度系数倒数-周期平方的图像:
3. 实验中探究简谐振动的周期与m,k关系时, 我们只选用了三组弹簧,这不足以定量说 明m,k与周期的关系。(改进方法:使用 劲度系数不同的弹簧6~8组,进行相同实验, 但要注意弹簧的劲度系数不应过大,以提 高测量的准确性。)
4. 在研究阻尼振动中,我们通过增大滑块的 质量来提高气垫导轨的阻尼,这样对于实 验来说不是十分可取。(改进方法:使用 可以调节气垫导轨气孔出气量的装置来改 变气垫的阻尼。)
因此我们可以定性分析推断出周期与劲度 系数和质量之间的关系 。
实验结论:振子的质量与周期的平方成正 比;弹簧劲度系数与周期的平方成反比。
该结论也符合简谐振动的周期公式。
2.利用周期公式求弹簧的劲度系数和 其有效质量
由于单纯的测弹簧的劲度系数较难而且非常不准 确,在这里我们用简谐振动的周期公式求出弹簧 的劲度系数和有效质量。
为 4?
k
2
,截距为
4?
k
2
m0
,由此可求出k和mo。
求出1号弹簧的劲度系数k=6.25N/m , mo=16.10g
3.在阻尼振动的条件下测量对数缩减 等一系列参量
? 实验原理:
对于阻尼振动有 T ? 2? ? 2?
其中
2?
?
b ,?
m
2 0
?
k m

简谐振动的研究·实验报告

简谐振动的研究·实验报告

简谐振动的研究·实验报告【实验目的】研究简谐振动的基本特征【实验仪器】气垫导轨、通用数字计时器、滑块、砝码、弹簧(5对)、约利氏秤朱力氏秤朱力氏秤的示意图如右图所示。

一个可以升降的套杆1上刻有毫米分度,并附有读数游标2。

将弹簧3挂在1顶部,下端挂一有水平刻线G 的小镜子4,小镜子外套一个带有水平刻线D 的玻璃管5,镜下再钩挂砝码盘6。

添加砝码时,小镜子随弹簧伸长而下移。

欲知弹簧伸长量需旋动标尺调节旋钮7将弹簧提升,直至镜上水平刻线G 与玻璃管上水平刻线D 及D 在镜中的像相互重合,实现所谓“三线重合”。

测量时注意先用底座上螺丝调节弹簧铅直,此时小镜子应不会接触到玻璃管。

【实验原理】简谐振动是振动中最简单、最基本的运动,对简谐振动的研究有着重要的意义。

简谐振动的方程为x x2ω-= 其位移方程为)sin(αω+=t A x速度方程为)sin(αωω+=t A v其运动的周期为ωπ2=TT 或ω由振动系统本身的特性决定,与初始运动无关。

而A ,α是由初始条件决定的。

实验系统如图4-15-1所示。

两个弹性系数k 相同的弹簧分别挂在质量为m 的滑行器两侧,且处于拉伸的状态。

在弹性恢复力的作用下,滑行器沿水平导轨作往复运动。

当滑行器离开平衡位置0x 至坐标x 时,水平方向上受弹性恢复力)()(00x x k x x k --+-与的作用,有xm x x k x x k =--+-)00()( 即 xm kx =-2 令k k 20=,有x mk xx m x k 00-==- 或 上式形式与简谐振动方程相同,由此可知滑行器的运动为简谐振动。

与简谐振动方程比较可得mk 02=ω 即该简谐振动的角频率mk 0=ω 1、)sin(αω+=t A x 的验证将光电门F 置于0x 处,光电门G 置于1x 处,滑行器1拉至A x 处(010x x x x A ->-)释放,由计时器测出滑行器从0x 运动至1x 的时间1t 。

简谐振动的研究,实验报告

简谐振动的研究,实验报告

某位仁兄竟然要我二十几分才让下!!!!哥哥为了大家,传上来了,大家下吧实验5-2 简谐振动的研究自然界中存在着各种各样的振动现象,其中最简单的振动是简谐振动。

一切复杂的振动都可以看作是由多个简谐振动合成的,因此简谐振动是最基本最重要的振动形式。

本实验将对弹簧振子的简谐振动规律和有效质量作初步研究。

【实验目的】1.观察简谐振动现象,测定简谐振动的周期。

2.测定弹簧的劲度系数和有效质量。

3.测量简谐振动的能量,验证机械能守恒。

【实验器材】气轨、滑块、天平、MUJ-5B 型计时计数测速仪、平板档光片1个,“凹”形挡光片1个、完全相同的弹簧2个、等质量骑码10个。

【实验原理】1. 振子的简谐振动本实验中所用的弹簧振子是这样的:两个劲度系数同为1k 的弹簧,系住一个装有平板档光片的质量为m 的滑块,弹簧的另外两端固定。

系统在光滑水平的气轨上作振动,如图5-2-1所示。

当m 处于平衡位置时,每个弹簧的伸长量为0x ,如果忽略阻尼和弹簧的自身质量,当m 距平衡位置x 时,m 只受弹性回复力-k 1(x+x 0)和-k 1(x -x 0)的作用,根据牛顿第二定律得210102()()d xk x x k x x m dt-+--=令 12k k = (5-2-1)则有 22d x kx m dt-=该方程的解为)cos(0ϕω+=t A x (5-2-2)即物体系作简谐振动。

其中图5-2-1 弹簧振子ω=(5-2-3) 是振动系统的固有圆频率。

由于弹簧总是有一定质量的,在深入研究弹簧振子的简谐振动时,必须考虑弹簧自身的质量。

由于弹簧各部分的振动情况不同,因此不能简单地把弹簧自身的质量附加在振子(滑块)的质量上。

可以证明,一个质量为s m 的弹簧与质量为m 的振子组成的振动系统,其振动规律与振子质量为(m+m 0)的理想弹簧振子的振动规律相同。

其振动周期为2T π= (5-2-4) 其中s cm m =0,称为弹簧的有效质量,c 为一常数。

弹簧振子的简谐振动实验报告

弹簧振子的简谐振动实验报告

Simple harmonic motion of soring oscillator The purpose:(1)测量弹簧振子的振动周期T。

(2)The principles:x根据牛顿第二定律,其运动方程为令则有①方程①的解为说明滑块做简谐振动。

式中,A固有圆频率。

有且式中,m的质量。

T②T,考虑T与mThe procedure:(1)按气垫导轨和计时器的使用方法和要求,将仪器调整到正常工作状态。

(2)将滑块从平衡位置拉至光电门左边某一位置,然后放手让滑块振动,记5位有效数字,共测量10次。

(3)再按步骤(2复步骤(2)共测量10次。

T,与T相应的振动系统有效质量是量。

(4)在滑块上对称地加两块砝码,再按步骤(2)和步骤(3)测量相应的周(5T。

式中,“4块砝码的质量”“6块砝码的质量”注意记录每次所加砝码的号码,以便称出各自的质量。

(6)测量完毕,先取下滑块、弹簧等,再关闭气源,切断电源,整理好仪器。

(7)在天平上称出两弹簧的实际质量并与其有效质量进行比较。

Data processing: 1.Data record(1)= 221.582 g(2)= 1393.045 ms= 256.047 g= 1494.920 ms (3= 288.077 gT3= 1583.270 ms (4= 320.564 g= 1667.145 ms2.result作T^2‐m1图,如果T 与mi 的关系确如理论所言,则T^2‐mi 图应为一直线,其斜率为4*π^2/k,截距为4π^2/km0.从图中可以得知,直线的斜率为 8.476 ,截距为 0.063 ,代入公式中可得: = 7.433 g.Error analysis(1)两个弹簧并不完全一样,质量和倔强系数不一样。

可以检验测量两个弹簧的倔强系数,方法是:将两个弹簧互相挂着,先固定 A 弹簧的一个自由端,将两弹簧竖起,测量 A 的伸长量。

将两弹簧倒过来使B 弹簧在上,固定其自由端,测量其伸长量。

气垫导轨上的实验——弹簧振子的简谐振动

气垫导轨上的实验——弹簧振子的简谐振动

实验2.2 气垫导轨上的实验——弹簧振子的简谐振动【实验目的】1、 测量弹簧振子的振动周期T2、 求弹簧的劲度系数k 和有效质量0m【实验器材】气垫导轨、滑块、附加砝码、弹簧、光电门、数字毫秒计。

实验装置如教材图2.2.3所示。

导轨可以喷出气流,在导轨表面和滑块之间形成很薄的气层,滑块与轨面脱离,极大地减小了阻力。

滑块上安装挡光板,当滑块通过光电门时,挡光板会遮拦光电门发出的光,以此计时。

通过调节计时仪面板和光电插座上的开关,可以使毫秒计时器记录从第一次遮光到底n 次遮光的时间【实验原理】在弹性限度内,弹簧的伸长量x 与它所受的拉力成正比,即F kx =,k 为弹簧倔强系数,/k F x =。

以平衡位置为原点水平建立坐标轴,则有F kx =-,x 为弹簧伸长量即物块的位置。

若忽略空气阻力,根据牛顿第二定律,其运动方程为:22d x m kx dt=-, 令2/k m ω=,则前面公式又可写成: 2220d x x dtω+= 解得物块的运动方程为:0cos()x A t ωϕ=+。

说明物块做简谐振动,式中,A 为振幅,0ϕ为初相位,ω叫做振动系统的固有圆频率。

周期 2T π=m 是振动系统的有效质量,10m m m =+,0m 是弹簧的有效质量,1m 是滑块和砝码的总质量,12k k =,1k 是弹簧的倔强系数。

【实验内容】1、打开并调整仪器,使导轨处在水平位置,选择适当的毫秒计信号选择指数n ,若直接测量一个周期,则5n =(滑块上有两个挡板)。

2、将滑块从平衡位置拉至光电门左边某一位置后释放,记录A T 。

测量10次,数据保留5位有效数字。

3、将滑块拉至光电门右边,重复步骤2,数据记为B T ,与A T 取平均值即为振动周期T 。

4、在滑块上加2块砝码,重复步骤2、3,共加3次。

每次加砝码均须记录砝码编号以便称量各自的质量。

5、测量完毕,取下滑块和弹簧,关闭气源,切断电源,整理好仪器。

6、称量弹簧实际质量与其有效质量进行比较。

弹簧振子的简谐振动实验报告-宋峰峰.doc

弹簧振子的简谐振动实验报告-宋峰峰.doc

弹簧振子的简谐振动实验报告-宋峰峰.doc弹簧振子是一种重要的物理模型,它具有简单和规律的运动方式,因此,它被广泛应用到物理、工程、生物、医学等各个领域。

本实验的目的是研究弹簧振子的简谐振动,探究其物理原理和特性。

实验装置本实验使用的弹簧振子装置如图1所示,它由一个固定在支架上的弹簧、一跟弹簧挂钩相连的质点、一个固定在弹簧下部的尺子以及一个固定在支架上的刻度尺组成。

质点振动时,尺子可以测量其振幅的大小,刻度尺可以测量其振动周期和频率。

实验步骤1、把质点固定在弹簧上,然后将其挂在支架上,使它自然地处于静止状态。

2、用尺子测量质点离开弹簧平衡位置的长度,作为振幅的测量值,并记录下来。

4、重复步骤3,分别改变质点的拉伸程度,记录不同振幅的测量值。

5、将质点的拉伸程度调整到最大,然后开始计时,并记录10次振动周期的时间,计算出振动的周期和频率。

6、将振幅、周期和频率的测量数据整理成表格和图表的形式,分析与讨论实验结果。

实验结果经过实验测量和数据处理,我们得到了如下的实验结果:表1 弹簧振子的振幅和周期数据| 拉伸长度(cm) | 摆动圈数 | 摆动周期(s) | 振幅(cm) || -------------- | --------- | ------------- | ---------- || 4.0 | 2 | 1.176 | 3.6 || 3.5 | 2 | 1.082 | 3.1 || 3.0 | 2 | 0.961 | 2.6 || 2.5 | 2 | 0.854 | 2.2 || 2.0 | 2 | 0.739 | 1.8 |[insert graphic here]分析与讨论从表1中可以看出,随着拉伸长度的减小,振幅也逐渐减小。

这是由于弹簧的劲度系数保持不变,当质点受到弹簧的拉力越小时,其振动的幅度也越小。

另外,在振动过程中,弹簧的形变也会对振幅产生一定的影响。

当振幅越大时,质点对弹簧的拉力也越大,弹簧的形变就会越大,从而抵消部分质点的动能,使得振幅变小。

弹簧振子的简谐振动 实验报告(Word)版

弹簧振子的简谐振动 实验报告(Word)版

武汉大学物理科学与技术学院物理实验报告学院专业年月日实验名称弹簧振子的简谐振动姓名年级学号成绩实验报告内容:五、实验数据表格一、实验目的六、数据处理及结果表达二、实验原理七、实验结果分析(实验现象分析、误差三、主要实验仪器来源分析、实验中存在的问题讨论)四、实验内容与步骤八、回答思考题一、实验目的1.测量弹簧振子的振动周期T.2.测量弹簧组的等效劲度系数k和有效质量m0.3.学习气垫导轨的使用方法.二、主要实验仪器气垫导轨、气源、滑块、挡光板、砝码、弹簧、光电计时装置(含光电门、光电控制器和数字毫沙计)等,以及电子天平.三、实验原理在水平的气垫导轨上,两根相同的弹簧系在一滑块的两端,使滑块做振动,如图所示.如果滑块运动的阻力可以忽略,滑块的振动可以看成是简谐振动.设质量为m1的滑块处于平衡位置时每根弹簧的伸长量均为x0,每根弹簧的劲度系数为k1,弹簧组的有效质量设为m0.取平衡时滑块中心所在处为坐标原点O,水平向右为x轴正方向.当滑块中心位于x时,振动系统在水平方向只受到弹性力−k1(x+x0)与−k1(x−x0)的作用,对振动系统应用牛顿第二定律,有−k1(x+x0)−k1(x−x0)=(m1+m0)ⅆ2xⅆt2即ⅆ2xⅆt2+2k1m1+m0x=0令w0=√2k1m1+m0则有ⅆ2xⅆt2+w2x=0(1)方程(1)解为x=A sin(w0t+φ0)(2)(2)式说明滑块作简谐振动.式中,A为振幅,φ0为初相位;w0叫作振动系统的固有圆频率,这是一个由振动系统本身性质决定的量.T与w0之间的关系可由简谐振动的周期性得到,即T=2πw0=2π√m1+m02k1=2π√mk(3)m1+m0=m称为振动系统的有效质量,2k1=k为弹簧组的等效劲度系数.实验中,通过加砝码到滑块上改变滑块的质量m1,并测出相应的振动周期T,再由(3)式求出弹簧组的等效劲度系数k̅=2k̅1和有效质量m̅0.四、实验内容与步骤利用一个光电门配合计时仪测量滑块的振动周期,可按以下步骤进行:1.两根相同的弹簧系在一插有挡光板的滑块两端,使滑块在水平气垫导轨上做近似无摩擦的周期振动,光电门置于气垫导轨中部附近.2.把专用连接线的一端接在光电门上,另一端(即插头)插到计时仪面板上的"光电"插座,此"光电"插座上的开关扳向"输入",另一"光电"插座上的开关扳向"短接";"光电-电位"开关扳向"光电";毫秒计的"信号选择"选用"3".毫秒计的"信号选择"指示数"n"表示:第一次遮光开始计时,第n次遮光停止计时,实验中可根据需求合理选择.3.将滑块从平衡位置拉至光电门左边某一位置(不要超过弹簧的弹性限度),然后放手让滑块振动,记录一个周期T1A的值(要求5位有效数字),共测量10次,填入表中.4.将滑块从平衡位置拉至光电门右边某一位置(不要超过弹簧的弹性限度),然后放手让滑块振动,记录一个周期T1B的值(要求5位有效数字),共测量10次,填入表中.取T1A和T1B的平均值作为振动周期T1,与T1相应的振动系统有效质量是m=m1+m0,式中m1就是滑块本身(未加砝码)的质量,m0为弹簧组的有效质量.5.将两块砝码左右对称地放在滑块上沿,再按步骤3和4测量周期T,相应的振动系统有效质量是m=m2+m0,式中m2=m1+“2块砝码的质量”.砝码上标有号码,注意记录每次所加砝码的号码,以便称出各自的质量.6.同理,再分别测量m=m3+m0及m=m4+m0相应的周期T3和T4,式中,m3=m1+"4块砝码的质量,"m4=m1+"6块砝码的质量"。

实验报告简谐振动的研究

实验报告简谐振动的研究
2、弹簧振子的简谐运动方程
本实验中所用的是倔强系数分别为k1和k2的弹簧,k1和k2分别由焦利氏秤测得.k1和k2联结在一个质量为M的物体上,它们在光滑的水平气垫导轨上作简谐振动,弹簧的另外两端是固定在气垫导轨上.记M的平衡位置为坐标原点,该点x = 0.如果忽略阻尼和弹簧质量,则当M距平衡位置为x时,只受弹性恢复力k1x和k2x的作用,根据牛顿第二定律,其运动方程为:
Y = A + B * X
ParameterValueError
------------------------------------------------------------
A-23.95650.14842
B178.018940.12907
------------------------------------------------------------
有公式:
所以,在 与振子质量M的关系图中, 体现为在纵坐标上的截距
在上面的关系图中,截距为A=-23.9565
所以实验测得的弹簧有效质量为: =23.96g
与理论值的相对误差为 349.5%(这个巨大误差将在后面具体讨论)
3.振幅与周期的关系
号数
1
2
3
4
5
6
振幅A /cm
5.00
10.00
15.00
1.观察简谐振动的现象;
2.测定弹簧的倔强系数;
3.测定振动周期T随振子质量变化的情况;
4.学习使用气垫导轨、焦利氏秤和计时仪器;
5.测定弹簧的有效质量
【实验原理】
1、胡克定律
在弹性限度内,弹簧的伸长量x与其所受的拉力F成正比,这就是胡克定律:
比例系数k称为弹簧的倔强系数.在本实验中k可以由焦利氏秤测得。

弹簧振子的简谐振动实验报告

弹簧振子的简谐振动实验报告

Simple harmonic motion of soring oscillator The purpose:(1)测量弹簧振子的振动周期T。

(2)The principles:x根据牛顿第二定律,其运动方程为令则有①方程①的解为说明滑块做简谐振动。

式中,A固有圆频率。

有且式中,m的质量。

T②T,考虑T与mThe procedure:(1)按气垫导轨和计时器的使用方法和要求,将仪器调整到正常工作状态。

(2)将滑块从平衡位置拉至光电门左边某一位置,然后放手让滑块振动,记5位有效数字,共测量10次。

(3)再按步骤(2复步骤(2)共测量10次。

T,与T相应的振动系统有效质量是量。

(4)在滑块上对称地加两块砝码,再按步骤(2)和步骤(3)测量相应的周(5T。

式中,“4块砝码的质量”“6块砝码的质量”注意记录每次所加砝码的号码,以便称出各自的质量。

(6)测量完毕,先取下滑块、弹簧等,再关闭气源,切断电源,整理好仪器。

(7)在天平上称出两弹簧的实际质量并与其有效质量进行比较。

Data processing: 1.Data record(1)= 221.582 g(2)= 1393.045 ms= 256.047 g= 1494.920 ms (3= 288.077 gT3= 1583.270 ms (4= 320.564 g= 1667.145 ms2.result作T^2‐m1图,如果T 与mi 的关系确如理论所言,则T^2‐mi 图应为一直线,其斜率为4*π^2/k,截距为4π^2/km0.从图中可以得知,直线的斜率为 8.476 ,截距为 0.063 ,代入公式中可得: = 7.433 g.Error analysis(1)两个弹簧并不完全一样,质量和倔强系数不一样。

可以检验测量两个弹簧的倔强系数,方法是:将两个弹簧互相挂着,先固定 A 弹簧的一个自由端,将两弹簧竖起,测量 A 的伸长量。

将两弹簧倒过来使B 弹簧在上,固定其自由端,测量其伸长量。

气垫弹簧振子的简谐振动实验报告

气垫弹簧振子的简谐振动实验报告

××大学实验报告学院:×× 系:物理系专业:×× 年级:××级姓名:×× 学号:×× 实验时间:×× 指导教师签名:_______________实验四:气垫弹簧振子的简谐振动一.实验目的与要求:1. 考察弹簧振子的振动周期与振动系统参量的关系。

2. 学习用图解法求出等效弹簧的倔强系数和有效质量。

3. 学会气垫调整与试验方法。

二.实验原理:1.弹簧的倔强系数弹簧的伸长量x 与它所受的拉力成正比 F=kx k=XF 2.弹簧振子的简谐运动方程根据牛顿第二定律,滑块m 1 的运动方程为-k 1(x+x 01)-k 2(x-x 02)=m 22dt x d ,即-(k 1+k 2)x=m 22dtxd式中,m=m 1+m 0(系统有效质量),m 0是弹簧有效质量,m 1是滑块质量。

令k=k 1+k 2,则-kx= m 22dtxd解为x=A sin (ω0t+ψ),ω0=mk =mk k 21而系统振动周期T 0=2ωπ=2πk m当m 0《 m 1时,m 0=3sm ,m s 是弹簧的实际质量(m 0与m s 的关系可简单写成m 0=3m s )。

本实验通过改变m 1测出相应的T ,以资考察T 和m 的关系,从而求出m 0和k 。

三.主要仪器设备:气垫导轨、滑块(包括挡光刀片)、光电门、测时器、弹簧。

四.实验内容及实验数据记录: 1.气垫导轨水平的调节使用开孔挡光片,智能测时器选在2pr 功能档。

让光电门A 、B 相距约60cm(取导轨中央位置),给滑块以一定的初速度(Δt 1和Δt 2控制在20-30ms 内),让它在导轨上依次通过两个光电门.若在同一方向上运动的Δt 1和Δt 2的相对误差小于3%,则认为导轨已调到水平.否则重新调整水平调节旋钮。

2.研究弹簧振子的振动周期与振幅的关系先将测时器设置于6pd (测周期)功能档。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

××大学实验报告
学院:×× 系:物理系专业:×× 年级:××级
姓名:×× 学号:×× 实验时间:×× 指导教师签名:_______________
实验四:气垫弹簧振子的简谐振动
一.实验目的与要求:
1. 考察弹簧振子的振动周期与振动系统参量的关系。

2. 学习用图解法求出等效弹簧的倔强系数和有效质量。

3. 学会气垫调整与试验方法。

二.实验原理: 1.弹簧的倔强系数
弹簧的伸长量x 与它所受的拉力成正比
F=kx k=X
F
2.弹簧振子的简谐运动方程
根据牛顿第二定律,滑块m 1 的运动方程为
-k 1(x+x 01)-k 2(x-x 02)=m 2
2dt
x
d ,即-(k 1+k 2)x=m 2
2dt
x
d
式中,m=m 1+m 0(系统有效质量),m 0是弹簧有效质量,m 1是滑块质量。


k=k 1+k 2,则
-kx= m 2
2dt
x d
解为x=A sin (ω0t+ψ0),ω0=m
k =
m
k k 2
1+ 而系统振动周期
T 0=0
2ωπ=2π
k
m

m 0《 m 1时,m 0=3
s m ,m s 是弹簧的实际质量(m 0与m s 的关系可简单写成
m 0=3
m s )。

本实验通过改变m 1测出相应的T ,以资考察T 和m 的关系,从而求出m 0和
k 。

三.主要仪器设备:
气垫导轨、滑块(包括挡光刀片)、光电门、测时器、弹簧。

四.实验内容及实验数据记录: 1.气垫导轨水平的调节
使用开孔挡光片,智能测时器选在2pr 功能档。

让光电门A 、B 相距约60cm (取导轨中央位置),给滑块以一定的初速度(Δt 1和Δt 2控制在20-30ms 内),让它在导轨上依次通过两个光电门.若在同一方向上运动的Δt 1和Δt 2的相对误差小于3%,则认为导轨已调到水平.否则重新调整水平调节旋钮。

2.研究弹簧振子的振动周期与振幅的关系
先将测时器设置于6pd (测周期)功能档。

按动选择钮,屏幕显示6pd 时,按动执行键,显示为0。

每按一次选择键,显示加1;当达到预定值(如预置数为n =6,则表示测3个周期的时间)后,将滑块拉离平衡点6.00厘米(即选定某一振幅),再按执行键,放手让其运动,进入测周期操作。

当屏幕上显示预置数减为0后,显示屏上出现总时间t ;由此可得周期T =
n
t
2。

再重新测量几次并取平均值。

并测量滑块和弹簧的质量,利用T 0=0
2ωπ=2π
k
m
计算弹簧的倔强系数。

取不同的振幅测量,探讨周期与振幅是否有关。

3.观测简谐振动周期T 与m 的关系,并求出k 与弹簧的有效质量m 0。

在滑块上加放砝码以改变滑块质量m 1,将滑块拉离平衡位置
6.00厘米时,
测出相应的周期T ,根据得T 0=
2ωπ
=2π
k
m
,得 T
2
=k 42πm 1+
k
42
πm 0
即当弹簧倔强系数一定时,T 和
m 1成线性关系。

T 2
-m 1图线为一直线。


斜率为k 42π,其截距为
k
42
πm 0。

取不同的m 1值4次:①滑块本身;②滑块加两个螺丝;③再加两个骑码;④最后再加两个骑码(共4个)。

分别测出相应的T 并验证T 2
=k 42
πm 1+
k
42πm 0
五.数据处理与分析:
1.记录气垫导轨水平调整完成后滑块挡光板经过两个计时光电门所用的时间Δ
t 1和Δt 2,并计算它们之间的相对误差。

2.计算当滑块移离平衡位置不同数值时的周期T ,并代入T 0=
2ωπ
=2π
k
m 计算k (注意m= m 1+
3
s
m ),并说明T 和A 的关系。

3.用电脑的Origin 软件验证T 2
和m 1的线性关系。

用作图法作T 2
-m 1图,由直线的斜率及截距求k 值与有效质量m 0,并将所得k 值及m 0与上法得的k 值及m 0作比较,求k 及m 0的相对误差。

实验数据记录表格如下: 1. 气垫导轨的水平调整
2.弹簧振子简谐振动周期与振幅的关系
周期数3 ___ (振子)m1= 117.31__g(两个弹簧)m s=13.08__ g
弹簧振子简谐振动周期与振幅的关系为:大致无关
3.弹簧振子简谐振动周期与振子质量的关系(设定的振幅为A=10___cm 周期数4 ___)
T 2和m 1的线性关系:
T 2/s
M/kg
斜率为
k
42
=11.076
kg
s 2,k=3.56m N .有效质量m 0=4.21g
k 的相对误差是0.42%。

m 0的相对误差是3.5%。

分析:尽管在不同的振幅下周期有些细微的差别,但考虑各种客观因素,这种差别是可以忽略。

可以看成周期不变。

而两种方法求k 值,从其结果相对误差看出,作图法的计算结果存在偏差,尽管不是很大,推荐用多次测量求平均值法。

相关文档
最新文档