弦振动实验报告
弦振动实验报告

弦振动的研究一、实验目的1、观察固定均匀弦振动共振干涉形成驻波时的波形,加深驻波的认识。
2、了解固定弦振动固有频率与弦线的线密ρ、弦长L和弦的张力Τ的关系,并进行测量。
二、实验仪器是从设图中的两列波是沿X轴相向方向传播的振幅相等、频率相同振动方向一致的简谐波。
向右传播的用细实线表示,向左传播的用细虚线表示,它们的合成驻波用粗实线表示。
由图可见,两个波腹间的距图(2)离都是等于半个波长,这可从波动方程推导出来。
下面用简谐波表达式对驻波进行定量描述。
设沿X轴正方向传播的波为入射波,沿X轴负方向传播的波为反射波,取它们振动位相始终相同的点作坐标原点“O”,且在X=0处,振动质点向上达最大位移时开始计时,则它们的波动方程分别为:Y1=Acos2(ft-x/ )Y2=Acos[2(ft+x/λ)+ ]式中A为简谐波的振幅,f为频率,为波长,X为弦线上质点的坐标位置。
两波叠加后的合成波为驻波,其方程为:Y1+Y2=2Acos[2(x/ )+/2]Acos2ft ①由此可见,入射波与反射波合成后,弦上各点都在以同一频率作简谐振动,它们的振幅为|2A cos[2(x/ )+/2] |,与时间无关t,只与质点的位置x有关。
由于波节处振幅为零,即:|cos[2(x/ )+/2] |=02(x/ )+/2=(2k+1) / 2 ( k=0. 2. 3. … )可得波节的位置为:x=k /2 ②而相邻两波节之间的距离为:x k+1-x k =(k+1)/2-k / 2= / 2 ③又因为波腹处的质点振幅为最大,即|cos[2(x/ )+/2] | =12(x/ )+/2 =k ( k=0. 1.2. 3. )可得波腹的位置为:x=(2k-1)/4 ④这样相邻的波腹间的距离也是半个波长。
因此,在驻波实验中,只要测得相邻两波节或相邻两波腹间的距离,就能确定该波的波长。
在本实验中,由于固定弦的两端是由劈尖支撑的,故两端点称为波节,所以,只有当弦线的两个固定端之间的距离(弦长)等于半波长的整数倍时,才能形成驻波,这就是均匀弦振动产生驻波的条件,其数学表达式为:L=n/ 2 ( n=1. 2. 3. … )由此可得沿弦线传播的横波波长为:=2L / n ⑤式中n为弦线上驻波的段数,即半波数。
弦振动试验报告范文

弦振动试验报告范文一、实验目的通过对弦的振动进行观测和分析,探究弦振动的基本特性,了解振动波的传播和行为规律。
二、实验装置和原理实验装置包括一根细绳、一个张力装置和一个弦振动装置。
在张力装置的作用下,将一端固定住,另一端接受扰动产生振动。
通过调整振动源的频率和振动幅度,观察和记录弦的振动情况。
三、实验步骤1.将细绳固定在振动装置的固定端,另一端接受扰动。
2.调节振动源的频率和振动幅度,产生适当的振动。
3.观察并记录细绳的振动情况,包括振动的形态、频率等数据。
4.根据观察和记录的数据进行分析和总结。
四、实验结果与分析1.实验中观察到细绳的振动形态是一个站立波,即固定端处没有振动,中间有若干振动节点。
2.实验中发现振动的频率与振动源的频率成正比。
通过调节振动源的频率,可以观察到不同频率下的振动效果。
3.实验中还观察到,振动的振幅与振动源的振动幅度成正比。
通过调节振动源的振动幅度,可以观察到不同振动幅度下的振动效果。
根据观察和实验数据的分析,可以得出以下结论:1.弦的振动形态为站立波,即固定端处无振动。
2.弦的振动频率与振动源的频率成正比,可以通过改变振动源的频率来改变弦的振动频率。
3.弦的振动振幅与振动源的振动幅度成正比,可以通过改变振动源的振动幅度来改变弦的振动振幅。
五、实验总结通过本次实验,我对弦振动的基本特性有了更深入的理解。
在实验过程中,我学会了如何观察和记录振动情况,如何调节振动源的频率和振动幅度。
通过实验数据的分析,我得出了一些重要的结论,并对弦振动的规律有了更清晰的认识。
然而,在实验中还存在一些不足之处。
由于实验条件和设备有限,无法进行更详细的观察和测量。
同时,在实验操作中也可能存在一定的误差,需要进一步改进实验方法和技巧。
六、改进意见为进一步探索弦振动的特性和规律,可以进行以下改进:1.增加观察和测量的项目,如振动波的传播速度和相位差等。
2.采用更精确的测量设备,提高数据的准确性和可信度。
弦振动的研究实验报告

弦振动的研究实验报告实验目的:通过实验研究弦的振动特性,并分析弦振动时的动力学特点。
实验装置和材料:1. 弦:选用一根细长的弹性绳或细细的金属丝作为实验弦。
2. 振动源:使用一个固定在实验台上的振动源,可以通过电机或手动方式产生振动。
3. 能量传输装置:使用一个振动传输装置,将振动传输到实验弦上,如夹子、固定块等。
4. 振动探测器:使用一个合适的装置或传感器,用于测量弦的振动状态,如光电传感器、激光干涉仪等。
5. 数据采集设备:使用一个数据采集器,将振动数据进行记录和分析。
实验步骤:1. 将实验弦固定在实验台上,并将振动源固定在一端,确保弦能够自由振动。
2. 施加适量的拉力到弦上,以保证弦的紧绷度。
3. 使用振动源产生一定频率和振幅的振动,并将振动传输到实验弦上。
4. 启动数据采集设备记录弦的振动数据,包括振动频率、振幅和相位等。
5. 根据需要,可以改变振动源的频率和振幅,记录不同条件下的振动数据。
6. 对实验数据进行分析,绘制振动频率与振幅的关系图,并分析振动的谐波特性。
实验结果与分析:1. 实验数据表明,弦的振动频率与振幅呈正相关关系,即振动频率随着振幅的增加而增加。
2. 弦振动呈现出谐波特性,即振动状态可分解为基频振动和多个谐波振动的叠加。
3. 弦的振动模式与弦长度、拉力和材料特性有关,可以通过改变这些参数来调节振动频率和振幅。
结论:通过实验研究弦的振动特性,我们发现弦振动具有谐波特性,振动频率与振幅呈正相关关系。
弦的振动模式受到弦长度、拉力和材料特性的影响。
这些实验结果对于理解弦乐器的音色产生原理和振动系统的动力学特性具有重要意义。
大学物理《弦振动》实验报告

大学物理《弦振动》实验报告大学物理《弦振动》实验报告(报告内容:目的、仪器装置、简单原理、数据记录及结果分析等)一.实验目的1.观察弦上形成的驻波2.学习用双踪示波器观察弦振动的波形3.验证弦振动的共振频率与弦长、张力、线密度及波腹数的关系二.实验仪器XY弦音计、双踪示波器、水平尺三实验原理当弦上某一小段受到外力拨动时便向横向移动,这时弦上的张力将使这小段恢复到平衡位置,但是弦上每一小段由于都具有惯性,所以到达平衡位置时并不立即停止运动,而是继续向相反方向运动,然后由于弦的张力和惯性使这一小段又向原来的方向移动,这样循环下去,此小段便作横向振动,这振动又以一定的速度沿整条弦传播而形成横波。
理论和实验证明,波在弦上传播的速度可由下式表示:=ρ1------------------------------------------------------- ①另外一方面,波的传播速度v和波长λ及频率γ之间的关系是:v=λγ-------------------------------------------------------- ②将②代入①中得γ=λ1-------------------------------------------------------③ ρ1又有L=n*λ/2 或λ=2*L/n代入③得γn=2L------------------------------------------------------ ④ ρ1四实验内容和步骤1.研究γ和n的关系①选择5根弦中的一根并将其有黄铜定位柱的一端置于张力杠杆的槽内,另一端固定在张力杠杆水平调节旋钮的螺钉上。
②设置两个弦码间的距离为60.00cm,置驱动线圈距离一个弦码大约5.00cm的位置上,将接受线圈放在两弦码中间。
将弦音计信号发生器和驱动线圈及示波器相连接,将接受线圈和示波器相连接。
③将1kg砝码悬挂于张力杠杆第一个槽内,调节张力杠杆水平调节旋钮是张力杠杆水平(张力杠杆水平是根据悬挂物的质量精确确定,弦的张力的必要条件,如果在张力杠杆的第一个槽内挂质量为m的砝码,则弦的张力T=mg,这里g是重力加速度;若砝码挂在第二个槽,则T=2mg;若砝码挂在第三个槽,则T=3mg…….)④置示波器各个开关及旋钮于适当位置,由信号发生器的信号出发示波器,在示波器上同时显示接收器接受的'信号及驱动信号两个波形,缓慢的增加驱动频率,边听弦音计的声音边观察示波器上探测信号幅度的增大,当接近共振时信号波形振幅突然增大,达到共振时示波器现实的波形是清晰稳定的振幅最大的正弦波,这时应看到弦的震动并听到弦振动引发的声音最大,若看不到弦的振动或者听不到声音,可以稍增大驱动的振幅(调节“输出调节”按钮)或改变接受线圈的位置再试,若波形失真,可稍减少驱动信号的振幅,测定记录n=1时的共振频率,继续增大驱动信号频率,测定并记录n=2,3,4,5时的共振频率,做γn图线,导出γ和n的关系。
弦振动实验 报告

真验报告之阳早格格创做班级姓名教号日期室温气压结果西席真验称呼弦振动研究【真验手段】1.相识波正在弦上的传播及驻波产死的条件2.丈量分歧弦少战分歧弛力情况下的共振频次3.丈量弦线的线稀度4.丈量弦振荡时波的传播速度【真验仪器】弦振荡钻研考查仪及弦振荡真验旗号源各一台、单综示波器一台【真验本理】驻波是由振幅、频次战传播速度皆相共的二列相搞波,正在共背去线上沿差同目标传播时叠加而成的特殊搞涉局面.当进射波沿着推紧的弦传播,动摇圆程为当波到达端面时会反射回去,动摇圆程为式中,A为波的振幅;fx为弦线上量面的坐标位子,二拨叠加后的波圆程为那便是驻波的波函数,称为驻波圆程.面的振幅,它只与x有闭,即各面的振幅随着其与本面的距离x的分歧而同.上式标明,当产死驻波时,弦线上的各f的简谐振荡.相邻二波背的距离为半个波少,由此可睹,只消从真验中测得波节或者波背间的距离,便不妨决定波少.正在本考查中,由于弦的二端是牢固的,故二端面为波节,所以,惟有当匀称弦线的二个牢固端之间的距离(弦.既有或者n为半波数(波背数).可得可得横波传播速度如果已知弛力战频次,由式可得线稀度如果已知线稀度战频次,可得弛力如果已知线稀度战弛力,由式可得频次【真验真量】一、真验前准备1.采用一条弦,将弦的戴有铜圆柱的一端牢固正在弛力杆的U型槽中,把戴孔的一端套到安排螺旋杆上圆柱螺母上.2.把二块劈尖(支撑板)搁正在弦下相距为L的二面上(它们决断弦的少度),注意窄的一端往标尺,直足往中;搁置佳启动线圈战交支线圈,交佳导线.3.正在弛力杆上挂上砝码(品量可选),而后旋动安排螺杆,使弛力杆火仄(那样才搞从挂的物块品量透彻天决定弦的弛力).果为杠杆的本理,通过正在分歧位子悬挂品量已知的物块,进而赢得成比率的、已知的弛力,该比率是由杠杆的尺寸决断的.二、真验真量1.弛力、线稀度一定时,测分歧弦万古的共振频次,并瞅察驻波局面战驻波波形.(1)搁置二个劈尖至符合的间距并记录距离,正在弛力杠杆上挂上一定品量的砝码记录.量及搁置位子(注意,总品量还应加上接洽的品量).旋动安排螺杆,使弛力杠杆处于火仄状态,把启动线圈搁正在离劈尖约莫5~10cm处,把交支线圈搁正在弦的核心位子.提示:为了预防交支传感器战启动传感器之间的电磁搞扰,正在真验历程中应包管二者之间的距离起码有10cm.(2)将启动旗号的频次调至最小,以便于安排旗号幅度.(3)缓缓降下启动旗号的频次,瞅察示波器交支到的波形的改变.注意:频次安排历程没有克没有及太快,果为弦线产死驻波需要一定的能量聚集时间,太快则去没有及产死驻波.如果没有克没有及瞅察到波形,则调大旗号源的输出幅度;如果弦线的振幅太大,制成弦线敲打传感器,则应减小旗号源输出幅度;适合安排示波器的通讲删益,以瞅察到符合的波形大小为准.普遍一个波背时,旗号源输出为2~3V,即可瞅察到明隐的驻波波形,共时瞅察弦线,应当有明隐的振幅.当弦的振荡幅度最大时,示波器交支到的波形振幅最大,那时的频次便是共振频次,记录那一频次.(4)再减少输出频次,不妨连绝找出几个共振频次.注意:交支线圈如果位于波节处,则示波器上无法丈量到波形,所以启动线圈战交支线圈此时应适合移动位子,以瞅察到最大的波形幅度.当驻波的频次较下,弦线上产死几个波背、波节时,弦线的振幅会较小,眼睛没有简单瞅察到.那时把交支线圈移背左边劈尖,再逐步背左移动,共时瞅察示波器(注意波形是怎么样是怎么样变更的),找出并记下波背战波节的个数.(5)改变弦少沉复步调3、4;记录相闭数据2.正在弦少战线稀度一定时,丈量分歧弛力的共振频次.(1)采用一根弦线战符合的砝码品量,搁置二个劈尖至一定的间距,比圆60cm,安排启动频次,使弦线爆收宁静的驻波.(2)记录相闭的线稀度、弦少、弛力、波背数等参数.(3)改变砝码的品量战接洽的品量,安排启动频次,使弦线爆收宁静的驻波.记录相闭数据3.弛力战弦少一定,改变线稀度,丈量共振频次战弦线的线稀度.(1)搁置二个劈尖至符合的间距,采用一定的弛力,安排启动频次,使弦线爆收宁静的驻波.(2)记录相闭的弦少战弛力等参数.(3)换用分歧的弦线,改变启动频次,使弦线爆收共样波背数的宁静驻波,记录相闭的数据.【数据记录及处理】。
弦振动的实验报告

弦振动的实验报告弦振动的实验报告引言弦振动是物理学中的一个经典现象,也是许多实验室中常见的实验项目之一。
通过对弦的振动进行观察和测量,可以深入了解波动和振动的基本特性。
本实验报告旨在介绍弦振动实验的步骤、观察结果以及对结果的分析和解释。
实验目的本实验的主要目的是研究弦振动的基本特性,包括频率、振幅和波长之间的关系。
通过实验,我们将验证弦振动的频率与弦长、张力以及弦的线密度之间的关系,并探究弦振动的谐振现象。
实验装置和材料1. 弦:使用一根细长的弹性绳或钢丝,确保其能够产生明显的振动。
2. 张力装置:使用两个固定的支架,将弦固定在适当的张力下。
3. 振动源:使用一个手柄或者电动机激发弦的振动。
4. 频率计:用于测量弦振动的频率。
5. 尺子:用于测量弦的长度。
6. 夹子:用于调整弦的张力。
实验步骤1. 将弦固定在张力装置上,并调整张力,使弦保持适度的紧绷状态。
2. 用尺子测量弦的长度,并记录下来。
3. 使用振动源激发弦的振动,注意保持振动的幅度适中。
4. 使用频率计测量弦振动的频率,并记录下来。
5. 重复上述步骤,分别改变弦的长度和张力,并记录相应的频率。
实验结果在进行弦振动实验时,我们记录了不同弦长和不同张力下的振动频率。
通过对实验数据的分析,我们得到了以下结果:1. 弦长与频率的关系:在保持张力和振动幅度不变的情况下,我们发现弦长与频率之间存在着线性关系。
当弦长增加时,频率减小;当弦长减小时,频率增大。
2. 张力与频率的关系:在保持弦长和振动幅度不变的情况下,我们发现张力与频率之间也存在着线性关系。
当张力增大时,频率增大;当张力减小时,频率减小。
3. 弦振动的谐振现象:我们观察到,在特定的弦长和张力下,弦能够产生谐振现象。
谐振是指弦振动的频率与其固有频率完全匹配的现象,此时振动幅度最大。
结果分析与解释根据实验结果,我们可以得出以下分析和解释:1. 弦长与频率的关系:弦振动的频率与其长度之间存在线性关系,这符合弦振动的基本原理。
弦振动实验报告思考

一、实验背景与目的弦振动实验是大学物理力学实验中的一个基础实验,旨在通过实验观察和研究弦的振动现象,验证波动理论,并加深对弦振动原理的理解。
本次实验主要研究了弦的驻波形成、波长与张力的关系、频率与弦长、张力和线密度的关系等。
二、实验原理1. 驻波的形成:当两列振幅相同、频率相同、传播方向相反的波相遇时,它们会发生干涉现象。
在弦上,入射波和反射波相遇,形成驻波。
驻波的特点是波节和波腹的分布,波节处振动始终为零,波腹处振动最大。
2. 波长与张力的关系:根据波动理论,弦上横波的波长λ与弦的张力T成正比,即λ ∝ √T。
3. 频率与弦长、张力和线密度的关系:弦上横波的频率f与弦长L、张力T和线密度μ的关系为f = 1/(2L)√(T/μ)。
三、实验内容与步骤1. 实验器材:电动音叉、滑轮、弦线、砝码、钢卷尺、双踪示波器等。
2. 实验步骤:(1)将弦线固定在滑轮上,一端通过音叉与电动音叉相连,另一端悬挂砝码,调节弦的张力。
(2)开启电动音叉,观察弦线振动,调整砝码,使弦线形成驻波。
(3)用钢卷尺测量驻波的波长,记录数据。
(4)改变弦长,重复上述步骤,观察波长与弦长的关系。
(5)改变张力,重复上述步骤,观察波长与张力的关系。
(6)用双踪示波器观察弦振动的波形,记录数据。
四、实验结果与分析1. 实验结果显示,当弦长、张力改变时,驻波的波长也随之改变。
这与实验原理中的波长与张力的关系相符。
2. 实验结果显示,弦振动的频率与弦长、张力和线密度的关系符合理论公式。
当弦长增加时,频率降低;当张力增加时,频率增加;当线密度增加时,频率降低。
3. 通过双踪示波器观察弦振动的波形,可以清晰地看到波节和波腹的分布,进一步验证了驻波的形成。
五、实验思考与讨论1. 实验中,弦的张力对驻波的形成和波长、频率的影响至关重要。
在实际应用中,如何准确测量和调节弦的张力,是保证实验结果准确的关键。
2. 实验中,驻波的形成与弦线的振动方向有关。
大学物理弦振动实验报告

大学物理弦振动实验报告大学物理弦振动实验报告一、实验目的1.通过实验观察弦振动现象,了解弦振动的基本规律;2.学习使用振动测量仪器,掌握振动信号的测量方法;3.分析弦振动的影响因素,加深对振动理论的理解。
二、实验原理弦振动是指一根张紧的弦在垂直于弦的方向上做往返运动。
根据牛顿第二定律和胡克定律,可以得到弦振动的微分方程。
当弦的振动幅度较小时,可近似认为弦的质量分布是均匀的,此时弦振动的微分方程可简化为波动方程。
波动方程描述了波在弦上的传播过程,其解为一系列正弦波的叠加。
三、实验器材1.弦振动实验装置;2.振动测量仪器(如示波器、频率计等);3.砝码、尺子、计时器等辅助工具。
四、实验步骤1.预备工作:检查实验装置是否完好,调整弦的张紧程度,确保弦在垂直方向上做往返运动。
2.实验操作:(1)使用尺子测量弦的长度L和张紧力T,记录数据;(2)将振动测量仪器连接到弦振动实验装置上,调整仪器参数,使仪器正常工作;(3)在弦的端点施加一个初始扰动,使弦开始振动;(4)观察并记录弦的振动情况,如振幅、频率等;(5)改变弦的张紧力T或长度L,重复步骤(3)和(4),记录数据。
3.数据处理:整理实验数据,分析弦振动的影响因素。
4.实验总结:根据实验结果,得出实验结论。
五、实验结果与分析1.实验数据记录:2.实验结果分析:(1)由实验数据可知,当弦长L和张紧力T发生变化时,弦的振幅A 和频率f也会发生变化。
这说明弦的振动受到弦长和张紧力的影响。
(2)根据波动方程,弦振动的频率f与张紧力T和弦长L之间的关系为:f=1/2L√(T/μ),其中μ为弦的线性密度。
由实验数据可知,当张紧力T增大时,频率f增大;当弦长L增大时,频率f减小。
这与波动方程的预测结果相符。
(3)实验中还发现,当弦的振幅A较大时,弦的振动会出现非线性效应,如振幅衰减、频率变化等现象。
这说明在实际情况中,需要考虑非线性因素对弦振动的影响。
六、实验结论与讨论1.通过本次实验,我们观察到了弦振动的现象,了解了弦振动的基本规律。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验13 弦振动的研究
任何一个物体在某个特定值附近作往复变化,都称为振动。
振动是产生波动的根源,波动是振动的传播。
均匀弦振动的传播,实际上是两个振幅相同的相干波在同一直线上沿相反方向传播的叠加,在一定条件下可形成驻波。
本实验验证了弦线上横波的传播规律:横波的波长与弦线中的张力的平方根成正比,而与其线密度(单位长度的质量)的平方根成反比。
一. 实验目的
1. 观察弦振动所形成的驻波。
2. 研究弦振动的驻波波长与张力的关系。
3. 掌握用驻波法测定音叉频率的方法。
二. 实验仪器
电动音叉、滑轮、弦线、砝码、钢卷尺等。
三. 实验原理
1. 两列波的振幅、振动方向和频率都相同,且有恒
定的位相差,当它们在媒质内沿一条直线相向传播时,
将产生一种特殊的干涉现象——形成驻波。
如图3-13-1所示。
在音叉一臂的末端系一根水平弦线,弦线的另一端通过滑轮系一砝码拉紧弦线。
当接通电源,调节螺钉使音叉起振时,音叉带动弦线A端振动,由A端振动引起的波沿弦线向右传播,称为入射波。
同时波在C点被反射并沿弦线向左传播,称为反射波。
这样,一列持续的入射波与其反射波在同一弦线上沿相反方向传播,将会相互干涉。
当C点移动到适当位置时,弦线上就形成驻波。
此时,弦线上有些点始终不动,称为驻波的波节;而有些点振动最强,称为驻波的波腹。
2. 图3-13-2所示为驻波形成的波形示意图。
在图中画出了两列波在T=0,T/4,T/2时刻的波形,细实线表示向右传播的波,虚线表示向左传播的波,粗实线表示合成波。
如取入射波和反射波的振动相位始终相同的点作为坐标原点,且在X=0处,振动点向上到达最大位移时开始计时,则它们的波动方程分别为:
(3-13-1)
(3-13-2)式中为波的振幅,为频率,λ为波长,为弦线上质点的坐标位置。
两波叠加后的合成波为驻波,其方程为:
(3-13-3)由上式可知,入射波与反射波合成后,弦线上各点都在以同一频率作
简谐振动,它们的振幅为,即驻波的振幅与时间无关,而与质
点的位置有关。
当时,有:( K=0、1、2...)即
(3-13-4)在这些点处振幅为零,是驻波波节的位置。
当时,有( K=0,1,2,...)
即
(3-13-5)在这些点处振幅最大,是驻波波腹的位置。
由以上讨论可知,波节处的振动点振动的振幅为零,始终处于静止;波腹处振动点的振幅最大;其他各点处振动点的振幅在零与最大之间。
两个相邻波节或两相邻波腹之间的距离为λ/2,波腹和波节交替作等距离排列。
相邻两波腹或波节间是半个波长。
因此,只要测得相邻两波节或波腹间的距离,就能确定该波的波长。
而且由于固定弦的两端点A和点C是用劈尖支住的,故这两点一定是波节。
3. 假定入射波的波长为λ,则根据入射波和反射波的波动方程及波的
叠加原理,可以推知两相邻波节或两相邻波腹之间的距离。
则弦线的振动弦长L必须满足:
(=1,2,...)
(3-13-6)
即振动弦长L(AC之间的距离)为半波长的整数倍时,才能形成振幅最大且稳定的驻波。
由上式亦可得到沿弦线传播的横波波长为
(3-13-7)式中n为弦线上驻波的波腹数,显然在驻波实验中,只要测得两相邻波节或两相邻波腹之间的距离,就能确定该波的波长。
4. 当横波沿弦线传播时,在弦线张力T不变的情况下,根据波动理论容易得到,横波的传播速度V、张力T和弦线的线密度ρ(单位长度的质量)之间有如下关系:
(3-13-8)设弦线的振动频率为f,弦线上传播的横波波长为λ,则根据:
可得(3-12-9)这是弦振动时驻波波长与张力的关系式。
如果音叉起振,则弦线上各点将在音叉的带动下振动,弦线的振动频率f就是音叉振动频率。
这样,在音叉振动频率和弦线密度确定的情况下,波长λ仅是张力T的函数。
另外,将(3-13-9)式代入(3-13-10)式可得
(3-13-10)利用上式可以求得弦线的振动频率。
四. 实验内容
1.调节仪器
①启动音叉振动,并使之振动稳定;
②调节滑轮,使弦线水平;
③调节音叉,使得音叉臂与弦线处于同一条直线上。
2. 按数据处理表格的砝码质量和对应的波幅数n分别调出稳定的驻波波形。
并测出其对应的长度L。
五. 数据处理
1. 实验数据记录表格:
表3-13-1 弦线线密度= g/cm,重力加速度g=979.44cm/s2
砝码质
量m(g)(g1/2)波幅
数n
弦线长L
(m)
波长
λ(m)
波速 V
(m/s)
频率
(Hz)
256
755
1254
2003
3002
2. 数据处理具体要求:
(1)由测量数据分别计算相应的波长λ、波速V和频率;
Hz Hz
(±)Hz
(2)由式做λ~曲线,并由图求出直线斜率,进而求
得频率。