七年级关于学习数学流水行船问题的公式和例题
流水行船问题的公式和例题含答案
流水行船问题的公式和例题流水问题是研究船在流水中的行程问题,所以,又叫行船问题。
在小学数学中波及到的题目,一般是匀速运动的问题。
这种问题的主要特色是,水速在船逆行温顺行中的作用不一样。
流水问题有以下两个基本公式:顺流速度 =船速 +水速( 1)逆水速度 =船速 - 水速( 2)这里,顺流速度是指船顺流航行时单位时间里所行的行程;船速是指船自己的速度,也就是船在静水中单位时间里所行的行程;水速是指水在单位时间里流过的行程。
公式(1)表示,船顺流航行时的速度等于它在静水中的速度与水流速度之和。
这是由于顺流时,船一方面按自己在静水中的速度在水面上行进,同时这艘船又在按着水的流动速度行进,所以船相对地面的实质速度等于船速与水速之和。
公式( 2)表示,船逆水航行时的速度等于船在静水中的速度与水流速度之差。
依据加减互为逆运算的原理,由公式(1)可得:水速 =顺流速度 - 船速( 3)船速 =顺流速度 - 水速( 4)由公式( 2)可得:水速 =船速 - 逆水速度( 5)船速 =逆水速度 +水速( 6)这就是说,只需知道了船在静水中的速度、船的实质速度和水速这三者中的随意两个,就能够求出第三个。
此外,已知某船的逆水速度温顺流速度,还能够求出船速和水速。
由于顺流速度就是船速与水速之和,逆水速度就是船速与水速之差,依据和差问题的算法,可知:船速 =(顺流速度 +逆水速度)÷2(7)水速 =(顺流速度 - 逆水速度)÷2(8)* 例 1 一只渔船顺流行25 千米,用了 5 小时,水流的速度是每小时 1 千米。
此船在静水中的速度是多少?解:此船的顺流速度是:25÷ 5=5(千米 / 小时)- 水速”。
由于“顺流速度=船速 +水速”,所以,此船在静水中的速度是“顺流速度5-1=4 (千米 / 小时)综合算式:25÷ 5-1=4 (千米 / 小时)答:此船在静水中每小时行 4 千米。
行程问题之流水行船问题
行程问题之流水行船问题四个速度:⑴顺水速度=船速+水速,V顺=V船+V水;⑵逆水速度=船速-水速,V逆=V船-V水;⑶船速=(顺水速度+逆水速度)÷2;⑷水速=(顺水速度-逆水速度)÷2.主要结论:统一条河中两船的相遇与追及和水速无关.丢物品与追物品用的时光一样.【例1】(★★)日常平凡汽船从A地顺流而下到B地要行20小时,从B地逆流而上到A地要行28小时. 现正值雨季,水流速度为日常平凡的2倍,那么,从A到B再回A共需_____小时.【例2】(★★★)一只汽船从甲港顺水而下到乙港,立时又从乙港逆水行回甲港,共用了8小时.已知顺水每小时比逆水多行20千米,又知前4小时比后4小时多行60千米.那么,甲.乙两港相距若干千米?【例3】(★★★★)一条河上有甲.乙两个船埠,甲在乙的上游50 千米处.客船和货船分离从甲.乙两船埠动身向上游行驶,两船的静水速度雷同且始终保持不变.客船动身时有一物品从船上落入水中,10 分钟后此物距客船5 千米.客船在行驶20 千米后折向下流追赶此物,追上时正好和货船相遇.求水流的速度.【例4】(★★★★)A.B两地相距100千米,甲乙两艘静水速度雷同的船同时从A.B两地动身,相向而行,相遇后持续进步,到达B.A后再沿原路返回.已知第一次和第二次相遇地点相距20千米,水流速度为每秒2米,那么船的静水速度是每小时若干千米?行程问题之扶梯问题三个公式:(1)顺行速度=人速+电梯速度(2)逆行速度=人速-电梯速度(3)电梯级数=可见级数=旅程留意旅程和时光的转化【例5】(★★★)某城市火车站中,从候车室到大厅有一架向上的主动扶梯.海海想逆行从上到下,假如每秒向下迈两级台阶,那么他走过80 级台阶后到达站台;假如每秒向下迈三级台阶,那么走过60级台阶到达站台.主动扶梯有若干级台阶?【例6】(★★★)小丁在捷运站搭一座电扶梯下楼.假如他向下走14阶,则需时30秒即可由电扶梯顶到达底部;假如他向下走28阶,则需时18秒即可由电扶梯顶到达底部.请问这座电扶梯有几阶?行程问题之环形路线问题两人同时同地动身(1)相向而行:相遇一次合走一圈(2)同向而行:追上一次多走一圈【例7】(★★★)有甲.乙.丙3人,甲每分钟行走120米,乙每分钟行走100米,丙每分钟行走70米.假如3小我同时同向,从同地动身,沿周长是400米的圆形跑道行走,【例8】(★★★)甲.乙两人从400米的环形跑道上一点A背向同时动身,8分钟后两人第五次相遇,已知每秒钟甲比乙多走米,那么两人第五次相遇的地点与点A沿跑道上的最短旅程是若干米?【例9】(★★★★★)二人沿一周长400米的环形跑道均速进步,甲行一圈4分钟,乙行一圈7分钟,他们同时同地同向动身,甲走10圈后,改反向动身,每次甲追上乙或迎面相遇时二人都要击掌.问第十五次击掌时,乙走了若干旅程?比例类行程问题之比例法与设数法主要结论(1)时光必定,旅程与速度成正比;(2)旅程必定,时光与速度成反比;(3)速度必定,旅程与时光成正比;【快问快答】①甲乙速度雷同,甲跑40分钟,乙跑45分钟,那么两人跑的旅程比是()②同样的时光内,甲跑100米,乙跑120米,那么两人速度比是()③甲乙两人进行100米竞走,甲乙速度比是6:5,那么两人时光比是()【例1】(★★)一段旅程分成上坡.平路.下坡三段,各段旅程之比依次为1∶2∶3.小明走各段路所用时光之比依次为4∶5∶6.已知他上坡时速度为每小时3千米,旅程全长10千米,问小明走完整程用______小时?【例2】甲从A地动身前去B地,乙.丙两人从B地动身前去A地,甲行了50千米后,乙和丙才同时从B地动身,成果甲和乙相遇在C地,甲和丙相遇在D地,已知甲的速度是丙的3倍,甲的速度是乙的倍,C.D两地之间的距离是12千米.那么A.B两地之间的距离是____千米.【例3】甲.乙二车分离从A.B两地同时动身,相向匀速而行,当甲行驶过AB中点12千米时,两车相遇.若甲比乙晚动身10分钟,则两车正好相遇在AB中点,且甲到B地时,乙距离A地还有20千米.那么AB两地间的距离是若干千米?【例4】有甲.乙.丙三辆车,各以必定的速度从某地动身同向而行.乙比丙晚动身10分钟,动身后40分钟追上丙;甲比乙晚动身20分钟,动身后1小时40分钟追上丙.请问:甲动身若干分钟后才干追上乙?【例5】王叔叔开车从北京到上海,从开端动身,车速即比原筹划的速度进步了,成果提前一个半小时到达;返回时,按原筹划的速度行驶280千米后,将车速进步,于是提前1小时40分钟到达北京.北京.上海两市间的距离是______千米.【例6】狼和狗是逝世仇人,会晤就要互相撕咬.一天,它们同时发明了对方,它们之间的距离狼要跑568步.假如狼跑9步的时光狗跑7 步,狼跑5步的距离等于狗跑4步的距离,那么从它们同时奔向对方到相遇,狗跑了若干步?狼跑了若干步?【例7】天天,小明上学都要经由一段平路AB.一段上坡路BC 和一段下坡路CD. 已知AB:BC:CD =1:2:1,并且小明在平路.上坡路.下坡路上的速度比为3:2:4. 假如小明上学与下学回家所用的时光比是n/m (个中m与n是互质的天然数),那么m+n的值是_______ .【例8】甲.乙二人相向而行,速度雷同,火车从甲逝世后开来,速度是人的17倍,车经由甲用18秒钟,然后又过了2分16秒完整经由了乙的身边,甲.乙还需用______秒钟相遇.本讲总结1.按比分派——和差倍分思惟知道A.B的比例关系,再A.B.A+B或A-B中的任何一个就可以了.2.比例法中的三个根本比例关系;3.设数法在比例关系中的运用“任我意”的聪明.4.比例法在行程分解剖析.图解法中的运用.。
流水行船
流水行船问题
1.流水行船问题涉及公式
顺流速度=船速+水流速度
逆流速度=船速-水流速度
静水速度(船速)=(顺水速度+逆水速度)÷2
水速=(顺水速度-逆水速度)÷2
流水行船问题中一定要记住四种速度的关系,而且在水速产生变化的情况下记住找到题中的不变量:船速
2.流水行船问题的几种题型
①求流水行船中的几种速度
例一:一艘船速每小时行20千米的客轮,在大运河中从甲地到乙地逆水航行84千米,需要6小时,则顺水速度多少?
例二:一只船以30千米/小时的速度顺水从甲港到乙港需7小时,从乙港返回甲港需10小时。
则船速是多少?
②综合题型--水速变化问题
例三:船往返于相距480千米的两港之间,顺水而下需用8小时,逆水而上需用10小时。
由于暴雨后水速增加,该船顺水而行只需5小时,那么逆水而行需要多久呢?
③综合题型--往返问题
例四:轮船用同一速度往返于两码头之间,它顺流而下行了9个小时,逆流而上行了15小时,如果水流速度是每小时3千米,两码头之间的距离是多少?
变式训练:一艘轮船在两个港口间航行,水速为每小时6千米,船速为每小时48千米,往返需要48小时。
这两个港口之间的距离是多少千米?
往返问题解题小结:。
流水行船问题
流水行船问题公式:顺水速度=船速+水速逆水速度=船速-水速船速=顺水速度-水速船速=逆水速度+水速水速=顺水速度-船速水速=船速-逆水速度船速=(顺水速度+逆水速度)?2 水速=(顺水速度-逆水速度)?2 顺水速度=逆水速度+水速×2 逆水速度=顺水速度-水速×2 练习:1.船行于120千米一段长的江河中,逆流而上用10小时,顺流而下用6小时,水速是多少,船速是多少,2.一只船逆流而上,水速2千米,船速32千米,4小时行多少千米,(船速,水速按每小时算)3.一只船静水中每小时行8千米,逆流行2小时行12千米,水速多少,4.某船在静水中的速度是每小时18千米,水速是每小时2千米,这船从甲地到乙地逆水行驶需15小时,则甲、乙两地相距多少千米,5.两个码头相距192千米,一艘汽艇顺水行完全程要8小时,已知水流速度是每小时4千米,逆水行完全程要用多少小时,6.两个码头相距432千米,轮船顺水行这段路程要16小时,逆水每小时比顺水少行9千米,逆水比顺水多用多少小时,7.A河是B河的支流,A河水的水速为每小时3千米,B河水的水流速度是2千米.一船沿A河顺水航行7小时,行了133千米到达B河,在B河还要逆水航行84千米,这船还要行多少小时,8.甲乙两船分别从A港逆水而上,静水中甲船每小时行15千米,乙船每小时行12千米,水速为每小时3千米,乙船出发2小时后,甲船才开始出发,当甲船追上乙船时,已离开A港______千米.9.已知80千米水路,甲船顺流而下需要4小时,逆流而上需要10小时.如果乙船顺流而下需5小时,问乙船逆流而上需要_______小时.10.一条船在江中行驶,顺水行每小时12千米,逆水行每小时8千米,求船速与水速。
11.某船在静水中的速度为每小时15千米,它从上游甲港开往下游乙港共用了8小时。
已知水速为每小时3千米,从乙港返回甲港需要多少小时,12.甲乙两码头相距560千米,一只船从甲码头顺水航行20小时到达乙码头,已知船在静水中每小时行驶24千米,问这船返回甲码头需几小时?13.静水中,甲船速度是每小时22千米,乙船速度是每小时18千米,乙船先从某港开出顺水航行,2小时后甲船同方向开出,若水流速度为每小时4千米,求甲船几小时可以追上乙船?14.一条轮船在两码头间航行,顺水航行需4小时,逆水航行需5小时,水速是2千米,求这轮船在静水中的速度.。
流水行船问题的公式和例题含答案
流水行船问题的公式和例题含答案LEKIBM standardization office【IBM5AB- LEKIBMK08- LEKIBM2C】流水行船问题的公式和例题流水问题是研究船在流水中的行程问题,因此,又叫行船问题。
在小学数学中涉及到的题目,一般是匀速运动的问题。
这类问题的主要特点是,水速在船逆行和顺行中的作用不同。
流水问题有如下两个基本公式:顺水速度=船速+水速(1)逆水速度=船速-水速(2)这里,顺水速度是指船顺水航行时单位时间里所行的路程;船速是指船本身的速度,也就是船在静水中单位时间里所行的路程;水速是指水在单位时间里流过的路程。
公式(1)表明,船顺水航行时的速度等于它在静水中的速度与水流速度之和。
这是因为顺水时,船一方面按自己在静水中的速度在水面上行进,同时这艘船又在按着水的流动速度前进,因此船相对地面的实际速度等于船速与水速之和。
公式(2)表明,船逆水航行时的速度等于船在静水中的速度与水流速度之差。
根据加减互为逆运算的原理,由公式(1)可得:水速=顺水速度-船速(3)船速=顺水速度-水速(4)由公式(2)可得:水速=船速-逆水速度(5)船速=逆水速度+水速(6)这就是说,只要知道了船在静水中的速度、船的实际速度和水速这三者中的任意两个,就可以求出第三个。
另外,已知某船的逆水速度和顺水速度,还可以求出船速和水速。
因为顺水速度就是船速与水速之和,逆水速度就是船速与水速之差,根据和差问题的算法,可知:船速=(顺水速度+逆水速度)÷2 (7)水速=(顺水速度-逆水速度)÷2 (8)*例1一只渔船顺水行25千米,用了5小时,水流的速度是每小时1千米。
此船在静水中的速度是多少?解:此船的顺水速度是:25÷5=5(千米/小时)因为“顺水速度=船速+水速”,所以,此船在静水中的速度是“顺水速度-水速”。
5-1=4(千米/小时)综合算式:25÷5-1=4(千米/小时)答:此船在静水中每小时行4千米。
七年级关于学习数学流水行船问题的公式和例题
小学数学公式中小学数学公式中流水流水的问题是最容易的问题是最容易考试考试的一个题型,今天我们给大家总结了以下流水问题的公式。
结了以下流水问题的公式。
顺流顺流速度速度=静水速度静水速度++水流速度水流速度逆流速度逆流速度==静水速度静水速度--水流速度水流速度静水速度静水速度=(=(=(顺流速度顺流速度顺流速度++逆流速度)÷2逆流速度)÷2水流速度水流速度=(=(=(顺流速度顺流速度顺流速度--逆流速度)÷2逆流速度)÷2关于学习数学流水行船问题的公式和例题关于学习数学流水行船问题的公式和例题流水问题是研究船在流水中的流水问题是研究船在流水中的行程问题行程问题,因此,又叫行船问题。
在小学数学中涉及到的题目,一般是匀速是匀速运动运动的问题。
这类问题的主要特点是,水速在船逆行和顺行中的作用不同。
在船逆行和顺行中的作用不同。
流水问题有如下两个流水问题有如下两个基本公式基本公式:顺水速度=船速+水速水速 (1)逆水速度=船速-水速水速 (2)这里,顺水速度是指船顺水航行时单位时间里所行的所行的路程路程;船速是指船本身的速度,也就是船在静水中单位时间里所行的路程;水速是指水在单位时间里流过的路程。
时间里流过的路程。
公式(1)表明,船顺水航行时的速度等于它在静水中的静水中的速度速度与水流速度之和。
这是因为顺水时,船一方面按自己在静水中的速度在船一方面按自己在静水中的速度在水面水面上行进,同时这艘船又在按着水的流动速度前进,因此船相对地面的实际速度等于船速与水速之和。
地面的实际速度等于船速与水速之和。
公式(2)表明,船逆水航行时的速度等于船在静水中的速度与水流速度之差。
静水中的速度与水流速度之差。
根据根据加减加减互为逆运算的原理,由公式(1)可得:水速=顺水速度-船速船速 (3)船速=顺水速度-水速水速 (4)由公式(2)可得:)可得:水速=船速-逆水速度逆水速度 (5)船速=逆水速度+水速水速 (6)这就是说,只要知道了船在静水中的速度、船的实际速度和水速这三者中的任意两个,就可以求出第三个。
流水行船问题的公式和例题(完整版)
流水行船问题的公式和例题流水问题是研究船在流水中的行程问题,因此,又叫行船问题。
在小学数学中涉及到的题目,一般是匀速运动的问题。
这类问题的主要特点是,水速在船逆行和顺行中的作用不同。
流水问题有如下两个基本公式:顺水速度=船速+水速(1)逆水速度=船速-水速(2)这里,顺水速度是指船顺水航行时单位时间里所行的路程;船速是指船本身的速度,也就是船在静水中单位时间里所行的路程;水速是指水在单位时间里流过的路程。
公式(1)表明,船顺水航行时的速度等于它在静水中的速度与水流速度之和。
这是因为顺水时,船一方面按自己在静水中的速度在水面上行进,同时这艘船又在按着水的流动速度前进,因此船相对地面的实际速度等于船速与水速之和。
公式(2)表明,船逆水航行时的速度等于船在静水中的速度与水流速度之差。
根据加减互为逆运算的原理,由公式(1)可得:水速=顺水速度-船速(3)船速=顺水速度-水速(4)由公式(2)可得:水速=船速-逆水速度(5)船速=逆水速度+水速(6)这就是说,只要知道了船在静水中的速度、船的实际速度和水速这三者中的任意两个,就可以求出第三个。
另外,已知某船的逆水速度和顺水速度,还可以求出船速和水速。
因为顺水速度就是船速与水速之和,逆水速度就是船速与水速之差,根据和差问题的算法,可知:船速=(顺水速度+逆水速度)÷2 (7)水速=(顺水速度-逆水速度)÷2 (8)*例1一只渔船顺水行25千米,用了5小时,水流的速度是每小时1千米。
此船在静水中的速度是多少?(适于高年级程度)解:此船的顺水速度是:25÷5=5(千米/小时)因为“顺水速度=船速+水速”,所以,此船在静水中的速度是“顺水速度-水速”。
5-1=4(千米/小时)综合算式:25÷5-1=4(千米/小时)答:此船在静水中每小时行4千米。
流水行船问题的公式和例题(含答案)
流水行船问题的公式和例题流水问题是研究船在流水中的行程问题,因此,又叫行船问题。
在小学数学中涉及到的题目,一般是匀速运动的问题。
这类问题的主要特点是,水速在船逆行和顺行中的作用不同。
流水问题有如下两个基本公式:顺水速度=船速+水速(1)逆水速度=船速-水速(2)这里,顺水速度是指船顺水航行时单位时间里所行的路程;船速是指船本身的速度,也就是船在静水中单位时间里所行的路程;水速是指水在单位时间里流过的路程。
公式(1)表明,船顺水航行时的速度等于它在静水中的速度与水流速度之和。
这是因为顺水时,船一方面按自己在静水中的速度在水面上行进,同时这艘船又在按着水的流动速度前进,因此船相对地面的实际速度等于船速与水速之和。
公式(2)表明,船逆水航行时的速度等于船在静水中的速度与水流速度之差。
根据加减互为逆运算的原理,由公式(1)可得:水速=顺水速度-船速(3)船速=顺水速度-水速(4)由公式(2)可得:水速=船速-逆水速度(5)船速=逆水速度+水速(6)这就是说,只要知道了船在静水中的速度、船的实际速度和水速这三者中的任意两个,就可以求出第三个。
另外,已知某船的逆水速度和顺水速度,还可以求出船速和水速。
因为顺水速度就是船速与水速之和,逆水速度就是船速与水速之差,根据和差问题的算法,可知:船速=(顺水速度+逆水速度)÷2 (7)水速=(顺水速度-逆水速度)÷2 (8)*例1一只渔船顺水行25千米,用了5小时,水流的速度是每小时1千米。
此船在静水中的速度是多少?解:此船的顺水速度是:25÷5=5(千米/小时)因为“顺水速度=船速+水速”,所以,此船在静水中的速度是“顺水速度-水速”。
5-1=4(千米/小时)综合算式:25÷5-1=4(千米/小时)答:此船在静水中每小时行4千米。
*例2一只渔船在静水中每小时航行4千米,逆水4小时航行12千米。
水流的速度是每小时多少千米?解:此船在逆水中的速度是:12÷4=3(千米/小时)因为逆水速度=船速-水速,所以水速=船速-逆水速度,即:4-3=1(千米/小时)答:水流速度是每小时1千米。
流水行船问题的公式和例题(完整版)
顺水航行150千米需要的时间是:
150000÷10000=15(小时)
综合算式:
150000÷(120000÷24+2500×2)
=150000÷(5000+5000)
=150000÷10000
=15(小时)
答略。
*例9一只轮船在208千米长的水路中航行。顺水用8小时,逆水用13小时。求船在静水中的速度及水流的速度。(适于高年级程度)
答略。
*例10A、B两个码头相距180千米。甲船逆水行全程用18小时,乙船逆水行全程用15小时。甲船顺水行全程用10小时。乙船顺水行全程用几小时?(适于高年级程度)
解:甲船逆水航行的速度是:
180÷18=10(千米/小时)
甲船顺水航行的速度是:
180÷10=18(千米/小时)
根据水速=(顺水速度-逆水速度)÷2,求出水流速度:
解:此船顺水航行的速度是:
208÷8=26(千米/小时)
此船逆水航行的速度是:
208÷13=16(千米/小时)
由公式船速=(顺水速度+逆水速度)÷2,可求出此船在静水中的速度是:
(26+16)÷2=21(千米/小时)
由公式水速=(顺水速度-逆水速度)÷2,可求出水流的速度是:
(26-16)÷2=5(千米/小时)
解:此船在逆水中的速度是:
12÷4=3(千米/小时)
因为逆水速度=船速-水速,所以水速=船速-逆水速度,即:
4-3=1(千米/小时)
答:水流速度是每小时1千米。
*例3一只船,顺水每小时行20千米,逆水每小时行12千米。这只船在静水中的速度和水流的速度各是多少?(适于高年级程度)
流水行船问题的公式和例题(完整版)
流水行船问题的公式和例题*例1一只渔船顺水行25千米,用了5小时,水流的速度是每小时1千米。
此船在静水中的速度是多少?(适于高年级程度)*例2一只渔船在静水中每小时航行4千米,逆水4小时航行12千米。
水流的速度是每小时多少千米?(适于高年级程度)*例3一只船,顺水每小时行20千米,逆水每小时行12千米。
这只船在静水中的速度和水流的速度各是多少?(适于高年级程度)答略。
*例4某船在静水中每小时行18千米,水流速度是每小时2千米。
此船从甲地逆水航行到乙地需要15小时。
求甲、乙两地的路程是多少千米?此船从乙地回到甲地需要多少小时?(适于高年级程度)*例5某船在静水中的速度是每小时15千米,它从上游甲港开往乙港共用8小时。
已知水速为每小时3千米。
此船从乙港返回甲港需要多少小时?(适于高年级程度)*例6 甲、乙两个码头相距144千米,一艘汽艇在静水中每小时行20千米,水流速度是每小时4千米。
求由甲码头到乙码头顺水而行需要几小时,由乙码头到甲码头逆水而行需要多少小时?(适于高年级程度)*例7一条大河,河中间(主航道)的水流速度是每小时8千米,沿岸边的水流速度是每小时6千米。
一只船在河中间顺流而下,6.5小时行驶260千米。
求这只船沿岸边返回原地需要多少小时?(适于高年级程度)*例9一只轮船在208千米长的水路中航行。
顺水用8小时,逆水用13小时。
求船在静水中的速度及水流的速度。
(适于高年级程度)1、一只油轮,逆流而行,每小时行12千米,7小时可以到达乙港。
从乙港返航需要6小时,求船在静水中的速度和水流速度?2、某船在静水中的速度是每小时15千米,河水流速为每小时5千米。
这只船在甲、乙两港之间往返一次,共用去6小时。
求甲、乙两港之间的航程是多少千米?解:(15-5):(15+5)=1:26÷(2+1)×2=6÷3×2=4(小时)(15-5)×4=10×4=40(千米)答:甲、乙两港之间的航程是40千米。
最新七年级关于学习数学流水行船问题的公式和例题
最新七年级关于学习数学流水行船问题的公式和例题顺流速度=静水速度+水流速度逆流速度=静水速度-水流速度静水速度=(顺流速度+逆流速度)÷2水流速度=(顺流速度-逆流速度)÷2关于学习数学流水行船问题的公式和例题流水问题是研究船在流水中的行程问题,因此,又叫行船问题.在小学数学中涉及到的题目,一般是匀速运动的问题.这类问题的主要特点是,水速在船逆行和顺行中的作用不同.流水问题有如下两个基本公式:顺水速度=船速+水速(1)逆水速度=船速-水速(2)这里,顺水速度是指船顺水航行时单位时间里所行的路程;船速是指船本身的速度,也就是船在静水中单位时间里所行的路程;水速是指水在单位时间里流过的路程.公式(1)表明,船顺水航行时的速度等于它在静水中的速度与水流速度之和.这是因为顺水时,船一方面按自己在静水中的速度在水面上行进,同时这艘船又在按着水的流动速度前进,因此船相对地面的实际速度等于船速与水速之和.公式(2)表明,船逆水航行时的速度等于船在静水中的速度与水流速度之差.根据加减互为逆运算的原理,由公式(1)可得:水速=顺水速度-船速(3)船速=顺水速度-水速(4)由公式(2)可得:水速=船速-逆水速度(5)船速=逆水速度+水速(6)这就是说,只要知道了船在静水中的速度、船的实际速度和水速这三者中的任意两个,就可以求出第三个.另外,已知某船的逆水速度和顺水速度,还可以求出船速和水速.因为顺水速度就是船速与水速之和,逆水速度就是船速与水速之差,根据和差问题的算法,可知:船速=(顺水速度+逆水速度)÷2 (7)这就是说,只要知道了船在静水中的速度、船的实际速度和水速这三者中的任意两个,就可以求出第三个.另外,已知某船的逆水速度和顺水速度,还可以求出船速和水速.因为顺水速度就是船速与水速之和,逆水速度就是船速与水速之差,根据和差问题的算法,可知:船速=(顺水速度+逆水速度)÷2 (7)水速=(顺水速度-逆水速度)÷2 (8)*例1 一只渔船顺水行25千米,用了5小时,水流的速度是每小时1千米.此船在静水中的速度是多少?(适于高年级程度)解:此船的顺水速度是:25÷5=5(千米/小时)因为“顺水速度=船速+水速”,所以,此船在静水中的速度是“顺水速度-水速”.5-1=4(千米/小时)综合算式:25÷5-1=4(千米/小时)答:此船在静水中每小时行4千米.*例2 一只渔船在静水中每小时航行4千米,逆水4小时航行12千米.水流的速度是每小时多少千米?(适于高年级程度)解:此船在逆水中的速度是:12÷4=3(千米/小时)因为逆水速度=船速-水速,所以水速=船速-逆水速度,即:4-3=1(千米/小时)答:水流速度是每小时1千米.*例3 一只船,顺水每小时行20千米,逆水每小时行12千米.这只船在静水中的速度和水流的速度各是多少?(适于高年级程度)解:因为船在静水中的速度=(顺水速度+逆水速度)÷2,所以,这只船在静水中的速度是:(20+12)÷2=16(千米/小时)因为水流的速度=(顺水速度-逆水速度)÷2,所以水流的速度是:(20-12)÷2=4(千米/小时)答略.*例4 某船在静水中每小时行18千米,水流速度是每小时2千米.此船从甲地逆水航行到乙地需要15小时.求甲、乙两地的路程是多少千米?此船从乙地回到甲地需要多少小时?(适于高年级程度)解:此船逆水航行的速度是:18-2=16(千米/小时)甲乙两地的路程是:16×15=240(千米)此船顺水航行的速度是:18+2=20(千米/小时)此船从乙地回到甲地需要的时间是:240÷20=12(小时)答略.*例5 某船在静水中的速度是每小时15千米,它从上游甲港开往乙港共用8小时.已知水速为每小时3千米.此船从乙港返回甲港需要多少小时?(适于高年级程度)解:此船顺水的速度是:15+3=18(千米/小时)甲乙两港之间的路程是:18×8=144(千米)此船逆水航行的速度是:15-3=12(千米/小时)此船从乙港返回甲港需要的时间是:144÷12=12(小时)综合算式:(15+3)×8÷(15-3)=144÷12=12(小时)答略.*例6 甲、乙两个码头相距144千米,一艘汽艇在静水中每小时行20千米,水流速度是每小时4千米.求由甲码头到乙码头顺水而行需要几小时,由乙码头到甲码头逆水而行需要多少小时?(适于高年级程度)解:顺水而行的时间是:144÷(20+4)=6(小时)逆水而行的时间是:144÷(20-4)=9(小时)*例7 一条大河,河中间(主航道)的水流速度是每小时8千米,沿岸边的水流速度是每小时6千米.一只船在河中间顺流而下,6.5小时行驶260千米.求这只船沿岸边返回原地需要多少小时?(适于高年级程度)解:此船顺流而下的速度是:260÷6.5=40(千米/小时)此船在静水中的速度是:40-8=32(千米/小时)此船沿岸边逆水而行的速度是:32-6=26(千米/小时)此船沿岸边返回原地需要的时间是:260÷26=10(小时)综合算式:260÷(260÷6.5-8-6)=260÷(40-8-6)=260÷26=10(小时)答略.*例8 一只船在水流速度是2500米/小时的水中航行,逆水行120千米用24小时.顺水行150千米需要多少小时?(适于高年级程度)解:此船逆水航行的速度是:120000÷24=5000(米/小时)此船在静水中航行的速度是:120000÷24=5000(米/小时)此船在静水中航行的速度是:5000+2500=7500(米/小时)此船顺水航行的速度是:7500+2500=10000(米/小时)顺水航行150千米需要的时间是:150000÷10000=15(小时)综合算式:150000÷(120000÷24+2500×2)=150000÷(5000+5000)=150000÷10000=15(小时)答略.*例9 一只轮船在208千米长的水路中航行.顺水用8小时,逆水用13小时.求船在静水中的速度及水流的速度.(适于高年级程度)解:此船顺水航行的速度是:208÷8=26(千米/小时)此船逆水航行的速度是:208÷13=16(千米/小时)由公式船速=(顺水速度+逆水速度)÷2,可求出此船在静水中的速度是:26+16)÷2=21(千米/小时)由公式水速=(顺水速度-逆水速度)÷2,可求出水流的速度是:26-16)÷2=5(千米/小时)答略.*例10 A、B两个码头相距180千米.甲船逆水行全程用18小时,乙船逆水行全程用15小时.甲船顺水行全程用10小时.乙船顺水行全程用几小时?(适于高年级程度)解:甲船逆水航行的速度是:180÷18=10(千米/小时)甲船顺水航行的速度是:180÷10=18(千米/小时)根据水速=(顺水速度-逆水速度)÷2,求出水流速度:(18-10)÷2=4(千米/小时)乙船逆水航行的速度是:180÷15=12(千米/小时)乙船逆水航行的速度是:180÷15=12(千米/小时)乙船顺水航行的速度是:12+4×2=20(千米/小时)乙船顺水行全程要用的时间是:180÷20=9(小时)综合算式:180÷[180÷15+(180÷10-180÷18)÷2×3]=180÷[12+(18-10)÷2×2]=180÷[12+8]=180÷20=9(小时)1、一只油轮,逆流而行,每小时行12千米,7小时可以到达乙港.从乙港返航需要6小时,求船在静水中的速度和水流速度?分析:逆流而行每小时行12千米,7小时时到达乙港,可求出甲乙两港路程:12×7=84(千米),返航是顺水,要6小时,可求出顺水速度是:84÷6=14(千米),顺速-逆速=2个水速,可求出水流速度(14-12)÷2=1(千米),因而可求出船的静水速度.解:(12×7÷6-12)÷2=2÷2=1(千米)12+1=13(千米)答:船在静水中的速度是每小时13千米,水流速度是每小时1千米.2、某船在静水中的速度是每小时15千米,河水流速为每小时5千米.这只船在甲、乙两港之间往返一次,共用去6小时.求甲、乙两港之间的航程是多少千米?分析:1、知道船在静水中速度和水流速度,可求船逆水速度15-5=10(千米),顺水速度15+5=20(千米).2、甲、乙两港路程一定,往返的时间比与速度成反比.即速度比是10÷20=1:2,那么所用时间比为2:1 .3、根据往返共用6小时,按比例分配可求往返各用的时间,逆水时间为6÷(2+1)×2=4(小时),再根据速度乘以时间求出路程.解:(15-5):(15+5)=1:26÷(2+1)×2=6÷3×2=4(小时)(15-5)×4=10×4=40(千米)答:甲、乙两港之间的航程是40千米.3、一只船从甲地开往乙地,逆水航行,每小时行24千米,到达乙地后,又从乙地返回甲地,比逆水航行提前2. 5小时到达.已知水流速度是每小时3千米,甲、乙两地间的距离是多少千米?分析:逆水每小时行24千米,水速每小时3千米,那么顺水速度是每小时24+3×2=30(千米),比逆水提前2. 5小时,若行逆水那么多时间,就可多行30×2. 5=75(千米),因每小时多行3×2=6(千米),几小时才多行75千米,这就是逆水时间.解:24+3×2=30(千米)24×[ 30×2. 5÷(3×2)]=24×[ 30×2. 5÷6 ]=24×12. 5=300(千米)答:甲、乙两地间的距离是300千米.答:甲、乙两地间的距离是300千米.4、一轮船在甲、乙两个码头之间航行,顺水航行要8小时行完全程,逆水航行要10小时行完全程.已知水流速度是每小时3千米,求甲、乙两码头之间的距离?分析:顺水航行8小时,比逆水航行8小时可多行6×8=48(千米),而这48千米正好是逆水(10-8)小时所行的路程,可求出逆水速度4 8÷2=24 (千米),进而可求出距离.解:3×2×8÷(10-8)=3×2×8÷2=24(千米)24×10=240(千米)答:甲、乙两码头之间的距离是240千米.解法二:设两码头的距离为“1”,顺水每小时行,逆水每小时行,顺水比逆水每小时快-,快6千米,对应.3×2÷(-)=6÷=24 0(千米)答:(略)5、某河有相距12 0千米的上下两个码头,每天定时有甲、乙两艘同样速度的客船从上、下两个码头同时相对开出.这天,从甲船上落下一个漂浮物,此物顺水漂浮而下,5分钟后,与甲船相距2千米,预计乙船出发几小时后,可与漂浮物相遇?分析:从甲船落下的漂浮物,顺水而下,速度是“水速”,甲顺水而下,速度是“船速+水速”,船每分钟与物相距:(船速+水速)-水速=船速.所以5分钟相距2千米是甲的船速5÷60=(小时),2÷=24(千米).因为,乙船速与甲船速相等,乙船逆流而行,速度为24-水速,乙船与漂浮物相遇,求相遇时间,是相遇路程120千米,除以它们的速度和(24-水速)+水速=24(千米).解:120÷[ 2÷(5÷60)]=120÷24=5(小时)答:乙船出发5小时后,可与漂浮物相遇.答略.11 / 11。
行程问题流水行船问题
---流水行船
流水行船问题基本关系式:
顺水速度=船速+水速 逆水速度=船速-水速 船速=(顺水速度+逆水速度)÷2 水速=(顺水速度-逆水速度)÷2
牛刀小试: 船在静水中的速度为每小时15千米,水流速度是 每小时3千米,船从上游乙港到下游甲港航行了12小时, 甲、乙两港间距离多少千米?
例1: 游轮从A城市到B城市顺流而下需要48小时,游轮 在静水中的速度是每小时30千米,水流速度是每小时 6千米,游轮从B城市返回A城市需要多少小时?
练习: 某轮船在相距216千米的两个港口间往返运送货物, 已知轮船在静水中每小时21千米,两个港口间的水流 速度是每小时3千米,那么,这只轮船往返一次需要多 长时间?
例2 : 甲、乙两港间的航线长360千米,一只船从甲港求船在静水中的速度和水流速度?
练习: 某架飞机顺风飞行每小时飞1320千米,逆风飞 行每小时飞1080千米,这架飞机的速度和风速分别是 多少?
例3: A、B两码头间河流长为90千米,甲、乙两船分别 从A、B码头同时起航,如果相向而行3小时相遇;如 果同向而行15小时甲船追上乙船,求两船在静水中的 速度?
练习: 两个港口相距342千米,甲、乙两支轮船同时从 两个港口相对开出,甲船顺流而下,乙船逆流而上, 9小时后正好相遇,已知甲船每小时比乙船慢4千米。 甲、乙两船的速度分别是多少?
谢谢观赏
WPS Office
Make Presentation much more fun
@WPS官方微博 @kingsoftwps
例5: 静水中,甲乙两船的速度分别为每小时20千米 和每小时16千米,两船先后自同一港口顺水开出, 乙船比甲船早出发2小时,若水速是每小时4千米, 甲船开出几小时后追上乙船?
(完整版)流水行船问题及答案
(完整版)流水行船问题及答案流水行船问题顺水速度=船速+水速逆水速度=船速-水速2÷+=逆水速度)(顺水速度船速2-÷=逆水速度)(顺水速度水速例1:船在静水中的速度为每小时13千米,水流的速度为每小时3千米,船从甲港到达乙港的距离为240千米,船从甲港到乙港为顺风,求船往返甲港和乙港所需要的时间?顺水速度:13+3=16千米/小时逆水速度:13—3=10千米/小时返甲港所需时间:240÷10=24小时返乙港所需时间:240÷16=15小时1、一艘轮船在静水中航行,每小时行15千米,水流的速度为每小时3千米。
这艘轮船顺水航行270千米到达目的地,用了几个小时?如果按原航道返回,需要几小时?顺水速度:15+3=18千米/小时逆水速度:15—3=12千米/小时到达目的地用时:270÷18=15小时按原航道返回需用时:270÷12=22。
5小时例题2:甲乙两码头相距144千米,一只船从甲码头顺水航行8小时到达乙码头,已知船在静水中每小时行驶15千米,问这船返回甲码头需几小时?顺水速度:144÷8=18千米/小时水速:18-15=3千米/小时逆水速度:15-3=12千米/小时返回甲码头需用时:144÷12=12小时1、甲乙两码头相距560千米,一只船从甲码头顺水航行20小时到达乙码头,已知船在静水中每小时行驶24千米,问这船返回甲码头需几小时?顺水速度:560÷20=28千米/小时水速:28-24=4千米/小时逆水速度:24-4=20千米/小时返回甲码头需用时:560÷20=28小时2、两个码头相距360千米,一艘汽艇顺水行完全程需9小时,这条河水流速度为每小时5千米,求这艘汽艇逆水行完全程需几小时?顺水速度:360÷9=40千米/小时船速:40-5=35千米/小时逆水速度:35-5=30千米/小时逆水行完全程需用时:360÷30=12小时例3:甲、乙两港间的水路长208千米,一只船从甲港开往乙港,顺水8小时到达,从乙港返回甲港,逆水13小时到达,求船在静水中的速度和水流速度。
七年级关于学习数学流水行船问题的公式和例题
小学数学公式中流水的问题是最容易考试的一个题型,今天我们给大家总结了以下流水问题的公式。
顺流速度=静水速度+水流速度逆流速度=静水速度-水流速度静水速度=(顺流速度+逆流速度)÷2水流速度=(顺流速度-逆流速度)÷2关于学习数学流水行船问题的公式和例题流水问题是研究船在流水中的行程问题,因此,又叫行船问题。
在小学数学中涉及到的题目,一般是匀速运动的问题。
这类问题的主要特点是,水速在船逆行和顺行中的作用不同。
流水问题有如下两个基本公式:顺水速度=船速+水速(1)逆水速度=船速-水速(2)这里,顺水速度是指船顺水航行时单位时间里所行的路程;船速是指船本身的速度,也就是船在静水中单位时间里所行的路程;水速是指水在单位时间里流过的路程。
公式(1)表明,船顺水航行时的速度等于它在静水中的速度与水流速度之和。
这是因为顺水时,船一方面按自己在静水中的速度在水面上行进,同时这艘船又在按着水的流动速度前进,因此船相对地面的实际速度等于船速与水速之和。
公式(2)表明,船逆水航行时的速度等于船在静水中的速度与水流速度之差。
根据加减互为逆运算的原理,由公式(1)可得:水速=顺水速度-船速(3)船速=顺水速度-水速(4)由公式(2)可得:水速=船速-逆水速度(5)船速=逆水速度+水速(6)这就是说,只要知道了船在静水中的速度、船的实际速度和水速这三者中的任意两个,就可以求出第三个。
另外,已知某船的逆水速度和顺水速度,还可以求出船速和水速。
因为顺水速度就是船速与水速之和,逆水速度就是船速与水速之差,根据和差问题的算法,可知:船速=(顺水速度+逆水速度)÷2 (7)这就是说,只要知道了船在静水中的速度、船的实际速度和水速这三者中的任意两个,就可以求出第三个。
另外,已知某船的逆水速度和顺水速度,还可以求出船速和水速。
因为顺水速度就是船速与水速之和,逆水速度就是船速与水速之差,根据和差问题的算法,可知:船速=(顺水速度+逆水速度)÷2 (7)水速=(顺水速度-逆水速度)÷2 (8)*例1 一只渔船顺水行25千米,用了5小时,水流的速度是每小时1千米。
流水行船问题的公式和例题
流水行船问题的公式和例题流水问题是研究船在流水中的行程问题,因此,又叫行船问题。
在小学数学中涉及到的题目,一般是匀速运动的问题。
这类问题的主要特点是,水速在船逆行和顺行中的作用不同。
流水问题有如下两个基本公式:顺水速度=船速+水速(1)逆水速度=船速-水速(2)船速=(顺水速度+逆水速度)÷2(7)水速=(顺水速度-逆水速度)÷2(8)例1一只渔船顺水行25千米,用了5小时,水流的速度是每小时1千米。
此船在静水中的速度是多少?例2一只渔船在静水中每小时航行4千米,逆水4小时航行12千米。
水流的速度是每小时多少千米?例3一只船,顺水每小时行20千米,逆水每小时行12千米。
这只船在静水中的速度和水流的速度各是多少?例4某船在静水中每小时行18千米,水流速度是每小时2千米。
此船从甲地逆水航行到乙地需要15小时。
求甲、乙两地的路程是多少千米?此船从乙地回到甲地需要多少小时?例5某船在静水中的速度是每小时15千米,它从上游甲港开往乙港共用8小时。
已知水速为每小时3千米。
此船从乙港返回甲港需要多少小时?例6甲、乙两个码头相距144千米,一艘汽艇在静水中每小时行20千米,水流速度是每小时4千米。
求由甲码头到乙码头顺水而行需要几小时,由乙码头到甲码头逆水而行需要多少小时?例7一条大河,河中间(主航道)的水流速度是每小时8千米,沿岸边的水流速度是每小时6千米。
一只船在河中间顺流而下,小时行驶260千米。
求这只船沿岸边返回原地需要多少小时?1.甲、乙之间的水路是234千米,一只船从甲港到乙港需9小时,从乙港返回甲港需13小时,问船速和水速各为每小时多少千米?2.一艘每小时行25千米的客轮,在大运河中顺水航行140千米,水速是每小时3千米,需要行几个小时?3.一只小船静水中速度为每小时30千米。
在176千米长河中逆水而行用了11个小时.求返回原处需用几个小时。
4.一只船在河里航行,顺流而下每小时行18千米.已知这只船下行2小时恰好与上行3小时所行的路程相等.求船速和水速。
流水行船问题的公式和例题(完整版)
流水行船问题的公式和例题流水问题是研究船在流水中的行程问题,因此,又叫行船问题。
在小学数学中涉及到的题目,一般是匀速运动的问题。
这类问题的主要特点是,水速在船逆行和顺行中的作用不同。
流水问题有如下两个基本公式:顺水速度=船速+水速(1)逆水速度=船速-水速(2)这里,顺水速度是指船顺水航行时单位时间里所行的路程;船速是指船本身的速度,也就是船在静水中单位时间里所行的路程;水速是指水在单位时间里流过的路程。
公式(1)表明,船顺水航行时的速度等于它在静水中的速度与水流速度之和。
这是因为顺水时,船一方面按自己在静水中的速度在水面上行进,同时这艘船又在按着水的流动速度前进,因此船相对地面的实际速度等于船速与水速之和。
公式(2)表明,船逆水航行时的速度等于船在静水中的速度与水流速度之差。
根据加减互为逆运算的原理,由公式(1)可得:水速=顺水速度-船速(3)船速=顺水速度-水速(4)由公式(2)可得:水速=船速-逆水速度(5)船速=逆水速度+水速(6)这就是说,只要知道了船在静水中的速度、船的实际速度和水速这三者中的任意两个,就可以求出第三个。
另外,已知某船的逆水速度和顺水速度,还可以求出船速和水速。
因为顺水速度就是船速与水速之和,逆水速度就是船速与水速之差,根据和差问题的算法,可知:船速=(顺水速度+逆水速度)÷2 (7)水速=(顺水速度-逆水速度)÷2 (8)*例1一只渔船顺水行25千米,用了5小时,水流的速度是每小时1千米。
此船在静水中的速度是多少?(适于高年级程度)解:此船的顺水速度是:25÷5=5(千米/小时)因为“顺水速度=船速+水速”,所以,此船在静水中的速度是“顺水速度-水速”。
5-1=4(千米/小时)综合算式:25÷5-1=4(千米/小时)答:此船在静水中每小时行4千米。
*例2一只渔船在静水中每小时航行4千米,逆水4小时航行12千米。
水流的速度是每小时多少千米?(适于高年级程度)解:此船在逆水中的速度是:12÷4=3(千米/小时)因为逆水速度=船速-水速,所以水速=船速-逆水速度,即:4-3=1(千米/小时)答:水流速度是每小时1千米。
数学水流问题公式
数学水流问题公式数学是一种理性的精神,使人类的思维得以运用到最完善的程度。
下面店铺给你分享数学水流问题公式,欢迎阅读。
数学水流问题公式【行船问题公式】(1)一般公式:静水速度(船速)+水流速度(水速)=顺水速度; 船速-水速=逆水速度; (顺水速度+逆水速度)÷2=船速; (顺水速度-逆水速度)÷2=水速(2)两船相向航行的公式:甲船顺水速度+乙船逆水速度=甲船静水速度+乙船静水速度(3)两船同向航行的公式:后(前)船静水速度-前(后)船静水速度=两船距离缩小(拉大)速度例题:轮船在顺水中航行80千米所需的时间和逆水航行60千米所需的时间相同,已知水流的速度是3千米/时.求轮船在静水中的速度.船在顺水中速度=静水中船速+水速船在逆水中速度=静水中船速-水速【流水问题公式】1. 顺水行程=(船速+水速)×顺水时间2. 顺水速度=船速+水速逆水3. 逆水行程=(船速-水速)×逆水时间4. 逆水速度=船速-水速静水静水速度(船速)=(顺水速度+逆水速度)÷2水速=(顺水速度-逆水速度)÷2数学水流问题例题1、两个码头相距352千米,一船顺流而下行完全程需要11小时,逆流而上行完全程需要16小时,求这条河的水流速度。
2、甲乙两港间的水路长208千米。
一只船从甲港开往乙港,顺水8小时达到,从乙港返回甲港,逆水13小时到达。
求船在静水中的速度(船速)及水速。
3、两个码头相距240千米,一艘汽艇顺水行完全程要6小时,这条河的水速为每小时8千米,求这艘汽艇逆水行完全程要几小时?4、A、B两个码头之间的水路长80千米,甲船顺流而下需要4小时,逆流而上需要10小时,如果乙船顺流而行需要5小时,那么乙船在静水中的速度是多少?5、甲船逆水航行360千米需要18小时,返回原地需要10小时,乙船逆水航行同一段距离需要15小时,返回原地需要多少小时?6、静水中甲、乙两船的速度分别是每小时26千米和每小时22千米。
完整版)流水行船问题的公式和例题(含答案)
完整版)流水行船问题的公式和例题(含答案)此船在静水中的速度=(20+12)÷2=16(千米/小时)又因为水速=(顺水速度-船速)或(船速-逆水速度),所以:水速=(20-16)÷2=2(千米/小时)或水速=(16-12)÷2=2(千米/小时)答:此船在静水中的速度为16千米/小时,水流速度为2千米/小时。
此船在静水中的速度是:5000-2500=2500(米/小时)此船顺水航行的速度是:2500+2500=5000(米/小时)顺水行150千米需要的时间是:÷5000=30(小时)答案:30小时。
一只油轮逆流而行,每小时行驶12千米,7小时后到达乙港。
从乙港返航需要6小时。
求该船在静水中的速度和水流速度。
分析:船舶逆流而行每小时行驶12千米,7小时后到达乙港,因此甲乙两港的路程为12×7=84千米。
船舶返航时顺流而行,需要6小时,因此船舶的顺水速度为84÷6=14千米。
船舶的静水速度可由顺速和逆速的平均值得出。
水速等于顺速和逆速的差值除以2,从而可以得出水流速度。
因此,可以求出船的静水速度。
解:船舶的顺水速度为14千米,逆水速度为12千米。
因此,水速为(14-12)÷2=1千米。
船的静水速度为(14+12)÷2=13千米。
水流速度为1千米。
练2:一艘船在静水中的速度是每小时15千米,河水流速为每小时5千米。
该船在甲、乙两港之间往返一次,共用去6小时。
求甲、乙两港之间的航程是多少千米?分析:首先,根据船在静水中速度和水流速度,可以求得船逆水速度为15-5=10(千米),顺水速度为15+5=20(千米)。
其次,甲、乙两港之间路程一定,往返的时间比与速度成反比,即速度比为10÷20=1:2,那么所用时间比为2:1.最后,根据往返共用6小时,按比例分配可求往返各用的时间,逆水时间为6÷(2+1)×2=4(小时),再根据速度乘以时间求出路程。
数学水流问题公式
数学水流问题公式数学是一种理性的精神,使人类的思维得以运用到最完善的程度。
下面店铺给你分享数学水流问题公式,欢迎阅读。
数学水流问题公式【行船问题公式】(1)一般公式:静水速度(船速)+水流速度(水速)=顺水速度; 船速-水速=逆水速度; (顺水速度+逆水速度)÷2=船速; (顺水速度-逆水速度)÷2=水速(2)两船相向航行的公式:甲船顺水速度+乙船逆水速度=甲船静水速度+乙船静水速度(3)两船同向航行的公式:后(前)船静水速度-前(后)船静水速度=两船距离缩小(拉大)速度例题:轮船在顺水中航行80千米所需的时间和逆水航行60千米所需的时间相同,已知水流的速度是3千米/时.求轮船在静水中的速度.船在顺水中速度=静水中船速+水速船在逆水中速度=静水中船速-水速【流水问题公式】1. 顺水行程=(船速+水速)×顺水时间2. 顺水速度=船速+水速逆水3. 逆水行程=(船速-水速)×逆水时间4. 逆水速度=船速-水速静水静水速度(船速)=(顺水速度+逆水速度)÷2水速=(顺水速度-逆水速度)÷2数学水流问题例题1、两个码头相距352千米,一船顺流而下行完全程需要11小时,逆流而上行完全程需要16小时,求这条河的水流速度。
2、甲乙两港间的水路长208千米。
一只船从甲港开往乙港,顺水8小时达到,从乙港返回甲港,逆水13小时到达。
求船在静水中的速度(船速)及水速。
3、两个码头相距240千米,一艘汽艇顺水行完全程要6小时,这条河的水速为每小时8千米,求这艘汽艇逆水行完全程要几小时?4、A、B两个码头之间的水路长80千米,甲船顺流而下需要4小时,逆流而上需要10小时,如果乙船顺流而行需要5小时,那么乙船在静水中的速度是多少?5、甲船逆水航行360千米需要18小时,返回原地需要10小时,乙船逆水航行同一段距离需要15小时,返回原地需要多少小时?6、静水中甲、乙两船的速度分别是每小时26千米和每小时22千米。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
小学数学公式中流水的问题是最容易考试的一个题型,今天我们给大家总结了以下流水问题的公式。
顺流速度=静水速度+水流速度逆流速度=静水速度-水流速度静水速度=(顺流速度+逆流速度)÷2水流速度=(顺流速度-逆流速度)÷2关于学习数学流水行船问题的公式和例题流水问题是研究船在流水中的行程问题,因此,又叫行船问题。
在小学数学中涉及到的题目,一般是匀速运动的问题。
这类问题的主要特点是,水速在船逆行和顺行中的作用不同。
流水问题有如下两个基本公式:顺水速度=船速+水速(1)逆水速度=船速-水速(2)这里,顺水速度是指船顺水航行时单位时间里所行的路程;船速是指船本身的速度,也就是船在静水中单位时间里所行的路程;水速是指水在单位时间里流过的路程。
公式(1)表明,船顺水航行时的速度等于它在静水中的速度与水流速度之和。
这是因为顺水时,船一方面按自己在静水中的速度在水面上行进,同时这艘船又在按着水的流动速度前进,因此船相对地面的实际速度等于船速与水速之和。
公式(2)表明,船逆水航行时的速度等于船在静水中的速度与水流速度之差。
根据加减互为逆运算的原理,由公式(1)可得:水速=顺水速度-船速(3)船速=顺水速度-水速(4)由公式(2)可得:水速=船速-逆水速度(5)船速=逆水速度+水速(6)这就是说,只要知道了船在静水中的速度、船的实际速度和水速这三者中的任意两个,就可以求出第三个。
另外,已知某船的逆水速度和顺水速度,还可以求出船速和水速。
因为顺水速度就是船速与水速之和,逆水速度就是船速与水速之差,根据和差问题的算法,可知:船速=(顺水速度+逆水速度)÷2 (7)这就是说,只要知道了船在静水中的速度、船的实际速度和水速这三者中的任意两个,就可以求出第三个。
另外,已知某船的逆水速度和顺水速度,还可以求出船速和水速。
因为顺水速度就是船速与水速之和,逆水速度就是船速与水速之差,根据和差问题的算法,可知:船速=(顺水速度+逆水速度)÷2 (7)水速=(顺水速度-逆水速度)÷2 (8)*例1 一只渔船顺水行25千米,用了5小时,水流的速度是每小时1千米。
此船在静水中的速度是多少?(适于高年级程度)解:此船的顺水速度是:25÷5=5(千米/小时)因为“顺水速度=船速+水速”,所以,此船在静水中的速度是“顺水速度-水速”。
5-1=4(千米/小时)综合算式:25÷5-1=4(千米/小时)答:此船在静水中每小时行4千米。
*例2 一只渔船在静水中每小时航行4千米,逆水4小时航行12千米。
水流的速度是每小时多少千米?(适于高年级程度)解:此船在逆水中的速度是:12÷4=3(千米/小时)因为逆水速度=船速-水速,所以水速=船速-逆水速度,即:4-3=1(千米/小时)答:水流速度是每小时1千米。
*例3 一只船,顺水每小时行20千米,逆水每小时行12千米。
这只船在静水中的速度和水流的速度各是多少?(适于高年级程度)解:因为船在静水中的速度=(顺水速度+逆水速度)÷2,所以,这只船在静水中的速度是:(20+12)÷2=16(千米/小时)因为水流的速度=(顺水速度-逆水速度)÷2,所以水流的速度是:(20-12)÷2=4(千米/小时)答略。
*例4 某船在静水中每小时行18千米,水流速度是每小时2千米。
此船从甲地逆水航行到乙地需要15小时。
求甲、乙两地的路程是多少千米?此船从乙地回到甲地需要多少小时?(适于高年级程度)解:此船逆水航行的速度是:18-2=16(千米/小时)甲乙两地的路程是:16×15=240(千米)此船顺水航行的速度是:18+2=20(千米/小时)此船从乙地回到甲地需要的时间是:240÷20=12(小时)答略。
*例 5 某船在静水中的速度是每小时15千米,它从上游甲港开往乙港共用8小时。
已知水速为每小时3千米。
此船从乙港返回甲港需要多少小时?(适于高年级程度)解:此船顺水的速度是:15+3=18(千米/小时)甲乙两港之间的路程是:18×8=144(千米)此船逆水航行的速度是:15-3=12(千米/小时)此船从乙港返回甲港需要的时间是:144÷12=12(小时)综合算式:(15+3)×8÷(15-3)=144÷12=12(小时)答略。
*例6 甲、乙两个码头相距144千米,一艘汽艇在静水中每小时行20千米,水流速度是每小时4千米。
求由甲码头到乙码头顺水而行需要几小时,由乙码头到甲码头逆水而行需要多少小时?(适于高年级程度)解:顺水而行的时间是:144÷(20+4)=6(小时)逆水而行的时间是:144÷(20-4)=9(小时)*例7 一条大河,河中间(主航道)的水流速度是每小时8千米,沿岸边的水流速度是每小时6千米。
一只船在河中间顺流而下,6.5小时行驶260千米。
求这只船沿岸边返回原地需要多少小时?(适于高年级程度)解:此船顺流而下的速度是:260÷6.5=40(千米/小时)此船在静水中的速度是:40-8=32(千米/小时)此船沿岸边逆水而行的速度是:32-6=26(千米/小时)此船沿岸边返回原地需要的时间是:260÷26=10(小时)综合算式:260÷(260÷6.5-8-6)=260÷(40-8-6)=260÷26=10(小时)答略。
*例8 一只船在水流速度是2500米/小时的水中航行,逆水行120千米用24小时。
顺水行150千米需要多少小时?(适于高年级程度)解:此船逆水航行的速度是:120000÷24=5000(米/小时)此船在静水中航行的速度是:120000÷24=5000(米/小时)此船在静水中航行的速度是:5000+2500=7500(米/小时)此船顺水航行的速度是:7500+2500=10000(米/小时)顺水航行150千米需要的时间是:150000÷10000=15(小时)综合算式:150000÷(120000÷24+2500×2)=150000÷(5000+5000)=150000÷10000=15(小时)答略。
*例9 一只轮船在208千米长的水路中航行。
顺水用8小时,逆水用13小时。
求船在静水中的速度及水流的速度。
(适于高年级程度)解:此船顺水航行的速度是:208÷8=26(千米/小时)此船逆水航行的速度是:208÷13=16(千米/小时)由公式船速=(顺水速度+逆水速度)÷2,可求出此船在静水中的速度是:26+16)÷2=21(千米/小时)由公式水速=(顺水速度-逆水速度)÷2,可求出水流的速度是:26-16)÷2=5(千米/小时)答略。
*例10 A、B两个码头相距180千米。
甲船逆水行全程用18小时,乙船逆水行全程用15小时。
甲船顺水行全程用10小时。
乙船顺水行全程用几小时?(适于高年级程度)解:甲船逆水航行的速度是:180÷18=10(千米/小时)甲船顺水航行的速度是:180÷10=18(千米/小时)根据水速=(顺水速度-逆水速度)÷2,求出水流速度:(18-10)÷2=4(千米/小时)乙船逆水航行的速度是:180÷15=12(千米/小时)乙船逆水航行的速度是:180÷15=12(千米/小时)乙船顺水航行的速度是:12+4×2=20(千米/小时)乙船顺水行全程要用的时间是:180÷20=9(小时)综合算式:180÷[180÷15+(180÷10-180÷18)÷2×3]=180÷[12+(18-10)÷2×2]=180÷[12+8]=180÷20=9(小时)1、一只油轮,逆流而行,每小时行12千米,7小时可以到达乙港。
从乙港返航需要6小时,求船在静水中的速度和水流速度?分析:逆流而行每小时行12千米,7小时时到达乙港,可求出甲乙两港路程:12×7=84(千米),返航是顺水,要6小时,可求出顺水速度是:84÷6=14(千米),顺速-逆速=2个水速,可求出水流速度(14-12)÷2=1(千米),因而可求出船的静水速度。
解:(12×7÷6-12)÷2=2÷2=1(千米)12+1=13(千米)答:船在静水中的速度是每小时13千米,水流速度是每小时1千米。
2、某船在静水中的速度是每小时15千米,河水流速为每小时5千米。
这只船在甲、乙两港之间往返一次,共用去6小时。
求甲、乙两港之间的航程是多少千米?分析:1、知道船在静水中速度和水流速度,可求船逆水速度15-5=10(千米),顺水速度15+5=20(千米)。
2、甲、乙两港路程一定,往返的时间比与速度成反比。
即速度比是10÷20=1:2,那么所用时间比为2:1 。
3、根据往返共用6小时,按比例分配可求往返各用的时间,逆水时间为6÷(2+1)×2=4(小时),再根据速度乘以时间求出路程。
解:(15-5):(15+5)=1:26÷(2+1)×2=6÷3×2=4(小时)(15-5)×4=10×4=40(千米)答:甲、乙两港之间的航程是40千米。
3、一只船从甲地开往乙地,逆水航行,每小时行24千米,到达乙地后,又从乙地返回甲地,比逆水航行提前2. 5小时到达。
已知水流速度是每小时3千米,甲、乙两地间的距离是多少千米?分析:逆水每小时行24千米,水速每小时3千米,那么顺水速度是每小时24+3×2=30(千米),比逆水提前2. 5小时,若行逆水那么多时间,就可多行30×2. 5=75(千米),因每小时多行3×2=6(千米),几小时才多行75千米,这就是逆水时间。
解:24+3×2=30(千米)24×[ 30×2. 5÷(3×2)]=24×[ 30×2. 5÷6 ]=24×12. 5=300(千米)答:甲、乙两地间的距离是300千米。
答:甲、乙两地间的距离是300千米。
4、一轮船在甲、乙两个码头之间航行,顺水航行要8小时行完全程,逆水航行要10小时行完全程。
已知水流速度是每小时3千米,求甲、乙两码头之间的距离?分析:顺水航行8小时,比逆水航行8小时可多行6×8=48(千米),而这48千米正好是逆水(10-8)小时所行的路程,可求出逆水速度4 8÷2=24 (千米),进而可求出距离。