用样本的平均数估计总体的平均数

合集下载

理解样本平均数和总体平均数会用样本平均数估计总体平均

理解样本平均数和总体平均数会用样本平均数估计总体平均

乙 115 100 125 130 115 125 125 145 125 145
2、样本方差
(2)从甲、乙两个生产日光灯管的厂家中抽取5~6只 日光灯管进行检测,灯管的使用寿命如表:
(单位:100h)。
甲厂
9.8
9.9
10.1
10
10.2
10
乙厂
9.8
10.3 10.8
9.7
9.8
当样本数据的极差较大时数据较分散,极差较小时数据 较集中,运用极差对两组数据进行比较,可以简单方便地估 计总体的相关指标的稳定能。 当两组数据的集中程度差异不大时,还可以考察每一个样本 中的每一个数据与均值的差的平方和,此平方和越小,稳定性就 越高。由于两组数据的容量有可能不同,因此应将上述平方和除 以数据的个数。我们把由此所得的值称为这组数据的方差。
2、样本方差
思考交流 样本标准差与频率直方图有什么关系?
本节主要知识: (1)样本平均数的计算; (2)用样本平均数估计总体平均数的方法; (3)样本方差和样本标准差的计算; (4)用样本标准差估计总体标准差的方法; (5)样本频率直方图、样本平均数、样本标 准差三种方法估计总体的差异.
教材P189练习第2题.
1.样本平均数
例3 下面是某校学生日睡眠时间的抽样频率分布表 (单位:h),度估算该学生的日平均睡眠时间。 睡眠时间 人数 频率
6~6.5
6.5~7
5
17
0.05
0.17
7~7.5
7.5~8
33
37
0.33
0.37
8~8.5
8.5~9 合计
6
2 100
0.06
0.02 1
1.样本平均数

用样本平均数估计总体

用样本平均数估计总体
所以可估计该校八年级全部男生的平均身高是 165.5cm.
样本估计总体
课堂小结
1.数据分组后,一个小组的组中值是指:这个小组 的两个端点的数的平均数. 2.在抽样调查得到样本数据后,你如何处理样本数 据并估计总体数据的集中趋势? 样本平均数估计总体平均数.
3.请列举生活中用样本平均数估计总体平均数的一 个例子.
梨的个数? 每个梨的质量?
(1)果农从100 棵梨树中任意选出10 棵,数出 这10棵梨树上梨的个数,得到以下数据:154,150, 155,155,159,150,152,155,153,157.你能 估计出平均每棵树的梨的个数吗?
150 2+152+153+154+155 3+157+159 x= =154 10 所以,平均每棵梨树上梨的个数为154.
所以,平均每个梨的质量约为0.42 kg.
(3)能估计出该果园中梨的总产量吗?
154 100 0.42=6468
所以,该果园中梨的总产量约为6 468 kg. 思考:这个生活中的问题是如何解决的,体现
了怎样的统计思想?
样本估计总体; 用样本平均数估计总体平均数.
例.某校为了解八年级男生的身高,从八年级各班随机
使用计算器).
所用时间t/min 人数 4
提示
先计算出各小组的组 中值,再利用加权平均数 公式进行计算.
0<t ≤10
10<t ≤20 20<t ≤30 30<t ≤40 40<t ≤50
50<t ≤60
6 14 13 9
4
解:
各组的组中值见下表 所用时间t/min 0<t ≤10 10<t ≤20 20<t ≤30 30<t ≤40 40<t ≤50 50<t ≤60

简述以样本均值估计总体均值的理由

简述以样本均值估计总体均值的理由

样本均值恰好等于总体均值的机会很少,但是样本均值的期望(平均值)却是等于样本均值的。

一般情况下样本均值与总体均值之间会有些差异,这个差异是可以科学计算并加以控制的。

样本均值也称为样本均值。

是样本的平均值。

平均值是一组数据集中趋势的数量,即一组数据中所有数据的总和,然后除以该组数据的数量。

它是反映数据集中趋势的指标。

样本均值是总体中样本数据的平均值。

样本是指从人口中提取的一部分个人。

样本中的个体数量称为样本数量或含量,并用符号n或n表示。

人口是指客观存在并基于相同属性组合的许多单个单元的整体,即具有某些特征的一类事物的整体,也称为矩阵或整个域。

简而言之,人口是相同性质的个体的总和。

样本是被检查物体或其一部分的反射图像。

以某种方式从种群中提取的一些个体用于提供有关种群的信息,从而对种群进行统计推断。

也称为子样本。

例如,由于人力和物力的限制,不可能对全国人口进行年度普查,但是可以通过抽样调查获得必要的信息。

从总体采样的过程称为采样。

最常用的采样方法是简单的随机采样。

这样,总体中的每个人都有相同的机会被采样到样本中,因此获得的样本称为简单随机样本。

样本的平均值称为样本平均值,样本偏差的平方的平均值称为样本方差。

在数学统计中,样本平均值通常用于估计总体平均值,样本方差用于估计总体方差。

平均值是代表一组数据集趋势的数量。

它指的是一组数据中所有数据的总和,然后除以该组数据的数量。

它是反映数据集中趋势的指标。

解决平均数问题的关键是确定“总数”以及与该总数相对应的副本总数。

在统计工作中,平均值和标准差是描述数据趋势和离散度的两个最重要的指标。

平均值是统计中的重要概念。

在统计中,算术平均值通常用于表示统计对象的一般水平。

它是一个统计数据,描述了数据集的位置。

它不仅可以用来反映一组数据的一般情况和平均水平,而且可以用来比较不同组的数据以查看组之间的差异。

使用平均值表示一组数据是直观而简洁的,因此在日常生活中经常使用它,例如平均速度,平均身高,平均输出,平均得分等。

用样本平均数估计总体平均数

用样本平均数估计总体平均数
也叫做x1 , x2 , … , xk这k个数的加权平均数 , 其中f1 , f2 , … , fk分别叫做x1 , x2 , … , xk的权 .
新课导入
例1:为了解5路公共汽车的运营情况 , 公交部门统计了 某天5路公共汽车每个运行班次的载客量 , 得到下表:
载客量/人 1≤x<21 21≤x<41 41≤x<61 61≤x<81 81≤x<101 101≤x<121
新知探究
用计算器求加权平均数的值 使用计算器的统计功能求平均数时 , 不同品牌的计算器的操作步 骤有所不同 , 操作时需要参阅计算器的使用说明书 . 通常需要先按 动有关键 , 使计算器进入统计状态 ; 然后依次输入数据x1 , x2 , … ,

xk 以及它们的权f1 , f2 , …, fk ; 最后按动求平均数的功能键(例如 x 键) , 计算器便会求出平均数的值 .
灯泡只数
5
10
12
17
6
这批灯泡的平均使用寿命是多少 ?
解:根据表可以得出各小组的组中值 ,
— 5800 101200 160012 17 2000 2400 6
x=
=1672.
50
即样本平均数为1672 .
因此 , 可以估计这批灯泡的平均使用寿命是 1672h .
知识归纳
用样本的平均数来估计总体的平均数 . 当所 要考察的对象很多时 , 或者对考察对象带有 破坏性时 , 统计中常常通过样本估计总体 .
答:这个新品种黄瓜平均每株结16.25根黄瓜 .
课堂小结
平均数与加权平均数:
运用频数分布表求加权平均数时 , 统计中常 用各组的组中值代表各组的实际数据 , 把各 组的频数看作相应组中值的权 , 利用加权平 均数公式计算即可 .

12.2.2用样本的平均数与标准差估计总体的平均数与标准差

12.2.2用样本的平均数与标准差估计总体的平均数与标准差

方差越小,数据的波动越小。
例2、甲乙两人同时生产内径为25.40mm的一种零件.为了 对两人的生产质量进行评比,从他们生产的零件中各抽出 20件,量得其内径尺寸如下(单位:mm) 甲: 25.46, 25.32, 25.45, 25.39, 25.36 25.34, 25.42, 25.45, 25.38, 25.42 25.39, 25.43, 25.39, 25.40, 25.44 25.40, 25.42, 25.35, 25.41, 25.39 乙: 25.40, 25.43, 25.44, 25.48, 25.48 25.47, 25.49, 25.49, 25.36, 25.34 25.33, 25.43, 25.43, 25.32, 25.47 25.31, 25.32, 25.32, 25.32, 25.48 从生产的零件内径的尺寸看,谁生产的质量较高?
如:有两位射击运动员在一次射击测试中 各射靶10次,每次命中的环数如下:
甲:7 乙:9 8 5 7 7 9 8 5 7 4 6 9 8 10 6 7 7 4 7
如果你是教练,你应当如何对这次射击作出评价? 如果看两人本次射击的平均成绩,由于 x甲 7,x乙 7 思考:两人射击的平均成绩是一样的.那么两个 人的水平就没有什么差异吗?若有差异你能说明 其水平差异在那里吗?
(1) s
( x1 x2 xn ) x
(3)数据kx1,kx2, ,kxn的平均数为k x,方差为k s .
2 2
(4)数据kx1 b,kx2 b, ,kxn b的 平均数为k x+b,方差为k s
2 2
练习: 1.在数据统计中,能反映一组数据变化范围大小的 指标是 ( A )A.极差 B.方差 C.标准差 D.以上都不对

【精品】用样本平均数估计总体平均数

【精品】用样本平均数估计总体平均数

【精品】用样本平均数估计总体平均数在统计学中,我们通常需要对一个总体进行统计分析,但是由于总体规模太大或是复杂,往往不可能对全部数据进行收集和处理。

因此我们采用抽样的方法来获取部分数据,然后通过对样本数据的分析来推断总体的情况。

在使用样本数据来估计总体参数时,我们最常用的方法之一就是用样本平均数来估计总体平均数。

下面我们将介绍如何利用样本平均数来进行总体平均数的估计。

一、样本平均数的含义首先,我们来了解一下样本平均数的含义。

样本平均数是指将抽取的若干个样本数据求和后再除以样本的个数所得到的值,用数学公式表示为:$\bar{x} = \frac{\sum_{i=1}^{n}x_i}{n}$其中,$\bar{x}$表示样本平均数,$x_i$表示第$i$个样本数据,$n$表示样本的个数。

样本平均数是对样本数据的集中趋势进行度量的一种方法。

通常情况下,我们认为样本平均数越接近总体平均数,那么样本数据就越能代表总体的情况。

二、总体平均数的估计现在假设我们要估计某个总体的平均数,但是由于样本方便采集,我们只能获取其中的一部分数据,假设是$n$个样本数据。

那么我们可以使用样本平均数$\bar{x}$来估计总体平均数$\mu$,用数学公式表示为:其中,$\hat{\mu}$表示我们对总体平均数的估计值,也称为样本平均数的无偏估计量。

这里需要特别注意的是,样本平均数$\bar{x}$并不总是等于总体平均数$\mu$。

这是因为抽取的样本数据只是总体中的一部分,可能并不包含全部的情况。

但是,如果我们把样本平均数看成是一个随机变量,那么它的期望值就可以等于总体平均数,也就是说$\mathbb{E}(\bar{x})=\mu$。

这就是样本平均数作为总体平均数的无偏估计量的原因。

在使用样本平均数估计总体平均数时,我们需要考虑误差的情况。

误差是指总体平均数与样本平均数之间的差异,通常用标准误差来表示。

标准误差是指样本平均数的方差除以样本大小的平方根所得到的值,用数学公式表示为:在使用样本平均数$\bar{x}$来估计总体平均数$\mu$时,我们可以通过计算95%置信区间来评价我们的估计值的可信度。

用样本平均数估计总体平均数课件

用样本平均数估计总体平均数课件
在统计学中,大数定律是用来估计总 体参数的基础,当样本量足够大时, 样本平均数将趋于总体平均数。
中心极限定理
01
中心极限定理是指无论总体分布 是什么形状,只要样本量足够大, 样本平均数的分布将趋于正态分布。
02
中心极限定理是统计学中非常重 要的原理,它为我们提供了用样 本平均数估计总体平均数的理论 基础。
簇随机样本的平均数计算
总结词
簇随机抽样是将总体分成若干簇,然后在每一簇内进行随机抽样。
详细描述
在簇随机抽样中,首先将总体分成若干簇,然后在每一簇内进行随机抽样。样本平均数的计算需要考虑各簇的权 重,计算公式为:$overline{x} = frac{sum_{i=1}^{n} w_i x_i}{sum_{i=1}^{n} w_i}$,其中 $w_i$ 是第 $i$ 簇 的权重。
在市场调估计总体消费水平、满 意度等指标,帮助企业了解市场需求和消费者行为。
通过样本平均数,企业可以评估市场趋势,制定更加精准的 市场策略和营销计划。
在质量控制中的应用
在质量控制中,样本平均数可以用来评估生产过程中的质量水平,帮助企业及时 发现和解决质量问题。
课程目标
掌握样本平均数的计 算方法。
学会在实际问题中应 用样本平均数估计总 体平均数的技巧。
理解用样本平均数估 计总体平均数的原理。
02
样本平均数与总体平均数的关系
定义与概念
定义
样本平均数是指从总体中随机抽 取的一部分个体的平均值,而总 体平均数是指总体中所有个体的 平均值。
概念
样本平均数和总体平均数都是描 述数据集中趋势的统计量,但样 本平均数是估计总体平均数的工具。
样本平均数的分布
样本平均数是所有样本数据的加权平均值,其分布受到样本量和总体分布的影响。

用样本平均数估计总体平均数

用样本平均数估计总体平均数

第3课时用样本平均数估计总体平均数1.体会运用样本平均数去估计总体平均数的意义;(重点)2.会运用样本平均数估计总体平均数.(难点)一、情境导入果园里有100棵苹果树,在收获前,果农常会先估计果园里梨的产量.你认为该怎样估计呢?苹果的个数?还是每个苹果的质量?你会怎么办?二、合作探究探究点:用样本平均数估计总体平均数【类型一】根据统计表信息用样本平均数估计总体平均数某灯泡厂为测量一批灯泡的使用寿命,从中抽查了100只灯泡,它们的使用寿命如下表所示:这批灯泡的平均使用寿命是多少?解析:抽出的100只灯泡的使用寿命组成一个样本,可以利用样本的平均使用寿命来估计这批灯泡的平均使用寿命.解:根据题意得x=(800×10+1200×19+用寿命大约是1676小时.方法总结:解此类题应先求出样本的加权平均数,再根据样本的平均数估计总体的平均数.【类型二】根据统计图信息用样本平均数估计总体平均数种菜能手李大叔种植了一批新品种的黄瓜,为了考察这种黄瓜的生长情况,李大叔抽查了部分黄瓜株上长出的黄瓜根数,得到下面的条形图,请估计这个新品种黄瓜平均每株结多少根黄瓜.解析:先求样本的加权平均数,再估计总体即可.解:条形图中样本的平均数为10×10+13×15+14×20+15×1810+15+18+20≈13,故估计这个新品种黄瓜平均每株结13根黄瓜.方法总结:本题考查了加权平均数的计算和对条形图的理解,以及用样本估计总体的思想方法.【类型三】根据扇形图和频数分布表用样本平均数估计总体平均数福子孙后代,济南市积极开展“节水保泉”活动,宁宁利用课余时间对某小区300户居民的用水情况进行了统计,发现5月份各户居民的用水量比4月份有所下降,宁宁将5月份各户居民的节水量统计整理如下统计图表:节水量(米3)1 1.5 2.5 3户数508010070(1)扇形统计图中2.5米3对应扇形的圆心角为________度;(2)该小区300户居民5月份平均每户节约用水多少米3?解析:(1)首先计算出节水量2.5米3对应的居民数所占百分比,再用“360°×百分比”即可;(2)根据加权平均数公式计算即可.解:(1)120(2)(50×1+80×1.5+2.5×100+3×70)÷300=2.1(米3).答:该小区300户居民5月份平均每户节约用水2.1米3.方法总结:本题主要考查了统计表,扇形统计图,平均数,关键是看懂统计图表,从统计图表中获取必要的信息,熟练掌握平均数的计算方法.三、板书设计使用寿命x (单位:小时)600≤x<10001000≤x<14001400≤x<18001800≤x<22002200≤x<2600灯泡数(单位:个)1019253412本节课是初中统计知识的重要组成部分,是重要的统计方法,也是中考常考的内容.通过对平均数的认识,在实际问题中感受抽样的必要性,体会用样本估计总体的思想.通过解决简单的实际问题,使学生形成一定的数据意识和解决问题的能力,进一步体会数学的应用价值.。

人教版八年级下册数学第2课时 用样本平均数估计总体平均数教案

人教版八年级下册数学第2课时 用样本平均数估计总体平均数教案

第2课时用样本平均数估计总体平均数教学设计课题用样本平均数估计总体平均数授课人素养目标 1.能根据频数分布表利用组中值计算加权平均数.2.掌握利用计算器计算加权平均数的方法.3.体会用样本平均数估计总体平均数的思想与方法,形成良好的数学思维习惯和应用意识教学重点能根据频数分布表利用组中值应用公式计算加权平均数.教学难点能根据频数分布表利用组中值应用公式计算加权平均数.教学活动教学步骤师生活动活动一:设置疑问,导入新课设计意图通过置疑的方式吸引学生注意力,激发对新知识的渴望【置疑导入】在上一课时我们都知道了在已知确切的原始数据情况下如何求平均数,但有时我们不知道确切的原始数据,只知道原始数据在一个范围内,比如下面这个问题:某校调查了50名学生,得到他们在一周内做家务所用时间的情况如下表所示:这里给定的时间是一个范围,不知道原始数据,如何求该校50名学生平均每人在一周内做家务所用时间呢?这一课时我们就一起探讨解决这类问题.【教学建议】让学生发表自己的见解,思考如何选取数据,并用对应数据计算平均数,为本节课的学习做好铺垫.活动二:问题探究,引出新知设计意图通过提问的方式引发学生思考,在计算过程中巩固利用组中值求加权平均数的方法.探究点1利用组中值求加权平均数(教材P 114探究)为了解5路公共汽车的运营情况,公交部门统计了某天5路公共汽车每个运行班次的载客量,得到下表.这天5路公共汽车平均每班的载客量是多少(结果取整数)?说明:我们解决这类问题需要引入组中值的概念.即:数据分组后,一个小组的组中值是指这个小组的两个端点的数的平均数.例如,小组1≤x <21的组中值为1+212=11.解答前提问:上述问题中每组的“数据”是什么?每组数据的权是什么?答:每组的“数据”是各组的组中值,每组数据的权是频数.【教学建议】学生独立思考问题,这一部分比较简单,可看作是对加权平均数的计算方法的巩固练习.教师注意引导学生认识到:由于原始数据未知,求出的加权平均数是一个近似的估计值.教学步骤师生活动设计意图通过对具体问题的分析得到用样本平均数估计总体平均数的一般解题思路,感受用样本估计总体的合理性和必要性.写出该问题的解答过程.解:这天5路公共汽车平均每班的载客量是解答后提问:(1)你认为上面得到的“平均数”是精确值吗?为什么?答:上面得到的“平均数”不是精确值.因为我们不知道原始数据,组中值只能近似地代表本小组数据的一般水平,所以利用组中值以及频数求得的加权平均数是一个近似的估计值.(2)用组中值求加权平均数类似于哪种表现形式?答:类似于多个数据重复出现时求平均数.归纳总结:根据频数分布表或频数分布直方图求加权平均数时,统计中常用各组的组中值代表各组的实际数据,把各组的频数看作相应组中值的权.试一试:解答活动一中的问题.(该校50名学生平均每人在一周内做家务所用时间)【对应训练】1.若一组数据的范围是35~65,则这组数据的组中值为(C )A.35B .45C .50D .652.教材P115练习第2题.探究点2用样本平均数估计总体平均数例1(教材P115例3)某灯泡厂为测量一批灯泡的使用寿命,从中随机抽查了50只灯泡.它们的使用寿命如表所示.这批灯泡的平均使用寿命是多少?解:根据上表,可以得出各小组的组中值,于是x =800×5+1200×10+1600×12+2000×17+2400×650=1672(h ),即样本平均数为1672h .因此,可以估计这批灯泡的平均使用寿命大约是1672h .解答后提问:(1)这批灯泡的平均使用寿命可以用全面调查的方法考察吗?为什么?答:不可以.因为对考察对象带有破坏性,只能通过抽样调查,利用部分灯泡的平均使用寿命估计这批灯泡的平均使用寿命.即用样本平均数估计总体平均数.(2)为什么这50只灯泡的使用寿命可以代表这一批灯泡的使用寿命?答:因为抽样调查是随机的,具有代表性.【对应训练】1.教材P 116练习.2.某部队为测量一批新制造的炮弹的杀伤半径,从中随机抽查了50枚【教学建议】教师通过问题串的形式引导学生得出权及加权平均数的基本概念.教学过程中要注意告知学生:权能够反映数据的相对重要程度,权的改变会影响这组数据的平均水平.【教学建议】学生思考问题的同时回忆随机抽样调查的内容,教师提醒学生:一般可以由样本的统计量特征估计总体具有相同的统计量特征.就平均数而言,先计算样本中数据的平均数,由此可估计总体数据的平均数与之相同.教学步骤师生活动炮弹,它们的杀伤半径(单位:m)如下表:这批炮弹的平均杀伤半径是多少米?解:由表可得出各组数据的组中值分别是30,50,70,90,则这50枚炮弹的平均杀伤半径为30×8+50×12+70×25+90×550=60.8(m ).故估计这批炮弹的平均杀伤半径大约是60.8m .活动三:知识运用,巩固提升设计意图加深学生对求解组中值与用样本平均数估计总体平均数的理解与运用.例2教育部发布的义务教育质量监测结果报告显示我国八年级学生平均每天的睡眠时间在9~10h 的比例为19.4%.某校数学社团成员采用简单随机抽样的方法,抽取了本校八年级50名学生,对他们一周内平均每天的睡眠时间(单位:h)进行了调查,将数据整理后绘制成下表.该样本中学生平均每天的睡眠时间在9~10h 的比例高于全国的这项数据,达到了22%.(1)求表格中n 的值;(2)若该校八年级共有400名学生,试估计该校八年级学生平均每天的睡眠时间.解:(1)n =50×22%=11.(2)m =50-1-5-24-11=9,各组的组中值分别为5.5,6.5,7.5,8.5,9.5,则抽取的50名学生平均每天的睡眠时间是150×(5.5×1+6.5×5+7.5×9+8.5×24+9.5×11)=8.28(h).故估计该校八年级学生平均每天的睡眠时间大约为8.28h.【对应训练】某中学为加强学生的劳动教育,需要制定学生每周劳动时间(单位:h)的合格标准,为此随机调查了100名学生目前每周劳动时间,获得数据并整理成下表.(2)估计该校学生目前每周劳动时间的平均数;(3)请你为该校制定一个学生每周劳动时间的合格标准(时间取整数小时),并用学过的统计学知识说明其合理性.解:(1)解析:由题意得a =100-30-19-18-12=21.故答案为21.【教学建议】学生独立思考并解答问题,教师应提醒学生注意在求频数分布表或频数分布直方图中的平均数时组中值的求法,这里未直接给出.教学步骤师生活动(2)1×21+2×30+3×19+4×18+5×12100=2.7(h),所以估计该校学生目前每周劳动时间的平均解题方法:(1)求频数分布表中的加权平均数时,在对一组数据分组后,常用各组的组中值代表各组的实际数据,把各组的频数看作相应组中值的权,然后运用加权平均数计算公式计算频数分布表中数据的平均数.(2)样本具有代表性时,可用样本的平均数估计总体的平均数.例1为了了解某学校八年级学生每周体育锻炼时间的情况,随机抽查了该年级的部分学生,对其每周锻炼时间t(单位:h )进行统计,根据统计数据绘制成图①和图②两个不完整的统计图.请你根据统计图提供的信息,回答下列问题:(1)本次共抽取学生60人,并将图①补充完整;(2)求出这组数据的平均数;(3)若该校八年级共有学生1800人,估计该校八年级每周体育锻炼时间为3h 的学生有多少人?解:(1)解析:由扇形统计图知,2h所对应的人数所占的百分比为90°360°×100%=25%,所以本次共抽取的学生人数为15÷25%=60.故答案为60.数大约为2.7h .(3)(答案不唯一,言之有理即可)制定标准的原则:既要让学生有努力的方向,又要有利于学生建立达标的信心.从平均数看,标准可以定为3h .理由:平均数为2.7h ,说明该校学生目前每周劳动时间的平均水平为2.7h ,把合格标准定为3h ,至少有30%的学生目前每周劳动时间能达标,同时至少还有51%的学生未达标,这样使多数学生有更高的努力目标.活动四:随堂训练,课堂总结【课堂总结】师生一起回顾本节课所学主要内容,并请学生回答以下问题:在频数分布表和频数分布直方图中怎样求组中值?在抽样调查得到样本数据后,你如何处理样本数据并估计总体数据的集中趋势?【知识结构】【作业布置】1.教材P121习题20.1第3,6题.2.相应课时训练.板书设计20.1.1平均数第2课时用样本平均数估计总体平均数1.组中值的概念2.用样本平均数估计总体平均数教学反思本节课通过创设情境并复习抽样调查导入,引发学生对于实际问题数学化的思考,并通过大量生活实例的研究加深了学生对于求组中值和用样本平均数估计总体平均数的理解,让学生体会用样本估计总体的思想,感受样本代表性的意义,从而形成良好的数学思维习惯和应用意识.3h 所对应的人数为60-(10+15+10+5)=20,补全条形统计图如图①所示.(2)平均数为1×10+2×15+3×20+4×10+5×560=2.75(h).(3)估计该校八年级每周体育锻炼时间为3h 的学生有1800×2060=600(人).例2某校为响应“传承屈原文化,弘扬屈原精神”主题阅读倡议,进一步深化全民阅读和书香城市建设,随机抽取了八年级若干名学生,对“双减”后学生周末课外阅读时间进行了调查.根据收集到的数据,整理后得到下列不完整的图表:阅读时间/min 30≤x <6060≤x <9090≤x <120120≤x <150组中值4575105135频数(人数)620104请你根据图表中提供的信息,解答下面的问题:(1)扇形统计图中,120~150min 时间段对应扇形的圆心角的度数是36°,a =25;(2)请将表格补充完整;(3)请通过计算估计该校八年级学生周末课外平均阅读时间.解:(1)解析:120~150min 时间段对应扇形的圆心角的度数是360°×10%=36°,本次调查的学生有4÷10%=40(人).因为a %=40-6-20-440×100%=25%,所以a 的值是25.故答案为36,25.(2)解析:30≤x <60时间段的组中值为(30+60)÷2=45,90≤x <120时间段的频数为40-6-20-4=10.故答案为45,10.(3)45×6+75×20+105×10+135×440=84(mi n ).答:估计该校八年级学生周末课外平均阅读时间大约为84mi n .例1某公司要在甲、乙两人中招聘一名职员,对两人的学识、能力、经验这三项进行了测试,各项满分均为10分,成绩高者被录用.图①是甲、乙测试成绩的条形统计图.(1)分别求出甲、乙两人的三项成绩之和,并指出会录用谁;(2)将甲、乙两人的三项测试成绩按照扇形统计图(图②)中各项所占之比分别计算出两人的综合成绩,并判断是否会改变(1)的录用结果.分析:(1)分别把甲、乙两人的三项成绩相加并比较即可;(2)分别计算出甲、乙两人的三项成绩的加权平均数并比较即可.解:(1)由题意得,甲三项成绩之和为9+5+9=23(分),乙三项成绩之和为8+9+5=22(分).因为23>22,所以会录用甲.(2)由题意得,甲三项成绩的加权平均数为9×120360+5×360-120-60360+9×60360=3+2.5+1.5=7(分),乙三项成绩的加权平均数为8×120360+9×360-120-60360+5×60360=83+4.5+56=8(分).因为7<8,所以会录用乙,所以会改变(1)的录用结果.例2中华文化源远流长,中华诗词寓意深广,为了传承优秀传统文化,某校团委组织了一次全校2000名学生参加的“中国诗词大会”海选比赛,赛后发现所有参赛学生的成绩都不低于50分.为了更好地了解本次海选比赛的成绩分布情况,随机抽取其中200名学生的海选比赛成绩(总分100分)作为样本进行整理,得到成绩统计表与扇形统计图如下:请根据所给信息解答下列问题:(1)填空:a=50,b=15,θ=72°;(2)若把统计表每组中各个成绩用这组数据的组中值代替,请估计抽取的200名学生成绩的平均数;(3)规定海选成绩不低于90分记为“优秀”,估计该校参加这次海选比赛的2000名学生中成绩为“优秀”的有多少人?解:(1)解析:a=200-10-30-40-70=50;b%=30200×100%=15%,所以b=15;θ=40200×360°=72°.故答案为50,15,72.(2)各组组中值依次为55,65,75,85,95,则55×10+65×30+75×40+85×50+95×70200=82(分),即估计抽取的200名学生成绩的平均数是82分.(3)2000×70200=700(人),即估计该校参加这次海选比赛的2000名学生中成绩为“优秀”的有700人.。

用样本平均数估计总体平均数的方法

用样本平均数估计总体平均数的方法

用样本平均数估计总体平均数的方法下载温馨提示:该文档是我店铺精心编制而成,希望大家下载以后,能够帮助大家解决实际的问题。

文档下载后可定制随意修改,请根据实际需要进行相应的调整和使用,谢谢!并且,本店铺为大家提供各种各样类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,如想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by theeditor.I hope that after you download them,they can help yousolve practical problems. The document can be customized andmodified after downloading,please adjust and use it according toactual needs, thank you!In addition, our shop provides you with various types ofpractical materials,such as educational essays, diaryappreciation,sentence excerpts,ancient poems,classic articles,topic composition,work summary,word parsing,copy excerpts,other materials and so on,want to know different data formats andwriting methods,please pay attention!用样本平均数估计总体平均数:一种统计学方法的探讨在统计学中,我们经常需要通过有限的样本数据来推断无限的总体特性。

《用样本平均数估计总体平均数》评课稿

《用样本平均数估计总体平均数》评课稿

《用样本平均数估计总体平均数》评课稿
授课人
评课人
《用样本平均数估计总体平均数》评课稿
聆听了周老师的课。

下面就周老师执教的《用样本平均数估计总体平均数》这一课谈谈自己的看法。

周老师这堂课紧凑有序,周老师带领学生首先复习了加权平均数的算法,教授学生找组中值。

为了方便理解,周老师指导学生在表格中添加了一列新的数据,逐步渗透组中值代表各组的实际数据的关键问题。

列表法在样本估计中属于基本方法,认识完列表法,又通过跟踪训练认识条形图,老师教授学生先认识横纵坐标,然后转换成列表法,进行计算估计。

当然,数学是一门逻辑性较强的科目,任何好的理念和设计在实际的教学过程中总会留下一些遗憾:在表格中找出组中值,然后根据加权平均数的算法估计平均数,学生已经基本掌握。

但是在条形图中找出组中值并且套用公式,学生就显得特别吃力。

10.6 用样本均值、标准差估计总体均值、标准差

10.6 用样本均值、标准差估计总体均值、标准差

标准差越大,则数据的离散程度越大; 反之,数据的离散程度越小.
教材 P 143 习题10.6 第1,2题;
1 n i n i 1
称为样本均值。 通常,我们用样本均值来估计总体均值。
例1 从参加语文考试的学生中,抽取30名学生 的成绩,分数如下: 90, 84, 84, 86, 87, 98, 78, 82, 90, 83 86, 95, 84, 71, 78, 61, 94, 88, 77, 100
70, 97, 85, 68, 99, 88, 85, 92, 93, 97
求这些参加语文考试的学生的平均成绩。
解: 以上30名学生的语文成绩,是从所有参加考试 的学生的语文成绩组成的总体中抽取的一个样本容量 为30的样本,这个样本均值为
1 x (90 84 97 ) 85 30
答: 这些参加语文考试的学生平均成绩约为85分。
在初中,我们学过n个数据x1,x2, …,xn的方差为
1 n
x
n i 1
i
x

2
1 n 其中, x xi . n i 1
它表示这些数据偏离平均数的大小,也就是反映这 些数据的偏差程度,方差越大,说明这组数据的波 动越大。
同样,对于总体ξ,反映所有个体与总体均 值之间偏离程度的数字特征,称为总体方差, 记为D(ξ). D(ξ)越大,说明个体与总体均值的偏离越大。 总体方差是总体的又一个重要数字特征。 对于总体ξ,从中随机地抽取一个容量为n的样本 (ξ1, ξ2, ξ3 … ξn),则称
以上30名学生的语文成绩是从所有参加考试的学生的语文成绩组成的总体中抽取的一个样本容量为30的样本这个样本均值为这些参加语文考试的学生平均成绩约为85分

第2课时 用样本的平均数、方差估计总体的平均数、方差

第2课时 用样本的平均数、方差估计总体的平均数、方差

第2课时用样本的平均数、方差估计总体的平均数、方差教学目标【知识与技能】会用样本平均数、方差估计总体的平均数方差,并进行简单的分析.【过程与方法】经历用样本平均数、方差估计总体的平均数方差的过程,积累统计经验.【情感态度】培养学生的统计意识,形成尊重事实、用数据说话的态度,认识数据处理的实际意义.【教学重点】会用样本平均数、方差估计总体的平均数方差,并进行简单的分析.【教学难点】理解方差公式,应用方差对数据波动情况的比较、判断.教学过程一、创设情境,导入新课某园艺场采摘苹果,边采摘、边装箱,共装了2 000箱.苹果的市场收购价为4元/kg.现在要估计出这2 000箱苹果的销售收入,我们可以怎样去做?方法一:全面调查,就是一箱箱的称,再根据苹果的总质量估计这2 000箱苹果的销售收入.方法二:采取抽样的方法.该园艺场从中任意抽出了10箱苹果,称出它们的质量,算出平均质量,再估计2 000箱苹果的总质量,从而估计这2 000箱苹果的销售收入.你觉得哪一种方法最合适?【教学说明】教师出示一个实际问题让学生思考,比较两种调查方法,提出自己的观点,激发学生探究的兴趣.二、合作探究,探索新知1.上述问题中,如果10箱苹果的质量分别如下(单位:kg)16,15,16.5,16.5,15.5,14.5,14,14,14.5,15你能估计出2 000箱苹果的销售收入是多少吗?怎样计算?学生尝试解答:(1)算出它们的平均数:x=15.15kg(2)把x作为每箱苹果的平均质量,由此估计出2 000箱苹果的销售收入为:4×15.15×2 000=121 200(元)2.小结:现实生活中,总体平均数一般难以计算出来,通常我们就用样本平均数估计总体平均数.但是要注意:用样本的平均数估计总体的平均数,如果样本容量太小,往往差异较大.【教学说明】学生通过解决问题,体会用样本平均数估计总体平均数的方法和过程,教师强调应该注意的问题.3.我们可以用样本的平均数估计总体的平均数,那么,怎样用样本的方差估计总体的方差呢?问题:甲、乙两台包装机同时包装质量为500克的白糖,怎样比较这两种包装机那一台质量更好呢?4.学生尝试解答:从中各随机抽出10袋,测得实际质量如下(单位:g)甲:501 500 503 506 504 506 500 498 497 495乙:503 504 502 498 499 501 505 497 502 499(1)分别计算两个样本的平均数;(2)分别计算两个样本的方差;(3)哪台包装机包装的质量较稳定?解:(1)x甲=(501+500+503+506+504+506+500+498+497+495)÷10=501,x乙=(503+504+502+498+499+501+505+497+502+499)÷10=501;(2)s2甲=110[(501-501)2+(500-501)2+…+(495-501)2]=12.6,s2乙=110[(503-501)2+(504-501)2+…+(499-501)2]=6.4;(3)∵s2甲=s2乙,∴乙包装机包装10袋糖果的质量比较稳定.5.小结:我们可以用样本的方差来估计总体的方差,从而估计总体数据的波动情况.【教学说明】教师引导学生解决实际问题,经历用样本方差估计总体方差的过程,对解题过程有一个清晰的认识.三、示例讲解,掌握新知【例】王大伯几年前承包了甲、乙两片荒山,各栽100棵杨梅树,成活98%.现已挂果,经济效益初步显现,为了分析收成情况,他分别从两山上随意各采摘了4棵树上的杨梅,每棵的产量如折线统计图所示.(1)分别计算甲、乙两山样本的平均数,并估算出甲、乙两山杨梅的产量总和;(2)试通过计算说明,哪个山上的杨梅产量较稳定?【分析】(1)根据平均数的求法求出平均数,再用样本估计总体的方法求出产量总和即可解答.(2)要比较哪个山上的杨梅产量较稳定,只要求出两组数据的方差,再比较即可解答.解:(1)x甲=40(千克),x乙=40(千克),总产量为40×100×98%×2=7 840(千克);(2)s2甲=14[(50-40)2+(36-40)2+(40-40)2+(34-40)2]=38,s2乙=14[(36-40)2+(40-40)2+(48-40)2+(36-40)2]=24,∵s2甲>s2乙,∴乙山上的杨梅产量较稳定.【教学说明】教师要引导学生先观察图像获取相关的信息,然后结合问题尝试进行解答,教师对相关的方法进行总结.四、练习反馈,巩固提高为调查八年级某班学生每天完成家庭作业所需的时间,在该班随机抽查了8名学生,他们每天完成家庭作业所需时间(单位:min)分别为:60,55,75,55,55,43,65,40.(1)求这组数据的众数、中位数.(2)求这8名学生每天完成家庭作业的平均时间;如果按照学校要求,学生每天完成家庭作业时间不能超过60分钟,问该班学生每天完成家庭作业的平均时间是否符合学校的要求?解:(1)在这8个数据中,55出现了3次,出现的次数最多,即这组数据的众数是55;将这8个数据按从小到大的顺序排列为40,43,55,55,55,60,65,75,其中最中间的两个数据都是55,即这组数据的中位数是55.(2)这8个数据的平均数是56,所以这8名学生每天完成家庭作业的平均时间为56分钟.所以该班学生每天完成家庭作业的平均时间符合学校的要求.五、师生互动,课堂小结1.现实生活中,总体平均数一般难以计算出来,通常我们就用样本平均数估计总体平均数.但是要注意:用样本的平均数估计总体的平均数,如果样本容量太小,往往差异较大.2.我们可以用样本的方差来估计总体的方差,从而估计总体数据的波动情况.课后作业完成同步练习册中本课时的练习.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第2课时用样本平均数估计总体平均数
1.掌握用样本平均数去估计总体平均数的统计方法;(重点)
2.在实际情景中会用样本平均数去估计总体平均数、体会样本代表性的重要意义.(难点)
一、情境导入
生活中的“小笑话”:
一天,爸爸叫儿子去买一盒火柴.临出门前,爸爸嘱咐儿子要买能划燃的火柴.儿子拿着钱出门了,过了好一会儿,儿子才回到家.爸爸:“火柴能划燃吗?”儿子:“都能划燃.”爸爸:“你这么肯定?”儿子递过一盒划过的火柴,兴奋地说:“我每根都试过啦.”爸爸:“啊!……”
今天我就学习用样本平均数估计总体平均数.
二、合作探究
探究点:用样本平均数估计总体平均数
【类型一】结合扇形统计图和统计表来估计总体情况
济南以“泉水”而闻名,为保护泉水,造福子孙后代,济南市积极开展“节水保泉”活动,宁宁利用课余时间对某小区300户居民的用水情况进行了统计,发现5月份各户居民的用水量比4月份有所下降,宁宁将5月份各户居民的节水量统计整理如下统计图表:
节水量(米3)1 1.5 2.5 3
户数508010070
(1)扇形统计图中2.5米3对应扇形的圆心角为________度;
(2)该小区300户居民5月份平均每户节约用水多少米3?
解析:(1)首先计算出节水量2.5米3对应的户数所占百分比,再用360°×百分比即可;
(2)根据加权平均数公式计算即可.
解:(1)120
(2)(50×1+80×1.5+2.5×100+3×70)÷300=2.1(米3).
答:该小区300户居民5月份平均每户节约用水2.1米3.
方法总结:本题主要考查了统计表,扇形统计图,平均数,关键是看懂统计图表,从统计图表中获取必要的信息,熟练掌握平均数的计算方法.
【类型二】结合条形图来估计总体情况
为宣传节约用水,小明随机调查了某小区部分家庭5月份的用水情况,并将收集的数据整理成如下统计图.
(1)小明一共调查了多少户家庭?
(2)求所调查家庭5月份用水量的平均数;
(3)若该小区有400户居民,请你估计这个小区5月份的用水量.
解析:(1)条形统计图上户数之和即为调查的家庭户数;(2)根据加权平均数的定义计算即可;(3)利用样本估计总体的方法,用“400×所调查的20户家庭的平均用水量”即可.
解:(1)1+1+3+6+4+2+2+1=20(户),
答:小明一共调查了20户家庭;
(2)(1×1+1×2+3×3+4×6+5×4+6×2+7×2+8×1)÷20=4.5(吨),
答:所调查家庭5月份用水量的平均数为4.5吨;
(3)400×4.5=1800(吨),
答:估计这个小区5月份的用水量为1800吨.
方法总结:读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.
【类型三】结合频数分布直方图来估计总体情况
统计武汉园博会前20天日参观人数,得到如下频数分布表和频数分布直方图(部分未完成):
武汉园博会前20天日参观人数的频数分布表
组别(万人)组中值(万人)频数频率
7.5~14.51150.25
14.5~21.560.3
21.5~28.5250.3
28.5~35.532 3
(1)请补全频数分布表和频数分布直方图;
(2)求出日参观人数不低于21.5万的天数和所占的百分比;
(3)利用以上信息,试估计武汉园博会(会期247天)的参观总人数.
解析:(1)根据表格的数据求出14.5~21.5小组的组中值,最后即可补全频数分布表和频数分布直方图;(2)根据表格知道日参观人数不低于21.5万的天数有两个小组,共9天,除以总人数即可求出所占的百分比;(3)利用每一组的组中值和每一组的频数可以求出武汉园博会(会期247天)的参观总人数.
解:(1)14.5~21.5小组的组中值是(14.5+21.5)÷2=18,3÷20=0.15.
武汉园博会前20天日参观人数的频数分布表:
组别(万人)组中值(万人)频数频率
7.5~14.51150.25
14.5~21.51860.3
21.5~28.52560.3
28.5~35.53230.15
(2)依题意得日参观人数不低于21.5万有6+3=9(天),所占百分比为9÷20=45%;
(3)∵园博会前20天的平均每天参观人数约为
11×5+18×6+25×6+32×3
20=
409
20=20.45(万人),∴武汉园博会(会期247天)的参观总人数约为20.45×247=5051.15(万人).
答:武汉园博会(会期247天)的参观总人数约为5051.15万人.
方法总结:本题考查运用样本估计总体的思想,解决问题的关键是读懂频数分布直方图和从统计图中获取有用信息.
三、板书设计
估计总体平均数
当所要考察的对象很多或考察本身带有破坏性时,统计中常用样本平均数来估计总体的平均数.
本节课以数学情景作为问题的依托,通过样本估计总体的问题变式,让学生将逐步掌握用样本平均数去估计总体平均数的统计方法,体会用样本估计总体的思想,感受样本代表性的意义,从而形成良好的数学思维习惯和应用意识,提高自己解决问题的能力,感受数学创造的乐趣,增进学好数学的信心,获得对数学较为全面的体验与理解.同时能够使所有的学生都能参与,在全体学生获得必要发展的前提下,不同的学生可以获得不同的体验.。

相关文档
最新文档