用样本估计总体分布
用样本估计总体
用样本估计总体一、用样本的频率分布估计总体分布(1)频数、频率将一批数据按要求分为若干个组,各组内数据的个数,叫做该组的频数。
每组数除以全体数据的个数的商叫做该组的频率。
频率反映数据在每组中所占比例的大小。
(2)样本的频率分布根据随机所抽样本的大小,分别计算某一事件出现的频率,这些频率的分布规律(取值状况),就叫做样本的频率分布。
为了能直观地显示样本的频率分布情况,通常我们会将样本的容量、样本中出现该事件的频数以及计算所得的频率列在一张表中,叫做样本频率分布表。
(3)用样本频率分布估计总体的分布从一个总体得到一个包含大量数据的样本时,我们很难从一个个数字中直接看出样本所含的信息。
如果把这些数据形成频数分布或频率分布,就可以比较清楚地看出样本数据的特征,从而估计总体的分布情况。
用样本估计总体,是研究统计问题的一个基本思想方法,而对于总体分布,我们总是用样本的频率分布对它进行估计。
(4)频率分布直方图的特点从频率分布直方图可以清楚地看出数据分布的总体态势,但是从直方图本身得不出原始的数据内容,所以,把数据表示成直方图后,原有的具体数据信息就被抹掉了。
(5)频率分布折线图把频率分布直方图各个长方形上边的中点用线段连接起来,就得到频率分布折线图,如图所示。
为了方便看图,一般习惯于把频率分布折线图画成与横轴相连,所以横轴上的左右两端点没有实际意义。
(6)总体密度曲线①如果样本容量越大,所分组数越多,频率分布直方图中表示的频率分布就越接近于总体在各个小组内所取值的个数与总数比值的大小。
设想如果样本容量不断增大,分组的组距不断缩小,则频率分布直方图实际上是越来越接近于总体的分布,它可以用一条光滑曲线来描绘,这条光滑曲线就叫做总体密度曲线。
y f x()②总体密度曲线精确地反映了一个总体在各个区域内取值的百分比。
a b内的百分比就是图中带斜线部分的面积。
对本例来说,总体密度曲线呈产品尺寸落在(,)中间高两边低的“钟”形分布,总体的数据大致呈对称分布,并且大部分数据都集中在靠近中间的区间内。
用样本的频率分布估计总体的分布
影响组数与组距的因素
• 因素1:样本容量的大小; • 因素2:原始数据的精细程度; • 当样本容量不超过100时,常分成5-12组。
这是由统计经验获得的。
用样本的频率分布估计总体的分布
理论迁移
例 某地区为了了解知识分子的年龄结构, 随机抽样50名,其年龄分别如下:
42,38,29,36,41,43,54,43,34,44, 40,59,39,42,44,50,37,44,45,29, 48,45,53,48,37,28,46,50,37,44, 42,39,51,52,62,47,59,46,45,67, 53,49,65,47,54,63,57,43,46,58. (1)列出样本频率分布表; (2)画出频率分布直方图; (3)估计年龄在32~52岁的知识分子所占的比例 约是多少.
组距
连接频率分布直方图中 各小长方形上端的中点,
得到频率分布折线图
0.5 0.4 0.3 0.2 0.1
0.5 1 1.5
月均用 水量/t
2 2.5 3 3.5 4 4.5
用样本的频率分布估计总体的分布
总体密度曲线
当样本容量无限增大,分组的组距无限缩小,那么
频率分布折线图就会无限接近一条光滑曲线——总体密
用样本的频率分布估计总体的分布
用样本的频率分布估计总体的分布
练习:某中学高一(2)班甲,乙两 名同学自高中以来每场数学考试成 绩情况如下:
甲的得分:95,81,75,91,86, 89,71,65,76,88,94
乙的得分:83,86,93,99,88, 96,98,98,79,85,97
画出两人数学成绩茎叶图,请根据 茎叶图对两人的成绩进行比较。
必修三2.2.用样本估计总体(教案)
2.2 用样本估计总体教案 A第1课时教学内容§2.2.1 用样本的频率分布估计总体分布教学目标一、知识及技能1. 通过实例体会分布的意义和作用.2. 在表示样本数据的过程中,学会列频率分布表,画频率分布直方图、频率折线图和茎叶图.3.通过实例体会频率分布直方图、频率折线图、茎叶图的各自特征,从而恰当地选择上述方法分析样本的分布,准确地做出总体估计.二、过程及方法通过对现实生活的探究,感知应用数学知识解决问题的方法,理解数形结合的数学思想和逻辑推理的数学方法.三、情感、态度及价值观通过对样本分析和总体估计的过程,感受数学对实际生活的需要,认识到数学知识源于生活并指导生活的事实,体会数学知识及现实世界的联系.教学重点、难点重点:会列频率分布表,画频率分布直方图、频率折线图和茎叶图.难点:能通过样本的频率分布估计总体的分布.教学设想一、创设情境在NBA的2004赛季中,甲、乙两名篮球运动员每场比赛得分的原始记录如下﹕甲运动员得分﹕12,15,20,25,31,31,36,36,37,39,44,49,50乙运动员得分﹕8,13,14,16,23,26,28,38,39,51,31,29,33请问从上面的数据中你能否看出甲,乙两名运动员哪一位发挥比较稳定?如何根据这些数据作出正确的判断呢?这就是我们这堂课要研究、学习的主要内容——用样本的频率分布估计总体分布.二、探究新知探究1:我国是世界上严重缺水的国家之一,城市缺水问题较为突出,某市政府为了节约生活用水,计划在本市试行居民生活用水定额管理,即确定一个居民月用水量标准a,用水量不超过a的部分按平价收费,超出a的部分按议价收费.如果希望大部分居民的日常生活不受影响,那么标准a定为多少比较合理呢?你认为,为了较为合理地确定出这个标准,需要做哪些工作?(让学生展开讨论)为了制定一个较为合理的标准a,必须先了解全市居民日常用水量的分布情况,比如月均用水量在哪个范围的居民最多,他们占全市居民的百分比情况等.因此采用抽样调查的方式,通过分析样本数据来估计全市居民用水量的分布情况.分析数据的一种基本方法是用图将它们画出来,或者用紧凑的表格改变数据的排列方式,作图可以达到两个目的,一是从数据中提取信息,二是利用图形传递信息.表格则是通过改变数据的构成形式,第 1 页为我们提供解释数据的新方式.下面我们学习的频率分布表和频率分布图,则是从各个小组数据在样本容量中所占比例大小的角度,来表示数据分布的规律.可以让我们更清楚的看到整个样本数据的频率分布情况.(一)频率分布的概念频率分布是指一个样本数据在各个小范围内所占比例的大小.一般用频率分布直方图反映样本的频率分布.其一般步骤为:1.计算一组数据中最大值及最小值的差,即求极差;2.决定组距及组数;3.将数据分组;4.列频率分布表;5.画频率分布直方图.以教材P65制定居民用水标准问题为例,经过以上几个步骤画出频率分布直方图.(让学生自己动手作图)频率分布直方图的特征:1.从频率分布直方图可以清楚的看出数据分布的总体趋势.2.从频率分布直方图得不出原始的数据内容,把数据表示成直方图后,原有的具体数据信息就被抹掉了.探究2:同样一组数据,如果组距不同,横轴、纵轴的单位不同,得到的图和形状也会不同.不同的形状给人以不同的印象,这种印象有时会影响我们对总体的判断,分别以0.1和1为组距重新作图,然后谈谈你对图的印象?(把学生分成两大组进行,分别作出两种组距的图,然后组织同学们对所作图的不同看法进行交流……)接下来请同学们思考下面这个问题:思考:如果当地政府希望使85%以上的居民每月的用水量不超出标准,根据频率分布表2-2和频率分布直方图2.2-1,(见教材P67)你能对制定月用水量标准提出建议吗?(让学生仔细观察表和图)(二)频率分布折线图、总体密度曲线1.频率分布折线图的定义:连接频率分布直方图中各小长方形上端的中点,就得到频率分布折线图.2.总体密度曲线的定义:在样本频率分布直方图中,相应的频率折线图会越来越接近于一条光滑曲线,统计中称这条光滑曲线为总体密度曲线.它能够精确地反映了总体在各个范围内取值的百分比,它能给我们提供更加精细的信息.思考:1.对于任何一个总体,它的密度曲线是不是一定存在?为什么?2.对于任何一个总体,它的密度曲线是否可以被非常准确地画出来?为什么?实际上,尽管有些总体密度曲线是客观存在的,但一般很难像函数图象那样准确地画出来,我们只能用样本的频率分布对它进行估计,一般来说,样本容量越大,这种估计就越精确.(三)茎叶图1.茎叶图的概念:当数据是两位有效数字时,用中间的数字表示十位数,即第一个有效数字,两边的数字表示个位数,即第二个有效数字,它的中间部分像植物的茎,两边部分像植物茎上长出来的叶子,因此通常把第 3 页这样的图叫做茎叶图.(见教材P70例子)2.茎叶图的特征:(1)用茎叶图表示数据有两个优点:一是从统计图上没有原始数据信息的损失,所有数据信息都可以从茎叶图中得到;二是茎叶图中的数据可以随时记录,随时添加,方便记录及表示.(2)茎叶图只便于表示两位有效数字的数据,而且茎叶图只方便记录两组的数据,两个以上的数据虽然能够记录,但是没有表示两个记录那么直观,清晰.三、例题精析例1 下表给出了某校500名12岁男孩中用随机抽样得出的120人的身高(单位cm ):(1)列出样本频率分布表;(2)画出频率分布直方图;(3)估计身高小于134cm的人数占总人数的百分比.分析:根据样本频率分布表、频率分布直方图的一般步骤解题.解:(1)样本频率分布表如下:(2)其频率分布直方图如下:(3)由样本频率分布表可知身高小于134cm 的男孩出现的频率为0.04+0.07+0.08=0.19,所以我们估计身高小于134cm 的人数占总人数的19%.cm )例2 为了了解高一学生的体能情况,某校抽取部分学生进行一分钟跳绳次数次测试,将所得数据整理后,画出频率分布直方图(如图),图中从左到右各小长方形面积之比为2:4:17:15:9:3,第二小组频数为12.(1)第二小组的频率是多少?样本容量是多少?(2)若次数在110以上(含110次)为达标,试估计该学校全体高一学生的达标率是多少?(3)在这次测试中,学生跳绳次数的中位数落在哪个小组内?请说明理由.分析:在频率分布直方图中,各小长方形的面积等于相应各组的频率,小长方形的高及频数成正比,各组频数之和等于样本容量,频率之和等于1.解:(1)由于频率分布直方图以面积的形式反映了数据落在各小组内的频率大小, 因此第二小组的频率为:40.0824171593=+++++, 又因为频率=.第二小组频数样本容量所以,12150.0.08===第二小组频数样本容量第二小组频率 (2)由图可估计该学校高一学生的达标率约为(3)由已知可得各小组的频数依次为6,12,51,45,27,9,所以前三组的频数之和为69,前四组的频数之和为114,所以跳绳次数的中位数落在第四小组内.四、课堂小结1. 总体分布指的是总体取值的频率分布规律,由于总体分布不易知道,因此我们往往用样本的频率分布去估计总体的分布.2. 总体的分布分两种情况:当总体中的个体取值很少时,用茎叶图估计总体的分布;当总体中的个体取值较多时,将样本数据恰当分组,用各组的频率分布描述总体的分布,方法是用频率分布表或频率分布直方图.五、评价设计1.P81习题2.2 A组1、2.第2课时教学内容§2.2.2 用样本的数字特征估计总体的数字特征教学目标一、知识及技能1. 正确理解样本数据标准差的意义和作用,学会计算数据的标准差.2. 能根据实际问题的需要合理地选取样本,从样本数据中提取基本的数字特征(如平均数、标准差),并做出合理的解释.3. 会用样本的基本数字特征估计总体的基本数字特征.4. 形成对数据处理过程进行初步评价的意识.二、过程及方法在解决统计问题的过程中,进一步体会用样本估计总体的思想,理解数形结合的数学思想和逻辑推理的数学方法.三、情感、态度及价值观会用随机抽样的方法和样本估计总体的思想解决一些简单的实际问题,认识统计的作用,能够辩证地理解数学知识及现实世界的联系.教学重点、难点教学重点:用样本平均数和标准差估计总体的平均数及标准差.教学难点:能应用相关知识解决简单的实际问题.教学设想一、创设情境在一次射击比赛中,甲、乙两名运动员各射击10次,命中环数如下﹕甲运动员﹕7,8,6,8,6,5,8,10,7,4;乙运动员﹕9,5,7,8,7,6,8,6,7,7.观察上述样本数据,你能判断哪个运动员发挥的更稳定些吗?为了从整体上更好地把握总体的规律,我们要通过样本的数据对总体的数字特征进行研究——用样本的数字特征估计总体的数字特征(板出课题).二、探究新知(一)众数、中位数、平均数探究(1)怎样将各个样本数据汇总为一个数值,并使它成为样本数据的“中心点”?(2)能否用一个数值来描写样本数据的离散程度?(让学生回忆初中所学的一些统计知识,思考后展开讨论)初中我们曾经学过众数,中位数,平均数等各种数字特征,应当说,这些数字都能够为我们提供第 5 页关于样本数据的特征信息.例如前面一节在调查100位居民的月均用水量的问题中,从这些样本数据的频率分布直方图可以看出,月均用水量的众数是2.25t (最高的矩形的中点)(图见教材第72页)它告诉我们,该市的月均用水量为2. 25t 的居民数比月均用水量为其他值的居民数多,但它并没有告诉我们到底多多少.提问:请大家翻回到教材第66页看看原来抽样的数据,有没有2.25 这个数值呢?根据众数的定义,2.25怎么会是众数呢?为什么?(请大家思考作答)分析:这是因为样本数据的频率分布直方图把原始的一些数据给遗失的原因,而2.25是由样本数据的频率分布直方图得来的,所以存在一些偏差.提问:那么如何从频率分布直方图中估计中位数呢?分析:在样本数据中,有50%的个体小于或等于中位数,也有50%的个体大于或等于中位数.因此,在频率分布直方图中,矩形的面积大小正好表示频率的大小,即中位数左边和右边的直方图的面积应该相等.由此可以估计出中位数的值为2.02.(图略见教材73页图2.2-6)思考:2.02这个中位数的估计值,及样本的中位数值2.0不一样,你能解释其中的原因吗?(原因同上:样本数据的频率分布直方图把原始的一些数据给遗失了)图2.2-6显示,大部分居民的月均用水量在中部(2.02t 左右),但是也有少数居民的月均用水量特别高,显然,对这部分居民的用水量作出限制是非常合理的.思考:中位数不受少数几个极端值的影响,这在某些情况下是一个优点,但是它对极端值的不敏感有时也会成为缺点,你能举例说明吗?(让学生讨论,并举例)(二)标准差、方差1.标准差平均数为我们提供了样本数据的重要信息,可是,有时平均数也会使我们作出对总体的片面判断.某地区的统计显示,该地区的中学生的平均身高为176cm ,给我们的印象是该地区的中学生生长发育好,身高较高.但是,假如这个平均数是从五十万名中学生抽出的五十名身高较高的学生计算出来的话,那么,这个平均数就不能代表该地区所有中学生的身体素质.因此,只有平均数难以概括样本数据的实际状态.例如,在一次射击选拔比赛中,甲、乙两名运动员各射击10次,命中环数如下﹕甲运动员﹕7,8,6,8,6,5,8,10,7,4;乙运动员﹕9,5,7,8,7,6,8,6,7,7.观察上述样本数据,你能判断哪个运动员发挥的更稳定些吗?如果你是教练,选哪位选手去参加正式比赛? 我们知道,77x x ==乙甲,.两个人射击的平均成绩是一样的.那么,是否两个人就没有水平差距呢?(观察P74图2.2-7)直观上看,还是有差异的.很明显,甲的成绩比较分散,乙的成绩相对集中,因此我们从另外的角度来考察这两组数据.考察样本数据的分散程度的大小,最常用的统计量是标准差.标准差是样本数据到平均数的一种平均距离,一般用s 表示.样本数据1,2,,n x x x 的标准差的算法:第 7 页(1) 算出样本数据的平均数x .(2) 算出每个样本数据及样本数据平均数的差:(1,2,)i x x i n -= (3) 算出(2)中(1,2,)i x x i n -=的平方.(4) 算出(3)中n 个平方数的平均数,即为样本方差.(5) 算出(4)中平均数的算术平方根,即为样本标准差.其计算公式为:显然,标准差较大,数据的离散程度较大;标准差较小,数据的离散程度较小.提问:标准差的取值范围是什么?标准差为0的样本数据有什么特点?从标准差的定义和计算公式都可以得出:s ≥0.当0s =时,意味着所有的样本数据都等于样本平均数.2.方差从数学的角度考虑,人们有时用标准差的平方2s (即方差)来代替标准差,作为测量样本数据分散程度的工具:在刻画样本数据的分散程度上,方差和标准差是一样的,但在解决实际问题时,一般多采用标准差.三、例题精析例1 画出下列四组样本数据的直方图,说明他们的异同点.(1)5,5,5,5,5,5,5,5,5(2)4,4,4,5,5,5,6,6,6(3)3,3,4,4,5,6,6,7,7(4)2,2,2,2,5,8,8,8,8分析:先画出数据的直方图,根据样本数据算出样本数据的平均数,利用标准差的计算公式即可算出每一组数据的标准差.解:(图见教材P76)四组数据的平均数都是5.0,标准差分别为:0.00,0.82,1.49,2.83.他们有相同的平均数,但他们有不同的标准差,说明数据的分散程度是不一样的.例2 甲乙两人同时生产内径为25.40mm 的一种零件.为了对两人的生产质量进行评比,从他们生产的零件中各抽出20件,量得其内径尺寸如下(单位:mm ):甲 25.46 25.32 25.45 25.39 25.36 25.34 25.42 25.3825.42 25.39 25.43 25.39 25.40 25.44 25.40 25.4225.45 25.35 25.41 25.39乙 25.40 25.43 25.44 25.48 25.48 25.47 25.49 25.3625.34 25.49 25.33 25.43 25.43 25.32 25.47 25.3125.32 25.32 25.32 25.48从生产的零件内径的尺寸看,谁生产的质量较高?分析:比较两个人的生产质量,只要比较他们所生产的零件内径尺寸所组成的两个总体的平均数及标准差的大小即可,根据用样本估计总体的思想,我们可以通过抽样分别获得相应的样本数据,然后比较这两个样本数据的平均数、标准差,以此作为两个总体之间的差异的估计值.解:四、课堂小结1. 用样本的数字特征估计总体的数字特征分两类:(1)用样本平均数估计总体平均数.(2)用样本标准差估计总体标准差.样本容量越大,估计就越精确.2. 平均数对数据有“取齐”的作用,代表一组数据的平均水平.3. 标准差描述一组数据围绕平均数波动的大小,反映了一组数据变化的幅度.五、评价设计P81 习题 2.2 A组 3、4.教案 B第1课时教学内容§2.2.1 用样本的频率分布估计总体分布教学目标一、知识及技能1.通过实例体会分布的意义和作用.2.在表示样本数据的过程中,学会列频率分布表,画频率分布直方图、频率折线图和茎叶图.3.通过实例体会频率分布直方图、频率折线图、茎叶图的各自特征,从而恰当地选择上述方法分析样本的分布,准确地做出总体估计.二、过程及方法通过对现实生活的探究,感知应用数学知识解决问题的方法,理解数形结合的数学思想和逻辑推理的数学方法.三、情感、态度及价值观通过对样本分析和总体估计的过程,感受数学对实际生活的需要,认识到数学知识源于生活并指导生活的事实,体会数学知识及现实世界的联系.教学重点、难点教学重点:会列频率分布表,画频率分布直方图、频率折线图和茎叶图.教学难点:能通过样本的频率分布估计总体的分布.教学设想一、创设情境,导入新课我国是世界上严重缺水的国家之一,城市缺水问题较为突出,某市政府为了节约生活用水,计划在本市试行居民生活用水定额管理,即确定一个居民月用水量标准a,用水量不超过a的部分按平价收费,超出a的部分按议价收费.如果希望大部分居民的日常生活不受影响,那么标准a定为多少比较合理呢?你认为,为了较为合理地确定出这个标准,需要做哪些工作?(让学生展开讨论)为了制定一个较为合理的标准a,必须先了解全市居民日常用水量的分布情况,比如月均用水量在哪个范围的居民最多,他们占全市居民的百分比情况等.因此采用抽样调查的方式,通过分析样本数据来估计全市居民用水量的分布情况.分析数据的一种基本方法是用图将它们画出来,或者用紧凑的表格改变数据的排列方式,作图可以达到两个目的,一是从数据中提取信息,二是利用图形传递信息.表格则是通过改变数据的构成形式,为我们提供解释数据的新方式.下面我们学习的频率分布表和频率分布图,则是从各个小组数据在样本容量中所占比例大小的角度,来表示数据分布的规律.可以让我们更清楚的看到整个样本数据的频率分布情况.二、新课探知(一)频率分布的概念频率分布是指一个样本数据在各个小范围内所占比例的大小.一般用频率分布直方图反映样本的频率分布.其一般步骤为:1. 计算一组数据中最大值及最小值的差,即求极差;2. 决定组距及组数;第 9 页cm ) 3. 将数据分组;4. 列频率分布表;5. 画频率分布直方图.以教材P65制定居民用水标准问题为例,经过以上几个步骤画出频率分布直方图.(让学生自己动手作图)例1 下表给出了某校500名12岁男孩中用随机抽样得出的120人的身高(单位cm ):(1)列出样本频率分布表;(2)一画出频率分布直方图;(3)估计身高小于134C m的人数占总人数的百分比.分析:根据样本频率分布表、频率分布直方图的一般步骤解题.解:(1)样本频率分布表如下:(2)其频率分布直方图:(3134cm 的男孩出现的,所以我们估计身高小 (1趋势. (2把数据抹掉了.曲线 1.频率分布折线图连接频率分布直方图中各小长方形上端的中点,就得到频率分布折线图.2.总体密度曲线的定义:在样本频率分布直方图中,相应的频率折线图会越来越接近于一条光滑曲线,统计中称这条光滑曲线为总体密度曲线.它能够精确地反映了总体在各个范围内取值的百分比,它能给我们提供更加精细的信息.(见教材P69)(三)茎叶图1.茎叶图的概念:当数据是两位有效数字时,用中间的数字表示十位数,即第一个有效数字,两边的数字表示个位数,即第二个有效数字,它的中间部分像植物的茎,两边部分像植物茎上长出来的叶子,因此通常把这样的图叫做茎叶图.(见教材P70例子)2.茎叶图的特征:(1)用茎叶图表示数据有两个优点:一是从统计图上没有原始数据信息的损失,所有数据信息都可以从茎叶图中得到;二是茎叶图中的数据可以随时记录,随时添加,方便记录及表示.(2)茎叶图只便于表示两位有效数字的数据,而且茎叶图只方便记录两组的数据,两个以上的数据虽然能够记录,但是没有表示两个记录那么直观,清晰.例2某赛季甲、乙两名篮球运动员每场比赛的得分情况如下:甲运动员得分:13,51,23,8,26,38,16,33,14,28,39;乙运动员得分:49,24,12,31,50,31,44,36,15,37,25,36,39.用茎叶图表示,你能通过该图说明哪个运动员的发挥更稳定吗?解:“茎”指的是中间的一列数,表示得分的十位数;“叶”指的是从茎的旁边生长出来的数,分别表示两人得分的个位数.画这组数据的茎叶图的步骤如下第一步,将每个数据分为“茎”(高位)和“叶”(低位)两部分;第二步,茎是中间的一列数,按从小到大的顺序排列;第三步,将各个数据的叶按大小次序写在茎右(左)侧.甲乙8 04 6 3 1 2 53 6 8 2 5 43 8 9 3 1 6 1 6 7 94 4 91 5 0从图中可以看出,乙运动员的得分基本上是对称的,页的分布是“单峰”的,有的叶集中在茎2,3,4上,中位数为36;甲运动员的得分除一个特殊得分(51分)外,也大致对称,叶的分布也是“单峰”的,有的叶主要集中在茎1,2,3上,中位数是26.由此可以看出,乙运动员的成绩更好. 另外i,从叶在茎上的分布情况看,乙运动员的得分更集中于峰值附近,这说明乙运动员的发挥更稳定.练习:在NBA的2010赛季中,甲、乙两名篮球运动员每场比赛得分的原始记录如下﹕甲运动员得分﹕12,15,20,25,31,31,36,36,37,39,44,49,50乙运动员得分﹕8,13,14,16,23,26,28,38,39,51,31,29,33学生画出茎叶图(略)三、巩固练习为了了解高一学生的体能情况,某校抽取部分学生进行一分钟跳绳次数次测试,将所得数据整理后,画出频率分布直方图(见下页图示),图中从左到右各小长方形面积之比为2:4:17:15:9:3,第二小组频数为12.第 11 页(1)第二小组的频率是多少?样本容量是多少?(2)若次数在110以上(含110次)为达标,试估计该学校全体高一学生的达标率是多少?(3)在这次测试中,学生跳绳次数的中位数落在哪个小组内?请说明理由.分析:在频率分布直方图中,各小长方形的面积等于相应各组的频率,小长方形的高及频数成正比,各组频数之和等于样本容量,频率之和等于1.解:(1)由于频率分布直方图以面积的形式反映了数据落在各小组内的频率大小,因此第二小组的频率为:40.08 24171593=+++++,又因为频率=第二小组频数样本容量,所以,121500.08===第二小组频数样本容量第二小组频率.(2)由图可估计该学校高一学生的达标率约为(3)由已知可得各小组的频数依次为6,12,51,45,27,9,所以前三组的频数之和为69,前四组的频数之和为114,所以跳绳次数的中位数落在第四小组内.四、小结1. 总体分布指的是总体取值的频率分布规律,由于总体分布不易知道,因此我们往往用样本的频率分布去估计总体的分布.2. 总体的分布分两种情况:当总体中的个体取值很少时,用茎叶图估计总体的分布;当总体中的个体取值较多时,将样本数据恰当分组,用各组的频率分布描述总体的分布,方法是用频率分布表或频率分布直方图.五、布置作业P71练习1、2、3.第2课时教学内容§2.2.2 用样本的数字特征估计总体的数字特征教学目标一、知识及技能1. 正确理解样本数据标准差的意义和作用,学会计算数据的标准差.2. 能根据实际问题的需要合理地选取样本,从样本数据中提取基本的数字特征(如平均数、标准差),并做出合理的解释.3. 会用样本的基本数字特征估计总体的基本数字特征.4. 形成对数据处理过程进行初步评价的意识.二、过程及方法在解决统计问题的过程中,进一步体会用样本估计总体的思想,理解数形结合的数学思想和逻辑推理的数学方法.三、情感、态度及价值观会用随机抽样的方法和样本估计总体的思想解决一些简单的实际问题,认识统计的作用,能够辩证地理解数学知识及现实世界的联系.教学重点、难点教学重点:用样本平均数和标准差估计总体的平均数及标准差.教学难点:能应用相关知识解决简单的实际问题.教学设想一、创设情境导入新课在一次射击比赛中,甲、乙两名运动员各射击10次,命中环数如下﹕甲运动员﹕7,8,6,8,6,5,8,10,7,4;乙运动员﹕9,5,7,8,7,6,8,6,7,7.请问从上面的数据中你能否看出甲,乙两名运动员哪一位发挥比较稳定?为了从整体上更好地把握总体的规律,我们要通过样本的数据对总体的数字特征进行研究——用样本的数字特征估计总体的数字特征.二、新课探究(一)众数、中位数、平均数初中我们曾经学过众数,中位数,平均数等各种数字特征,应当说,这些数字都能够为我们提供关于样本数据的特征信息.例如前面一节在调查100位居民的月均用水量的问题中,从这些样本数据的频率分布直方图可以看出,月均用水量的众数是2.25t(最高的矩形的中点)(图略见教材第72页)它告诉我们,该市的月均用水量为2. 25t的居民数比月均用水量为其他值的居民数多,但它并没有告诉我们到底多多少.提问:请大家翻回到教材第66页看看原来抽样的数据,有没有2.25 这个数值呢?根据众数的定义,2.25怎么会是众数呢?为什么?(请大家思考作答)分析:这是因为样本数据的频率分布直方图把原始的一些数据给遗失的原因,而2.25是由样本数据的频率分布直方图得来的,所以存在一些偏差.提问:那么如何从频率分布直方图中估计中位数呢?分析:在样本数据中,有50%的个体小于或等于中位数,也有50%的个体大于或等于中位数.因此,第 13 页。
用样本估算总体
用样本估算总体
◎ 用样本估算总体的定义
用样本估计总体的两个手段:
(1)用样本的频率分布估计总体的分布;
(2)用样本的数字特征估计总体的数字特征,需要从总体中抽取一个质量较高的样本,才能不会产生较大的估计偏差,且样本的容量越大,估计的结果也就越精确。
◎ 用样本估算总体的知识扩展
用样本估计总体的两个手段:
(1)用样本的频率分布估计总体的分布;
(2)用样本的数字特征估计总体的数字特征,需要从总体中抽取一个质量较高的样本,才能不会产生较大的估计偏差,且样本的容量越大,估计的结果也就越精确。
◎ 用样本估算总体的教学目标
1、通过实例,体会用样本估计总体的思想。
2、能够根据统计结果作出合理的判断和推测,能与同学进行交流,用清晰的语言表达自己的观点。
3、根据有关问题查找资料或调查,用随机抽样的方法选取样本,能用样本的平均数和方差,从而对总体有个体有个合理的估计和推测。
◎ 用样本估算总体的考试要求
能力要求:了解
课时要求:40
考试频率:选考
分值比重:2。
2.2.1用样本的频率分布估计总体分布
总体密度曲线
反映了总体在各个范围内取值的百分比,精确地 反映了总体的分布规律。是研究总体分布的工具. 用样本分布直方图去估计相应的总体分布时, 一般样本容量越大,频率分布直方图就会无限接 近总体密度曲线,就越精确地反映了总体的分布 规律,即越精确地反映了总体在各个范围内取值 百分比。
定额管理,即确定一个居民月用水量标准a, 用水量不超过a的部分按平价收费,超出a的 部分按议价收费.那么①标准a定为多少比较合 理呢? ②为了较合理地确定这个标准,你认 为需要做哪些工作?
通过抽样,我们获得了100位居民某年的月平均 用 水量(单位: t) ,如下表:
思考:由上表,大家可以得到什么信息?
2019/4/10
二、画频率分布直方图的步骤
1.求极差(即一组数据中最大值与最小值的差)
4.3 - 0.2 = 4.1
极差 4.1 2.决定组距与组数: = 组距= = 0.5 8 组数
当数据在100个以内时,常分8-12组.
3.将数据分组
[0,0.5 ),[0.5,1 ),…,[4,4.5]
4.列频率分布表
月均用水量 /t 4.5
归纳: 作频率分布直方图的方法为:
把横轴分成若干段,每一段对应一个组 的组距,以此线段为底作矩形,高等于 该组的频率/组距, 这样得到一系列矩形, 每一个矩形的面积恰好是该组上的频率, 这些矩形构成了频率分布直方图.
三、频率分布直方图再认识 1、小长方形
频率
的面积总和=?
频率 组距 0.5 0.4 0.3 0.2 0.1
O
0.5 1 1.5 2 2.5 3 3.5 4 4.5 月均用水量/t
2019/4/10
当总体中的个体数很多时(如抽样调查全国城市 居民月均用水量) ,随着样本容量的增加,作图时 所分的组数增多,组距减少,你能想象出相应的 频率分布折线图会发生什么变化吗?
用样本分布估计总体分布
106
1
思考:一般地,列出一组样本数据的频 率分布表可以分哪几个步骤进行?
开始 计算极差(最大值-最小值) 确定组距和组数(设k=极差÷组距,若k为 整数,则组数=k,否则,组数=k+1) 确定分点,将数据分组 绘表,(统计各组频数,计算各组频率) 结束
知识探究(二):频率分布直方图
思考1:为了直观反映样本数据在各组中的分布情 况,我们将上述频率分布表中的有关信息用下面 的图形表示: 频率分布表
从上面的数据很难直接估计出总体的分布情况,为此, 我们可以先将以上数据按每个数据出现的频数和频率。 汇成下表:
宽度/mm 频 数 头盖骨的宽度主要在 频 率 宽度/mm 142 143 频 7 10 数 频 率
136~149mm之间, 121 1 0.009 135mm以下以及150mm 129 1 0.009 以上所占比例相对较小
fi / x
0.0018 0.0018 0.0114 0.0416 0.0868 0.0472 0.0076
0.10
0.08 0.06 0.04 0.02 0
0.0472 6
140~145mm
145~150mm 150~155mm
46
25 4 1
0.434
0.236 0.038 0.009
142 146 140 148 140 140 139 139 144 138 146 153 148 152 143 140 141 145 148 139 136 141 140 139 158 135 132 148 142 145 145 121 129 143 148 138 149 146 141 142 144 137 153 148 144 138 150 148 138 145 145 142 143 143 148 141 145 141
随机抽样、用样本估计总体、正态分布
11.6 随机抽样 用样本估计总体 正态分布教材细梳理—-知识点 一.随机抽样 1.简单随机抽样(1).定义:一个总体含有N 个个体,从中逐个①_____地抽取n 个个体作为样本(n ≤N ),如果每次抽取时总体内的各个个体被抽到的机会_②_____,就把这种抽样方法叫做简单随机抽样.(2). 最常用的简单随机抽样方法有两种___③__法和_④_________法. (3). 适用于 ⑤ 的情况. 2.系统抽样(1).定义:将总体分成 ⑥ 的若干部分,然后按照预先制定的规则,从每一部分中抽取一个个体,得到所需要的样本,这样的抽样方法称为系统抽样 . (2).系统抽样步骤:假设要从容量为N 的总体中抽取容量为n 的样本. a. 先将总体的N 个个体⑧ .有时可直接利用个体自身所带的号码,如学号、准考证号、门牌号等;(编号的位数要一样) b. 确定⑨ ,对编号进行分段.当N n (n 是样本容量)是整数时,取k =N n;c. 在第1段用_⑩_________确定第一个个体编号l (l ≤k );d. 按照一定的规则抽取样本.通常是将l ⑪ 得到第2个个体编号(l +k ),再加k 得到第3个个体编号(l +2k ) 依次进行下去,直到获取整个样本. (3).系统抽样适用于⑫ 的情况. 3.分层抽样(1).定义:当总体由⑬ 组成时,为了使抽取的样本更好地反映总体的情况,可将总体中各个个体按某种特征分成若干个互不重叠的几部分,每一部分叫做层,在各层中按层在总体中所占⑭ 进行简单随机抽样或系统抽样,这种抽样方法叫做分层抽样.(2).分层抽样适用于总体由差别明显的几部分组成的情况. 二.样本估计总体有关概念和知识点1.通常我们对总体作出的估计一般分成两种.一种是用样本的①__________估计总体的分布.另一种是用样本的② 估计总体的数字特征. 2.频率分布直方图画法(1).求极差(最大值-最小值=极差). (2).决定组距与组数.(3).确定分点,将数据分组.5.茎叶图以数据的高位为茎,放中间,低位为叶放两边,它的优点是: (1)保留了原始数据,没有损失样本信息.(2)数据可以随时记录、添加或修改. (n x x ++-2(n x x ++-受极值影响较大。
9.2用样本估计总体
授课主题用样本估计总体教学目标1.了解分布的意义和作用,会列频率分布表,会画频率分布直方图、频率折线图、茎叶图,理解它们各自的特点.2.理解样本数据标准差的意义和作用,会计算数据标准差.能从样本数据中提取基本的数字特征(如平均数、标准差),并作出合理的解释.3.会用样本的频率分布估计总体分布,会用样本的基本数字特征估计总体的基本数字特征,理解用样本估计总体的思想.4.会用随机抽样的基本方法和样本估计总体的思想,解决一些简单的实际问题.教学内容1.频率分布直方图(1)列出样本数据的频率分布表和频率分布直方图的步骤:①计算极差:找出数据的最大值与最小值,计算它们的差;②决定组距与组数:当样本容量不超过100时,按照数据的多少分成5~12组,且=极差组距组数;③将数据分组:通常对组内数值所在区间区左闭右开区间,最后一组取闭区间;也可以将样本数据多取一位小数分组.④列频率分布表:对落入各小组的数据累计,算出各小数的频数,除以样本容量,得到各小组的频率.⑤绘制频率分布直方图:以数据的值为横坐标,以频率组距的值为纵坐标绘制直方图。
(2)频率分布直方图的特点:①==⨯频率小长方形的面积组距频率组距,②个小长方形的面积等于1,③1==频率小长方形的高,所有小长方形的高的和组距组距.(3)频率分布折线图:将频率分布直方图各个长方形上边的中点用线段连接起来,就得到频率分布折线图,一般把折线图画成与横轴相连,所以横轴左右两端点没有实际意义.(4)总体密度曲线:样本容量不断增大时,所分组数不断增加,分组的组距不断缩小,频率分布直方图可以用一条光滑曲线()y f x=来描绘,这条光滑曲线就叫做总体密度曲线.总体密度曲线精确地n;n①众数、中位数、平均数都是描述一组数据集中趋势的量,平均数是最重要的量;x的平均数为x,则一组数,,n的平均数为用样本的标准差估计总体的标准差)数据的离散程度可以用极差、方差或标准差来描述;定义样本方差为222212()()()n x x x x x x s n-+-++-=;简化公式:22222121[()]n s x x x nx n=+++-=2222121()n x x x x n+++-(方差等于原数据平方的平均数减去平均数的平方)(4)样本的标准差是方差的算术平方根.样本标准差22212()()()0n x x x x x x s s n-+-++-=≥,.标准差越大数据离散程度越大,数据家分散;标准差越小,数据集中在平均数周围. (5)方差相关结论:①如果一组数12,,,n x x x 的方差为2s ,则一组数12,,,n x a x a x a +++的方差为2s ;②如果一组数12,,,n x x x 的方差为2s ,则一组数12,,,n kx kx kx 的方差为22k s 。
学科核心素养下高中数学教学设计——以“用样本估计总体”为例
学科核心素养下高中数学教学设计———以“用样本估计总体”为例文|傅焕铭一、教材分析我们收集的原始数据往往多而杂,需要对原始数据进行分析、处理,找到数据背后蕴藏的信息。
对总体统计特征的刻画包括两个层面:一是总体统计特征的全面刻画,即刻画出总体中所有个体的取值规律,这个规律可以用总体的频率分布表和频率分布直方图描述或近似描述;二是总体部分统计特征的刻画,如平均数、众数、方差、标准差等数字特征。
二、教学目标(一)核心素养学生初步习得科学处理数据的能力。
(二)教学目标(1)学生用频率分布直方图估计样本的众数、中位数、平均数等数据特征。
(2)学生能自行独立计算样本数据的标准差、方差,并知道分别刻画统计的什么特征。
(3)学生会用样本的频率分布估计总体分布,会用样本特征估计总体特征,理解用样本估计总体的思想,并能利用所学知识解决生活中的一些现实问题。
三、教学重难点教学重点:学生能从频率分布直方图上估计出样本数据特征。
教学难点:学生理解总体分布的概念,形成统计思维。
四、教学过程师:同学们,前面我们已经研究过通过抽样调查来研究数据的方法,了解了提高样本代表性的一些具体方法,收集数据后,我们要从中找到数据背后包含的信息,方可达到用样本估计总体的目的。
今天我们就一起研究“用样本估计总体”。
(一)课前导学师:同学们,根据自学任务,思考下列问题并完成检测。
任务1:样本数字特征有哪些?如何求?这些特征在频率分布直方图上如何估计?任务2:样本数字特征是如何反映样本数据的集中趋势和离散程度的?(设计意图:通过出示自学任务,引导学生自学,相机进行自学效果检测。
学生根据自学情况,检测新知中还有哪些内容没有理解和掌握,从而有针对性地学习本节内容,实现高效学习。
同时也旨在培养学生良好的学习习惯,指导学生学会学习数学的方法。
)(二)课堂设计探究一:样本的数字特征11.探究:众数、中位数、平均数的概念。
师:请同学们根据概念解释,完成概念名词的填空,并揣摩这些概念的含义。
用样本估计总体
月收入(元)
1000 1500 2000 2500 3000 3500 4000
练习1、如图是150辆汽车通过某路段 时速度的频率分布直方图,则速度在[60, 60 辆. 70)的汽车大约有______
在频率分布直方图中,依次连接各小长 方形上端的中点,就得到一条折线,这条 折线称为频率分布折线图.
练习3、以往招生Biblioteka 计显示,某所大学录 取的新生高考总分的中位数基本稳定在550 分,若某同学今年高考得了520分,他想报 考这所大学还需收集哪些信息?
要点: (1)查往年录取的新生的平均分数.若平均数 小于中位数很多,说明最低录取线较低,可以 报考; (2)查往年录取的新生高考总分的标准差.若 标准差较大,说明新生的录取分数较分散,最 低录取线可能较低,可以考虑报考.
标准差的取值范围是什么?标准差为0 的样本数据有何特点? s≥0,标准差为0的样本数据都相等. 方差的意义: 方差(或标准差)越大离散程度越大,数 据较分散; 方差(或标准差)越小离散程度越小,数 据较集中在平均数周围.
例 2 、有两个班级,每班各自按学号随 机选出 5 名学生,测验铅球成绩,以考察 体育达标程度,测验成绩如下:单位(米) 甲 9.1 7.8 8.5 6.9 5.2 乙 8.8 7.2 7.3 7.5 6.7 两个班相比较,哪个班整体实力强一些 ?
制作频率分布直方图的方法: (1)求极差(即一组数据中最大值与最小 值的差); (2)决定组距与组数;(样本容量不超过
100时,组数常分成5~12组)
(3)将数据分组; (4)列频率分布表; (5)画频率分布直方图.
注:频率分布直方图中
用样本估计总体分布 课件-高一上学期数学北师大版(2019)必修第一册
思考探究:频率分布直方图的应用
• 思考探究:频率分布直方图的应用
例:暑假期间某班为了增强学生的社会实践能力,把该 班学生分成四个小组
到一果园帮果农测量果树的产 量,某小组来到一片种植苹果的山地,他们随
机选 取 20 株作为样本测量每一株的果实产量(单位 : kg ),获得的数据按照
我们把这样的图称为频率分布直方图.
频率
频率
,即小长方形的高
;
1 纵轴表示
组距
组距
频率
频率;
2 小长方形的面积 组距
组距
3 各个小长方形的面积总和等于 1 .
• 二、频率分布直方图
基于上面的分析,思考:怎样根据样本数据画出频率分布直方图呢?
以教材例3为例,一起探究频率分布直方图的画法
3,分组,
由于8个组的总长度40mm>极差,可取第一组的左端点小于数据最小值,最后一组的
右端点大于数据最大值,分成 [120,125),[125,130), ,[155,160].
• 二、频率分布直方图
频率分布直方图的绘制
4.列表,统计出各组信息,如下表,
• 二、频率分布直方图
频率分布直方图的绘制
• 思考探究:频率分布直方图的应用
例:在某中学举行的物理知识竞赛中,将三个 年级参赛学生的成绩进行整理后分成 5 组,
绘制出 如图所示的频率分布直方图,图中从左到右依次为 第一、第二、第三、第四、
第五小组。已知第三小 组的频数是 15 .
(1 ) 求成绩在 50, 70 内的频率;
2 求这三个年级参赛学生的总人数;
思考探究:频率分布直方图的应用
9.5 用样本的频率分布估计总体分布课件-2023届广东省高职高考数学第一轮复习第九章概率与统计初步
A.甲
B.乙
C.丙
D.丁
【解析】 因为丙的平均数最大,方差最小,故选 C.
8.在学校组织的一次技能竞赛中,某班学生
成绩的频率分布直方图如图所示,若低于 60
分的有 12 人,则该班学生的人数为( B )
A.35
B.40
C.45
D.50
第 8 题图
【解析】 如图所知:低于 60 分的频率为 20×(0.005+0.010)=0.3, 设该班有学生 n 人,则1n2=0.3,解得 n=40,故选 B.
=0.4×40=16,故选 D.
4.某同学进行技能训练,录得近五次的训练成绩分别为:88,84,86,
85,87,则这组数据的方差为( A )
A.2
B.3
C.4
D.9
【解析】 因为x-=x1+x2+x53+x4+x5=86,所以,方差 s2=n1[(x1-x-)2
+
(x2
-
-
x
)2
+
…
+
(xn
-
-
二、填 空 题
9.将一个容量为 m 的样本分成 3 组,已知第 1 组的频数为 8,第 2 和第 3 组的频率为 0.15 和 0.45,则 m=___2_0__. 【解析】 由题意得,第一组的频率为m8 ,则m8 +0.15+0.45=1,解得 m=20.
10.容量为 100 的样本数据,按从小到大的顺序分为 8 组,如下表: 组号 1 2 3 4 5 6 7 8 频数 10 13 14 14 15 13 12 9
9.5 用样本的频率分布估计总体分布
知识点1 知识点2
1.用样本的频率分布估计总体 (1)频数与频率 将一组数据按要求分成若干个组,各组内数据的个数叫做该组的频 数,每组的频数除以全体数据的个数的商叫做该组的频率,频率反 映数据在每组中所占比例的大小.
第1讲 随机抽样、用样本估计总体
第1讲随机抽样、用样本估计总体一、知识梳理1.随机抽样(1)简单随机抽样①定义:一般地,设一个总体含有N 个个体,从中逐个不放回地抽取n 个个体作为样本(n ≤N ),且每次抽取时总体内的各个个体被抽到的机会都相等,就称这样的抽样方法为简单随机抽样.②常用方法:抽签法和随机数法.(2)分层抽样①定义:在抽样时,将总体分成互不交叉的层,然后按照一定的比例,从各层独立地抽取一定数量的个体,将各层取出的个体合在一起作为样本,这种抽样方法是一种分层抽样.②适用范围:适用于总体由差异比较明显的几个部分组成时.2.统计图表(1)频率分布直方图的画法步骤①求极差(即一组数据中最大值与最小值的差);②决定组距与组数;③将数据分组;④列频率分布表;⑤画频率分布直方图.(2)频率分布折线图和总体密度曲线①频率分布折线图:连接频率分布直方图中各小长方形上端的中点,就得到频率分布折线图;②总体密度曲线:随着样本容量的增加,作图时所分组数增加,组距减小,相应的频率折线图会越来越接近于一条光滑曲线,统计中称这条光滑曲线为总体密度曲线.3.样本的数字特征(1)众数:一组数据中出现次数最多的那个数据,叫做这组数据的众数.(2)中位数:把n 个数据按大小顺序排列,处于最中间位置的一个数据(或最中间两个数据的平均数)叫做这组数据的中位数.(3)平均数:把a 1+a 2+…+a n n称为a 1,a 2,…,a n 这n 个数的平均数. (4)标准差与方差:设一组数据x 1,x 2,x 3,…,x n 的平均数为x -,则这组数据的标准差和方差分别是s = 1n[(x 1-x -)2+(x 2-x -)2+…+(x n -x -)2], s 2=1n[(x 1-x -)2+(x 2-x -)2+…+(x n -x -)2].常用结论1.不论哪种抽样方法,总体中的每一个个体入样的概率是相同的.2.会用三个关系频率分布直方图与众数、中位数与平均数的关系(1)最高的小长方形底边中点的横坐标即是众数.(2)中位数左边和右边的小长方形的面积和是相等的.(3)平均数是频率分布直方图的“重心”,等于频率分布直方图中每个小长方形的面积乘以小长方形底边中点的横坐标之和.3.巧用四个有关的结论(1)若x 1,x 2,…,x n 的平均数为x -,那么mx 1+a ,mx 2+a ,…,mx n +a 的平均数为m x-+a ;(2)数据x 1,x 2,…,x n 与数据x ′1=x 1+a ,x ′2=x 2+a ,…,x ′n =x n +a 的方差相等,即数据经过平移后方差不变;(3)若x 1,x 2,…,x n 的方差为s 2,那么ax 1+b ,ax 2+b ,…,ax n +b 的方差为a 2s 2;(4)s 2=1n ∑n i =1 (x i -x -)2=1n ∑n i =1x 2i-x -2,即各数平方的平均数减去平均数的平方. 二、教材衍化1.某校为了解学生学习的情况,采用分层抽样的方法从高一2 400人、高二2 000人、高三n 人中,抽取90人进行问卷调查.已知高一被抽取的人数为36,那么高三被抽取的人数为________.解析:由分层抽样可得 2 4002 400+2 000+n×90=36,则n =1 600,所以高三被抽取的人数为 1 6002 400+2 000+1 600×90=24. 答案:242.已知一组数据6,7,8,8,9,10,则该组数据的方差是________.答案:533.某仪器厂从新生产的一批零件中随机抽取40个检测,如图是根据抽样检测后零件的质量(单位:克)绘制的频率分布直方图,样本数据分8组,分别为[80,82),[82,84),[84,86),[86,88),[88,90),[90,92),[92,94),[94,96],则样本的中位数在第________组.解析:由题图可得,前四组的频率为(0.037 5+0.062 5+0.075+0.1)×2=0.55,则其频数为40×0.55=22,且第四组的频数为40×0.1×2=8,故中位数落在第4组.答案:4一、思考辨析判断正误(正确的打“√”,错误的打“×”)(1)简单随机抽样是一种不放回抽样.()(2)在抽签法中,先抽的人抽中的可能性大.()(3)一组数据的方差越大,说明这组数据的波动越大.()(4)在频率分布直方图中,小矩形的面积越大,表示样本数据落在该区间内的频率越大.()(5)频率分布表和频率分布直方图是一组数据频率分布的两种形式,前者准确,后者直观.()(6)在频率分布直方图中,最高的小长方形底边中点的横坐标是众数的估计值.()答案:(1)√(2)×(3)√(4)√(5)√(6)√二、易错纠偏常见误区|(1)随机数表法的规则不熟出错;(2)频率分布直方图识图不清;1.假设要考察某公司生产的狂犬疫苗的剂量是否达标,现用随机数法从500支疫苗中抽取50支进行检验,利用随机数表抽取样本时,先将500支疫苗按000,001, (499)行编号,若从随机数表第7行第8列的数开始向右读,则抽取的第3支疫苗的编号为________.(下面摘取了随机数表的第7行至第9行)84 42 17 53 3157 24 55 06 8877 04 74 47 6721 76 33 50 2583 92 12 06 7663 01 63 78 5916 95 55 67 1998 10 50 71 7512 86 73 58 0744 39 52 38 7933 21 12 34 2978 64 56 07 8252 42 07 44 3815 51 00 13 4299 66 02 79 54解析:由题意得,从随机数表第7行第8列的数开始向右读,符合条件的前三个编号依次是331,455,068,故抽取的第3支疫苗的编号是068.答案:0682.我市某校组织学生参加英语测试,成绩的频率分布直方图如图,数据的分组依次为[20,40),[40,60),[60,80),[80,100],若低于60分的人数是15,则该班的学生人数是________.解析:依题意得,成绩低于60分的相应的频率等于(0.005+0.01)×20=0.3,所以该班的学生人数是15÷0.3=50.答案:50考点一随机抽样(基础型)复习指导| 1.理解随机抽样的必要性和重要性.2.学会用简单随机抽样的方法从总体中抽取样本.3.通过对实例的分析,了解分层抽样的方法.核心素养:数据分析1.(2020·重庆中山外国语学校模拟)如饼图,某学校共有教师120人,从中选出一个30人的样本,其中被选出的青年女教师的人数为()A.12B.6C.4D.3解析:选D .青年教师的人数为120×30%=36,所以青年女教师为12人,故青年女教师被选出的人数为12×30120=3.故选D . 2.(2020·武汉市武昌区调研考试)已知某射击运动员每次射击击中目标的概率都为80%.现采用随机模拟的方法估计该运动员4次射击至少3次击中目标的概率:先由计算器产生0到9之间取整数值的随机数,指定0,1表示没有击中目标,2,3,4,5,6,7,8,9表示击中目标;再以每4个随机数为一组,代表4次射击的结果.经随机模拟产生了如下20组随机数:7527 0293 7140 9857 0347 4373 8636 6947 1417 4698 0371 6233 2616 8045 6011 3661 9597 7424 7610 4281据此估计,该射击运动员4次射击至少3次击中目标的概率为________.解析:4次射击中有1次或2次击中目标的有:0371,6011,7610,1417,7140,所以所求概率P =1-520=1520=0.75. 答案:0.753.一支田径队有男运动员56人,女运动员m 人,用分层抽样抽出一个容量为n 的样本,在这个样本中随机取一个当队长的概率为128,且样本中的男队员比女队员多4人,则m =________.解析:由题意知n =28,设其中有男队员x 人,女队员有y 人.则⎩⎪⎨⎪⎧x +y =28,x -y =4,56m =x y .解得x =16,y =12,m =42.答案:42(1)抽签法与随机数法的适用情况①抽签法适用于总体中个体数较少的情况,随机数法适用于总体中个体数较多的情况.②一个抽样试验能否用抽签法,关键看两点:一是制签是否方便;二是号签是否易搅匀.一般地,当总体容量和样本容量都较小时可用抽签法.(2)分层抽样问题类型及解题思路①求某层应抽个体数量,根据该层所占总体的比例计算.②已知某层个体数量,求总体容量,根据分层抽样即按比例抽样,列比例式进行计算.③确定是否应用分层抽样:分层抽样适用于总体中个体差异较大的情况.考点二样本的数字特征(应用型)复习指导| 1.通过实例理解样本数据的标准差的意义和作用,学会计算数据的标准差.2.能根据实际问题的需求合理地选取样本,从样本数据中提取基本的数字特征(如平均数、标准差),并作出合理的解释.核心素养:数据分析、数学运算(1)在一次歌咏比赛中,七位裁判为一选手打出的分数如下:90,89,90,95,93,94,93.去掉一个最高分和一个最低分后,所剩数据的平均数与方差分别为( )A .92,2.8B .92,2C .93,2D .93,2.8(2)(2020·盐城模拟)已知一组数据x 1,x 2,x 3,x 4,x 5的方差是2,则数据2x 1,2x 2,2x 3,2x 4,2x 5的标准差为________.【解析】 (1)由题意得所剩数据:90,90,93,94,93.所以平均数x -=90+90+93+94+935=92. 方差s 2=15[(90-92)2+(90-92)2+(93-92)2+(93-92)2+(94-92)2]=2.8. (2)由s 2=1n i =1n (x i -x -)2=2,则数据2x 1,2x 2,2x 3,2x 4,2x 5的方差是8,标准差为2 2. 【答案】 (1)A (2)2 2【迁移探究】 (变条件)本例(2)增加条件“x 1,x 2,x 3,x 4,x 5的平均数为2”,求数据2x 1+3,2x 2+3,2x 3+3,2x 4+3,2x 5+3的平均数和方差.解:数据2x 1+3,2x 2+3,2x 3+3,2x 4+3,2x 5+3的平均数为2×2+3=7,方差为22×2=8.众数、中位数、平均数、方差的意义及常用结论(1)平均数与方差都是重要的数字特征,是对总体的一种简明的描述,它们所反映的情况有着重要的实际意义,平均数、中位数、众数描述其集中趋势,方差和标准差描述波动大小.(2)方差的简化计算公式:s2=1n[(x21+x22+…+x2n)-n x-2],或写成s2=1n(x21+x22+…+x2n)-x-2,即方差等于原数据平方的平均数减去平均数的平方.1.(2020·昆明市诊断测试)高铁、扫码支付、共享单车、网购被称为中国的“新四大发明”,为评估共享单车的使用情况,选了n座城市作试验基地.这n座城市共享单车的使用量(单位:人次/天)分别为x1,x2,…,x n,下面给出的指标中可以用来评估共享单车使用量的稳定程度的是()A .x 1,x 2,…,x n 的平均数B .x 1,x 2,…,x n 的标准差C .x 1,x 2,…,x n 的最大值D .x 1,x 2,…,x n 的中位数解析:选B .平均数、中位数可以反映一组数据的集中程度;方差、标准差可以反映一组数据的波动大小,同时也反映这组数据的稳定程度.故选B .2.(2020·甘肃、青海、宁夏联考)从某小学随机抽取100名同学,将他们的身高(单位:厘米)分布情况汇总如下:A .119.3B .119.7C .123.3D .126.7解析:选C .由题意知身高在(100,110],(110,120],(120,130]内的频率依次为0.05,0.35,0.3,前两组频率和为0.4,组距为10,设中位数为x ,则(x -120)×0.310=0.1,解得x ≈123.3.故选C .3.一组数据1,10,5,2,x ,2,且2<x <5,若该数据的众数是中位数的23倍,则该数据的方差为________.解析:根据题意知,该组数据的众数是2,则中位数是2÷23=3,把这组数据从小到大排列为1,2,2,x ,5,10,则2+x2=3,解得x =4,所以这组数据的平均数为 x -=16×(1+2+2+4+5+10)=4,方差为s 2=16×[(1-4)2+(2-4)2×2+(4-4)2+(5-4)2+(10-4)2]=9.答案:9考点三 频率分布直方图(应用型)复习指导| 1.通过实例体会分布的意义和作用,在表示样本数据的过程中,学会列频率分布表、画频率分布直方图、频率折线图,体会它们各自的特点.2.会用样本的频率分布估计总体分布,会用样本的基本数字特征估计总体的基本数字特征;初步体会样本频率分布和数字特征的随机性.核心素养:直观想象、数据分析角度一求样本的频率、频数(2020·福建五校第二次联考)某服装店对过去100天其实体店和网店的销售量(单位:件)进行了统计,制成频率分布直方图如下:(1)若将上述频率视为概率,已知该服装店过去100天的销售中,实体店和网店销售量都不低于50的概率为0.24,求过去100天的销售中,实体店和网店至少有一边销售量不低于50的天数;(2)若将上述频率视为概率,已知该服装店实体店每天的人工成本为500元,门市成本为1 200元,每售出一件利润为50元,求该实体店一天获利不低于800元的概率.【解】(1)由题意知,网店销售量不低于50共有(0.068+0.046+0.010+0.008)×5×100=66(天),实体店销售量不低于50共有(0.032+0.020+0.012×2)×5×100=38(天),实体店和网店销售量都不低于50的天数为100×0.24=24,故实体店和网店至少有一边销售量不低于50的天数为66+38-24=80.(2)由题意,设该实体店一天售出x件,则获利为(50x-1 700)元,50x-1 700≥800⇒x ≥50.记该实体店一天获利不低于800元为事件A,则P(A)=P(x≥50)=(0.032+0.020+0.012+0.012)×5=0.38.故该实体店一天获利不低于800元的概率为0.38.角度二求样本的数字特征(2019·高考全国卷Ⅲ)为了解甲、乙两种离子在小鼠体内的残留程度,进行如下试验:将200只小鼠随机分成A,B两组,每组100只,其中A组小鼠给服甲离子溶液,B组小鼠给服乙离子溶液.每只小鼠给服的溶液体积相同、摩尔浓度相同.经过一段时间后用某种科学方法测算出残留在小鼠体内离子的百分比.根据试验数据分别得到如下直方图:记C为事件:“乙离子残留在体内的百分比不低于5.5”,根据直方图得到P(C)的估计值为0.70.(1)求乙离子残留百分比直方图中a,b的值;(2)分别估计甲、乙离子残留百分比的平均值(同一组中的数据用该组区间的中点值为代表).【解】(1)由已知得0.70=a+0.20+0.15,故a=0.35.b=1-0.05-0.15-0.70=0.10.(2)甲离子残留百分比的平均值的估计值为2×0.15+3×0.20+4×0.30+5×0.20+6×0.10+7×0.05=4.05.乙离子残留百分比的平均值的估计值为3×0.05+4×0.10+5×0.15+6×0.35+7×0.20+8×0.15=6.00.(1)频率、频数、样本容量的计算方法①频率组距×组距=频率;②频数样本容量=频率,频数频率=样本容量,样本容量×频率=频数.(2)频率分布直方图中数字特征的计算①最高的小长方形底边中点的横坐标即是众数;②中位数左边和右边的小长方形的面积和是相等的;③平均数是频率分布直方图的“重心”,等于频率分布直方图中每个小长方形的面积乘以小长方形底边中点的横坐标之和.1.在样本频率分布直方图中,共有9个小长方形,若中间一个小长方形的面积等于其他8个长方形的面积和的25,且样本容量为140,则中间一组的频数为( )A .28B .40C .56D .60解析:选B .设中间一组的频数为x ,因为中间一个小长方形的面积等于其他8个长方形的面积和的25,所以其他8组的频数和为52x ,由x +52x =140,解得x =40.2.(2020·武昌区调研考试)对参加某次数学竞赛的1 000名选手的初赛成绩(满分:100分)作统计,得到如图所示的频率分布直方图.(1)根据直方图完成以下表格;(2)); (3)如果从参加初赛的选手中选取380人参加复赛,那么如何确定进入复赛选手的成绩? 解:(1)填表如下:(2)平均数为55×0.05+65×0.15+75×0.35+85×0.35+95×0.1=78, 方差s 2=(-23)2×0.05+(-13)2×0.15+(-3)2×0.35+72×0.35+172×0.1=101. (3)进入复赛选手的成绩为80+350-(380-100)350×10=82(分),所以初赛成绩为82分及其以上的选手均可进入复赛.(说明:回答82分以上,或82分及其以上均可)[基础题组练]1.某班有34位同学,座位号记为01,02,…,34,用下面的随机数表选取5组数作为参加青年志愿者活动的五位同学的座号.选取方法是从随机数表第一行的第6列数字开始,由左到右依次选取两个数字,则选出来的第4个志愿者的座号是( )49 54 43 54 82 17 37 93 23 78 87 35 20 96 43 84 26 34 91 64 57 24 55 06 88 77 04 74 47 67 21 76 33 50 25 83 92 12 06 A .23B .09C .02D .16解析:选D .从随机数表第一行的第6列数字3开始,由左到右依次选取两个数字,不超过34的依次为21,32,09,16,17,故第4个志愿者的座号为16.2.(2020·陕西汉中重点中学联考)某机构对青年观众是否喜欢跨年晚会进行了调查,人数如下表所示:若在“不喜欢的男性青年观众”中抽取了6人,则n =( )A .12B .16C .20D .24解析:选D .由题意得3030+10+30+50=30120=6n,解得n =24.故选D .3.(2019·高考全国卷Ⅱ)演讲比赛共有9位评委分别给出某选手的原始评分,评定该选手的成绩时,从9个原始评分中去掉1个最高分、1个最低分,得到7个有效评分.7个有效评分与9个原始评分相比,不变的数字特征是( )A .中位数B .平均数C .方差D .极差解析:选A .记9个原始评分分别为a ,b ,c ,d ,e ,f ,g ,h ,i (按从小到大的顺序排列),易知e 为7个有效评分与9个原始评分的中位数,故不变的数字特征是中位数,故选A .4.(多选)某学生5次考试的成绩(单位:分)分别为85,67,m ,80,93,其中m >0.若该学生在这5次考试中成绩的中位数为80,则得分的平均数可能为( )A .70B .75C .80D .85解析:选ABC .已知的四次成绩按照由小到大的顺序排列为67,80,85,93,该学生这5次考试成绩的中位数为80,则m ≤80,所以平均数85+67+m +80+935≤81,可知平均数可能为70,75,80,不可能为85.故选ABC .5.(多选)从某地区年龄在25~55岁的人员中,随机抽取100人,了解他们对今年两会热点问题的看法,绘制出频率分布直方图,如图所示,则下列说法正确的是( )A .抽取的100人中,年龄在40~45岁的人数大约为20B .抽取的100人中,年龄在35~45岁的人数大约为40C .抽取的100人中,年龄在40~50岁的人数大约为50D .抽取的100人中,年龄在35~50岁的人数大约为60解析:选AD .根据频率分布直方图的性质得(0.01+0.05+0.06+a +0.02+0.02)×5=1,解得a =0.04,所以抽取的100人中,年龄在40~45岁的大约为0.04×5×100=20,所以A 正确;年龄在35~45岁的人数大约为(0.06+0.04)×5×100=50,所以B 不正确;年龄在40~50岁的人数大约为(0.04+0.02)×5×100=30,所以C 不正确;年龄在35~50岁的人数大约为(0.06+0.04+0.02)×5×100=60,所以D 正确.故选AD .6.(2020·开封市定位考试)某工厂生产A ,B ,C 三种不同型号的产品,产品数量之比为k ∶5∶3,现用分层抽样的方法抽出一个容量为120的样本,已知A 种型号产品共抽取了24件,则C 种型号产品抽取的件数为________.解析:依题意得24120=k k +5+3,解得k =2,所以C 种型号产品抽取的件数为32+5+3×120=36.答案:367.甲、乙、丙、丁四人参加某运动会射击项目的选拔赛,四人的平均成绩和方差如下表所示:从这四个人中选择一人参加该运动会射击项目比赛,最佳人选是________.解析:由题表中数据可知,丙的平均环数最高,且方差最小,说明技术稳定,且成绩好.答案:丙8.对某市“四城同创”活动中800名志愿者的年龄抽样调查统计后得到频率分布直方图(如图),但是年龄组为[25,30)的数据不慎丢失,则依据此图可得:(1)[25,30)年龄组对应小矩形的高度为________;(2)据此估计该市“四城同创”活动中志愿者年龄在[25,35)的人数为________.解析:设[25,30)年龄组对应小矩形的高度为h,则5×(0.01+h+0.07+0.06+0.02)=1,解得h=0.04.则志愿者年龄在[25,35)年龄组的频率为5×(0.04+0.07)=0.55,故志愿者年龄在[25,35)年龄组的人数约为0.55×800=440.答案:(1)0.04(2)4409.某校1 200名高三年级学生参加了一次数学测验(满分为100分),为了分析这次数学测验的成绩,从这1 200人的数学成绩中随机抽取200人的成绩绘制成如下的统计表,请根据表中提供的信息解决下列问题:(1)求a、b、c(2)如果从这1 200名学生中随机抽取一人,试估计这名学生该次数学测验及格的概率P (注:60分及60分以上为及格);(3)试估计这次数学测验的年级平均分.解:(1)由题意可得,b =1-(0.015+0.125+0.5+0.31)=0.05,a =200×0.05=10,c =200×0.5=100.(2)根据已知,在抽出的200人的数学成绩中,及格的有162人.所以P =162200=0.81. (3)这次数学测验样本的平均分为x -=16×3+32.1×10+55×25+74×100+88×62200=73, 所以这次数学测验的年级平均分大约为73分.10.为了解甲、乙两个快递公司的工作状况,假设同一个公司快递员的工作状况基本相同,现从甲、乙两公司各随机抽取一名快递员,并从两人某月(30天)的快递件数记录结果中随机抽取10天的数据,制图如下:每名快递员完成一件货物投递可获得的劳务费情况如下:甲公司规定每件4.5元;乙公司规定每天35件以内(含35件)的部分每件4元,超出35件的部分每件7元.(1)根据图中数据写出甲公司员工A 在这10天投递的快递件数的平均数和众数;(2)根据图中数据估算两公司的每位员工在该月所得的劳务费.解:(1)甲公司员工A 在这10天投递的快递件数的平均数为36,众数为33.(2)根据题图中数据,可估算甲公司的每位员工该月所得劳务费为 4.5×36×30=4 860(元),易知乙公司员工B 每天所得劳务费X 的可能取值为136,147,154,189,203,所以乙公司的每位员工该月所得劳务费约为110×(136×1+147×3+154×2+189×3+203×1)×30=165.5×30=4 965(元). [综合题组练]1.(2020·安徽五校联盟第二次质检)数据a 1,a 2,a 3,…,a n 的方差为σ2,则数据2a 1,2a 2,2a 3,…,2a n 的方差为( )A .σ22B .σ2C .2σ2D .4σ2解析:选D .设a 1,a 2,a 3,…,a n 的平均数为a ,则2a 1,2a 2,2a 3,…,2a n 的平均数为2a ,σ2=(a 1-a )2+(a 2-a )2+(a 3-a )2+…+(a n -a )2n. 则2a 1,2a 2,2a 3,…,2a n 的方差为(2a 1-2a )2+(2a 2-2a )2+(2a 3-2a )2+…+(2a n -2a )2n=4×(a 1-a )2+(a 2-a )2+(a 3-a )2+…+(a n -a )2n=4σ2.故选D . 2.(多选)新闻出版业不断推进供给侧结构性改革,深入推动优化升级和融合发展,持续提高优质出版产品供给,实现了行业的良性发展.下面是2015年至2019年我国新闻出版业和数字出版业营收情况,则下列说法正确的是( )A .2015年至2019年我国新闻出版业和数字出版业营收均逐年增加B .2019年我国数字出版业营收超过2015年我国数字出版业营收的2倍C .2019年我国新闻出版业营收超过2015年我国新闻出版业营收的1.5倍D .2019年我国数字出版业营收占新闻出版业营收的比例未超过三分之一解析:选ABD .根据图示数据可知A 正确;1 935.5×2=3 871<5 720.9,故B 正确;16 635.3×1.5=24 952.95>23 595.8,故C 不正确;23 595.8×13≈7 865>5 720.9,故D 正确.故选ABD .3.甲、乙二人参加某体育项目训练,近期的五次测试成绩得分情况如图:(1)分别求出两人得分的平均数与方差;(2)根据图和上面算得的结果,对两人的训练成绩作出评价.解:(1)由题图可得甲、乙两人五次测试的成绩分别为甲:10分,13分,12分,14分,16分;乙:13分,14分,12分,12分,14分.x -甲=10+13+12+14+165=13; x -乙=13+14+12+12+145=13, s 2甲=15[(10-13)2+(13-13)2+(12-13)2+(14-13)2+(16-13)2]=4; s 2乙=15[(13-13)2+(14-13)2+(12-13)2+(12-13)2+(14-13)2]=0.8. (2)由s 2甲>s 2乙,可知乙的成绩较稳定. 从折线图看,甲的成绩基本呈上升状态,而乙的成绩上下波动,可知甲的成绩在不断提高,而乙的成绩则无明显提高.4.(2020·广州市调研测试)某蔬果经销商销售某种蔬果,售价为每千克25元,成本为每千克15元.销售宗旨是当天进货当天销售.如果当天卖不出去,未售出的全部降价以每千克10元处理完.根据以往的销售情况,按[0,100),[100,200),[200,300),[300,400),[400,500]进行分组,得到如图所示的频率分布直方图.(1)根据频率分布直方图计算该种蔬果日需求量的平均数x -(同一组中的数据用该组区间中点值代表);(2)该经销商某天购进了250千克该种蔬果,假设当天的需求量为x 千克(0≤x ≤500),利润为y 元.求y 关于x 的函数关系式,并结合频率分布直方图估计利润y 不小于1 750元的概率.解:(1)x -=50×0.001 0×100+150×0.002 0×100+250×0.003 0×100+350×0.0025×100+450×0.001 5×100=265.故该种蔬果日需求量的平均数为265千克.(2)当日需求量不低于250千克时,利润y =(25-15)×250=2 500(元),当日需求量低于250千克时,利润y =(25-15)x -(250-x )×5=15x -1 250(元),所以y =⎩⎨⎧15x -1 250,0≤x <2502 500,250≤x ≤500, 由y ≥1 750,得200≤x ≤500,所以P (y ≥1 750)=P (200≤x ≤500)=0.003 0×100+0.002 5×100+0.001 5×100=0.7. 故估计利润y 不小于1 750元的概率为0.7.。
用样本分布估计总体分布
思考2:
6.(2019·福州高一检测)甲、乙两个小组各10名学生的英语 口语测试成绩如下(单位:分): 甲组:76 90 84 86 81 87 86 82 85 83 乙组:82 84 85 89 79 80 91 89 79 74 用茎叶图表示两个小组的成绩,并判断哪个小组的成绩更整齐 一些.
4、世界卫生组织指出青少 年的身体健康状况是一个应该 引起大家足够重视的问题,某 校为了了解小学生的体能情况, 抽取了一个年级的部分学生进 行一分钟跳绳次数测试.将所得数据整理后,画出频率分布直 方图,如图所示.已知图中从左到右前三个小组的频率分别为 0.1,0.3,0.4,第一个小组的频数为5.
2.数据123,127,131,151,157,135,129,138,147, 152,134,121,142,143的茎叶图中,茎应取 ______.
3.某班25人的数学成绩茎叶图如下图所示,则最高分为 ______,最低分为______,优秀率(90分以上)为 ______.
【解析】根据茎叶图中数据的排列规律,分析数据,可得最高 分为91,最低分为51,优秀率为1/25=4%. 答案:91 51 4%
【解析】选B 频率=
频数
样本容量
3.为了了解某地区高三学生的身体发育情况,抽查了该地区 100名年龄为17.5岁~18岁的男生体重(kg),得到频率分布直方 图,如图,据图可得这100名学生中体重在[56.5,64.5) kg的 学生人数是( )
(A)20
(B)30
(C) 在[56.5,64.5) kg范围内的矩形的面积是(0.03+0.05+0.05+0.07)×2=0.4, 则数据落在这一范围的频率是0.4.所以这100名学生中体重在[56.5,64.5)的 学生人数是100×0.4=40.
随机抽样、用样本估计总体
=小矩形的面积;
样本容量
每组的频数=这一小组的频率×样本容量.
【变式探究】
2.(2016·山东卷)某高校调查了200名学生每周的自习时 间(单位:小时),制成了如图所示的频率分布直方图,其中自 习时间的范围是[17.5,30],样本数据分组为 [17.5,20),[20,22.5),[22.5,25),[25,27.5),[27.5,30].根据直方 图,这200名学生中每周的自习时间不少于22.5小时的人数是 ()
若将运动员按成绩由好到差编为 1~35 号,再用系统抽
样方法从中抽取 7 人,则其中成绩在区间[139,151]上的运动
员人数是( )
A.3
B.4
C.5
D.6
解:(1)对数据进行分组,在区间[139,151]上,有几 组就有几个运动员.
因为 35÷7=5,因此可将编号为 1~35 的 35 个数据分 成 7 组,每组有 5 个数据,在区间[139,151]上共有 20 个 数据,分在 4 个小组中,每组取一人,共取 4 人.
解:因为可以用极差、方差或标准差来描述数据的离 散程度,所以要评估亩产量稳定程度,应该用样本数据的 极差、方差或标准差.
答案:B
抽样方法 频率分布直方图 茎叶图的应用
考点一·抽样方法
【例 1】 (1)用系统抽样法要从 160 名学生中抽取容量 为 20 的样本,将 160 名学生从 1~160 编号.按编号平均分 成 20 组(1~8 号,9~16 号,…,153~160 号),若第 16 组 应抽出的号码为 126,则第 1 组中用抽签法确定的号码是 ____________.
③甲地该月 14 时的气温的标准差小于乙地该月 14 时的 气温的标准差;
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
用样本的频率分布估计总体分布(第1课时)
教学目标:
1.通过实例体会分布的意义和作用,通过对现实生活的探究,感知应用数学知识解决问题的方法.
2.通过表示样本数据的过程,学会列频率分布表,画频率分布直方图,理解数形结合的数学思想.
3.通过对样本分析和总体估计的过程,感受数学在实际生活中的作用,认识数学知识源于生活并指导生活的事实.
教学重点:
会列频率分布表,画频率分布直方图,了解样本频率分布与总体分布之间的关系
教学难点:
掌握频率分布直方图的正确画法,体会分布的意义与作用
教学方法:引导——探究教学法
教学过程:
一、创设情境,呈现问题
问题情境:我国是世界上严重缺水的国家之一,城市缺水问题较为突出,武汉市政府为了节约生活用水,计划在本市试行居民生活用水定额管理,即确定一个居民月用水量标准a,用水量不超过a的部分按平价收费,超出a的部分按议价收费. 如果希望大部分居民的日常生活不受影响,那么标准a定为多少比较合理呢?
二、操作讨论,构建新知
<知识探究1 改良频数分布表→频率分布表>
问题1:如果标准太低,会影响居民的日常生活;如果标准太高,则不利于节水.那么你认为,为了较合理地确定出这个标准,需要了解哪些相关信息,做哪些工作?
【学生活动1】探究讨论,得到结论:
①为了制定一个较为合理的标准a,需要知道每个家庭的用水量
②如何获得家庭用水量的有关信息?对家庭进行调查,采用抽样调查的方式
③抽样时,样本容量定为多少比较合适?武汉市1000万人口,抽样10000比较合适
课堂上为了处理数据的方便,我们理想化地抽取100个数据的样本,比如:
通过抽样调查,获得100户居民的月均用水量如下表(单位:t)
3.1 2.5 2.0 2.0 1.5 1.0 1.6 1.8 1.9 1.6
3.4 2.6 2.2 2.2 1.5 1.2 0.2 0.4 0.3 0.4
3.2 2.7 2.3 2.1 1.6 1.2 3.7 1.5 0.5 3.8
3.3 2.8 2.3 2.2 1.7 1.3 3.6 1.7 0.6
4.1
3.2 2.9 2.4 2.3 1.8 1.4 3.5 1.9 0.8
4.3
3.0 2.9 2.4 2.4 1.9 1.3 1.4 1.8 0.7 2.0
2.5 2.8 2.3 2.3 1.8 1.3 1.3 1.6 0.9 2.3
2.6 2.7 2.4 2.1 1.7 1.4 1.2 1.5 0.5 2.4
2.5 2.6 2.3 2.1 1.6 1.0 1.0 1.7 0.8 2.4
2.8 2.5 2.2 2.0 1.5 1.0 1.2 1.8 0.6 2.2
问题2:从表中随意记录下的数据中很难直接看出规律,因此需要对统计数据进行整理分析. 回顾你看到全班的期末考试成绩单后是怎样分析的?
【学生活动2】探究讨论,得到结论:
①最高分,最低分
②自己得分名次,以及位于哪一个分数段
③及格率,优秀率
(类比考试成绩分析←→用水量分析,得到处理数据的方法之一——列表)
【学生活动3】动手操作,处理数据:
回顾初中学过的列频数分布表的步骤,并按照以上方法处理用水量问题中的数据.
①居民月均用水量的最大值为4.3,最小值为0.2,极差为4.1
②将上述100个数据按组距为0.5进行分组,共分9组
③各组数据的范围可设定为[0,0.5),[0.5,1),[1,1.5),…,[4,4.5].
④统计上述100个数据在各组中的频数,并用表格表示(频数分布表)
问题3:用频数分布表研究问题有没有不足?比如想回答引例中的问题(85%左右居民月用水量不超过标准)可以怎么改良?
【学生活动4】动手操作,在学案中改良频数分布表→频率分布表,得到:
上表称为样本数据的频率分布表,通过频率数值体现各组数据在样本容量中所占比例的大小.
三、回归现实,解决问题
如果市政府希望85%左右的居民每月的用水量不超过标准,根据上述频率分布
表,你对制定居民月用水量标准(即a的取值)有何建议?
88%的居民月用水量在3t以下,可建议取a=3.
由此可以推测该市全体居民月均用水量分布的大致情况,给市政府确定居民月用水量标准提供参考依据,这里体现了一种用样本的频率分布估计总体分布的统计思想.
四、由表到图,升华直观
<知识探究2 改良频数分布直方图→频率分布直方图>
(类比线性规划等知识直观处理的方法,得到处理数据的方法之二——画图)
问题4:为了直观反映样本数据在各组中的分布情况,我们将上述频率分布表中的有关信息用下面的频率分布直方图表示. 类比频数分布表,也用频率表示小长方形的高好不好?可不可以改良,使之更直观?
【学生活动5】探究讨论,动手操作:
讨论结果:
①面积比高度更直观,故频率分布直方图中可以用面积表示频率
频率,小长方形的面积和=1
②小长方形的高=
组距
在学案中改良频数分布直方图→频率分布直方图,得到:
你能从图1中分析出样本的哪些信息?进而对武汉市用水量分布做出估计?
五、总结归纳,收获方法
问题5:你能概括出列频率分布表和画频率分布直方图的步骤吗?
频率分布表
Step1 求极差;
Step2 决定组距与组数;
Step3 确定分点,将数据分组;
Step4 列频率分布表.
频率分布直方图
Step1 画平面直角坐标系;
Step2 在横轴上均匀标出各组分点,在纵轴上标出单位长度;
Step3 以组距为底,各组的频率与组距的商为高,分别画出各组对应的小长方形. 六、理论迁徙,课堂小结
理论迁徙:下面数据是50位费尔兹奖得主获奖时的年龄:
29 39 35 33 39 28 33 35 31 31
37 32 38 36 31 39 32 38 37 34
29 34 38 32 35 36 33 29 32 35
36 37 39 38 40 38 37 39 38 34
33 40 36 36 37 40 31 38 38 40
(口答)你认为以下哪一种分组能更好地说明费尔兹奖得主获奖时的年龄分布()
A.组距是1,各组是[28,29), [29,30), [30,31)……
B.组距是2,各组是[28,30), [30,32), [32,34)……
C.组距是5,各组是[25,30), [30,35), [35,40]
D.组距是10,各组是[20,30),[30,40]
(课堂练习)请完成频率分布表并估计年龄小于34岁得奖者占总人数的百分比.
(课后作业)绘制频率分布直方图并估计总体分布有怎样的特点.
(注:费尔兹奖是国际上享有崇高荣誉的一个数学奖项,每4年评选一次,主要授予年轻的数学家. 美籍华人丘成桐(1949年出生)1982年获得费尔兹奖.)
解:样本频率分布表如下:
由样本频率分布表可知年龄小于34岁的获奖者出现的频率为0. 08+0. 08+0. 16=0. 32,所以我们估计年龄小于34岁的获奖者占总人数的32%.
课堂小结:
方法:列频率分布表,画频率分布直方图
思想:用样本估计总体的统计思想
附:(板书设计)。