用样本估计总体用样本的频率分布估计总体分布

合集下载

用样本的频率分布估计总体的频率分布

用样本的频率分布估计总体的频率分布

用样本的频率分布估计总体的频率分布频率分布是一种用于描述数据集中频次分布情况的统计工具,它描述了每个数值或数值范围出现的频率。

在样本中,我们可以利用频率分布来估计总体的频率分布,从而了解总体的特征。

为了确切估计总体的频率分布,我们需要采取一定的统计方法,下面将介绍一种常用的方法,直方图。

一、直方图的构建构建频率分布的首要任务是将数据分为不同的组或区间。

一般来说,我们会根据数据的特点选择合适的组距,然后根据不同的组距将数据分组。

例如,假设我们有一组数据代表了一些班级学生的测试成绩,我们选择了组距为10,那么我们可以将数据分为以下几个组:然后,我们统计每个组内数据出现的次数,即频次,得到每个组的频次数。

二、计算频率频率是频次的一个重要衍生指标,它反映的是不同数据值或数据范围在总体中的比例。

频率的计算公式为:频率=频次/总样本量在直方图中,我们通常将频率表示为每个组的相对频率。

这样可以更好地反映出组与组之间的差异。

三、绘制直方图绘制直方图是一种直观地表现频率分布的方法。

在直方图上,x轴表示不同的组或区间,y轴表示频率。

我们可以用矩形的高度来表示每个组的频率,矩形的宽度表示组距。

通过绘制多个矩形,可以将频率分布更直观地展示出来。

在绘制直方图时,需要注意以下几点:1.组距应该选择合适,既不过小也不过大,以保证直方图的直观性和准确性。

2.直方图的高度应该符合频率的大小,即高度越高表示频率越大。

3.直方图的矩形之间应该没有间隙,以保证数据的完整性。

四、利用样本频率分布估计总体频率分布样本的频率分布可以提供总体频率分布的一种估计方法。

我们可以基于样本数据构建直方图,并计算每个组的频率。

然后,我们可以将样本频率分布与总体的频率分布进行比较。

如果两个分布形状相似并且没有明显的偏差,那么我们可以认为样本的频率分布可以很好地估计总体的频率分布。

当然,在使用样本频率分布进行总体频率分布估计时,还需要注意以下几点:1.样本的选取应该具有代表性,以避免样本偏差对估计结果的影响。

用样本的频率分布估计总体的频率分布

用样本的频率分布估计总体的频率分布



ቤተ መጻሕፍቲ ባይዱ
ii.组距:各组数据左右两各端点之间的距离。 (3)分组:各组数据所在区间取左闭右开区间,最后一个 区间取闭区间。 (4)填表:统计各组数据频数、计算频率,将频数和频率 填在表格相应空格内。 2、例题 (1)讲与练P36 类型一 画样本的频率分布直方图 (例1) (2 )讲与练P36 类型一 画样本的频率分布直方图 (变式训练1)
(2)将茎按由小到大的顺序排成一列,写在左侧或右侧; (3)将共茎的表示叶的数据按由小到大的顺序排成一行写 在茎的左侧。
3、注意 (1)对于重复出现的叶不能省略; (2)若有双叶则应对称,即左边的叶按由小到大的顺序排 列,则右边的叶则应按由大到小的顺序排列。 4、例题 (1)讲与练P37 类型三 茎叶图及其应用 (例3) (2)讲与练P37 类型三 茎叶图及其应用 (变式训练3) 四、课堂作业
三、频率分布直方图
1、概念:用直方图的形式来表示频率分布规律的方图叫频
率分布直方图
2、制作 (1)取一直角标架,将直角标架的横轴连续分成几段; (2)以各段为边做矩形,其中矩形的底表示组距,高表示
频率 组距
(3)在各矩形中的底和高所对应的轴相应位置标注相应数据。 3、意义
频率 (1)各矩形面积为频率与 组距
用样本的频率分布 估计总体的频率分布
一、基本概念
1、频数:将全部数据分成几组后,各组数据的个数叫这组数据的频数。
2、频率:各组数据的频数除以全部数据的商叫这组数据的频率。
二、频率分布表
1、画频率分布表的步骤 (1)求极差(极差是全部数据的最大值与最小值之差) (2)求组距和组数
极差 极差 极差 整数,则 组数 整数 ,则 组数 1 i.若 极差 ,若 组距 组距 组距 组距

用样本的频率分布估计总体的分布

用样本的频率分布估计总体的分布
用样本的频率分布估计总体的分布
影响组数与组距的因素
• 因素1:样本容量的大小; • 因素2:原始数据的精细程度; • 当样本容量不超过100时,常分成5-12组。
这是由统计经验获得的。
用样本的频率分布估计总体的分布
理论迁移
例 某地区为了了解知识分子的年龄结构, 随机抽样50名,其年龄分别如下:
42,38,29,36,41,43,54,43,34,44, 40,59,39,42,44,50,37,44,45,29, 48,45,53,48,37,28,46,50,37,44, 42,39,51,52,62,47,59,46,45,67, 53,49,65,47,54,63,57,43,46,58. (1)列出样本频率分布表; (2)画出频率分布直方图; (3)估计年龄在32~52岁的知识分子所占的比例 约是多少.
组距
连接频率分布直方图中 各小长方形上端的中点,
得到频率分布折线图
0.5 0.4 0.3 0.2 0.1
0.5 1 1.5
月均用 水量/t
2 2.5 3 3.5 4 4.5
用样本的频率分布估计总体的分布
总体密度曲线
当样本容量无限增大,分组的组距无限缩小,那么
频率分布折线图就会无限接近一条光滑曲线——总体密
用样本的频率分布估计总体的分布
用样本的频率分布估计总体的分布
练习:某中学高一(2)班甲,乙两 名同学自高中以来每场数学考试成 绩情况如下:
甲的得分:95,81,75,91,86, 89,71,65,76,88,94
乙的得分:83,86,93,99,88, 96,98,98,79,85,97
画出两人数学成绩茎叶图,请根据 茎叶图对两人的成绩进行比较。

《用样本的频率分布估计总体分布》教学设计 (1)

《用样本的频率分布估计总体分布》教学设计 (1)

《用样本的频率分布估计总体分布》教学设计教学目标:1 知识与能力目标:(1).了解样本的频率分布与总体分布的关系,能用样本的频率分布去估计相应的总体分布。

(2).在表示样本数据的过程中,学会列出频率分布表、画频率分布直方图、频率折线图,体会它们各自的特点。

(3).通过学生应用所学知识解决实际问题,进一步提高学生理论联系实际的能力。

2 情感目标:(1)渗透数形结合思想。

(2)结合教学内容培养学生学习数学的兴趣及“用数学”的意识,激励学生勇于自我创新。

(3)培养学生普遍联系、数学来源于实践又指导实践的辩证唯物主义观点及勇于探索的创新精神。

教学重点:通过实例体会分布的意义和作用,能做出样本的频率分布表、画频率分布直方图和频率折线图。

教学方法:以教师为主导,学生为主体,以能力发展为目标,强化学生的注意力及新旧知识的联系,通过教师讲授、学生尝试练习,调动学生的积极性,发挥学生的主体作用。

教学环节教学内容师生互动设计意图复习统计的基本思想方法是用样本估计总体,即通过从总体中抽取一个样本,根据样本的情况去估计总体。

前面我们学习了哪些抽样方法?问题:抽取样本后怎样用样本来估计总体呢?即用什么方法来处理得到的样本数据,来估计、推测总体的特征、特性?理论证明,可以用样本的频率分布估计总体的分布,用样本数字特征估计总体的数字特征。

本节我们学习用样本的频率分布估计总体的分布,教师提出问题,铺垫复习,学生思考、积极回答问题教师根据学生的回答、进一步提出问题,导入新课。

学生思考、讨论教学重难点新课前的复习即可加深对学过的知识的理解,又可为学习新知识埋下伏笔。

先设疑、激发学生的求知欲望、提高学生学习教学的兴趣让学生了解本节学生内容和学习的重难点,为学好本节做好知识和心理上的准备。

导入(1)为了了解中学生的身体发育情况,对某中学同年龄的60名女学生的身高进行了测量,结果如下(单位:厘米)167 154 159 166 169 159 156 166162 158 159 156 166 160 164 160 157 156 157 161 158 158153 158 164 158 163 158 153157 162 162 159 154 165 166157 151 146 151 158 160 165158 163 163 162 161 154 165162 162 159 157 159 149 164 168 159 153我们希望了解身高在哪个小范围内的学生多,在那个小范围内的学生少?(2)为了考察甲、乙两种小麦的长势,分别从中抽取了10株苗,测得苗高如下(单位:厘米)甲:12 13 14 15 10 16 13 11 15 11乙:11 16 17 14 13 19 6 8 1016问:那种小麦的10株苗高比较整齐?频率分布直方图如果样本容量较大,很难从一个个数字中直接看出样本所包含的信息。

用样本的频率分布估计总体的分布》教学设计

用样本的频率分布估计总体的分布》教学设计

必修3《2.2.1 用样本的频率分布估计总体的分布》教学设计北京师范大学附属实验中学曹付生一、教学内容分析1.教学主要内容:本节课选自人教B版必修三,第二章第二小节,《用样本的频率分布估计总体的分布》,需要2课时完成,本节课是第一课时。

主要是画出样本的频率分布直方图,并能通过频率分布直方图对总体进行简单的估计。

2.教材编写特点本节是本章教材的第二小节,前面研究了随机抽样的方法及数据收集。

本节课主要研究对收集样本如何进行处理,突出对数据描述、处理的方法,特别是频率分布直方图画法,后面接着研究总体密度曲线、用样本的数字特征估计总体的数字特征以及正态曲线等,可以说本节课内容承上启下,地位非常重要。

从教材编写的角度来看,也正是要体现这一特点。

教材编写,通过对样本分析和总体估计的过程,突出了统计的实用性,从实际出发,收集数据,进行分析整理,再回到实际问题,感受数学对实际生活的需要,体现了统计的思想及其在实际问题中的应用价值,真正体会数学知识与现实生活的联系。

3.教材内容的数学核心思想教材内容的数学核心思想是用样本的频率分布直方图估计总体的统计思想方法。

4.我的思考:本节课重在教会学生绘制频率分布直方图,引导学生通过频率分布直方图分析总体的分布,体会统计的思想、方法。

在通读了教材的基础上,与人教A版的相应内容作了比较,再结合学生的情况,最终选择A版内容,更利于完成教学目标。

(1)人教A版教材中的例子与学生关系紧密,提出的问题更切合学生实际。

背景的熟悉使学生易于课堂参与。

(2)教材中问题的设计利于学生统计思想的建立等。

统计思想方法是数学的一个重要的思想方法,中学学习统计,除了掌握必要的统计知识之处,关键是让学生建立统计在现实生活中具有重要的作用,具有统计意识,同时体会到统计结果随机性、科学性,能作为总体的分布的合理性,是生活中某些问题决策必不可少的依据。

统计教学的核心目标正是让学生体会统计思维的特点和作用。

因此在设计中,从实际问题出发,再回到实际问题的决策,前后呼应,使学生真正体会数据处理的全过程、统计应用于现实生活的全过程,突出统计的思想、方法。

用样本的频率分布估计总体的分布

用样本的频率分布估计总体的分布
33
142,146
20
146,150
11
150,154
6
154,158
5
(1)列出样本频率分布表; (2)画出频率分布直方图; (3)估计身高小于 134cm的人数占总人数者智不达。——《墨子· 修身》
例 2、甲、乙两个小组各 10 名学生的英语口语测试成绩如下(单位:分) : 甲组 76 90 84 86 81 87 86 82 85 83 乙组 82 84 85 89 79 80 91 89 79 74 试用茎叶图表示两个小组的成绩,找出中位数。
三、当堂检测 1. 在频率分布直方图中,所有矩形的总面积( ) A.大于 1 B.小于 1 C.等于 1 D.不能确定 2. 下列关于频率分布直方图的说法中,正确的是( ) A 直方图的高表示取某数的频率 B 直方图的高表示该组上的个体在样本中出现频数与组距的比值 C 直方图的高表示该组上的个体在样本中出现的频率 D 直方图的高表示该组上的个体在样本中出现频率与组距的比值 3. 为了了解初三学生女生身高情况,某中学对初三女生身高进行了一次测量,所得 数据整理后列出了频率分布表如下: 组 别 频数 1 4 20 15 8 m
用样本的频率分布估计总体的分布
【使用说明及学法指导】 1.先精读一遍教材, 用红色笔勾画; 再针对导学案问题导学部分阅读并回答, 时间不超过 15 分钟; 2.限时完成导学案合作探究部分,书写规范;3.找出自己的疑惑点;4.必须记住的内容。 【学习目标】
规律总结
1. 学会列频率分布表,画频率分布直方图、频率折线图和茎叶图。 2. 通过实例体会频率分布直方图、频率折线图、茎叶图的各自特征,从而恰当地选 择上述方法分析样本的分布,准确地做出总体估计。
四、课后巩固 1.若一个样本的极差为 12.4,组距为 2,则该组数据分成的组数是( ) A.5 B.6 C.7 D.8 2.将一组数据分成 6 组, 若第 1,2,3,5,6 组的频率分别为 0.1, 0.15, 0.2, 0.2, 0.15, 0.05,则第 4 组的频率是( ) A.0.1 B.0.15 C.0.2 D.0.05 3.有 100 名学生,每人只能参加一个运动队,其中参加足球队的有 30 人,参加篮球队的 有 27 人,参加排球队的有 23 人,参加乒乓球队的有 20 人. (1)列出学生参加运动队的频率分布表. (2)画出频率分布直方图.

用样本的频率分布估计总体分布教案

用样本的频率分布估计总体分布教案

用样本的频率分布估计总体分布教案教案:用样本的频率分布估计总体分布一、教学目标:1.了解频率分布的概念和作用;2.学会使用频率分布来估计总体分布;3.掌握构建频率分布表的方法;4.能够利用频率分布表对总体进行估计。

二、教学内容:1.频率分布的概念和作用2.构建频率分布表的方法3.利用频率分布表对总体进行估计三、教学过程:一、频率分布的概念和作用(10分钟)1.频率分布是指对一组数据中各个数值出现的次数进行统计,从而得到数值的分布情况。

2.频率分布的作用是可以帮助我们了解数据的分布规律,从而对总体进行估计。

二、构建频率分布表的方法(30分钟)1.确定数据的分组区间:首先需要确定分组的宽度,即把数据分为若干个区间。

常用的方法有等宽分组和等频分组。

2.计算各个分组的频数:统计每个区间内数据的个数。

3.计算各个分组的频率:将各个分组的频数除以总样本数量,得到各个分组的频率。

4.制作频率分布表:将各个分组的上界、下界、频数和频率列成表格。

三、利用频率分布表对总体进行估计(40分钟)1.利用频率分布表进行估计的方法有两种:直接估计和间接估计。

2.直接估计是通过频率分布表直接读取各个分组的频率来估计总体分布。

3.间接估计是通过频率分布表的图形化表示来估计总体分布,常用的图形有直方图和折线图。

4.对于直方图,可以通过观察分布的形状和峰值来估计总体的分布情况。

5.对于折线图,可以通过观察分布曲线的形状来估计总体的分布情况。

四、练习和小结(20分钟)1.让学生根据给定的数据,完成频率分布表的构建。

2.让学生根据给定的频率分布表,进行总体分布的估计。

3.对学生进行小结和概念回顾,检查他们对于频率分布和总体估计的理解程度。

四、教学反思:通过本节课的教学,学生能够了解频率分布的概念和作用,掌握构建频率分布表的方法,以及利用频率分布表对总体进行估计的方法。

在教学过程中,可以利用实际案例和练习来加深学生对于频率分布和总体估计的理解。

用样本估算总体

用样本估算总体

用样本估算总体
◎ 用样本估算总体的定义
用样本估计总体的两个手段:
(1)用样本的频率分布估计总体的分布;
(2)用样本的数字特征估计总体的数字特征,需要从总体中抽取一个质量较高的样本,才能不会产生较大的估计偏差,且样本的容量越大,估计的结果也就越精确。

◎ 用样本估算总体的知识扩展
用样本估计总体的两个手段:
(1)用样本的频率分布估计总体的分布;
(2)用样本的数字特征估计总体的数字特征,需要从总体中抽取一个质量较高的样本,才能不会产生较大的估计偏差,且样本的容量越大,估计的结果也就越精确。

◎ 用样本估算总体的教学目标
1、通过实例,体会用样本估计总体的思想。

2、能够根据统计结果作出合理的判断和推测,能与同学进行交流,用清晰的语言表达自己的观点。

3、根据有关问题查找资料或调查,用随机抽样的方法选取样本,能用样本的平均数和方差,从而对总体有个体有个合理的估计和推测。

◎ 用样本估算总体的考试要求
能力要求:了解
课时要求:40
考试频率:选考
分值比重:2。

课件6:2.2.1 用样本的频率分布估计总体的分布

课件6:2.2.1 用样本的频率分布估计总体的分布

[思路探索] 根据画频率分布直方图的步骤先画频率分布直方图,再 画折线图.
解 (1)频率分布表如下:
分组
频数 频率
[10.75,10.85)
3Байду номын сангаас
0.03
[10.85,10.95)
9
0.09
[10.95,11.05) [11.05,11.15) [11.15,11.25) [11.25,11.35) [11.35,11.45) [11.45,11.55) [11.55,11.65]
题型二 频率的分布直方图的应用 例2.(1)为了帮助班上的两名贫困生解决经济困难,班上的20名同学捐出 了自己的零花钱,他们捐款数(单位:元)如下:19,20,25,30,24, 23,25,29,27,27,28,28,26,27,21,30,20,19,22,20.班主 任老师准备将这组数据制成频率分布直方图,以表彰他们的爱心.制图 时先计算最大值与最小值的差是________.若取组距为2,则应分成 ________组;若第一组的起点定为18.5,则在[26.5,28.5)内的频数为 ________. (2)将容量为100的某个样本数据拆分为10组,若前七组的频率之和为0.79, 而剩下的三组中频率依次相差0.05,则剩下的三组中频率最大的一组的 频率为________.
(4)数据小于11.20的可能性即数据小于11.20的频率,设为x, 则(x-0.41)÷(11.20-11.15) =(0.67-0.41)÷(11.25-11.15), 所以x-0.41=0.13,即x=0.54, 从而估计数据小于11.20的可能性是54%.
变式3.美国历届总统中,就任时年纪最小的是罗斯福,他于1901年 就任,当时年仅42岁;就任时年纪最大的是里根,他于1981年就 任,当时69岁.下面按时间顺序(从1789年的华盛顿到2009年的奥 巴马,共44任)给出了历届美国总统就任时的年龄: 57,61,57,57,58,57,61,54,68,51,49,64,50,48, 65,52,56,46,54,49,51,47,55,55,54,42,51,56, 55,51,54,51,60,62,43,55,56,61,52,69,64,46, 54,48 (1)将数据进行适当的分组,并画出相应的频率分布直方图和频率 分布折线图. (2)用自己的语言描述一下历届美国总统就任时年龄的分布情况.

2.2.1用样本的频率分布估计总体分布

2.2.1用样本的频率分布估计总体分布
2019/4/10
总体密度曲线
反映了总体在各个范围内取值的百分比,精确地 反映了总体的分布规律。是研究总体分布的工具. 用样本分布直方图去估计相应的总体分布时, 一般样本容量越大,频率分布直方图就会无限接 近总体密度曲线,就越精确地反映了总体的分布 规律,即越精确地反映了总体在各个范围内取值 百分比。
定额管理,即确定一个居民月用水量标准a, 用水量不超过a的部分按平价收费,超出a的 部分按议价收费.那么①标准a定为多少比较合 理呢? ②为了较合理地确定这个标准,你认 为需要做哪些工作?
通过抽样,我们获得了100位居民某年的月平均 用 水量(单位: t) ,如下表:
思考:由上表,大家可以得到什么信息?
2019/4/10
二、画频率分布直方图的步骤
1.求极差(即一组数据中最大值与最小值的差)
4.3 - 0.2 = 4.1
极差 4.1 2.决定组距与组数: = 组距= = 0.5 8 组数
当数据在100个以内时,常分8-12组.
3.将数据分组
[0,0.5 ),[0.5,1 ),…,[4,4.5]
4.列频率分布表
月均用水量 /t 4.5
归纳: 作频率分布直方图的方法为:
把横轴分成若干段,每一段对应一个组 的组距,以此线段为底作矩形,高等于 该组的频率/组距, 这样得到一系列矩形, 每一个矩形的面积恰好是该组上的频率, 这些矩形构成了频率分布直方图.
三、频率分布直方图再认识 1、小长方形
频率
的面积总和=?
频率 组距 0.5 0.4 0.3 0.2 0.1
O
0.5 1 1.5 2 2.5 3 3.5 4 4.5 月均用水量/t
2019/4/10
当总体中的个体数很多时(如抽样调查全国城市 居民月均用水量) ,随着样本容量的增加,作图时 所分的组数增多,组距减少,你能想象出相应的 频率分布折线图会发生什么变化吗?

用样本估计总体

用样本估计总体
频率/组距 0.0005 0.0004 0.0003 0.0002 0.0001
月收入(元)
1000 1500 2000 2500 3000 3500 4000
练习1、如图是150辆汽车通过某路段 时速度的频率分布直方图,则速度在[60, 60 辆. 70)的汽车大约有______
在频率分布直方图中,依次连接各小长 方形上端的中点,就得到一条折线,这条 折线称为频率分布折线图.
练习3、以往招生Biblioteka 计显示,某所大学录 取的新生高考总分的中位数基本稳定在550 分,若某同学今年高考得了520分,他想报 考这所大学还需收集哪些信息?
要点: (1)查往年录取的新生的平均分数.若平均数 小于中位数很多,说明最低录取线较低,可以 报考; (2)查往年录取的新生高考总分的标准差.若 标准差较大,说明新生的录取分数较分散,最 低录取线可能较低,可以考虑报考.
标准差的取值范围是什么?标准差为0 的样本数据有何特点? s≥0,标准差为0的样本数据都相等. 方差的意义: 方差(或标准差)越大离散程度越大,数 据较分散; 方差(或标准差)越小离散程度越小,数 据较集中在平均数周围.
例 2 、有两个班级,每班各自按学号随 机选出 5 名学生,测验铅球成绩,以考察 体育达标程度,测验成绩如下:单位(米) 甲 9.1 7.8 8.5 6.9 5.2 乙 8.8 7.2 7.3 7.5 6.7 两个班相比较,哪个班整体实力强一些 ?
制作频率分布直方图的方法: (1)求极差(即一组数据中最大值与最小 值的差); (2)决定组距与组数;(样本容量不超过
100时,组数常分成5~12组)
(3)将数据分组; (4)列频率分布表; (5)画频率分布直方图.
注:频率分布直方图中

用样本频率分布估计总体分布 课件

用样本频率分布估计总体分布   课件

题型三 频率分布直方图的应用
例3 为了了解高一学生的体能情况, 某 校抽取部分学生进行一分钟跳绳次数测 试, 将所得数据整理后, 画出频率分布直方 图(如图所示), 图中从左到右各小长方形面 积之比为2∶4∶17∶15∶9∶3, 第二小组频 数为12.
(1)第二小组的频率是多少?样本容量是多 少? (2)若次数在110次以上(含110次)为达标, 试估计该校全体高一学生的达标率是多少?
如果把这些数据形成频率分布表或频率分 布直方图, 就可以比较清楚地看出样本数 据的特征, 从而估计总体的分布情况. (2)频率分布直方图 在频率分布直方图中, 纵轴表示 ___频__率_/_组__距____, 数据落在各小组内的频 率用各_小__长__方_形__的__面__积______表示, 各小长 方形面积的总和等1于________.
题型一 频率分布表、频率分布直 方图及折线图
例1 (本题满分12分)美国历届总统中, 就任时年纪最小的是罗斯福, 他于1901年 就任, 当时年仅42岁; 就任时年纪最大的是 里根, 他于1981年就任, 当时69岁.
下面按时间顺序(从1789年的华盛顿到 2009年的奥巴马, 共44任)给出了历届美国 总统就任时的年龄: 57,61,57,57,58,57,61,54,68,51,49,64,50, 48, 65,52,56,46,54,49,51,47,55,55,54,42,51, 56, 55,51,54,51,60,62,43,55,56,61,52,69,64, 46, 54,48
【名师点评】 频率分布直方图也反映了 各个范围内取值的可能性, 利用样本在这 一范围内的频率, 可近似估计总体在这一 范围内的可能性.
互动探究 3. 在本例中, 一分钟跳绳次数在120以下 (含120次)的人数是多少?

2.2.1用样本的频率分布估计总体的分布

2.2.1用样本的频率分布估计总体的分布

⑤上例中,如果规定,钢管内径的尺寸在 区间25.325~25.475内为优等品,我们可依 据抽样分析统计出产品中优等品的比例, 也就是它的频率。从上表或上图容易看出, 这个频率值等于0.12+0.18+0.25+0.16 +0.13=0.84,于是可以估计出所有生产的 钢管中有84%的优等品。工厂可以根据质 量规范,看看是否达到优等品率的要求, 如果没有达到,就需要进一步分析原因, 解决问题。
分组时,通常对组内数值所在区间取左 闭右开区间,最后一组取闭区间,当然也 可以采用其他分组方法。
④登记频数,计算频率,列出频率分布表 频数 频率= —————,如第1小组的频率 样本容量 1 为——— =0.01. 100
频率分布表:
⑤ 绘制频率分布直方图 利用直方图反映样本的频率分布规律, 这样的直方图称为频率分布直方图,简称 频率直方图。 下面仍以上例中的数据加 以说明。 (1)频率分布直方图的绘制方法与步骤 S1 先制作频率分布表,然后作直角坐标 系,以横轴表示产品内径尺寸,纵轴表示 频率/组距.
运用上面的算法得出这组样本数据的最 大值是25.56,用类似的算法可以得出最 小值是25.24它们的差为 25.56-25.24= 0.32,所以极差等于0.32mm. ②决定组距与组数 样本数据有100个,由上面算得极差为 0.32,取组距为0.03, 极差 那么组数= ——— =10.67,于是分成11组。 组距
4.列频率分布表的步骤
下面我们通过一个具体的实例来阐述这 一方法。 某钢铁加工厂生产内径为25.40mm的钢 管,为了掌握产品的生产状况,需定期对 产品进行检测,下面的数据是一次抽样中 的100件钢管的内径尺寸:
最大值
最小值
列频率分布表的方法步骤: ①求极差(也称全距,即一组数据中最 大值与最小值的差): 计算极差时,需要找出这组数据的最 大值和最小值,当数据很多时,可借助 如下算法(最大值): S1 把这100个数据命名为A(1)、A(2)、 A(3)、……、A(100); S2 设变量x=A(1); S3 把A(i) (i=2,3,……,100)逐个与x比 较,如果A(i)>x,则x=A(i);

《使用样本的频率分布评估总体分布》教案

《使用样本的频率分布评估总体分布》教案

《使用样本的频率分布评估总体分布》教案课题:使用样本的频率分布评估总体分布目标:学生将了解如何使用样本数据的频率分布来评估总体数据的分布情况,并能够利用统计方法进行分析和解释。

课时安排:2课时教学内容:第一课时:1.引言(10分钟)-简要介绍本节课的主题和目标-解释为什么需要通过样本数据评估总体数据的分布2.总体分布与样本分布(15分钟)-解释什么是总体分布和样本分布-引导学生理解样本数据与总体数据之间的关系3.频率分布表(20分钟)-介绍频率分布表的基本概念-演示如何根据样本数据创建频率分布表-讨论频率分布表的作用和意义4.统计图表(15分钟)-引导学生绘制频率分布直方图和频率分布线图-分析不同的统计图表对于展现数据的优缺点第二课时:1.分析样本数据(20分钟)-分配给学生一些样本数据-引导学生根据样本数据创建频率分布表和绘制统计图表-学生通过分析样本数据,评估总体数据的分布情况2.统计方法应用(20分钟)-讲解如何使用统计方法对样本数据进行分析-给学生几个实际案例,让他们运用统计方法进行数据分析和解释3.总结与练习(15分钟)-回顾本节课的内容和重点-提供练习题目让学生自行解答,巩固所学知识教学方法:1.问题导向教学法:通过提出问题引导学生思考,激发学生的兴趣和思维能力。

2.视觉辅助教学法:通过使用图表和实例演示来帮助学生更好地理解概念和方法。

3.合作学习法:鼓励学生合作讨论,共同解决问题,提高学生的团队合作能力。

评估方法:1.课堂表现评估:观察学生在课堂上的表现,包括参与讨论、解决问题的能力等。

2.练习题考核:通过练习题考核学生对于课堂知识的掌握程度和应用能力。

3.实际数据分析作业:布置实际数据分析作业让学生独立完成,评估学生对于统计方法的理解和应用能力。

教学资源:1. PowerPoint演示文稿2.样本数据集3.频率分布表和统计图表示例4. 统计软件(如Excel)课后作业:1.阅读相关统计学知识,进一步加深对总体分布与样本分布的理解。

高中数学人教版A版必修三课时作业习题及答案:第二章2-2 用样本估计总体

高中数学人教版A版必修三课时作业习题及答案:第二章2-2 用样本估计总体

第二章统计2.2 用样本估计总体2.2.1用样本的频率分布估计总体分布课时目标 1.理解用样本的频率分布估计总体分布的方法.2.会列频率分布表,画频率分布直方图,频率分布折线图,茎叶图.3.能够利用图形解决实际问题.1,用样本估计总体的两种情况(1)用样本的____________估计总体的分布.(2)用样本的____________估计总体的数字特征.2,数据分析的基本方法(1)借助于图形分析数据的一种基本方法是用图将它们画出来,此法可以达到两个目的,一是从数据中____________,二是利用图形________信息.(2)借助于表格分析数据的另一方法是用紧凑的________改变数据的排列方式,此法是通过改变数据的____________,为我们提供解释数据的新方式.3,频率分布直方图在频率分布直方图中,纵轴表示____________,数据落在各小组内的频率用________________来表示,各小长方形的面积的总和等于____.4,频率分布折线图和总体密度曲线(1)频率分布折线图连接频率分布直方图中各小长方形__________,就得到了频率分布折线图.(2)总体密度曲线随着样本容量的增加,作图时所分的____增加,组距减小,相应的频率分布折线图就会越来越接近于一条________,统计中称之为总体密度曲线,它反映了总体在各个范围内取值的百分比.5,茎叶图(1)适用范围:当样本数据较少时,用茎叶图表示数据的效果较好.(2)优点:它不但可以____________,而且可以__________,给数据的记录和表示都带来方便.(3)缺点:当样本数据______时,枝叶就会很长,茎叶图就显得不太方便.一、选择题1,下列说法不正确的是()A,频率分布直方图中每个小矩形的高就是该组的频率B,频率分布直方图中各个小矩形的面积之和等于1C,频率分布直方图中各个小矩形的宽一样大D,频率分布折线图是依次连接频率分布直方图的每个小矩形上端中点得到的2,一个容量为100的样本,其数据的分组与各组的频数如下:组别(0,10] (10,20] (20,30] (30,40] (40,50] (50,60] (60,70] 频数12 13 24 15 16 13 7 则样本数据落在(10,40]上的频率为()A,0.13 B.0.39 C.0.52 D.0.643,100辆汽车通过某一段公路时的时速的频率分布直方图如下图所示,则时速在[60,70)的汽车大约有()A.30辆B.40辆C,60辆D.80辆4,如图是总体密度曲线,下列说法正确的是()A,组距越大,频率分布折线图越接近于它B,样本容量越小,频率分布折线图越接近于它C,阴影部分的面积代表总体在(a,b)内取值的百分比D,阴影部分的平均高度代表总体在(a,b)内取值的百分比5,一个容量为35的样本数据,分组后,组距与频数如下:[5,10),5个;[10,15),12个;[15,20),7个;[20,25),5个;[25,30),4个;[30,35),2个.则样本在区间[20,+∞)上的频率为()A,20% B.69%C,31% D.27%6,某工厂对一批产品进行了抽样检测.右图是根据抽样检测后的产品净重(单位:克)数据绘制的频率分布直方图,其中产品净重的范围是[96,106],样本数据分组为[96,98),[98,100),[100,102),[102,104),[104,106],已知样本中产品净重小于100克的个数是36,则样本中净重大于或等于98克并且小于104克的产品的个数是()A,90 B.75 C.60 D.45题号 1 2 3 4 5 6答案二、填空题7,将容量为n的样本中的数据分成6组,绘制频率分布直方图.若第一组至第六组数据的频率之比为2∶3∶4∶6∶4∶1,且前三组数据的频数之和等于27,则n=________. 8,在如图所示的茎叶图中,甲,乙两组数据的中位数分别是________.9.在抽查产品的尺寸过程中,将其尺寸分成若干组,[a,b)是其中的一组,抽查出的个体在各组上的频率为m,该组上直方图的高为h,则|a-b|=________.三、解答题10,抽查100袋洗衣粉,测得它们的重量如下(单位:g):494498493505496492485483508 511495494483485511493505488 501491493509509512484509510 495497498504498483510503497 502511497500493509510493491 497515503515518510514509499 493499509492505489494501509 498502500508491509509499495 493509496509505499486491492 496499508485498496495496505 499505496501510496487511501496(1)列出样本的频率分布表:(2)画出频率分布直方图,频率分布折线图;(3)估计重量在[494.5,506.5]g的频率以及重量不足500 g的频率.能力提升11,在某电脑杂志的一篇文章中,每个句子的字数如下:10,28,31,17,23,27,18,15,26,24,20,19,36,27,14,25,15,22,11,24,27,17在某报纸的一篇文章中,每个句子的字数如下:27,39,33,24,28,19,32,41,33,27,35,12,36,41,27,13,22,23,18,46,32,22(1)将这两组数据用茎叶图表示;(2)将这两组数据进行比较分析,你会得到什么结论?12,某市2010年4月1日-4月30日对空气污染指数的监测数据如下(主要污染物为可吸入颗粒物):61,76,70,56,81,91,92,91,75,81,88,67,101,103,95,91,77,86,81,83,82,82,64,79,86,85,75,71,49,45.(1)完成频率分布表.(2)作出频率分布直方图.(3)根据国家标准,污染指数在0~50之间时,空气质量为优;在51~100之间时,为良;在101~150之间时,为轻微污染;在151~200之间时,为轻度污染.请你依据所给数据和上述标准,对该市的空气质量给出一个简短评价.答案: 2.2.1 用样本的频率分布估计总体分布 知识梳理1,(1)频率分布 (2)数字特征 2.(1)提取信息 传递 (2)表格 构成形式 3.频率/组距 小长方形的面积 1 4.(1)上端的中点 (2)组数 光滑曲线5,(2)保留所有信息 随时记录 (3)较多作业设计1,A 2,C [样本数据落在(10,40]上的频数为13+24+15=52,故其频率为52100=0.52.] 3,B [时速在[60,70)的汽车的频率为:0,04×(70-60)=0.4,又因汽车的总辆数为100, 所以时速在[60,70)的汽车大约有0.4×100=40(辆).]4,C5,C [由题意,样本中落在[20,+∞)上的频数为5+4+2=11,∴在区间[20,+∞)上的频率为1135≈0.31.]6,A [∵样本中产品净重小于100克的频率为(0.050+0.100)×2=0.3,频数为36, ∴样本总数为360.3=120.∵样本中净重大于或等于98克并且小于104克的产品的频率为(0.100+0.150+0.125)×2=0.75,∴样本中净重大于或等于98克并且小于104克的产品的个数为120×0.75=90.] 7,60解析 ∵n·2+3+42+3+4+6+4+1=27, ∴n =60.8,45,46解析 由茎叶图及中位数的概念可知x 甲中=45,x 乙中=46. 9.m h解析频率组距=h ,故|a -b|=组距=频率h =m h . 10,解 (1)在样本数据中,最大值是518,最小值是483,它们相差35,若取组距为4,由于354=834,要分9组,组数合适,于是决定取组距为4 g ,分9组,使分点比数据多一位小数,且把第一组起点稍微减小一点,得分组如下:[482.5,486.5),[486.5,490.5),…,[514.5,518.5). 列出频率分布表:分组 个数累计 频数 频率 累积频率 [482.5,486.5) 正 8 0.08 0.08 [486.5,490.5) 3 0.03 0.11[490.5,494.5) 正正正 17 0.17 0.28 [494.5,498.5) 正正正正- 21 0.21 0.49 [498.5,502.5) 正正 14 0.14 0.63 [502.5,506.5) 正 9 0.09 0.72[506.5,510.5) 正正正 19 0.19 0.91 [510.5,514.5) 正- 6 0.06 0.97[514.5,518.5] 3 0.03 1.00合计 100 1.00(2)频率分布直方图与频率分布折线图如图.(3)重量在[494.5,506.5]g 的频率为:0.21+0.14+0.09=0.44.设重量不足500 g 的频率为b ,根据频率分布表,b -0.49500-498.5≈0.63-0.48502.5-498.5,故b ≈0.55.因此重量不足500 g 的频率约为0.55. 11,解 (1)(2)电脑杂志上每个句子的字数集中在10~30之间;而报纸上每个句子的字数集中在20~40之间.还可以看出电脑杂志上每个句子的平均字数比报纸上每个句子的平均字数要少.说明电脑杂志作为科普读物需要通俗易懂、简明.12,解 (1)(2)(3)答对下述两条中的一条即可:①该市有一个月中空气污染指数有2天处于优的水平,占当月天数的115;有26天处于良的水平,占当月天数的1315;处于优或良的天数为28,占当月天数的1415.说明该市空气质量基本良好.②轻微污染有2天,占当月天数的115;污染指数在80以上的接近轻微污染的天数15,加上处于轻微污染的天数2,占当月天数的1730,超过50%;说明该市空气质量有待进一步改善.2.2.2用样本的数字特征估计总体的数字特征课时目标 1.会求样本的众数,中位数,平均数,标准差,方差.2.理解用样本的数字特征来估计总体数字特征的方法.3.会应用相关知识解决简单的统计实际问题.1,众数,中位数,平均数(1)众数的定义:一组数据中重复出现次数________的数称为这组数的众数.(2)中位数的定义及求法把一组数据按从小到大的顺序排列,把处于最______位置的那个数称为这组数据的中位数.①当数据个数为奇数时,中位数是按从小到大顺序排列的__________那个数.②当数据个数为偶数时,中位数为排列的最中间的两个数的________.(3)平均数①平均数的定义:如果有n个数x1,x2,…,x n,那么x=____________,叫做这n个数的平均数.②平均数的分类:总体平均数:________所有个体的平均数叫总体平均数.样本平均数:________所有个体的平均数叫样本平均数.2,标准差,方差(1)标准差的求法:标准差是样本数据到平均数的一种平均距离,一般用s表示.s=________________________________________________________________________.(2)方差的求法:标准差的平方s2叫做方差.s2=________________________________________________________________________.一、选择题1,下列说法正确的是()A,在两组数据中,平均值较大的一组方差较大B,平均数反映数据的集中趋势,方差则反映数据离平均值的波动大小C,方差的求法是求出各个数据与平均值的差的平方后再求和D,在记录两个人射击环数的两组数据中,方差大的表示射击水平高2,已知10名工人生产同一零件,生产的件数分别是16,18,15,11,16,18,18,17,15,13,设其平均数为a,中位数为b,众数为c,则有()A,a>b>c B.a>c>bC,c>a>b D.c>b>a3,甲,乙两位同学都参加了由学校举办的篮球比赛,他们都参加了全部的7场比赛,平均得分均为16分,标准差分别为5.09和3.72,则甲,乙两同学在这次篮球比赛活动中,发挥得更稳定的是()A,甲B.乙C,甲,乙相同D.不能确定4,一组数据的方差为s2,将这组数据中的每个数据都扩大3倍,所得到的一组数据的方差是()A.13s2B.s2C,3s2D.9s25,如图是2010年某校举行的元旦诗歌朗诵比赛中,七位评委为某位选手打出分数的茎叶统计图,去掉一个最高分和一个最低分,所剩数据的平均数和方差分别为()A,84,4.84 B.84,1.6C,85,1.6 D.85,0.46,如图,样本A和B分别取自两个不同的总体,它们的样本平均数分别为x A和x B,样本标准差分别为s A和s B则()A.x A>x B,s A>s BB.x A<x B,s A>s BC.x A>x B,s A<s BD.x A<x B,s A<s B题号 1 2 3 4 5 6答案二、填空题7,已知样本9,10,11,x,y的平均数是10,方差是4,则xy=________.8,甲,乙两名射击运动员参加某大型运动会的预选赛,他们分别射击了5次,成绩如下表(单位:环):甲10 8 9 9 9乙10 10 7 9 9如果甲,乙两人只能有1人入选,则入选的应为________.9,若a1,a2,…,a20,这20个数据的平均数为x,方差为0.20,则数据a1,a2,…,a20,x这21个数据的方差为________.三、解答题10,甲,乙两人在相同条件下各射靶10次,每次射靶的成绩情况如图所示:(1)请填写表:平均数方差中位数命中9环及9环以上的次数甲乙(2)请从下列四个不同的角度对这次测试结果进行分析:①从平均数和方差相结合看(分析谁的成绩更稳定);②从平均数和中位数相结合看(分析谁的成绩好些);③从平均数和命中9环及9环以上的次数相结合看(分析谁的成绩好些);④从折线图上两人射击命中环数的走势看(分析谁更有潜力).能力提升11,下面是一家快餐店所有工作人员(共7人)一周的工资表:总经理大厨二厨采购员杂工服务员会计3 000元450元350元400元320元320元410元(1)计算所有人员一周的平均工资;(2)计算出的平均工资能反映一般工作人员一周的收入水平吗?(3)去掉总经理的工资后,再计算剩余人员的平均工资,这能代表一般工作人员一周的收入水平吗?12,1,平均数、众数、中位数都是描述数据的集中趋势的,其中平均数是最重要的量.众数体现了样本数据的最大集中点,但它对其他数据信息的忽视使得无法客观地反映总体特征;中位数是样本数据所占频率的等分线,它不受少数几个极端值的影响,这在某些情况下是优点,但它对极端值的不敏感有时也成为缺点,因为这些极端值有时是不能忽视的.由于平均数与每一个样本的数据有关,所以任何一个样本数据的改变都会引起平均数的改变,这是众数、中位数不具有的性质.也正因为这个原因,与众数、中位数比较起来,平均数可以反映出更多的关于样本数据全体的信息.但平均数受数据中的极端值的影响较大,使平均数在估计总体时可靠性降低.2,在频率分布直方图中,中位数左边和右边的直方图的面积应该相等.3,极差、方差、标准差是描述数据的离散程度的,即各数据与其平均数的离散程度.标准差、方差描述了一组数据围绕平均数波动的大小.标准差、方差越大,数据的离散程度越大;标准差、方差越小,数据的离散程度越小.答案:2,2.2用样本的数字特征估计总体的数字特征知识梳理1,(1)最多 (2)中间 ①中间位置的 ②平均数 (3)①x 1+x 2+…+x n n ②总体中 样本中2,(1)1n[(x 1-x )2+(x 2-x )2+…+(x n -x )2] (2)1n [(x 1-x )2+(x 2-x )2+…+(x n -x )2] 作业设计1,B [A 中平均值和方差是数据的两个特征,不存在这种关系;C 中求和后还需取平均数;D 中方差越大,射击越不平稳,水平越低.]2,D [由题意a =110(16+18+15+11+16+18+18+17+15+13)=15710=15.7,中位数为16,众数为18,即b =16,c =18,∴c>b>a.]3,B [方差或标准差越小,数据的离散程度越小,表明发挥得越稳定.∵5.09>3.72,故选B .]4,D [s 20=1n [9x 21+9x 22+…+9x 2n -n(3x )2]=9·1n(x 21+x 22+…+x 2n -n x 2)=9·s 2(s 20为新数据的方差).]5,C [由题意x =15(84+84+86+84+87)=85.s 2=15[(84-85)2+(84-85)2+(86-85)2+(84-85)2+(87-85)2]=15(1+1+1+1+4)=85=1.6.]6,B [样本A 数据均小于或等于10,样本B 数据均大于或等于10,故x A <x B , 又样本B 波动范围较小,故s A >s B .] 7,91解析 由题意得8,甲解析 x 甲=9,2S 甲=0.4,x 乙=9,2S 乙=1.2,故甲的成绩较稳定,选甲.9,0.19 解析 这21个数的平均数仍为20,从而方差为121×[20×0.2+(20-20)2]≈0.19. 10,解 由折线图,知甲射击10次中靶环数分别为:9,5,7,8,7,6,8,6,7,7.将它们由小到大重排为:5,6,6,7,7,7,7,8,8,9.乙射击10次中靶环数分别为: 2,4,6,8,7,7,8,9,9,10.也将它们由小到大重排为:2,4,6,7,7,8,8,9,9,10.(1)x 甲=110×(5+6×2+7×4+8×2+9)=7010=7(环), x 乙=110×(2+4+6+7×2+8×2+9×2+10)=7010=7(环),s 2甲=110×[(5-7)2+(6-7)2×2+(7-7)2×4+(8-7)2×2+(9-7)2]=110×(4+2+0+2+4)=1.2,s 2乙=110×[(2-7)2+(4-7)2+(6-7)2+(7-7)2×2+(8-7)2×2+(9-7)2×2+(10-7)2] =110×(25+9+1+0+2+8+9)=5.4. 根据以上的分析与计算填表如下:平均数 方差 中位数 命中9环及9环以上的次数甲 7 1.2 7 1乙 7 5.4 7.5 3 (2)①∵平均数相同,2S 甲<2S 乙,∴甲成绩比乙稳定. ②∵平均数相同,甲的中位数<乙的中位数,∴乙的成绩比甲好些.③∵平均数相同,命中9环及9环以上的次数甲比乙少,∴乙成绩比甲好些.④甲成绩在平均数上下波动;而乙处于上升势头,从第四次以后就没有比甲少的情况发生,乙较有潜力.11,解 (1)平均工资即为该组数据的平均数 x =17×(3 000+450+350+400+320+320+410)=17×5 250=750(元).(2)由于总经理的工资明显偏高,所以该值为极端值,因此由(1)所得的平均工资不能反映一般工作人员一周的收入水平.(3)除去总经理的工资后,其他工作人员的平均工资为:x ′=16×(450+350+400+320+320+410)=16×2 250=375(元).这个平均工资能代表一般工作人员一周的收入水平.12,解 设第一组20名学生的成绩为x i (i =1,2,…,20),第二组20名学生的成绩为y i (i =1,2,…,20), 依题意有:x =120(x 1+x 2+…+x 20)=90,y =120(y 1+y 2+…+y 20)=80,故全班平均成绩为:140(x 1+x 2+…+x 20+y 1+y 2+…+y 20)=140(90×20+80×20)=85;又设第一组学生成绩的标准差为s 1,第二组学生成绩的标准差为s 2,则s 21=120(x 21+x 22+…+x 220-20x 2),s 22=120(y 21+y 22+…+y 220-20y 2) (此处,x =90,y =80),又设全班40名学生的标准差为s ,平均成绩为z (z =85),故有s 2=140(x 21+x 22+…+x 220+y 21+y 22+…+y 220-40z 2) =140(20s 21+20x 2+20s 22+20y 2-40z 2) =12(62+42+902+802-2×852)=51. s =51.所以全班同学的平均成绩为85分,标准差为51.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.定组距与组数:组数= 极差 = 组距
4.1 0.5
=
8.2
3.将数据分组
[0,0.5 ),[0.5,1 ),…,[4,4.5]
4.列频率分布表
100位居民月平均用水量的频率分布表
5.画频率分布直方图
频率/组距
0.50 0.40 0.30 0.20 0.10
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 月平均用水量/t
解:组距为3
分组 频数 [12.5, 15.5) 3
[15.5, 18.5) 8 [18.5, 21.5) 9 [21.5, 24.5) 11 [24.5, 27.5) 10
[27.5, 30.5) 5 [30.5, 33.5) 4
频率
0.06 0.16 0.18 0.22 0.20 0.10 0.08
月均用 水量/t
ab
(图中阴影部分的面积,表示总体在 某个区间 (a, b) 内取值的百分比)。
总体密度曲线
总体密度曲线反映了总体在各个范围内取值的 百分比,精确地反映了总体的分布规律。是研究总 体分布的工具.
用样本分布直方图去估计相应的总体分布时, 一般样本容量越大,频率分布直方图就会无限接 近总体密度曲线,就越精确地反映了总体的分布 规律,即越精确地反映了总体在各个范围内取值 百分比。
一、用样本的频率分布估计总体分布
几个基本概念 1、频数:将一批数据按要求分为若干个组, 各组内数据的个数,叫做该组的频数。
2、频率:每组数据的个数除以总数据个数 的商叫做该组的频率。 3、样本的频率分布:根据随机抽取样本的 大小,分别计算某一事件出现的频率,这 些频率的分布规律,就叫做样本的频率分 布。
一、求极差,即数据中最大值与最小值的差 二、决定组距与组数 :组距=极差/组数 三、分组,通常对组内数值所在区间,
取左闭右开区间 , 最后一组取闭区间 四、登记频数,计算频率,列出频率分布表
五、画出频率分布直方图(纵轴表示频率/组距)
练习
1.有一个容量为50的样本数据的分组的频数如下:
[12.5, 15.5) 3
分组
频数
频率
频率累计
[12,15)
6
[15,18)
0.08
[18,21)
0.30
[21,24)
21
[24,27)
0.69
[27,30)
16
[30,33)
0.10
[33,36]
1.00
合计
100
1.00
课堂小结
编制频率分布直方图的步骤: ①找最大值与最小值。 ②决定组距与组数 ③决定分点 ④登记频数,计算频率,列表,画直方图
❖ 思考 :
如果当地政府希望使 85% 以上的居民每 月的用水量不超出标准,根据频率分布表 和频率分布直方图,你能对制定月用水量 标准提出建议吗?
注意
1、小正方形的面积=组距×频率/组距=频率 2、各小正方形的面积之和等于1. 3、每一小组频率实际上反映样本数据落在 各个小组的比例大小。
总结:画一组数据的频率分布直方图,可 以按以下的步骤进行:
A. 5.5~7.5 C. 9.5~11分.5组
B. 7.5~9.5 频D数. 11.5~1频3.率5
频数累计
5.5~7.5
2
0.1
2
7.5~9.5
6
0.3
8
8 9.5~11.5
0.4
16
11.5~13. 4 5
0.2
20
合计
20
1.0
3.一个容量为100的样本,数据的分组和各组的相 关信息如下表,试完成表中每一行的两个空格.
频率/ 组距
0.020 0.053 0.060 0.073 0.067 0.033 0.027
频率分布直方图如下:
频率 组距 0.070 0.060 0.050 0.040 0.030 0.020 0.010
12.5 15.5
2.已知样本10, 8, 6, 10, 8,13,11,10,12,7,8,9,12,9, 11,12,9,10,11,11, 那么频率为0.2范围的是 ( D)
说明:(1)确定分点时,使分点比数据多一位小数,并且把第1小组的起点 稍微再小一点.
频率分布直方图如下:
频率
连接频率分布直方图
组距
中各小长方形上端的
中点,得到频率分布折
线图
0.50
0.40
0.30
0.20
0.10
月均用水量
/t
0.5 1 1.5 2 2.5 3 3.5 4 4.5
总体密度曲线
频率 组距
茎叶图
某赛季甲、乙两名篮球运动员每场比赛得分的原 始记录如下:
(1)甲运动员得分:
13,51,23,8,26,38,16,33,14,28,39
(1)乙运动员得分:
49,24,12,31,50,31,44,36,15,37,25,36,39
茎叶图
茎是指中间的一列
数,表示得分的十位


叶就是从茎的旁边 生长出来的数,表示得 分的个位数。
如何用样本的频率分布 估计总体分布?
引例:我国是世界上严重缺水的国家之一, 城市缺水问题较为突出。
2000年全国主要城市中缺水情况排在前10位的城市
例1:某市政府为了节约生活用水,计划在本市 试行居民生活用水定额管理,即确定一个居民月用 水量标准a , 用水量不超过a的部分按平价收费,超 过a的部分按议价收费。
[15.5, 18.5) 8 [18.5, 21.5) 9
[24.5, 27.5) 10 [27.5, 30.5) 5 [30.5, 33.5) 4
[21.5, 24.5) 11
(1)列出样本的频率分布表;
(2)画出频率分布直方图;
(3)根据频率分布直方图估计,数据落在[15.5, 24.5)的 百分比是多少?
①如果希望大部分居民的日常生活不受影响,那 么标准a定为多少比较合理呢?
②为了较合理地确定这个标准,你认为需要做 哪些工作?
通过抽样,我们获得了100位居民某年的月平均

水量(单位:
t) ,如下表:
思考:由上表,大家可以得到什么信息?
频率分布直方图
步骤:
1.求极差: 4.3 - 0.2 = 4.1
用样本估计总体 2.2.1用样本的频 率分布估计总体
分布
统计的基本思想方法:
用样本估计总体,即通常不直接去研究总体, 而是通过从总体中抽取一个样本,根据样本的 情况去估计总体的相应情况.
具体步骤
一是如何从总体中抽取样本?
二是如何根据对样本的整理、计算、分析, 对总体的情况作出推断.(1、用样本频率分布 估计总体分布,2、用样本的某种数字特征 (例如平均数、方差等)去估计总体的相应数 字特征。)
相关文档
最新文档