高中物理基础知识 总结 几种典型的运动模型

合集下载

高中物理板块模型归纳

高中物理板块模型归纳

高中物理板块模型归纳高中物理板块模型归纳是指将高中物理课程中所涉及的知识点进行分类、总结和归纳,形成一种系统化的知识结构。

这种模型可以帮助学生更好地理解和掌握物理知识,提高学习效率。

下面详细介绍高中物理板块模型。

一、力学1. 运动学(1)描述运动的数学工具:位移、速度、加速度、角速度、周期等。

(2)直线运动规律:匀速直线运动、匀加速直线运动、匀减速直线运动、匀速圆周运动。

(3)曲线运动规律:平抛运动、斜抛运动、圆周运动。

2. 动力学(1)牛顿运动定律:惯性定律、动力定律、作用与反作用定律。

(2)动量定理:动量的守恒、动量的变化。

(3)能量守恒定律:动能、势能、机械能、内能。

3. 机械振动与机械波(1)简谐振动:正弦、余弦、螺旋线。

(2)非简谐振动:阻尼振动、受迫振动。

(3)机械波:横波、纵波、波的干涉、波的衍射、波的传播。

二、热学1. 分子动理论(1)分子运动的基本规律:布朗运动、分子碰撞、分子速率分布。

(2)气体的状态方程:理想气体状态方程、范德瓦尔斯方程。

2. 热力学(1)热力学第一定律:内能、热量、功。

(2)热力学第二定律:熵、热力学第二定律的微观解释。

3. 物态变化(1)相变:固态、液态、气态、等离子态。

(2)相变规律:熔化、凝固、汽化、液化、升华、凝华。

三、电学1. 电磁学(1)静电学:库仑定律、电场、电势、电势差、电容、电感。

(2)稳恒电流:欧姆定律、电阻、电流、电功率、电解质。

(3)磁场:毕奥-萨伐尔定律、安培环路定律、洛伦兹力、磁感应强度、磁通量、磁介质。

2. 电路与电器(1)电路:串联电路、并联电路、混联电路、电路图。

(2)电器:电阻、电容、电感、二极管、晶体管、运算放大器。

3. 电磁波(1)电磁波的产生:麦克斯韦方程组、赫兹实验。

(2)电磁波的传播:波动方程、折射、反射、衍射。

四、光学1. 几何光学(1)光线、光的反射、光的折射、光的速度。

(2)透镜:凸透镜、凹透镜、眼镜、相机、投影仪。

高考物理:高中物理大题解题模型公式汇总!

高考物理:高中物理大题解题模型公式汇总!

高考物理:高中物理大题解题模型公式汇总!
一、匀变速直线运动
二、共点力平衡
三、牛顿运动定律
1.斜面模型
2.板块模型
3.传送带模型
四、曲线运动
ω增大,F增大。

五、天体运动
1.相关物理量的关系图
2.变轨模型
六、碰撞和动量守恒
1.弹性正碰
满足动量守恒定律和机械能守恒定律
解得:
2.冲击摆
七、带电粒子在电场中的运动
1.加速+偏转模型
电加速:
电偏转:
水平方向:
竖直方向:
偏转角:
荧光屏上的偏移量:
2.电场+重力场的叠加场
▲图中qE=mg,则θ=45°
八、带电粒子在磁场中的运动
1.找圆心、求半径、算时间
物理方程:
几何关系:
速度偏向角:
▲算时间:
2.磁聚焦“透镜”
磁场圆半径与轨迹圆半径相等,即
2.有效切割长度
▲三种情况中有效切割长度均为d 3.电磁感应中的杆+导轨模型
运动过程中:
先做a减小的加速运动,后做匀速:
十、理想变压器
十一、原子物理
1.光电效应
2.氢原子能级。

高中物理48个解题模型高考物理题型全归纳

高中物理48个解题模型高考物理题型全归纳

⾼中物理48个解题模型⾼考物理题型全归纳最后两个⽉,快速掌握⾼考物理150道易错题+30个常考物理模型,⼀定拿⾼分!不看太可惜!历年⾼考物理解题经典模型,⽼师都没讲得这么全!常考物理模型及易错题常考物理模型及隐含条件30条1.绳:只能拉,不能压,即受到拉⼒时F≠0,受压时F=0.2.杆:既能拉也能压,即受到拉⼒.压⼒时,有F≠0.3.绳刚要断:此时绳的拉⼒已经达到最⼤值,即F=Fmax.4.光滑:意味着⽆摩擦⼒.5.长导线:意味着长度L可看成⽆穷⼤.6.⾜够⼤的平板:意味着平板的⾯积S可看成⽆穷⼤.7.轻杆.轻绳.轻滑轮:意味着质量m=0.8.物体刚要离开地⾯.物体刚要飞离轨道等物体和接触⾯之间作⽤⼒:FN=0.9.绳恰好被拉直,此时绳中拉⼒:F=0.10.物体开始运动.⾃由释放:表⽰初速度为0.11.锤打桩⽆反弹:碰撞后,锤与桩有共同速度.12.理想变压器:⽆功率损耗的变压器.13.细杆:体积为零,仅有长度.14.质点:具有质量,但可忽略其⼤⼩.形状和内部结构⽽视为⼏何点的物体.15.点电荷:在研究带电体间的相互作⽤时,如果带电体的⼤⼩⽐它们之间的距离⼩得多,即可认为分布在带电体上的电荷是集中在⼀点上的.16.基本粒⼦如电⼦.质⼦.离⼦等是不考虑重⼒的粒⼦,⽽带电的质点.液滴.⼩球等(除说明不考虑重⼒外)则要考虑重⼒.17.“轻绳.弹簧.轻杆”模型:注意三种模型的异同点,常考查直线与圆周运动中三种模型的动⼒学问题和功能问题.18.“挂件”模型:考查物体的平衡问题.死结与活结问题,常采⽤正交分解法,图解法,三⾓形法则和极值法解题.19.“追碰”模型:考查运动规律.碰撞规律.临界问题.常通过数学法(函数极值法.图像法等)和物理⽅法(参照物变换法.守恒法)等解题.20.“⽪带”模型:注意摩擦⼒的⼤⼩和⽅向.常考查⽜顿运动定律.功能关系及摩擦⽣热等问题.21.“平抛”模型:物体做平抛运动(或类平抛运动),考查运动的合成与分解.⽜顿运动定律.动能定理等知识.22.“⾏星”模型:万有引⼒提供向⼼⼒.注意相关物理量.功能问题.数理问题(圆⼼.半径.临界问题).23.“⼈船”模型:不仅是动量守恒问题中典型的物理模型,也是最重要的⼒学综合模型之⼀.通过类⽐和等效⽅法,可以使许多动量守恒问题的分析思路和解答步骤变得简捷.24.“⼦弹打⽊块”模型:⼦弹和⽊块组成的系统动量守恒,机械能不守恒.系统损失的机械能等于阻⼒乘以相对位移.25.“限流与分压器”模型:电路设计中经常遇到.考查串.并联电路规律及闭合电路的欧姆定律.电能.电功率以及实际应⽤等.26.“电路的动态变化”模型:考查闭合电路的欧姆定律.27.“回旋加速器”模型:考查带电粒⼦在磁场中运动的典型模型.注意加速电场的平⾏极板接的是交变电压,且它的周期和粒⼦的运动周期相同.28.电磁场中的“单杆”模型:导体棒主要是以棒⽣电或电⽣棒的内容出现,从组合情况来看有棒与电阻.棒与电容.棒与电感.棒与弹簧等.导体棒所在的导轨有平⾯导轨.竖直导轨等.29.电磁场中的“双电源”模型:考查⼒学中的三⼤定律.闭合电路的欧姆定律.电磁感应定律等知识.30.“远距离输电变压器”模型:注意变压器的三个制约问题.⾼中物理模型有哪些⒈"质⼼"模型:质⼼(多种体育运动).集中典型运动规律.⼒能⾓度.⒉"绳件.弹簧.杆件"三件模型:三件的异同点,直线与圆周运动中的动⼒学问题和功能问题.⒊"挂件"模型:平衡问题.死结与活结问题,采⽤正交分解法,图解法,三⾓形法则和极值法.⒋"追碰"模型:运动规律.碰撞规律.临界问题.数学法(函数极值法.图像法等)和物理⽅法(参照物变换法.守恒法)等.⒌"运动关联"模型:⼀物体运动的同时性.独⽴性.等效性.多物体参与的独⽴性和时空联系.⒍"⽪带"模型:摩擦⼒.⽜顿运动定律.功能及摩擦⽣热等问题.⒎"斜⾯"模型:运动规律.三⼤定律.数理问题.⒏"平抛"模型:运动的合成与分解.⽜顿运动定律.动能定理(类平抛运动).⒐"⾏星"模型:向⼼⼒(各种⼒).相关物理量.功能问题.数理问题(圆⼼.半径.临界问题).⒑"全过程"模型:匀变速运动的整体性.保守⼒与耗散⼒.动量守恒定律.动能定理.全过程整体法.⒒"⼈船"模型:动量守恒定律.能量守恒定律.数理问题.⒓"⼦弹打⽊块"模型:三⼤定律.摩擦⽣热.临界问题.数理问题.⒔"爆炸"模型:动量守恒定律.能量守恒定律.⒕"单摆"模型:简谐运动.圆周运动中的⼒和能问题.对称法.图象法.⒖"限流与分压器"模型:电路设计.串并联电路规律及闭合电路的欧姆定律.电能.电功率.实际应⽤.⒗"电路的动态变化"模型:闭合电路的欧姆定律.判断⽅法和变压器的三个制约问题.⒘"磁流发电机"模型:平衡与偏转.⼒和能问题.⒙"回旋加速器"模型:加速模型(⼒能规律).回旋模型(圆周运动).数理问题.⒚"对称"模型:简谐运动(波动).电场.磁场.光学问题中的对称性.多解性.对称性.⒛电磁场中的单杆模型:棒与电阻.棒与电容.棒与电感.棒与弹簧组合.平⾯导轨.竖直导轨等,处理⾓度为⼒电⾓度.电学⾓度.⼒能⾓度.21.电磁场中的"双电源"模型:顺接与反接.⼒学中的三⼤定律.闭合电路的欧姆定律.电磁感应定律.22.交流电有效值相关模型:图像法.焦⽿定律.闭合电路的欧姆定律.能量问题.23."能级"模型:能级图.跃迁规律.光电效应等光的本质综合问题.24.远距离输电升压降压的变压器模型.。

新人教版高中物理版必修一知识点总结

新人教版高中物理版必修一知识点总结

必修一知识点归纳第一章、运动学基本概念1.机械运动:物体在空间中所处位置发生变化,这样的运动叫做机械运动。

2.运动的特性:普遍性,永恒性,多样性3.参考系:(1)定义:为了研究一个物体运动而假定不动的另一个物体叫参考系。

(2)原则:参考系的选取是自由的。

但必须以能使问题简化方便解决为原则。

(2)比较两个物体的运动必须选用同一参考系。

(3)参照物不一定静止,但被认为是静止的。

4.质点(1)在研究物体运动的过程中,如果物体的大小和形状在所研究问题中可以忽略是,把物体简化为一个点,认为物体的质量都集中在这个点上,这个点称为质点。

(2).质点条件:1)物体中各点的运动情况完全相同(物体做平动)2)物体的大小(线度)<<它通过的距离(3)质点具有相对性,而不具有绝对性。

(4).理想化模型:根据所研究问题的性质和需要,抓住问题中的主要因素,忽略其次要因素,建立一种理想化的模型,使复杂的问题得到简化。

(为便于研究而建立的一种高度抽象的理想客体)5.时间与时刻(1).钟表指示的一个读数对应着某一个瞬间,就是时刻,时刻在时间轴上对应某一点。

两个时刻之间的间隔称为时间,时间在时间轴上对应一段。

△t=t2—t1(2).时间和时刻的单位都是秒,符号为s,常见单位还有min,h。

(3).通常以问题中的初始时刻为零点。

6.路程和位移(1).路程表示物体运动轨迹的长度,但不能完全确定物体位置的变化,是标量。

(2).从物体运动的起点指向运动的重点的有向线段称为位移,是矢量。

(3).物理学中,只有大小的物理量称为标量;既有大小又有方向的物理量称为矢量。

(4).只有在质点做单向直线运动是,位移的大小等于路程。

两者运算法则不同。

7.打点记时器:通过在纸带上打出一系列的点来记录物体运动时间信息的仪器。

(电火花打点记时器——火花打点,电磁打点记时器——电磁打点);一般打出两个相邻的点的时间间隔是0.02s。

8.速度:物体通过的与所用的时间之比叫做速度。

高中物理知识点归类总结-模型法

高中物理知识点归类总结-模型法

模型法(1)“对象模型”:即把研究的对象的本身理想化.用来代替由具体物质组成的、代表研究对象的实体系统,称为对象模型(也可称为概念模型), 实际物体在某种条件下的近似与抽象,如质点、光滑平面、理想气体、理想电表等; 常见的如“力学”中有质点、点电荷、轻绳或杆、轻质弹簧、单摆、弹簧振子、弹性体、绝热物质等;(2)条件模型:把研究对象所处的外部条件理想化.排除外部条件中干扰研究对象运动变化的次要因素,突出外部条件的本质特征或最主要的方面,从而建立的物理模型称为条件模型. (3)过程模型:把具体过理过程纯粹化、理想化后抽象出来的一种物理过程,称过程模型 理想化了的物理现象或过程,如匀速直线运动、自由落体运动、竖直上抛运动、平抛运动、匀速圆周运动、简谐运动等。

有些题目所设物理模型是不清晰的,不宜直接处理,但只要抓住问题的主要因素,忽略次要因素,恰当的将复杂的对象或过程向隐含的理想化模型转化,就能使问题得以解决。

解决物理问题的一般方法可归纳为以下几个环节: 原始的物理模型可分为如下两类:物理解题方法:如整体法、假设法、极限法、逆向思维法、物理模型法、等效法、物理图像法等. 知识分类举要力的瞬时性(产生a )F=ma 、⇒运动状态发生变化⇒牛顿第二定律 1.力的三种效应:时间积累效应(冲量)I=Ft 、⇒动量发生变化⇒动量定理 空间积累效应(做功)w=Fs ⇒动能发生变化⇒动能定理对象模型(质点、轻杆、轻绳、弹簧振子、单摆、理想气体、点电荷、理想电表、理想变压器、匀强电场、匀强磁场、点光源、光线、原子模型等) 过程模型(匀速直线运动、匀变速直线运动、匀速圆周运动、平抛运动、简谐运动、简谐波、弹性碰撞、自由落体运动、竖直上抛运动等)物理模型2.动量观点:动量(状态量):p=mv=K mE 2 冲量(过程量):I = F t动量定理:内容:物体所受合外力的冲量等于它的动量的变化。

公式: F 合t = mv’一mv (解题时受力分析和正方向的规定是关键) I=F 合t=F1t1+F2t2+---=∆p=P 末-P 初=mv 末-mv 初动量守恒定律:内容、守恒条件、不同的表达式及含义:'p p =;0p =∆;21p -p ∆=∆内容:相互作用的物体系统,如果不受外力,或它们所受的外力之和为零,它们的总动量保持不变。

高中物理24个经典模型

高中物理24个经典模型

高中物理24个经典模型高中物理中有许多经典的模型,这些模型帮助我们理解物理世界的运作原理。

本文将介绍高中物理中的24个经典模型,让我们一起来了解它们吧!1.单摆模型:单摆模型用来研究摆动的物体的运动规律。

它包括一个质点和一个细线,可以通过改变细线长度或质点的质量来研究摆动的周期和频率。

2.平抛运动模型:平抛运动模型用来研究水平投掷物体的运动轨迹和速度。

它假设没有空气阻力,只有重力作用。

可以通过改变初速度和仰角来研究物体的落点和飞行距离。

3.牛顿第一定律模型:牛顿第一定律模型认为在没有外力作用下物体将保持匀速直线运动或静止。

这个模型帮助我们理解惯性的概念和物体运动状态的变化。

4.牛顿第二定律模型:牛顿第二定律模型描述了物体受力和加速度之间的关系。

它的数学表达式为F=ma,其中F表示物体受力,m表示物体质量,a表示物体加速度。

5.牛顿第三定律模型:牛顿第三定律模型表明对于每个作用力都存在一个等大反向的相互作用力。

这个模型帮助我们理解力的概念和物体之间的相互作用。

6.阻力模型:阻力模型用来研究运动物体与介质之间的相互作用。

它的大小与速度和物体形状有关,在物体运动时会减小其速度。

7.功率模型:功率模型描述了物体转化能量的速度和效率。

它等于功的大小除以时间,可以帮助我们理解物体能量的转变和利用。

8.热传导模型:热传导模型描述了热量在物体间传递的过程。

它通过研究热导率和温度差来解释热量传递的速率和方向。

9.摩擦力模型:摩擦力模型用来描述物体在接触面上滑动或滚动时的相互作用。

它的大小与物体之间的粗糙程度和压力有关,可以通过摩擦力模型来研究物体的运动和停止。

10.力矩模型:力矩模型用来研究物体旋转的平衡和加速度。

它的数学表达式为M=rF,其中M表示力矩,r表示力臂,F表示作用力。

11.浮力模型:浮力模型用来研究物体在液体或气体中的浮力。

它的大小等于液体或气体对物体的推力,可以帮助我们理解物体在液体中的浮沉和船只的浮力原理。

新课标高中物理知识总结归纳

新课标高中物理知识总结归纳

高中物理基本知识体系表一、力的基本知识 1. 力的种类:⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎧⎩⎨⎧==⊥=⊥===-=-==-==N f F F Eq F B v qvB F B I BIL F r Q Q K F r m m G F L L k L L k kx F m g G μ滑动摩擦力:解静摩擦力:受力平衡求摩擦力:(带电粒子在电场中)电场力:)(带电粒子在磁场中洛仑兹力:)(通电导线在磁场中安培力:牛顿三定律:(点电荷)库仑力:(适用于质点、天体)万有引力:压缩拉伸弹力:向心力)万有引力(重力重力:22122100)()(2. 力(矢量)的合成计算方法: 平行四边形法、三角形法、正交分解法;特殊力合成: (1)两个共点力的合力围:|F 1-F 2|≤F ≤F 1+F 2,即两个力的大小不变时,其合力随夹角的增大而减小。

当两力反向时,合力最小,为|F 1-F 2|;当两力同向时,合力最大,为F 1+F 2。

(2)两力互相垂直: (3)两力大小相等,夹角为θ: 一.运动学基本知识: 1. 匀速直线运动:x =v t v 大小、方向不变 2. 匀变速直线运动axv v at t v x atv v tv v a t t t 2212022000=-+=+=-=3. 两推论:)(222312两边中间v v v v aT x x x x x t ===-=-=∆4. 平抛:⎪⎩⎪⎨⎧====20021gty gt v t v x v v y x 竖直方向:水平方向: 合速度22022)(gt v v v v y x t +=+=合速度方向与水平夹角θ: tan θ=V y /V x =gt/Vo 5. 匀速圆周运动:① 合外力作为向心力⎪⎩⎪⎨⎧<>=离心运动减小的圆周运动匀速圆周运动向合向合向合F F r F F F F (最常见的是万有引力、洛仑兹力提供向心力)②mF r v r r v a fr r Tr t s v f T f T t 合=============222)T 2(22122πωωπωπππϕω 6.天体运动: (1)F 引=G 2rMm =⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧=⇒=⇒=⇒=⇒GM r T r Tm r GMr m r GM v r v m r GM a m a 3222322244ππωω(2)其中g 中心体表面重力加速度,R 为中心球体半经。

高中物理常用的24种模型

高中物理常用的24种模型

高中物理常用的24种模型⒈“质心”模型:质心(多种体育运动).集中典型运动规律.力能角度。

⒉“绳件.弹簧.杆件”三件模型:三件的异同点,直线与圆周运动中的动力学问题和功能问题。

⒊“挂件”模型:平衡问题.死结与活结问题,采用正交分解法,图解法,三角形法则和极值法。

⒋“追碰”模型:运动规律.碰撞规律.临界问题.数学法(函数极值法.图像法等)和物理方法(参照物变换法.守恒法)等。

⒌“运动关联”模型:一物体运动的同时性.独立性.等效性.多物体参与的独立性和时空联系。

⒍“皮带”模型:摩擦力.牛顿运动定律.功能及摩擦生热等问题。

⒎“斜面”模型:运动规律.三大定律.数理问题。

⒏“平抛”模型:运动的合成与分解.牛顿运动定律.动能定理(类平抛运动)。

⒐“行星”模型:向心力(各种力).相关物理量、功能问题、数理问题(圆心、半径、临界问题)。

⒑“全过程”模型:匀变速运动的整体性、保守力与耗散力、动量守恒定律、动能定理、全过程整体法。

⒒“人船”模型:动量守恒定律、能量守恒定律、数理问题。

⒓“子弹打木块”模型:三大定律.摩擦生热.临界问题.数理问题.⒔“爆炸”模型:动量守恒定律.能量守恒定律.⒕“单摆”模型:简谐运动.圆周运动中的力和能问题.对称法.图象法.⒖“限流与分压器”模型:电路设计.串并联电路规律及闭合电路的欧姆定律.电能.电功率.实际应用.⒗“电路的动态变化”模型:闭合电路的欧姆定律.判断方法和变压器的三个制约问题.⒘“磁流发电机”模型:平衡与偏转.力和能问题.⒙“回旋加速器”模型:加速模型(力能规律).回旋模型(圆周运动).数理问题.⒚“对称”模型:简谐运动(波动).电场.磁场.光学问题中的对称性.多解性.对称性.⒛电磁场中的单杆模型:棒与电阻.棒与电容.棒与电感.棒与弹簧组合.平面导轨.竖直导轨等,处理角度为力电角度.电学角度.力能角度.21.电磁场中的“双电源”模型:顺接与反接.力学中的三大定律.闭合电路的欧姆定律.电磁感应定律.22.交流电有效值相关模型:图像法.焦耳定律.闭合电路的欧姆定律.能量问题.23.“能级”模型:能级图.跃迁规律.光电效应等光的本质综合问题.24.远距离输电升压降压的变压器模型.。

高中物理基础知识-总结几种典型的运动模型

高中物理基础知识-总结几种典型的运动模型

⾼中物理基础知识-总结⼏种典型的运动模型⾼考物理知识点总结⼏种典型的运动模型:追及和碰撞、平抛、竖直上抛、匀速圆周运动等及类似的运动两个基本公式(规律): V t = V 0 + a t S = v o t +12a t 2及⼏个重要推论: (1) 推论:V t 2 -V 02 = 2as (匀加速直线运动:a 为正值匀减速直线运动:a 为正值) (2) A B 段中间时刻的即时速度: V t/ 2 =V V t 02+=st(若为匀变速运动)等于这段的平均速度 (3) AB 段位移中点的即时速度: V s/2 =v v o t222+V t/ 2 =V =V V t 02+=s t=T S S NN 21++= V N ≤ V s/2 =v v o t222+ 匀速:V t/2 =V s/2 ; 匀加速或匀减速直线运动:V t/2(4) S 第t 秒 = S t -S (t-1)= (v o t +12a t 2) -[v o ( t -1) +12a (t -1)2]= V 0 + a (t -12) (5) 初速为零的匀加速直线运动规律①在1s 末、2s 末、3s 末……ns 末的速度⽐为1:2:3……n ;②在1s 、2s 、3s ……ns 内的位移之⽐为12:22:32……n 2;③在第1s 内、第 2s 内、第3s 内……第ns 内的位移之⽐为1:3:5……(2n-1);④从静⽌开始通过连续相等位移所⽤时间之⽐为1:()21-:32-)……(n n --1)⑤通过连续相等位移末速度⽐为1:2:3……n(6)匀减速直线运动⾄停可等效认为反⽅向初速为零的匀加速直线运动.(先考虑减速⾄停的时间).“刹车陷井”实验规律:(7) 通过打点计时器在纸带上打点(或频闪照像法记录在底⽚上)来研究物体的运动规律:此⽅法称留迹法。

=-+=+=+==axv v at t v x at v v v v v t v x tt t22122022000①②③初速⽆论是否为零,只要是匀变速直线运动的质点,就具有下⾯两个很重要的特点:在连续相邻相等时间间隔内的位移之差为⼀常数;?s = aT2(判断物体是否作匀变速运动的依据)。

高中物理24个经典模型

高中物理24个经典模型

高中物理24个经典模型高中物理领域有许多经典模型,这些模型帮助我们更好地理解和解释自然界中各种现象和规律。

以下是高中物理中的24个经典模型。

1.质点模型:物理中最简单的模型之一,将物体简化为一个几乎没有大小的点,用于研究物体的运动和力学性质。

2.弹簧模型:用来研究弹簧和弹性体的力学性质,它可以模拟很多弹性形变的现象。

3.质点弹簧模型:结合了质点和弹簧模型,用于研究弹簧振动和简谐振动的性质。

4.轨迹模型:用来描述运动物体的路径,常用的轨迹有直线运动、圆周运动、抛物线运动等。

5.平衡模型:用来研究物体处于平衡状态时的力学性质,如平衡条件、平衡位置等。

6.载体模型:用来研究物体在载体上的运动,常用的载体有斜面、轨道、绳子等。

7.力模型:用来描述物体受到的力,包括重力、摩擦力、弹力、拉力等。

8.力矩模型:用来研究物体围绕固定点转动的性质,描述物体受到的力矩和力矩平衡条件。

9.阻力模型:用来研究物体在流体中运动时受到的阻力,如空气阻力、水阻力等。

10.平衡力模型:用来描述物体受到多个力的作用时达到平衡的条件,如平衡力的合成和分解。

11.载荷模型:用来研究物体受到外力作用时的变形和应力分布,如悬链线、横梁等。

12.动力模型:用来研究物体的运动和力学性质,描述物体的动量和动量守恒定律。

13.动能模型:用来描述物体的能量和能量转化规律,包括动能和动能守恒定律。

14.位能模型:用来描述物体的势能和势能转化规律,包括重力势能、弹性势能等。

15.电路模型:用来研究电流、电压和电阻在电路中的分布和变化规律,如串联电路、并联电路等。

16.磁场模型:用来描述磁场和磁力在磁场中的分布和变化规律,如磁场线、磁感应强度等。

17.光学模型:用来研究光的传播、反射、折射、干涉等光学现象,如几何光学模型、波动光学模型等。

18.波动模型:用来研究波的传播和波动性质,包括机械波、电磁波等。

19.音响模型:用来研究声音的传播和声音的特性,如声音的频率、波长、音强等。

专题01 高中物理几种匀变速直线运动模型(解析版)

专题01 高中物理几种匀变速直线运动模型(解析版)

专题01几种匀变速直线运动模型1.[模型导航]【模型一】刹车模型1【模型二】“0-v-0”运动模型2【模型三】反应时间与限速模型61.先匀速,后减速运动模型--反应时间问题82.先加速后匀速运动模型--限速问题83.先加速后匀速在减速运动模型--最短时间问题9【模型四】双向可逆类运动模型10【模型五】等位移折返模型13【模型六】等时间折返模型152.[模型分析]【模型一】刹车模型【概述】指匀减速到速度为零后即停止运动,加速度a突然消失,求解时要注意确定其实际运动时间【模型要点】(1)刹车问题在实际生活中,汽车刹车停止后,不会做反向加速运动,而是保持静止。

(2)题目给出的时间比刹车时间长还是短?若比刹车时间长,汽车速度为零.若比刹车时间短,可利用公式v= v0+at直接计算,因此解题前先求出刹车时间t0。

(3)刹车时间t0的求法.由v=v0+at,令v=0,求出t0便为刹车时间,即t0=-v0 a。

(4)比较t与t0,若t≥t0,则v=0;若t<t0,则v=v0+at。

(5)若t≥t0,则v=0,车已经停止,求刹车距离的方法有三种:①根据位移公式x=v0t+12at2,注意式中t只能取t;②根据速度位移公式-v20=2ax;③根据平均速度位移公式x=v0 2t.1据了解,CR300AF型复兴号动车组是拥有完全自主国产研发的中国标准动车组体系中的新车型。

该车型设计时速为300千米每小时,外观呈淡蓝色,运行平稳舒适、乘坐环境宽敞明亮、列车噪音低、振动小,除此之外复兴号动车组全车覆盖免费wifi,且每两个座椅有一个插座。

假设一列复兴号动车进站时从某时刻起做匀减速直线运动,分别用时3s、2s、1s连续通过三段位移后停下,则这三段位移的平均速度之比是()A.9:4:1B.27:8:1C.5:3:1D.3:2:1【解答】解:可将动车减速过程看作初速度为0的加速过程,根据匀变速直线运动规律可知最后3s、2s、1s连续通过三段位移的比为27:8:1,根据平均速度的计算公式v =x t,可知这三段位移的平均速度之比是9:4:1,故A正确,BCD错误;故选:A。

高中物理经典解题模型归纳

高中物理经典解题模型归纳

高中物理经典解题模型归纳高中物理24个经典模型1、"皮带"模型:摩擦力.牛顿运动定律.功能及摩擦生热等问题.2、"斜面"模型:运动规律.三大定律.数理问题.3、"运动关联"模型:一物体运动的同时性.独立性.等效性.多物体参与的独立性和时空联系.4、"人船"模型:动量守恒定律.能量守恒定律.数理问题.5、"子弹打木块"模型:三大定律.摩擦生热.临界问题.数理问题.6、"爆炸"模型:动量守恒定律.能量守恒定律.7、"单摆"模型:简谐运动.圆周运动中的力和能问题.对称法.图象法.8.电磁场中的"双电源"模型:顺接与反接.力学中的三大定律.闭合电路的欧姆定律.电磁感应定律.9.交流电有效值相关模型:图像法.焦耳定律.闭合电路的欧姆定律.能量问题.10、"平抛"模型:运动的合成与分解.牛顿运动定律.动能定理(类平抛运动).11、"行星"模型:向心力(各种力).相关物理量.功能问题.数理问题(圆心.半径.临界问题).12、"全过程"模型:匀变速运动的整体性.保守力与耗散力.动量守恒定律.动能定理.全过程整体法.13、"质心"模型:质心(多种体育运动).集中典型运动规律.力能角度.14、"绳件.弹簧.杆件"三件模型:三件的异同点,直线与圆周运动中的动力学问题和功能问题.15、"挂件"模型:平衡问题.死结与活结问题,采用正交分解法,图解法,三角形法则和极值法.16、"追碰"模型:运动规律.碰撞规律.临界问题.数学法(函数极值法.图像法等)和物理方法(参照物变换法.守恒法)等.17."能级"模型:能级图.跃迁规律.光电效应等光的本质综合问题.18.远距离输电升压降压的变压器模型.19、"限流与分压器"模型:电路设计.串并联电路规律及闭合电路的欧姆定律.电能.电功率.实际应用.20、"电路的动态变化"模型:闭合电路的欧姆定律.判断方法和变压器的三个制约问题.21、"磁流发电机"模型:平衡与偏转.力和能问题.22、"回旋加速器"模型:加速模型(力能规律).回旋模型(圆周运动).数理问题.23、"对称"模型:简谐运动(波动).电场.磁场.光学问题中的对称性.多解性.对称性.24、电磁场中的单杆模型:棒与电阻.棒与电容.棒与电感.棒与弹簧组合.平面导轨.竖直导轨等,处理角度为力电角度.电学角度.力能角度.高中物理11种基本模型题型1:直线运动问题题型概述:直线运动问题是高考的热点,可以单独考查,也可以与其他知识综合考查。

高中典型的物理模型及方法

高中典型的物理模型及方法

●典型物理模型及方法◆1.连接体模型:是指运动中几个物体或叠放在一起、或并排挤放在一起、或用细绳、细杆联系在一起的物体组。

解决这类问题的基本方法是整体法和隔离法。

整体法是指连接体内的物体间无相对运动时,可以把物体组作为整体,对整体用牛二定律列方程隔离法是指在需要求连接体内各部分间的相互作用(如求相互间的压力或相互间的摩擦力等)时,把某物体从连接体中隔离出来进行分析的方法。

连接体的圆周运动:两球有相同的角速度;两球构成的系统机械能守恒(单个球机械能不守恒)与运动方向和有无摩擦(μ相同)无关,及与两物体放置的方式都无关。

平面、斜面、竖直都一样。

只要两物体保持相对静止记住:N=211212m F m F m m ++(N 为两物体间相互作用力),一起加速运动的物体的分子m 1F 2和m 2F 1两项的规律并能应用⇒F212m m m N+=讨论:①F 1≠0;F 2=0122F=(m +m )a N=m aN=212m Fm m +②F 1≠0;F 2≠0N=211212m F m m m F ++(20F=就是上面的情况)F=211221m m g)(m m g)(m m ++F=122112m (m )m (m gsin )m m g θ++F=A B B 12m (m )m Fm m g ++F 1>F 2m 1>m 2N 1<N 2(为什么)N 5对6=F Mm (m 为第6个以后的质量)第12对13的作用力N 12对13=Fnm12)m -(n ◆2.水流星模型(竖直平面内的圆周运动——是典型的变速圆周运动)研究物体通过最高点和最低点的情况,并且经常出现临界状态。

(圆周运动实例)①火车转弯②汽车过拱桥、凹桥3③飞机做俯冲运动时,飞行员对座位的压力。

④物体在水平面内的圆周运动(汽车在水平公路转弯,水平转盘上的物体,绳拴着的物体在光滑水平面上绕绳的一端旋转)和物体在竖直平面内的圆周运动(翻滚过山车、水流星、杂技节目中的飞车走壁等)。

高中物理知识点总结_高考物理48个解题模型

高中物理知识点总结_高考物理48个解题模型

高中物理知识点总结_高考物理48个解题模型高中物理解题模型汇总必修一1、传送带模型:摩擦力,牛顿运动定律,功能及摩擦生热等问题。

2、追及相遇模型:运动规律,临界问题,时间位移关系问题,数学法(函数极值法。

图像法等)3、挂件模型:平衡问题,死结与活结问题,采用正交分解法,图解法,三角形法则和极值法。

4、斜面模型:受力分析,运动规律,牛顿三大定律,数理问题。

必修二1、“绳子、弹簧、轻杆”三模型:三件的异同点,直线与圆周运动中的动力学问题和功能问题。

2、行星模型:向心力(各种力),相关物理量,功能问题,数理问题(圆心。

半径。

临界问题)。

3、抛体模型:运动的合成与分解,牛顿运动定律,动能定理(类平抛运动)。

选修3-11、“回旋加速器”模型:加速模型(力能规律),回旋模型(圆周运动),数理问题。

2、“磁流发电机”模型:平衡与偏转,力和能问题。

3、“电路的动态变化”模型:闭合电路的欧姆定律,判断方法和变压器的三个制约问题。

4、“限流与分压器”模型:电路设计,串并联电路规律及闭合电路的欧姆定律,电能,电功率,实际应用。

选修3-21、电磁场中的单杆模型:棒与电阻,棒与电容,棒与电感,棒与弹簧组合,平面导轨,竖直导轨等,处理角度为力电角度,电学角度,力能角度。

2、交流电有效值相关模型:图像法,焦耳定律,闭合电路的欧姆定律,能量问题。

选修3-41、“对称”模型:简谐运动(波动),电场,磁场,光学问题中的对称性,多解性,对称性。

2、“单摆”模型:简谐运动,圆周运动中的力和能问题,对称法,图象法。

选修3-51、“爆炸”模型:动量守恒定律,能量守恒定律。

2、“能级”模型:能级图,跃迁规律,光电效应等光的本质综合问题。

高考物理必考知识点总结一、运动的描述1.物体模型用质点,忽略形状和大小;地球公转当质点,地球自转要大小。

物体位置的变化,准确描述用位移,运动快慢S比t ,a用Δv与t 比。

2.运用一般公式法,平均速度是简法,中间时刻速度法,初速度零比例法,再加几何图像法,求解运动好方法。

高中物理力学44个模型

高中物理力学44个模型

高中物理力学44个模型物理力学是高中物理学习的一个重要组成部分,通过学习力学,我们可以了解物体运动的规律和力的作用。

在学习力学的过程中,模型是非常重要的工具,可以帮助我们更好地理解抽象的物理概念。

下面将介绍高中物理力学中的44个模型,帮助大家深入了解力学知识。

1.质点模型:假设物体的大小可以忽略不计,只考虑物体的质量和位置。

2.运动学模型:研究物体运动的基本规律,包括位移、速度、加速度等。

3.匀速直线运动模型:物体在力的作用下保持匀速直线运动。

4.变速直线运动模型:物体在力的作用下速度不断改变的直线运动。

5.抛体模型:研究物体抛出后在重力作用下的轨迹运动。

6.牛顿第一定律模型:物体静止或匀速直线运动状态保持不变的定律。

7.牛顿第二定律模型:物体的加速度与作用力成正比,与物体质量成反比的定律。

8.牛顿第三定律模型:任何两个物体间的相互作用力大小相等,但方向相反。

9.惯性系模型:描述物体的力学规律需要建立的参考系。

10.非惯性系模型:在非惯性系中描述物体的力学规律需要引入惯性力。

11.作图模型:通过绘制物体受力情况的示意图来帮助分析解题。

12.叠加原理模型:将多个力合成一个合力来简化分析。

13.平衡模型:研究物体所受力使合力为零的情况,包括静平衡和动平衡。

14.弹簧模型:弹簧的伸长或压缩与受力大小成正比的物理模型。

15.胡克定律模型:描述弹簧弹性力与伸长(压缩)长度成正比的定律。

16.重力模型:物体受重力作用下的运动规律,包括自由落体和斜抛运动。

17.动力学模型:研究物体受到的力对其运动状态的影响。

18.动能模型:物体由于运动而具有的能量。

19.势能模型:物体由于位置或形状而具有的能量。

20.机械能守恒模型:封闭系统机械能总量在没有非弹性碰撞的条件下保持不变。

21.动量模型:描述物体运动状态的物理量,是质量与速度的乘积。

22.动量守恒模型:封闭系统内动量总量在无外力作用下保持不变。

23.质心模型:多个物体的质心位置与各物体质量与位置的加权平均值。

人教版高中物理必修二专题04 平抛运动的三类模型【知识梳理】

人教版高中物理必修二专题04  平抛运动的三类模型【知识梳理】

专题04模型1:平抛运动与斜面结合模1.模型构建两类与斜面结合的平抛运动(1)物体从斜面上某一点水平抛出以后又重新落在斜面上,此时平抛运动物体的合位移方向与水平方向的夹角等于斜面的倾角。

(2)做平抛运动的物体垂直打在斜面上,此时物体的合速度与竖直方向的夹角等于斜面的倾角。

2.求解思路已知信息实例处理思路速度方向垂直打到斜面上的平抛运动(1)确定速度与竖直方向的夹角θ,画出速度分解图。

(2)根据水平方向和竖直方向的运动规律分析v x、v y。

(3)根据tan θ=v xv y列式求解。

位移方向从斜面上一点水平抛出后落回在斜面上的平抛运动(1)确定位移与水平方向的夹角θ,画出位移分解图。

(2)根据水平方向和竖直方向的运动规律分析x、y。

(3)根据tan θ=yx列式求解。

模型2:类平抛运动模型1.运动建模当一种运动和平抛运动特点相似,即合外力恒定且与初速度方向垂直的运动都可以称为类平抛运动。

2.模型特点3.分析方法与平抛运动的处理方法一致,将运动分解成沿初速度方向的匀速直线运动和垂直初速度方向的由静止开始的匀加速直线运动。

4.解类平抛运动问题的步骤(1)分析物体的初速度与受力情况,确定物体做类平抛运动,并明确物体两个分运动的方向。

(2)利用两个分运动的规律求解分运动的速度和位移。

(3)根据题目的已知条件和要求解的量充分利用运动的等时性、独立性、等效性解题。

模型三:平抛运动中的临界模型1.模型特点(1)若题目中有“刚好”“恰好”“正好”等字眼,表明题述过程中存在临界点。

(2)若题目中有“最大”“最小”“至多”“至少”“取值范围”等字眼,表明题述的过程中存在着极值,这些极值点也往往是临界点。

2.求解思路(1)画出临界轨迹,找出临界状态对应的临界条件。

(2)分解速度或位移。

(3)列方程求解结果。

高中物理模型归纳整理总结

高中物理模型归纳整理总结

高中物理模型归纳整理总结物理作为一门自然科学,通过建立模型来描述和解释自然界中各种现象和规律。

在高中物理学习过程中,我们学习了各种不同类型的物理模型,这些模型帮助我们更好地理解和应用物理知识。

本文将对高中物理学习过程中的一些常见的物理模型进行归纳整理和总结。

1. 质点模型质点模型是最基本的物理模型之一,用来描述物体的简单运动。

在质点模型中,物体被视为一个质点,忽略了物体的体积和形状。

质点模型常用于描述运动学问题,例如直线运动、曲线运动等。

2. 弹簧模型弹簧模型用来描述弹性体的性质和变形规律。

在物体受到力的作用下,会发生形变,而弹簧模型可以帮助我们定量地描述物体的形变和恢复力。

弹簧模型在弹簧振动、弹性碰撞等问题中有广泛应用。

3. 运动学模型运动学模型用来描述物体的运动规律,不考虑物体受到的力的作用。

运动学模型通过建立运动方程,可以精确描述物体的位置、速度和加速度的变化。

常见的运动学模型包括匀速直线运动、匀加速直线运动、圆周运动等。

4. 动力学模型动力学模型用来描述物体的运动规律,考虑物体受到的力的作用。

动力学模型通过牛顿定律和其它运动定律,可以分析物体受力情况下的运动情况。

常见的动力学模型包括斜面运动、摩擦力、弹力等。

5. 光学模型光学模型用来描述光的传播和反射、折射等现象。

光学模型根据光的波动性和粒子性,可以通过几何光学和物理光学建立不同的模型。

常见的光学模型包括平面镜成像、球面镜成像、光的干涉和衍射等。

6. 电路模型电路模型用来描述电流、电压和电阻等电学量之间的关系。

电路模型通过欧姆定律和基尔霍夫定律等,可以分析电路中的电流分布、电压分布和电阻等。

常见的电路模型包括串联电路、并联电路、电阻网络等。

7. 磁学模型磁学模型用来描述磁场和磁力的作用规律。

磁学模型通过安培定律和洛伦兹力等,可以分析磁场中导体受到的力和磁力线的分布。

常见的磁学模型包括电磁感应、电磁铁、电动机等。

8. 热学模型热学模型用来描述物体的温度和热能的传递规律。

高中物理 几种典型的曲线运动

高中物理 几种典型的曲线运动

平抛运动1、定义:水平抛出的物体只在重力作用下的运动。

2、性质:加速度a=g的匀变速曲线运动,轨迹是抛物线。

3、平抛运动的研究方法:将平抛运动看成两个分运动,水平方向的匀速直线运动,竖直方向的自由落体运动。

4、平抛运动速度变化量:5、相关公式:速度公式:位移公式:平抛运动的运动时间由竖直高度决定!6、平抛运动任意时刻的速度偏转角α和位移偏转角β的三角关系:tanα=2tanβ7、平抛运动实验斜抛运动1、定义:将物体以一定的初速度V0斜向上方或者斜向下方抛出,物体只在重力的作用下的运动。

2、运动性质:加速度a=g的匀变速曲线运动,轨迹是抛物线。

3、研究方法:将初速度V0分解在水平方向和竖直方向,水平方向做匀速直线运动,竖直方向做a=g的匀变速直线运动。

平抛运动练习斜抛运动练习圆周运动(圆周运动需要向心力,向心力是一种效果力,不是单独存在的力,在受力分析时,不能将它作为一个受力,它是其他力共同产生的效果,所以,向心力是其他力沿圆心方向的合力或者是合力沿圆心方向的分力)一、匀速圆周运动:1、定义:线速度大小不变的圆周运动2、力学特征:合外力(向心力)时刻指向圆心,大小恒定,与速度方向时刻垂直。

运动学特征:v大小不变,T大小不变,w大小不变、a大小不变二、非匀变速圆周运动1、定义:速度大小改变的圆周运动2、力学特征:合外力不指向圆心,合外力的一个分力在沿速度方向,改变速度大小,另一个分力垂直速度方向指向圆心(向心力)运动学特征:v大小改变,T大小改变,w大小改变三、描述圆周运动的物理量(6)圆周运动需要的向心力F向,公式如下:(7)圆周运动提供的向心力:物体做匀速圆周运动的向心力由物体所受的合力提供。

物体做非匀速圆周运动的向心力由物体所受合力的分力提供。

(8)提供的向心力和需要的向心力的大小关系决定物体的实际运动情况当F供=F需,圆周运动。

当F供<F需,离心运动。

当F供>F需,近心运动。

四、竖直平面圆周运动模型(绳子、杆)五、水平面圆周运动的临界问题。

高一物理知识点总结

高一物理知识点总结

高一物理知识点总结高中物理是一门既有趣又具有挑战性的学科,高一是打好基础的关键阶段。

以下是对高一物理知识点的总结。

一、运动的描述(一)质点质点是一个理想化的模型。

当物体的大小和形状对研究问题的影响可以忽略不计时,就可以把物体看成质点。

比如在研究地球绕太阳公转时,地球可以看成质点;但研究地球自转时,就不能把地球看成质点。

(二)参考系为了描述物体的运动,要选择一个假定不动的物体作为参考系。

同一物体选择不同的参考系,运动情况可能不同。

比如坐在行驶的汽车里,以车为参考系,人是静止的;以地面为参考系,人是运动的。

(三)位移和路程位移是描述物体位置变化的物理量,是从初位置指向末位置的有向线段。

路程是物体运动轨迹的长度。

位移是矢量,有大小和方向;路程是标量,只有大小。

(四)速度速度是描述物体运动快慢的物理量。

平均速度等于位移与时间的比值,瞬时速度是物体在某一时刻或某一位置的速度。

(五)加速度加速度是描述速度变化快慢的物理量,等于速度的变化量与发生这一变化所用时间的比值。

加速度是矢量,方向与速度变化量的方向相同。

二、匀变速直线运动的规律(一)匀变速直线运动加速度不变的直线运动叫做匀变速直线运动。

(二)速度公式v = v₀+ at (v₀是初速度,v 是末速度,a 是加速度,t 是时间)(三)位移公式x = v₀t + 1/2 at²(四)速度位移公式v² v₀²= 2ax(五)几个重要的推论1、平均速度:v =(v₀+ v)/ 22、中间时刻的速度:v(t/2) =(v₀+ v)/ 23、连续相等时间内的位移差:Δx = aT²(T 是时间间隔)三、自由落体运动(一)自由落体运动物体只在重力作用下从静止开始下落的运动叫做自由落体运动。

(二)自由落体运动的特点初速度为 0,加速度为重力加速度 g。

(三)自由落体运动的规律v = gt ,h = 1/2 gt²(h 是下落高度)四、相互作用(一)力的概念力是物体对物体的作用,力不能离开物体而单独存在。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高考物理知识点总结18几种典型的运动模型:追及和碰撞、平抛、竖直上抛、匀速圆周运动等及类似的运动两个基本公式(规律):V t =V 0+atS=v o t+12at 2及几个重要推论: (1)推论:V t 2-V 02=2as (匀加速直线运动:a 为正值匀减速直线运动:a 为正值) (2)AB 段中间时刻的即时速度:V t/2=V V t 02+=st(若为匀变速运动)等于这段的平均速度 (3)AB 段位移中点的即时速度:V s/2=v v o t222+V t/2=V =V V t 02+=s t=T S S NN 21++=V N ?V s/2=v v o t 222+匀速:V t/2=V s/2;匀加速或匀减速直线运动:V t/2<V s/2 (4)S第t 秒=S t -S (t-1)=(v o t+12at 2)-[v o (t -1)+12a(t -1)2]=V 0+a(t -12)(5)初速为零的匀加速直线运动规律①在1s 末、2s 末、3s 末……ns 末的速度比为1:2:3……n ; ②在1s 、2s 、3s ……ns 内的位移之比为12:22:32……n 2;③在第1s 内、第2s 内、第3s 内……第ns 内的位移之比为1:3:5……(2n-1); ④从静止开始通过连续相等位移所用时间之比为1:()21-:32-)……(n n --1)⑤通过连续相等位移末速度比为1:2:3……n(6)匀减速直线运动至停可等效认为反方向初速为零的匀加速直线运动.(先考虑减速至停的时间).“刹车陷井”实验规律:(7)通过打点计时器在纸带上打点(或频闪照像法记录在底片上)来研究物体的运动规律:此方法称留迹法。

初速无论是否为零,只要是匀变速直线运动的质点,就具有下面两个很重要的特点:在连续相邻相等时间间隔内的位移之差为一常数;?s=aT 2(判断物体是否作匀变速运动的依据)。

中时刻的即时速度等于这段的平均速度(运用V可快速求位移)⑴是判断物体是否作匀变速直线运动的方法。

?s=aT 2 ⑵求的方法V N =V =s t=T S S NN 21++2T s s t s 2v v v v n 1n t 0t/2+==+==+平⑶求a 方法:①?s=a T 2②3+N S 一NS =3a T 2③S m 一S n =(m-n)a T 2④画出图线根据各计数点的速度,图线的斜率等于a ;识图方法:一轴、二线、三斜率、四面积、五截距、六交点探究匀变速直线运动实验:下图为打点计时器打下的纸带。

选点迹清楚的一条,舍掉开始比较密集的点迹,从便于测量的地方取一个开始点O ,然后每5个点取一个计数点A 、B 、C 、D …。

(或相邻两计数点间⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧=-+=+=+==axv v at t v x at v v v v v tv x tt t 22122022000① ② ③ ④ ⑤有四个点未画出)测出相邻计数点间的距离s 1、s 2、s 3…利用打下的纸带可以: ⑴求任一计数点对应的即时速度v :如Tss v c 232+=(其中记数周期:T =5×=)⑵利用上图中任意相邻的两段位移求a :如223Ts s a -=⑶利用“逐差法”求a :()()23216549Ts s s s s s a ++-++=求出A 、B 、C 、D 、E 、F 各点的即时速度,画出如图的v-t 图线,图线的斜率就是加速度a 。

以及“雨天路滑车辆减速行驶”的原理。

解:(1)、设在反应时间内,汽车匀速行驶的位移大小为1s ;刹车后汽车做匀减速直线运动的位移大小为2s ,加速度大小为a 。

由牛顿第二定律及运动学公式有:由以上四式可得出:><++=5..........)(22000g mFv t v s μ ①超载(即m 增大),车的惯性大,由><5式,在其他物理量不变的情况下刹车距离就会增长,遇紧急情况不能及时刹车、停车,危险性就会增加;②同理超速(0v 增大)、酒后驾车(0t 变长)也会使刹车距离就越长,容易发生事故;③雨天道路较滑,动摩擦因数μ将减小,由<五>式,在其他物理量不变的情况下刹车距离就越长,汽车较难停下来。

因此为了提醒司机朋友在公路上行车安全,在公路旁设置“严禁超载、超速及酒后驾车”以及“雨天路滑车辆减速行驶”的警示牌是非常有必要的。

思维方法篇1.平均速度的求解及其方法应用①用定义式:ts∆∆=一v 普遍适用于各种运动;②v =V V t02+只适用于加速度恒定的匀变速直线运动2.巧选参考系求解运动学问题3.追及和相遇或避免碰撞的问题的求解方法:两个关系和一个条件:1两个关系:时间关系和位移关系;2一个条件:两者速度相等,往往是物体间能否追上,或两者距离最大、最小的临界条件,是分析判断的切入点。

关键:在于掌握两个物体的位置坐标及相对速度的特殊关系。

基本思路:分别对两个物体研究,画出运动过程示意图,列出方程,找出时间、速度、位移的关系。

解出结果,必要时进行讨论。

追及条件:追者和被追者v 相等是能否追上、两者间的距离有极值、能否避免碰撞的临界条件。

讨论:1.匀减速运动物体追匀速直线运动物体。

s①两者v 相等时,S 追<S 被追永远追不上,但此时两者的距离有最小值 ②若S 追<S 被追、V 追=V 被追恰好追上,也是恰好避免碰撞的临界条件。

S 追=S 被追③若位移相等时,V 追>V 被追则还有一次被追上的机会,其间速度相等时,两者距离有一个极大值2.初速为零匀加速直线运动物体追同向匀速直线运动物体①两者速度相等时有最大的间距②位移相等时即被追上3.匀速圆周运动物体:同向转动:?A t A =?B t B +n 2π;反向转动:?A t A +?B t B =2π 4.利用运动的对称性解题 5.逆向思维法解题 6.应用运动学图象解题 7.用比例法解题8.巧用匀变速直线运动的推论解题①某段时间内的平均速度=这段时间中时刻的即时速度 ②连续相等时间间隔内的位移差为一个恒量 ③位移=平均速度⨯时间解题常规方法:公式法(包括数学推导)、图象法、比例法、极值法、逆向转变法 3.竖直上抛运动:(速度和时间的对称)分过程:上升过程匀减速直线运动,下落过程初速为0的匀加速直线运动. 全过程:是初速度为V 0加速度为?g 的匀减速直线运动。

(1)上升最大高度:H=V go22(2)上升的时间:t=V go (3)从抛出到落回原位置的时间:t=2gV o(4)上升、下落经过同一位置时的加速度相同,而速度等值反向 (5)上升、下落经过同一段位移的时间相等。

(6)匀变速运动适用全过程S=V o t -12gt 2;V t =V o -gt;V t 2-V o 2=-2gS (S 、V t 的正、负号的理解) 4.匀速圆周运动线速度:V=t s =2πR T =?R=2πfR 角速度:?=fTt ππθ22==向心加速度:a=v R R T R 222244===ωππ2f 2R=v ⨯ω向心力:F=ma=m v R m 2=ω2R=m 422πTR =m42πn 2R追及(相遇)相距最近的问题:同向转动:?A t A =?B t B +n 2π;反向转动:?A t A +?B t B =2π 注意:(1)匀速圆周运动的物体的向心力就是物体所受的合外力,总是指向圆心. (2)卫星绕地球、行星绕太阳作匀速圆周运动的向心力由万有引力提供。

(3)氢原子核外电子绕原子核作匀速圆周运动的向心力由原子核对核外电子的库仑力提供。

5.平抛运动:匀速直线运动和初速度为零的匀加速直线运动的合运动(1)运动特点:a 、只受重力;b 、初速度与重力垂直.尽管其速度大小和方向时刻在改变,但其运动的加速度却恒为重力加速度g ,因而平抛运动是一个匀变速曲线运动。

在任意相等时间内速度变化相等。

(2)平抛运动的处理方法:平抛运动可分解为水平方向的匀速直线运动和竖直方向的自由落体运动。

水平方向和竖直方向的两个分运动既具有独立性又具有等时性. (3)平抛运动的规律:证明:做平抛运动的物体,任意时刻速度的反向延长线一定经过此时沿抛出方向水平总位移的中点。

证:平抛运动示意如图设初速度为V 0,某时刻运动到A 点,位置坐标为(x,y),所用时间为t. 此时速度与水平方向的夹角为β,速度的反向延长线与水平轴的交点为'x , 位移与水平方向夹角为α.以物体的出发点为原点,沿水平和竖直方向建立坐标。

依平抛规律有:速度:V x =V 0V y =gt22yxv v v +='0xy v gt v v tan x x y-===β① 位移:S x =V o t22yxs s s +=002gt 21t gt tan 21v v x y ===α② 由①②得:βαtan 21tan =即)(21'x x y x y -=③ 所以:x x 21'=④ ④式说明:做平抛运动的物体,任意时刻速度的反向延长线一定经过此时沿抛出方向水总位移的中点。

“在竖直平面内的圆周,物体从顶点开始无初速地沿不同弦滑到圆周上所用时间都相等。

”一质点自倾角为α的斜面上方定点O 沿光滑斜槽OP 从静止开始下滑,如图所示。

为了使质点在最短时间内从O 点到达斜面,则斜槽与竖直方面的夹角β等于多少?。

相关文档
最新文档