自贡中考数学答案A
2023年四川省自贡市中考数学真题(解析版)
四川省自贡市初2023届毕业生学业考试数学本试卷分为第I 卷(选择题)和第II 卷(非选择题)两部分,共6页,满分150分. 答卷前,考生务必将自己的姓名、准考证号填写在答题卡上,答卷时,须将答案答在答题卡上,在本试题卷、草稿纸上答题无效,考试结束后,将试题卷和答题卡一并交回.第I 卷 选择题(共48分)注意事项:必须使用2B 铅笔将答案标号填涂在答题卡上对应题目标号的位置上,如需改动,用橡皮擦干净后,再选涂其他答案标号.一、选择题(共12个小题,每小题4分,共48分,在每题给出的四个选项中,只有一项是符合题目要求的)1. 如图,数轴上点A 表示的数是2023,OA OB =,则点B 表示的数是( )A 2023B. 2023−C. 12023D. 12023− 【答案】B【解析】【分析】根据数轴的定义求解即可.【详解】解;∵数轴上点A 表示的数是2023,OA OB =,∴=2023OB ,∴点B 表示的数是2023−,故选:B .【点睛】本题考查数轴上点表示有理数,熟练掌握数轴上点的特征是解题的关键.2. 自贡恐龙博物馆今年“五一”期间接待游客约110000人.人数110000用科学记数法表示为( )A. 41.110×B. 41110×C. 51.110×D. 61.110× 【答案】C【解析】【分析】用科学记数法表示较大的数时,一般形式为10n a ×,其中1||10a ≤<,n 为整数..【详解】解:5110000 1.110=×.故选:C .【点睛】本题考查了科学记数法,科学记数法的表示形式为10n a ×的形式,其中1||10a ≤<,n 为整数.确定n 的值时,要看把原来的数,变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值10≥时,n 是正数;当原数的绝对值1<时,n 是负数,确定a 与n 的值是解题的关键. 3. 如图中六棱柱的左视图是( )A. B. C. D.【答案】A【解析】【分析】根据几何体的三视图的定义,画出从左面看所得到的图形即可.【详解】根据三视图的概念,可知选项A 中的图形是左视图,选项C 中的图形是主视图,选项D 中的图形是俯视图,故选A .【点睛】本题主要考查了简单几何体的三视图,理解三视图的定义,熟练掌握三视图的画法是解题的关键. 4. 如图,某人沿路线A B C D →→→行走,AB 与CD 方向相同,1128∠=°,则2∠=( )A. 52°B. 118°C. 128°D. 138°【答案】C【解析】 【分析】证明AB CD ,利用平行线的性质即可得到答案.【详解】解:AB 与CD 方向相同,AB CD ∴ ,12∴∠=∠,1128∠=° ,2128∴∠=°.故选:C .【点睛】本题主要考查平行线的判定与性质,掌握平行线的性质是解题的关键.5. 如图,边长为3的正方形OBCD 两边与坐标轴正半轴重合,点C 的坐标是( )A. (3,3)−B. ()3,3−C. ()3,3D. (3,3)−−【答案】C【解析】 【分析】根据正方形的性质,结合坐标的意义即可求解.【详解】解:∵边长为3的正方形OBCD 两边与坐标轴正半轴重合,∴3OB BC ==∴()3,3C ,故选:C .【点睛】本题考查了坐标与图形,熟练掌握正方形的性质,数形结合是解题的关键.6. 下列交通标志图案中,既是中心对称图形又是轴对称图形的是( )A. B. C. D.【答案】B【解析】【分析】根据轴对称图形和中心对称图形的定义:如果一个平面图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形;中心对称图形的定义:把一个图形绕着某一个点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心,进行逐一判断即可.【详解】解:A 、是轴对称图形,不是中心对称图形,故A 选项不合题意;B 、既是轴对称图形又是中心对称图形,故B 选项符合题意;C 、既不是轴对称图形,也不是中心对称图形,故C 选项不合题意;D 、是轴对称图形,不是中心对称图形,故D 选项不合题意.故选:B .【点睛】本题主要考查了轴对称图形和中心对称图形,解题的关键在于能够熟练掌握轴对称图形和中心对称图形的定义.7. 下列说法正确的是( )A. 甲、乙两人10次测试成绩的方差分别是224,14S S ==甲乙,则乙的成绩更稳定 B. 某奖券的中奖率为1100,买100张奖券,一定会中奖1次 C. 要了解神舟飞船零件质量情况,适合采用抽样调查D. 3x =是不等式()213x −>的解,这是一个必然事件【答案】D【解析】【分析】根据方差的意义,概率的意义,抽样调查与普查,不等式的解与必然事件的定义逐项分析判断【详解】解:A. 甲、乙两人10次测试成绩的方差分别是224,14S S ==甲乙,则甲的成绩更稳定,故该选项不正确,不符合题意;B. 某奖券的中奖率为1100,买100张奖券,可能会中奖1次,故该选项不正确,不符合题意; C. 要了解神舟飞船零件质量情况,适合采用全面调查D.解:2()13x −>,25x >, 解得:52x >, ∴3x =是不等式2()13x −>的解,这是一个必然事件,故该选项正确,符合题意;故选:D .【点睛】本题考查了方差的意义,概率的意义,抽样调查与普查,不等式的解与必然事件的定义,熟练掌握以上知识是解题的关键.8. 如图,ABC 内接于O ,CD 是O 的直径,连接BD ,41DCA ∠=°,则ABC ∠的度数是( )A. 41°B. 45°C. 49°D. 59°【答案】C【解析】 【分析】由CD 是O 的直径,得出90DBC ∠=°,进而根据同弧所对的圆周角相等,得出41ABD ACD ∠=∠=°,进而即可求解.【详解】解:∵CD 是O 的直径,∴90DBC ∠=°,� AD AD =,∴41ABD ACD ∠=∠=°,∴904149ABC DBC DBA ∠=∠−∠=°−°=°,故选:C .【点睛】本题考查了圆周角定理的推论,熟练掌握圆周角定理是解题的关键.9. 第29届自贡国际恐龙灯会“辉煌新时代”主题灯组上有一幅不完整的正多边形图案,小华量得图中一边与对角线的夹角15ACB ∠=°,算出这个正多边形的边数是( )A. 9B. 10C. 11D. 12【答案】D【解析】 【分析】根据三角形内角和定理以及正多边形的性质,得出150B ∠=°,然后可得每一个外角为30°,进而即可求解.【详解】解:依题意,AB BC =,15ACB ∠=°,∴15BAC ∠=°∴180150ABC ACB BAC ∠=°−−=°∠∠∴这个正多边形的一个外角为18015030°−°=°, 所以这个多边形的边数为360=1230, 故选:D .【点睛】本题考查了三角形内角和定理,正多边形的性质,正多边形的外角与边数的关系,熟练掌握正多边的外角和等于360°是解题的关键.10. 如图1,小亮家、报亭、羽毛球馆在一条直线上.小亮从家跑步到羽毛球馆打羽毛球,再去报亭看报,最后散步回家.小亮离家距离y 与时间x 之间的关系如图2所示.下列结论错误的是( )A. 小亮从家到羽毛球馆用了7分钟B. 小亮从羽毛球馆到报亭平均每分钟走75米C. 报亭到小亮家的距离是400米D. 小亮打羽毛球的时间是37分钟【答案】D【解析】【分析】根据函数图象,逐项分析判断即可求解. 【详解】解:A. 从函数图象可得出,小亮从家到羽毛球馆用了7分钟,故该选项正确,不符合题意; B. 1000400=754537−−(米/分钟), 即小亮从羽毛球馆到报亭平均每分钟走75米,故该选项正确,不符合题意;C. 从函数图象可得出,报亭到小亮家的距离是400米,故该选项正确,不符合题意;D. 小亮打羽毛球的时间是37730−=分钟,故该选项不正确,符合题意;故选:D .【点睛】本题考查了函数图象,理解函数图像上点的坐标的实际意义,数形结合是解题的关键.11. 经过23,()41,),(A b m B b c m −+−两点的抛物线22122y x bx b c =−+−+(x 为自变量)与x 轴有交点,则线段AB 长为( )A. 10B. 12C. 13D. 15【答案】B【解析】【分析】根据题意,求得对称轴,进而得出1c b =−,求得抛物线解析式,根据抛物线与x 轴有交点得出240b ac ∆=−≥,进而得出2b =,则1c =,求得,A B 的横坐标,即可求解. 【详解】解:∵抛物线22122y x bx b c =−+−+的对称轴为直线1222b b x b a =−=−= ×−∵抛物线经过23,()41,),(A b m B b c m −+−两点 ∴23412b bc b −++−=, 即1c b =−, ∴原方程为221222y x bx b b =−+−+−, ∵抛物线与x 轴有交点,∴240b ac ∆=−≥, 即()22142202b b b −×−×−+−≥, 即2440b b −+≤,即()220b −≤,∴2b =,1211c b =−=−=,∴23264,418118b b c −=−=−+−=+−=, ∴()()41238412AB b c b =+−−−=−−=,故选:B .【点睛】本题考查了二次函数的对称性,与x 轴交点问题,熟练掌握二次函数的性质是解题的关键. 12. 如图,分别经过原点O 和点()4,0A 的动直线a ,b 夹角30OBA ∠=°,点M 是OB 中点,连接AM ,则sin OAM ∠的最大值是( )A.B.C. D. 56【答案】A【解析】【分析】根据已知条件,30OBA ∠=°,得出B 的轨迹是圆,取点()8,0D ,则AM 是OBD 的中位线,则求得ODB ∠的正弦的最大值即可求解,当BD 与C 相切时,ODB ∠最大,则正弦值最大,据此即可求解.【详解】解:如图所示,以OA 为边向上作等边OAC ,过点C 作CE x ⊥轴于点E ,则4OC OA AC ===,则C 的横坐标为2,纵坐标为CE =sin 60OC ×°=,�(2,C ,取点()8,0D ,则AM 是OBD 的中位线,�CD ==�30OBA ∠=°,∴点B 在半径为4的C 上运动,∵AM 是OBD 的中位线,�AM BD ∥�∴OAM ODB ∠=∠,当BD 与C 相切时,ODB ∠最大,则正弦值最大,在Rt BCD 中,BD =过点B 作FB x ∥轴,过点C 作CF FG ⊥于点F ,过点D 作DG FG ⊥于点G ,则F G ∠=∠�BD 与C 相切,∴BD CB ⊥,�90FBC FCB FBC DBG ∠+∠=∠+∠=°,�FCB DBG ∠=∠,�CFB BGD ∽,�CF FB BC GB GD BD == 设CF a =,FB b =,则,BG DG =�()()2,,F a G +∴826,FG DG a =−==+∴28b a ++= +解得:2b =+∴sin sin DG ODB GBD BD ∠=∠=故选:A .【点睛】本题考查了相似三角形的性质与判定,求正弦,等边三角形的性质。
2021年中考数学真题 图形的相似(共55题)-(解析版)
2021年中考数学真题分项汇编【全国通用】(第01期)22图形的相似(共55题)姓名:__________________ 班级:______________ 得分:_________________一、单选题1.(2021·浙江温州市·中考真题)如图,图形甲与图形乙是位似图形,O 是位似中心,位似比为2:3,点A ,B 的对应点分别为点A ',B '.若6AB =,则A B ''的长为( )A .8B .9C .10D .15【答案】B 【分析】直接利用位似图形的性质得出线段比进而得出答案. 【详解】解:∵图形甲与图形乙是位似图形,O 是位似中心,位似比为2:3,∵23AB A B ='', ∵6AB =,∵623A B ='', ∵9A B ''= 故答案为:B .【点睛】此题主要考查了位似变换,正确掌握位似图形的性质是解题关键.2.(2021·山东东营市·中考真题)如图,ABC 中,A 、B 两个顶点在x 轴的上方,点C 的坐标是(1,0),以点C 为位似中心,在x 轴的下方作ABC 的位似图形A B C '',并把ABC 的边长放大到原来的2倍,设点B 的横坐标是a ,则点B 的对应点B '的横坐标是( )A .23a -+B .21a -+C .22a -+D .22a --【答案】A 【分析】设点'B 的横坐标为x ,然后表示出BC 、'B C 的横坐标的距离,再根据位似比列式计算即可得解. 【详解】设点'B 的横坐标为x ,则B 、C 间的横坐标的差为1a -,'B 、C 间的横坐标的差为1x -+,ABC 放大到原来的2倍得到'''A B C ,∴()211a x -=-+,解得:23x a =-+. 故选:A. 【点睛】本题考查了位似变换,坐标与图形的性质,根据位似比的定义,利用两点间的横坐标的距离等于对应边的比列出方程是解题的关键.3.(2021·浙江绍兴市·中考真题)如图,树AB 在路灯O 的照射下形成投影AC ,已知路灯高5m PO =,树影3m AC =,树AB 与路灯O 的水平距离 4.5m AP =,则树的高度AB 长是( )A .2mB .3mC .3m 2D .10m 3【答案】A 【分析】利用相似三角形的性质得到对应边成比例,列出等式后求解即可. 【详解】解:由题可知,CAB CPO ∽,∵AB ACOP CP =, ∵353 4.5AB =+, ∵()2AB m =, 故选A .【点睛】本题考查了相似三角形的判定与应用,解决本题的关键是能读懂题意,建立相似关系,得到对应边成比例,完成求解即可,本题较基础,考查了学生对相似的理解与应用等.4.(2021·四川遂宁市·中考真题)如图,在△ABC 中,点D 、E 分别是AB 、AC 的中点,若△ADE 的面积是3cm 2,则四边形BDEC 的面积为( )A .12cm 2B .9cm 2C .6cm 2D .3cm 2【答案】B 【分析】由三角形的中位线定理可得DE =12BC ,DE ∵BC ,可证∵ADE ∵∵ABC ,利用相似三角形的性质,即可求解. 【详解】解:∵点D ,E 分别是边AB ,AC 的中点,∵DE =12BC ,DE ∵BC ,∵∵ADE ∵∵ABC , ∵21()4ADEABCS DE SBC ∆∆==, ∵S ∵ADE =3, ∵S ∵ABC =12,∵四边形BDEC的面积=12-3=9(cm2),故选:B.【点睛】本题考查了相似三角形的判定和性质,三角形中位线定理,掌握相似三角形的性质是解题的关键.5.(2021·重庆中考真题)如图,△ABC与△BEF位似,点O是它们的位似中心,其中OE=2OB,则△ABC与△DEF的周长之比是()A.1:2B.1:4C.1:3D.1:9【答案】A【分析】利用位似的性质得∵ABC∵∵DEF,OB:OE= 1:2,然后根据相似三角形的性质解决问题.【详解】解:∵∵ABC与∵DEF位似,点O为位似中心.∵∵ABC∵∵DEF,OB:OE= 1:2,∵∵ABC与∵DEF的周长比是:1:2.故选:A.【点睛】本题主要考查了位似变换,正确掌握位似图形的性质是解题关键.6.(2021·江苏扬州市·中考真题)如图,点P 是函数()110,0k y k x x=>>的图像上一点,过点P 分别作x 轴和y 轴的垂线,垂足分别为点A 、B ,交函数()220,0k y k x x=>>的图像于点C 、D ,连接OC 、OD 、CD 、AB ,其中12k k >,下列结论:△//CD AB ;△122OCDk kS -=;△()21212DCPk k Sk -=,其中正确的是( )A .△△B .△△C .△△D .△【答案】B 【分析】设P (m ,1k m),分别求出A ,B ,C ,D 的坐标,得到PD ,PC ,PB ,P A 的长,判断PD PB和PC PA 的关系,可判断∵;利用三角形面积公式计算,可得∵PDC 的面积,可判断∵;再利用OCD OAPB OBD OCA DPC S S S S S =---△△△△计算∵OCD 的面积,可判断∵.【详解】解:∵PB ∵y 轴,P A ∵x 轴,点P 在1k y x =上,点C ,D 在2k y x=上,设P (m ,1k m ), 则C (m ,2k m ),A (m ,0),B (0,1k m),令12k k m x =,则21k m x k =,即D (21k m k ,1k m ),∵PC =12k k m m -=12k k m -,PD =21k m m k -=()121m k k k -, ∵()121121m k k k k k PD PB m k --==,121211k k k k PC m kPA k m--==,即PD PCPB PA =,又∵DPC =∵BP A , ∵∵PDC ∵∵PBA , ∵∵PDC =∵PBC , ∵CD ∵AB ,故∵正确; ∵PDC的面积=12PD PC ⨯⨯=()1212112m k k k k km --⨯⨯=()21212k k k -,故∵正确;OCD OAPB OBD OCA DPC S S S S S =---△△△△=()112221222112k k k k k k ----=()2121122k k k k k ---=()()21121112222k k k k k k k --- =()22112211222k k k k k k --- =221212k k k -,故∵错误;故选B . 【点睛】此题主要考查了反比例函数的图象和性质,k 的几何意义,相似三角形的判定和性质,解题关键是表示出各点坐标,得到相应线段的长度.7.(2021·江苏连云港市·中考真题)如图,ABC 中,BD AB ⊥,BD 、AC 相交于点D ,47AD AC =,2AB =,150ABC ∠=︒,则DBC △的面积是( )A B C D 【答案】A 【分析】过点C 作CE AB ⊥的延长线于点E ,由等高三角形的面积性质得到:3:7DBCABCS S=,再证明ADB ACE ,解得47AB AE =,分别求得AE 、CE 长,最后根据ACE 的面积公式解题. 【详解】解:过点C 作CE AB ⊥的延长线于点E ,DBC 与ADB △是等高三角形,43:::4:377ADB DBCSSAD DC AC AC === :3:7DBCABCSS∴=BD AB ⊥∴ADB ACE22416749ADB ACEAC S AD SAC AC ⎛⎫ ⎪⎛⎫∴===⎪ ⎪⎝⎭ ⎪⎝⎭47AB AE ∴= 2AB =72AE ∴=73222BE ∴=-=150,ABC ∠=︒18015030CBE ∴∠=︒-︒=︒tan 30CE BE ∴=︒⋅=设4,3ADBDBCSx Sx ==494ACESx ∴=∴4917422x ∴=⨯14x ∴=3x ∴=, 故选:A . 【点睛】本题考查相似三角形的判定与性质、正切等知识,是重要考点,掌握相关知识是解题关键.8.(2021·浙江绍兴市·中考真题)如图,Rt ABC 中,90BAC ∠=︒,1cos 4B =,点D 是边BC 的中点,以AD 为底边在其右侧作等腰三角形ADE ,使ADE B ∠=∠,连结CE ,则CEAD的值为( )A .32BCD .2【答案】D 【分析】由直角三角形斜边中线等于斜边一半可得出12AD BD CD BC ===,在结合题意可得BAD B ADE ∠=∠=∠,即证明//AB DE ,从而得出BAD B ADE CDE ∠=∠=∠=∠,即易证()ADE CDE SAS ≅,得出AE CE =.再由等腰三角形的性质可知AE CE DE ==,BAD B ADE DAE ∠=∠=∠=∠,即证明ABD ADE ∼,从而可间接推出CE BDAD AB=.最后由1cos 4AB B BC ==,即可求出BD AB 的值,即CEAD的值. 【详解】∵在Rt ABC 中,点D 是边BC 的中点, ∵12AD BD CD BC ===, ∵BAD B ADE ∠=∠=∠, ∵//AB DE .∵BAD B ADE CDE ∠=∠=∠=∠,∵在ADE 和CDE △中,AD CD ADE CDE DE DE =⎧⎪∠=∠⎨⎪=⎩,∵()ADE CDE SAS ≅,∵AE CE =,∵ADE 为等腰三角形,∵AE CE DE ==,BAD B ADE DAE ∠=∠=∠=∠,∵ABD ADE ∼, ∵DE AD BD AB =,即CE BD AD AB=. ∵1cos 4AB B BC ==, ∵12AB BD =, ∵2CE BD AD AB ==. 故选D .【点睛】本题考查直角三角形的性质,等腰三角形的性质,平行线的判定和性质,全等三角形与相似三角形的判定和性质以及解直角三角形.熟练掌握各知识点并利用数形结合的思想是解答本题的关键.9.(2021·重庆中考真题)如图,在平面直角坐标系中,将OAB 以原点O 为位似中心放大后得到OCD ,若()0,1B ,()0,3D ,则OAB 与OCD 的相似比是( )A .2:1B .1:2C .3:1D .1:3 【答案】D【分析】直接利用对应边的比等于相似比求解即可.【详解】解:由B 、D 两点坐标可知:OB =1,OD =3;∵OAB 与∵OCD 的相似比等于13OB OD =; 故选D .【点睛】本题考查了在平面直角坐标系中求两个位似图形的相似比的概念,同时涉及到了位似图形的概念、平面直角坐标系中点的坐标、线段长度的确定等知识;解题关键是牢记相似比等于对应边的比,准确求出对应边的比即可完成求解,考查了学生对概念的理解与应用等能力.10.(2021·浙江丽水市·中考真题)如图,在Rt ABC △纸片中,90,4,3ACB AC BC ∠=︒==,点,D E 分别在,AB AC 上,连结DE ,将ADE 沿DE 翻折,使点A 的对应点F 落在BC 的延长线上,若FD 平分EFB ∠,则AD 的长为( )A .259B .258C .157D .207【答案】D【分析】先根据勾股定理求出AB ,再根据折叠性质得出∵DAE=∵DFE ,AD=DF ,然后根据角平分线的定义证得∵BFD=∵DFE =∵DAE ,进而证得∵BDF=90°,证明Rt∵ABC ∵Rt∵FBD ,可求得AD 的长.【详解】解:∵90,4,3ACB AC BC ∠=︒==,∵AB =,由折叠性质得:∵DAE=∵DFE ,AD=DF ,则BD =5﹣AD ,∵FD 平分EFB ∠,∵∵BFD =∵DFE=∵DAE ,∵∵DAE +∵B =90°,∵∵BDF +∵B =90°,即∵BDF =90°,∵Rt∵ABC ∵Rt∵FBD , ∵BD BC DF AC =即534AD AD -=, 解得:AD =205, 故选:D .【点睛】本题考查折叠性质、角平分线的定义、勾股定理、相似三角形的判定与性质、三角形的内角和定理,熟练掌握折叠性质和相似三角形的判定与性质是解答的关键.11.(2021·山东东营市·中考真题)如图,ABC 是边长为1的等边三角形,D 、E 为线段AC 上两动点,且30DBE ∠=︒,过点D 、E 分别作AB 、BC 的平行线相交于点F ,分别交BC 、AB 于点H 、G .现有以下结论:△ABC S =;△当点D 与点C 重合时,12FH =;△AE CD +=;△当AE CD =时,四边形BHFG 为菱形,其中正确结论为( )A.△△△B.△△△C.△△△△D.△△△【答案】B【分析】过A作AI∵BC垂足为I,然后计算∵ABC的面积即可判定∵;先画出图形,然后根据等边三角形的性质和相似三角形的性质即可判定∵;如图将∵BCD绕B点逆时针旋转60°得到∵ABN,求证NE=DE;再延长EA到P使AP=CD=AN,证得∵P=60°,NP=AP=CD,然后讨论即可判定∵;如图1,当AE=CD时,根据题意求得CH=CD、AG=CH,再证明四边形BHFG为平行四边形,最后再说明是否为菱形.【详解】解:如图1, 过A作AI∵BC垂足为I∵ABC是边长为1的等边三角形∵∵BAC=∵ABC=∵C=60°,CI=1212 BC=∵AI=∵S∵ABC=1112224AI BC=⨯⨯=,故∵正确;如图2,当D 与C 重合时∵∵DBE =30°,ABC 是等边三角形∵∵DBE =∵ABE =30°∵DE =AE =1122AD =∵GE //BD ∵1BGDEAG AE ==∵BG =1122AB =∵GF //BD ,BG //DF∵HF =BG =12,故∵正确;如图3,将∵BCD 绕B 点逆时针旋转60°得到∵ABN∵∵1=∵2,∵5=∵6=60°,AN =CD ,BD =BN∵∵2+∵4=∵1+∵4=30°∵∵NBE=∵3=30°又∵BD=BN,BE=BE∵∵NBE∵∵DBE(SAS)∵NE=DE延长EA到P使AP=CD=AN∵∵NAP=180°-60°-60°=60°∵∵ANP为等边三角形∵∵P=60°,NP=AP=CD成立,则PE,需∵NEP=90°,但∵NEP不一定为90°,如果AE+CD=故∵不成立;如图1,当AE=CD时,∵GE//BC∵∵AGE=∵ABC=60°,∵GEA=∵C=60°∵∵AGE=∵AEG=60°,同理:CH=CD∵AG=CH∵BG//FH,GF//BH∵四边形BHFG是平行四边形∵BG=BH∵四边形BHFG为菱形,故∵正确.故选B.【点睛】本题主要考查了等边三角形的性质、旋转变换、全等三角形的判定和性质以及菱形的判定等知识点,灵活运用相关知识成为解答本题的关键.12.(2021·四川眉山市·中考真题)如图,在以AB为直径的O中,点C为圆上的一点,3⊥于点E,弦AF交CE于点H,交BC于点G.若点H是=,弦CD ABBC AC∠的度数为()AG的中点,则CBFA.18°B.21°C.22.5°D.30°【答案】C【分析】根据直径所对的圆周角是90︒,可知90ACB AFB ∠=∠=︒,根据3BC AC =,可知ABC ∠、BAC ∠的度数,根据直角三角形斜边上的中线等于斜边的一半可知,AHC 为等腰三角形,再根据CAE BFG BCA ∽∽可求得CBF ∠的度数.【详解】解:∵AB 为O 的直径,∵90ACB AFB ∠=∠=︒,∵3BC AC =,∵=22.5ABC ∠︒,=67.5BAC ∠︒,∵点H 是AG 的中点,∵CE AH =,∵CAH ACH ∠=∠,∵CD AB ⊥,∵AEC GCA ∽,又∵,CAF CBF CGA FGB ∠=∠∠=∠,∵AEC GCA GFB ∽∽,∵90ACE ECB ABC ECB ∠+∠=∠+∠=︒,∵ABE ABC ∠=∠,∵AEC GCA GFB ACB ∽∽∽,∵22.5ABC ACE GAC GBF ∠=∠=∠=∠=︒,∵=22.5CBF ∠︒,故选:C .【点睛】本题主要考查圆周角定理,垂径定理,相似三角形,直角三角形斜边上中线等知识点,找出图形中几个相似三角形是解题关键.13.(2021·山东聊城市·中考真题)如图,四边形ABCD中,已知AB△CD,AB与CD之间的距离为4,AD=5,CD=3,△ABC=45°,点P,Q同时由A点出发,分别沿边AB,折线ADCB向终点B方向移动,在移动过程中始终保持PQ△AB,已知点P的移动速度为每秒1个单位长度,设点P的移动时间为x秒,△APQ的面积为y,则能反映y与x之间函数关系的图象是()A.B.C.D.【答案】B【分析】依次分析当03t≤≤、36t<≤、610t<≤三种情况下的三角形面积表达式,再根据其对应图像进行判断即可确定正确选项.【详解】解:如图所示,分别过点D、点C向AB作垂线,垂足分别为点E、点F,∵已知AB∥CD,AB与CD之间的距离为4,∵DE =CF =4,∵点P ,Q 同时由A 点出发,分别沿边AB ,折线ADCB 向终点B 方向移动,在移动过程中始终保持PQ ∵AB ,∵PQ∥DE∥CF ,∵AD =5, ∵3==AE ,∵当03t ≤≤时,P 点在AE 之间,此时,AP =t , ∵AP PQ AE DE=, ∵4=3PQ t , ∵2142=2233APQ t S AP PQ t t ⋅=⨯=, 因此,当03t ≤≤时,其对应的图像为()22033y t t =≤≤,故排除C 和D ; ∵CD =3,∵EF =CD =3,∵当36t <≤时,P 点位于EF 上,此时,Q 点位于DC 上,其位置如图中的P 1Q 1,则111422APQ S t t =⨯⨯=, 因此当36t <≤时,对应图像为()236y t t =<≤,即为一条线段;∵∵ABC =45°,∵BF =CF =4,∵AB =3+3+4=10,∵当610t <≤时,P 点位于FB 上,其位置如图中的P 2Q 2,此时,P 2B =10-t , 同理可得,Q 2P 2=P 2B =10-t ,()2221110522AP Q S t t t t =⨯-=-+,因此当610t <≤时,对应图像为()2156102y t t t =-+<≤,其为开口向下的抛物线的610t <≤的一段图像; 故选:B .【点睛】本题考查了平行线分线段成比例的推论、勾股定理、平行线的性质、三角形的面积公式、二次函数的图像等内容,解决本题的关键是牢记相关概念与公式,能分情况讨论等,本题蕴含了数形结合与分类讨论的思想方法等.14.(2021·四川广元市·中考真题)如图,在边长为2的正方形ABCD 中,AE 是以BC 为直径的半圆的切线,则图中阴影部分的面积为( )A .32π+B .2π-C .1D .52π- 【答案】D【分析】取BC的中点O,设AE与∵O的相切的切点为F,连接OF、OE、OA,由题意可得OB=OC=OA=1,∵OF A=∵OFE=90°,由切线长定理可得AB=AF=2,CE=CF,然后根据割补法进行求解阴影部分的面积即可.【详解】解:取BC的中点O,设AE与∵O的相切的切点为F,连接OF、OE、OA,如图所示:∵四边形ABCD是正方形,且边长为2,∵BC=AB=2,∥ABC=∥BCD=90°,∵AE是以BC为直径的半圆的切线,∵OB=OC=OF=1,∵OF A=∵OFE=90°,∵AB=AF=2,CE=CF,∵OA=OA,∵Rt∵ABO∵Rt∵AFO(HL),同理可证∵OCE∵∵OFE,∵,∠=∠∠=∠,AOB AOF COE FOE∵90∠+∠=︒=∠+∠,AOB COE AOB BAO∵COE BAO ∠=∠,∵ABO OCE ∽, ∵OC CE AB OB=, ∵12CE =, ∵15222222ABO OCE ABCE S S S SS S ππ-=-=+-=+-=阴影半圆半圆四边形; 故选D .【点睛】 本题主要考查切线的性质定理、切线长定理、正方形的性质及相似三角形的性质与判定,熟练掌握切线的性质定理、切线长定理、正方形的性质及相似三角形的性质与判定是解题的关键.15.(2021·四川自贡市·中考真题)如图,在正方形ABCD 中,6AB =,M 是AD 边上的一点,:1:2AM MD =.将BMA △沿BM 对折至BMN △,连接DN ,则DN 的长是( )A .52BC .3D 【答案】D【分析】延长MN 与CD 交于点E ,连接BE ,过点N 作NF CD ⊥,根据折叠的正方形的性质得到NE CE =,在Rt MDE 中应用勾股定理求出DE 的长度,通过证明MDE NFE ∽,利用相似三角形的性质求出NF 和DF 的长度,利用勾股定理即可求解.【详解】解:如图,延长MN 与CD 交于点E ,连接BE ,过点N 作NF CD ⊥,∵6AB =,M 是AD 边上的一点,:1:2AM MD =,∵2AM =,4DM =,∵将BMA △沿BM 对折至BMN △,四边形ABCD 是正方形,∵90BNE C ∠=∠=︒,AB AN BC ==,∵Rt BNE Rt BCE ≌(HL),∵NE CE =,∵2EM MN NE NE =+=+,在Rt MDE 中,设DE x =,则628ME x x =-+=-,根据勾股定理可得()22248x x +=-,解得3x =,∵3NE DE ==,5ME =,∵NF CD ⊥,90MDE ∠=︒,∵MDE NFE ∽, ∵25EF NFNE DE MD ME ===,∵125NF =,95EF =, ∵65DF =,∵DN =,故选:D .【点睛】本题考查折叠的性质、相似三角形的判定与性质、勾股定理的应用等内容,做出合适的辅助线是解题的关键.16.(2021·四川泸州市·中考真题)如图,△O 的直径AB =8,AM ,BN 是它的两条切线,DE 与△O 相切于点E ,并与AM ,BN 分别相交于D ,C 两点,BD ,OC 相交于点F ,若CD =10,则BF 的长是A B C D 【答案】A【分析】过点D 作DG ∵BC 于点G ,延长CO 交DA 的延长线于点H ,根据勾股定理求得6GC =,即可得AD=BG =2,BC = 8,再证明∵HAO ∵∵BCO ,根据全等三角形的性质可得AH=BC =8,即可求得HD= 10;在Rt∵ABD 中,根据勾股定理可得BD =∵DHF ∵∵BCF ,根据相似三角形的性质可得DH DF BC BF=,由此即可求得BF=9【详解】过点D作DG∵BC于点G,延长CO交DA的延长线于点H,∵AM,BN是它的两条切线,DE与∵O相切于点E,∵AD=DE,BC=CE,∵DAB=∵ABC=90°,∵DG∵BC,∵四边形ABGD为矩形,∵AD=BG,AB=DG=8,在Rt∵DGC中,CD=10,∵6GC===,∵AD=DE,BC=CE,CD=10,∵CD= DE+CE = AD+BC =10,∵AD+BG +GC=10,∵AD=BG=2,BC=CG+BG=8,∵∵DAB=∵ABC=90°,∵AD∵BC,∵∵AHO=∵BCO,∵HAO=∵CBO,∵OA=OB,∵∵HAO∵∵BCO,∵AH=BC=8,∵AD=2,∵HD=AH+AD=10;在Rt∵ABD中,AD=2,AB=8,∵BD==∵AD∵BC,∵∵DHF∵∵BCF,∵DH DF=,BC BF∵10=,8解得,BF=故选A.【点睛】本题是圆的综合题,考查了切线长定理、勾股定理、全等三角形的判定及性质、相似三角形的判定于性质,熟练运用相关知识是解决问题的关键.17.(2021·内蒙古通辽市·中考真题)如图,已知//⊥,3AD BC,AB BCAB=,点E 为射线BC上一个动点,连接AE,将ABE△沿AE折叠,点B落在点B'处,过点B'作AD的垂线,分别交AD,BC于M,N两点,当B'为线段MN的三等分点时,BE 的长为()A .32BC .32D 【答案】D【分析】因为点'B 为线段MN 的三等分点,没有指明线段'B M 的占比情况,所以需要分两种情况讨论:∵1'3B M MN =;∵ 2'3B M MN =.然后由一线三垂直模型可证 'AMB ∵'B NE ,再根据相似三角形的性质求得 EN 的值,最后由 BE BN EN =-即可求得 BE 的长.【详解】当点'B 为线段MN 的三等分点时,需要分两种情况讨论:∵如图1,当1'3B M MN =时,∵AD ∵BC ,AB BC ⊥, MN BC ⊥,∵四边形ABNM 为矩形, ∵11'133B M MN AB ===, 22'233B N MN AB ===, BN AM =.由折叠的性质可得'3A B AB ==,'90AB E ABC ∠=∠=︒.在'Rt AB M 中,AM ==.∵''90AB M MAB ∠+∠=︒, ''90AB M EB N ∠+∠=︒,∵''EB N MAB ∠=∠,∵'B NE ∵'AMB ,∵''ENB N B M AM =,即 1EN =,解得 EN =,∵BE BN EN =-==.∵如图2,当2'3B M MN =时,∵AD ∵BC ,AB BC ⊥, MN BC ⊥,∵四边形ABNM 为矩形, ∵22'233B M MN AB ===, 11'133B N MN AB ===, BN AM =.由折叠的性质可得'3AB AB ==,'90AB E ABC ∠=∠=︒.在'Rt AB M 中,AM ===∵''90AB M MAB ∠+∠=︒, ''90AB M EB N ∠+∠=︒,∵''EB N MAB ∠=∠,∵'B NE ∵'AMB ,∵''EN B N B M AM =,即 2EN =EN =,∵BE BN EN =-==.综上所述,BE 的长为2或 5. 故选:D .【点睛】 本题考查了矩形的判定,勾股定理,相似三角形的判定和性质,由'B 为线段MN 的三等分点,分两种情况讨论线段'B M 的占比情况,以及利用K 型相似进行相关计算是解决此题的关键.18.(2021·四川资阳市·中考真题)如图是中国古代数学家赵爽用来证明勾股定理的弦图的示意图,它是由四个全等的直角三角形和一个小正方形EFGH 组成,恰好拼成一个大正方形ABCD .连结EG 并延长交BC 于点M .若1AB EF ==,则GM 有长为( )A .5B .3CD .5【答案】D【分析】添加辅助线,过F 点作FI ∵HM ,通过证明两组三角形相似,得到FI 和GM 的两个关系式,从而求解GM .【详解】如图所示,过F 点作FI ∵HM ,交BC 于点I ,证明勾股定理的弦图的示意图是由四个全等的直角三角形和一个小正方形EFGH 组成∴=90AEB ∠︒,BF AE CG ==,CF BE =,1FG EF ==,EG =又1AB EF ==∴222AE BE AB +=,即 ()2221BF BF ++=解得2BF =或3BF =-(舍去)∴=2BF AE CG ==,=3CF BE =FI∵HM∴CGM CFI ∆,~BFI BEM ∆ ∴32FICFGM CG ==, 32EMBEFI BF == ∴32FI GM =,32EG GMGMFI FI +==∴322GM=解得:GM =经检验:GM =故选:D .【点睛】本题考查了相似三角形和勾股定理.本题的关键在于添加辅助线,建立所求线段与已知条件之间的联系.19.(2021·河北中考真题)图1是装了液体的高脚杯示意图(数据如图),用去一部分液体后如图2所示,此时液面AB ()A.1cm B.2cmC.3cm D.4cm【答案】C【分析】先求出两个高脚杯液体的高度,再通过三角形相似,建立其对应边的比与对应高的比相等的关系,即可求出AB.【详解】解:由题可知,第一个高脚杯盛液体的高度为:15-7=8(cm),第二个高脚杯盛液体的高度为:11-7=4(cm),因为液面都是水平的,图1和图2中的高脚杯是同一个高脚杯,所以图1和图2中的两个三角形相似,∵468AB , ∵=3AB (cm ),故选:C .【点睛】本题考查了相似三角形的判定与性质,解决本题的关键是读懂题意,与图形建立关联,能灵活运用相似三角形的判定得到相似三角形,并能运用其性质得到相应线段之间的关系等,本题对学生的观察分析的能力有一定的要求.20.(2021·四川宜宾市·中考真题)如图,在矩形纸片ABCD 中,点E 、F 分别在矩形的边AB 、AD 上,将矩形纸片沿CE 、CF 折叠,点B 落在H 处,点D 落在G 处,点C 、H 、G 恰好在同一直线上,若AB =6,AD =4,BE =2,则DF 的长是( )A .2B .74C .2D .3【答案】A【分析】 构造如图所示的正方形CMPD ,然后根据相似三角形的判定和性质解直角三角形FNP 即可.【详解】如图,延长CE ,FG 交于点N ,过点N 作//l AB ,延长,CB DA 交l 于,M P , ∵∵CMN =∵DPN =90°,∵四边形CMPD 是矩形,根据折叠,∵MCN =∵GCN ,CD =CG ,DF FG =,∵∵CMN =∵CGN =90°,CN =CN ,∵Rt MNC Rt GNC ∆≅∆,∵6CM CG CD ===,MN NG =∴四边形CMPD 为正方形,//BE MN∵CBE CMN , ∵4263BE CB MN CM ===, 2BE =,3MN ∴=,3NP ∴=,设DF x =,则4AF x =-, 在Rt PNF 中,由222FP NP NF +=可得222(42)3(3)x x -++=+解得2x =;故选A .【点睛】 本题考查了折叠问题,正方形的性质与判定,矩形的性质,平行线的性质,全等三角形的性质和判定,相似三角形,勾股定理等知识点的综合运用,难度较大.作出合适的辅助线是解题的关键.21.(2021·湖北恩施土家族苗族自治州·中考真题)如图,在44⨯的正方形网格中,每个小正方形的边长都为1,E 为BD 与正方形网格线的交点,下列结论正确的是( )A .12CE BD ≠B .ABC CBD ≌ C .AC CD = D .ABC CBD ∠=∠【答案】D【分析】 由题意易得CE ∵AB ,然后根据相似三角形的性质与判定、直角三角形斜边中线定理及全等三角形的判定可排除选项.【详解】解:∵每个小正方形的边长都为1,∵4,2,5AB AC BC CD BD ====,∵22225BC CD BD +==,AC CD ≠,故C 错误;∵∵BCD 是直角三角形,∵90BCD BAC ∠=∠=︒,∵5AB AC BC CD ==, ∵C ABC BD ∽△△,故B 错误;∵ABC CBD ∠=∠,故D 正确;∵E 为BD 与正方形网格线的交点,∵CE ∵AB ,∵ABC BCE CBD ∠=∠=∠,∵90DBC BDC BCE ECD ∠+∠=∠+∠=︒,∵BDC ECD ∠=∠, ∵12BE CE ED BD ===,故A 错误;故选D .【点睛】本题主要考查勾股定理的逆定理、相似三角形的性质与判定及直角三角形斜边中线定理,熟练掌握勾股定理的逆定理、相似三角形的性质与判定及直角三角形斜边中线定理是解题的关键.22.(2021·山东威海市·中考真题)如图,在ABC 和ADE 中,36CAB DAE ∠=∠=︒,AB AC =,AD AE =.连接CD ,连接BE 并延长交AC ,AD 于点F ,G .若BE 恰好平分ABC ∠,则下列结论错误的是( )A .ADC AEB ∠=∠B .//CD ABC .DE GE =D .2BF CF AC =⋅【答案】C【分析】 根据SAS 即可证明DAC EAB △≌△,再利用全等三角形的性质以及等腰三角形的性质,结合相似三角形的判定和性质,即可一一判断【详解】,,36AB AC AD AE CAB DAE ==∠=∠=︒DAC EAB ∴∠=∠∴DAC EAB △≌△ADC AEB ∴∠=∠,故选项A 正确;,36AB AC CAB =∠=︒72ABC ACB ∴∠=∠=︒ BE 平分ABC ∠1362ABE CBF ABC ∴∠=∠=∠=︒DAC EAB △≌△36ACD ABE ∴∠=∠=︒ACD CAB ∴∠=∠//CD AB ∴,故选项B 正确;,36AD AE DAE =∠=︒72ADE ∴∠=︒72DGE DAE EAB ABE EAB ∠=∠+∠+∠=︒+∠即ADE DGE ∠≠∠DE GE ∴≠,故选项C 错误;72,36ABC ACB CAB CBF ∠=∠=︒∠=∠=︒∴∠=︒CFB72∴=BC BF∴△∽△ABC BFCBF CF∴=AB BCAB AC=BF CF∴=AC BF2=⋅,故选项D正确;BF CF AC故答案选:C.【点睛】本题考查了全等三角形的判定和性质,等腰三角形的判定和性质,相似三角形的判定和性质,平行线的判定,能利用全等三角形的判定和性质以及等腰三角形的性质是解题关键.二、填空题23.(2021·江苏无锡市·中考真题)下列命题中,正确命题的个数为________.△所有的正方形都相似△所有的菱形都相似△边长相等的两个菱形都相似△对角线相等的两个矩形都相似【答案】∵【分析】根据多边形的判定方法对∵进行判断;利用菱形的定义对∵进行判断;根据菱形的性质对∵进行判断;根据矩形的性质和相似的定义可对∵进行判断.【详解】解:所有的正方形都相似,所以∵正确;所有的菱形不一定相似,所以∵错误;边长相等的两个菱形,形状不一定相同,即:边长相等的两个菱形不一定相似所以∵错误;对角线相等的两个矩形,对应边不一定成比例,即不一定相似,所以∵错误; 故答案是:∵.【点睛】本题考查了判断命题真假,熟练掌握图形相似的判定方法,菱形,正方形,矩形的性质,是解题的关键.24.(2021·内蒙古中考真题)如图,在Rt ABC 中,90ACB ∠=︒,过点B 作BD CB ⊥,垂足为B ,且3BD =,连接CD ,与AB 相交于点M ,过点M 作MN CB ⊥,垂足为N .若2AC =,则MN 的长为__________.【答案】65【分析】根据MN ∵BC ,AC ∵BC ,DB ∵BC ,得,BNM BCA CNM ABD ,可得,MN BN MN CN AC BC BD BC ,因为1BN CN BC BC ,列出关于MN 的方程,即可求出MN 的长.【详解】∵MN ∵BC ,DB ∵BC , 90ACB ∠=︒∵AC ∵MN ∵DB ,∵,BNM BCA CNM ABD , ∵,MN BN MN CN AC BC BD BC 即,23MN BN MN CN BC BC , 又∵1BN CN BCBC , ∵123MN MN , 解得65MN =, 故填:65. 【点睛】本题考查相似三角形的判定和性质,解题关键是根据题意得出两组相似三角形以及它们对应边之比的等量关系.25.(2021·山东东营市·中考真题)如图,正方形纸片ABCD 的边长为12,点F 是AD 上一点,将CDF 沿CF 折叠,点D 落在点G 处,连接DG 并延长交AB 于点E .若5AE =,则GE 的长为________.【答案】4913【分析】因为折叠,则有DG CF ⊥,从而可知AED HDC △∽△,利用线段比求出DG 的长,即可求出EG .【详解】如图, 四边形ABCD 是正方形12=90∴∠+∠︒因为折叠,DG CF ∴⊥,设垂足为HDH HG ∴=2390∴∠+∠=︒13∠∠∴=AED HDC ∴△∽△AE DHED DC =5AE =,12AD DC ==51312DH∴=6013DH ∴=EG ED GD ∴=-2ED GH =-6013213=-⨯4913=故答案为4913. 【点睛】本题考查了正方形的性质,轴对称的性质,三角形相似的判定与性质,勾股定理,找到AED HDC △∽△是解题的关键.26.(2021·四川南充市·中考真题)如图,在ABC 中,D 为BC 上一点,3BC BD ==,则:AD AC 的值为________.【分析】证明∵ABD ∵∵CBA ,根据相似三角形的性质即可解答.【详解】 ∵3BC BD ==,∵ABBC ==BDAB =,∵3ABBDBC AB ==,∵∵B =∵B ,∵∵ABD ∵∵CBA ,∵3ADBDAC AB ==.故答案为:3. 【点睛】 本题考查了相似三角形的判定及性质,证明∵ABD ∵∵CBA 是解决问题的关键. 27.(2021·湖北随州市·中考真题)如图,在Rt ABC 中,90ACB ∠=︒,O 为AB 的中点,OD 平分AOC ∠交AC 于点G ,OD OA =,BD 分别与AC ,OC 交于点E ,F ,连接AD ,CD ,则OG BC 的值为______;若CE CF =,则CF OF的值为______.【答案】12【分析】(1)根据条件,证明AOD COD ≅△△,从而推断90OGA ∠=,进一步通过角度等量,证明AOG ABC △△,代入推断即可.(2)通过OA OD OC OB ===,可知,,,A B C D 四点共圆,通过角度转化,证明ODF CBF △△,代入推断即可. 【详解】解:(1)∵90ACB ∠=︒,O 为AB 的中点∵OA OC =又∵OD 平分AOC ∠∵AOD COD ∠=∠又∵OD OD =∵AOD COD ≅△△∵AD CD =∵OD AC ⊥∵90OGA ∠=在AOG 与ABC 中GAO BAC ∠=∠,90OGA BCA ∠=∠=∵AOG ABC △△12OGAOBC AB ==(2∵OA OD OC OB ===∵,,,A B C D 四点共圆,如下图:∵CE CF =∵CEF CFE ∠=∠又∵CFE BFO ∠=∠∵CEF BFO ∠=∠∵AOD COD ≅△△∵AD CD =∵AD CD =∵OBF CBE ∠=∠∵90BFO OBF CEF CBE ∠+∠=∠+∠=即90BOC ∠=∵OB OC = ∵BC ===∵90OGA BCA ∠=∠= ∵ODB FBC ∠=∠∵OFD CFB ∠=∠∵ODF CBF △△∵CF BC OF OD==故答案为:12【点睛】本题考查三角形的相似,三角形的全等以及圆的相关知识点,根据图形找见相关的等量关系是解题的关键.28.(2021·四川广元市·中考真题)如图,在正方形ABCD 中,点O 是对角线BD 的中点,点P 在线段OD 上,连接AP 并延长交CD 于点E ,过点P 作PF AP ⊥交BC 于点F ,连接AF 、EF ,AF 交BD 于G ,现有以下结论:△AP PF =;△DE BF EF +=;△PB PD -=;△AEF S 为定值;△APG PEFG S S =四边形.以上结论正确的有________(填入正确的序号即可).【答案】∵∵∵∵【分析】由题意易得∵APF =∵ABC =∵ADE =∵C =90°,AD =AB ,∵ABD =45°,对于∵:易知点A 、B 、F 、P 四点共圆,然后可得∵AFP =∵ABD =45°,则问题可判定;对于∵:把∵AED 绕点A 顺时针旋转90°得到∵ABH ,则有DE =BH ,∵DAE =∵BAH ,然后易得∵AEF ∵∵AHF ,则有HF =EF ,则可判定;对于∵:连接AC ,在BP 上截取BM =DP ,连接AM ,易得OB =OD ,OP =OM ,然后易证∵AOP ∵∵ABF ,进而问题可求解;对于∵:过点A 作AN ∵EF 于点N ,则由题意可得AN =AB ,若∵AEF 的面积为定值,则EF 为定值,进而问题可求解;对于∵由∵可得2AP AF =得∵APG ∵∵AFE ,然后可得相似比为AP AF =相似比的关系可求解.【详解】解:∵四边形ABCD 是正方形,PF AP ⊥,∵∵APF =∵ABC =∵ADE =∵C =90°,AD =AB ,∵ABD =45°,∵∵180ABC APF ∠+∠=︒,∵由四边形内角和可得180BAP BFP ∠+∠=︒,∵点A、B、F、P四点共圆,∵∵AFP=∵ABD=45°,∵∵APF是等腰直角三角形,∵AP PF=,故∵正确;∵把∵AED绕点A顺时针旋转90°得到∵ABH,如图所示:∵DE=BH,∵DAE=∵BAH,∵HAE=90°,AH=AE,∵45∠=∠=︒,HAF EAF∵AF=AF,∵∵AEF∵∵AHF(SAS),∵HF=EF,∵HF BH BF=+,∵DE BF EF+=,故∵正确;∵连接AC,在BP上截取BM=DP,连接AM,如图所示:∵点O 是对角线BD 的中点,∵OB =OD ,BD AC ⊥,∵OP =OM ,∵AOB 是等腰直角三角形, ∵AB =,由∵可得点A 、B 、F 、P 四点共圆,∵APO AFB ∠=∠,∵90ABF AOP ∠=∠=︒,∵∵AOP ∵∵ABF ,∵2OPOAAPBF AB AF ===,∵OP =,∵2BP DP BP BM PM OP -=-==, ∵PB PD -=,故∵正确;∵过点A 作AN ∵EF 于点N ,如图所示:由∵可得∵AFB =∵AFN ,∵∵ABF =∵ANF =90°,AF =AF ,∵∵ABF ∵∵ANF (AAS ),∵AN =AB ,若∵AEF 的面积为定值,则EF 为定值,∵点P 在线段OD 上,∵EF 的长不可能为定值,故∵错误;∵由∵可得2APAF =∵∵AFB =∵AFN =∵APG ,∵F AE =∵P AG ,∵∵APG ∵∵AFE ,∵2GP AP EF AF ==,∵2122AGP AEF S S ⎛== ⎝⎭,∵12AGP AEF S S =,∵APGPEFG S S =四边形,故∵正确;综上所述:以上结论正确的有∵∵∵∵;故答案为∵∵∵∵.【点睛】本题主要考查正方形的性质、旋转的性质、圆的基本性质及相似三角形的性质与判定,熟练掌握正方形的性质、旋转的性质、圆的基本性质及相似三角形的性质与判定是解题的关键.29.(2021·江苏南京市·中考真题)如图,将ABCD 绕点A 逆时针旋转到AB C D '''的位置,使点B '落在BC 上,B C ''与CD 交于点E ,若3,4,1AB BC BB '===,则CE 的长为________.【答案】98【分析】 过点C 作CM //C D ''交B C ''于点M ,证明ABB ADD ''∆∆∽求得53C D '=,根据AAS 证明ABB B CM ''∆≅∆可求出CM =1,再由CM //C D ''证明∵CME DC E '∆∽,由相似三角形的性质查得结论.【详解】解:过点C 作CM //C D ''交B C ''于点M ,。
2024年全国各省市数学中考真题汇编 专题6一元二次方程及其应用(11题)含详解
专题06一元二次方程及其应用(11题)一、单选题1.(2024·四川自贡·中考真题)关于x 的一元二次方程220x kx +-=的根的情况是()A .有两个不相等的实数根B .有两个相等的实数根C .只有一个实数根D .没有实数根2.(2024·山东泰安·中考真题)关于x 的一元二次方程2230x x k -+=有实数根,则实数k 的取值范围是()A .98k <B .98k ≤C .98k ≥D .98k <-3.(2024·甘肃兰州·中考真题)关于x 的一元二次方程2960x x c -+=有两个相等的实数根,则c =()A .9-B .4C .1-D .14.(2024·内蒙古赤峰·中考真题)等腰三角形的两边长分别是方程210210x x -+=的两个根,则这个三角形的周长为()A .17或13B .13或21C .17D .13二、填空题5.(2024·广东·中考真题)若关于x 的一元二次方程220x x c ++=有两个相等的实数根,则c =.6.(2024·四川巴中·中考真题)已知方程220x x k -+=的一个根为2-,则方程的另一个根为.7.(2024·甘肃临夏州·中考真题)若关于x 的一元二次方程x 2+2x ﹣m=0有两个相等的实数根,则m 的值为.三、解答题8.(2024·黑龙江齐齐哈尔·中考真题)解方程:x 2﹣5x +6=09.(2024·安徽·中考真题)解方程:223x x -=10.(2024·青海·中考真题)(1)解一元二次方程:2430x x -+=;(2)若直角三角形的两边长分别是(1)中方程的根,求第三边的长.11.(2024·辽宁·中考真题)某商场出售一种商品,经市场调查发现,日销售量y (件)与每件售价x (元)满足一次函数关系,部分数据如下表所示:每件售价x /元⋅⋅⋅455565⋅⋅⋅日销售量y /件⋅⋅⋅554535⋅⋅⋅(1)求y 与x 之间的函数关系式(不要求写出自变量x 的取值范围);(2)该商品日销售额能否达到2600元?如果能,求出每件售价:如果不能,请说明理由.专题06一元二次方程及其应用(11题)一、单选题1.(2024·四川自贡·中考真题)关于x 的一元二次方程220x kx +-=的根的情况是()A .有两个不相等的实数根B .有两个相等的实数根C .只有一个实数根D .没有实数根【答案】A【分析】本题考查的是一元二次方程根的判别式,熟知一元二次方程20(0)ax bx c a ++=≠中,当0∆>时,方程有两个不相等的实数根是解题的关键.根据一元二次方程根的判别式解答即可.【详解】解: △()2241280k k =-⨯⨯-=+>,∴方程有两个不相等的实数根.故选:A .2.(2024·山东泰安·中考真题)关于x 的一元二次方程2230x x k -+=有实数根,则实数k 的取值范围是()A .9k <B .98k ≤C .98k ≥D .98k <-【答案】B【分析】本题考查了判别式与一元二次方程根的情况,熟知一元二次方程有实数根的条件是解题的关键.根据一元二次方程有实数根的条件是0∆≥,据此列不等式求解即可.【详解】解:∵关于x 的一元二次方程2230x x k -+=有实数根,∴()2Δ3420k =--⨯≥,解得98k ≤.故选B .3.(2024·甘肃兰州·中考真题)关于x 的一元二次方程2960x x c -+=有两个相等的实数根,则c =()A .9-B .4C .1-D .1【答案】D【分析】此题考查了根的判别式,根据根的情况确定参数k 的取值,解题的关键是熟练掌握一元二次方程()200ax bx c a ++=≠根的判别式24b ac ∆=-,当方程有两个不相等的实数根时,0∆>;当方程有两个相等的实数根时,Δ0=;当方程没有实数根时,Δ0<.【详解】解:∵关于x 的一元二次方程2960x x c -+=有两个相等的实数根,∴()2Δ64936360c c =--⨯⨯=-=,解得:1c =,故选:D .4.(2024·内蒙古赤峰·中考真题)等腰三角形的两边长分别是方程210210x x -+=的两个根,则这个三角形的周长为()A .17或13B .13或21C .17D .13【答案】C【分析】本题考查了解一元二次方程,等腰三角形的定义,三角形的三边关系及周长,由方程可得13x =,27x =,根据三角形的三边关系可得等腰三角形的底边长为3,腰长为7,进而即可求出三角形的周长,掌握等腰三角形的定义及三角形的三边关系是解题的关键.【详解】解:由方程210210x x -+=得,13x =,27x =,∵337+<,∴等腰三角形的底边长为3,腰长为7,∴这个三角形的周长为37717++=,故选:C .二、填空题5.(2024·广东·中考真题)若关于x 的一元二次方程220x x c ++=有两个相等的实数根,则c =.【答案】1【分析】由220x x c ++=有两个相等的实数根,可得240b ac ∆=-=进而可解答.【详解】解:∵220x x c ++=有两个相等的实数根,∴24440b ac c ∆=-=-=,∴1c =.故答案为:1.【点睛】本题主要考查根据一元二次方程根的情况求参数,掌握相关知识是解题的关键.6.(2024·四川巴中·中考真题)已知方程220x x k -+=的一个根为2-,则方程的另一个根为.7.(2024·甘肃临夏州·中考真题)若关于x 的一元二次方程x 2+2x ﹣m=0有两个相等的实数根,则m 的值为.【答案】-1【分析】根据关于x 的一元二次方程x 2+2x ﹣m=0有两个相等的实数根可知△=0,求出m 的取值即可.【详解】解:由已知得△=0,即4+4m=0,解得m=-1.故答案为-1.【点睛】本题考查的是根的判别式,即一元二次方程ax 2+bx+c=0(a≠0)的根与△=b 2-4ac 有如下关系:①当△>0时,方程有两个不相等的两个实数根;②当△=0时,方程有两个相等的两个实数根;③当△<0时,方程无实数根.三、解答题8.(2024·黑龙江齐齐哈尔·中考真题)解方程:x 2﹣5x +6=0【答案】x 1=2,x 2=3【分析】利用因式分解的方法解出方程即可.【详解】利用因式分解法求解可得.解:∵x 2﹣5x +6=0,∴(x ﹣2)(x ﹣3)=0,则x ﹣2=0或x ﹣3=0,解得x 1=2,x 2=3.【点睛】本题考查解一元二次方程因式分解法,关键在于熟练掌握因式分解的方法步骤.9.(2024·安徽·中考真题)解方程:223x x -=【答案】13x =,21x =-【分析】先移项,然后利用因式分解法解一元二次方程,即可求出答案.【详解】解:∵223x x -=,∴223=0x x --,∴(3)(1)0x x -+=,∴13x =,21x =-.【点睛】本题考查了解一元二次方程,解题的关键是掌握解一元二次方程的方法进行解题.10.(2024·青海·中考真题)(1)解一元二次方程:2430x x -+=;(2)若直角三角形的两边长分别是(1)中方程的根,求第三边的长.11.(2024·辽宁·中考真题)某商场出售一种商品,经市场调查发现,日销售量(件)与每件售价x (元)满足一次函数关系,部分数据如下表所示:每件售价x /元⋅⋅⋅455565⋅⋅⋅日销售量y /件⋅⋅⋅554535⋅⋅⋅(1)求y 与x 之间的函数关系式(不要求写出自变量x 的取值范围);(2)该商品日销售额能否达到2600元?如果能,求出每件售价:如果不能,请说明理由.【答案】(1)100=-+y x ;(2)该商品日销售额不能达到2600元,理由见解析。
2021年自贡市中考数学试卷含答案解析
2021年自贡市中考数学试卷含答案解析2021年四川省自贡市中考数学试卷一、选择题(本大题共12小题,共48分) 1. 计算的结果是A. B. C. 4 D. 2 【答案】A【解析】解:;故选:A.利用异号两数相加取绝对值较大的加数的符号,然后用较大的绝对值减去较小的绝对值即可.本题考查了有理数的加法,比较简单,属于基础题.2. 下列计算正确的是A. B. C. D. 【答案】C【解析】解:原式,故A错误;原式,故B错误;原式,故D错误;故选:C.根据相关的运算法则即可求出答案.本题考查学生的运算能力,解题的关键是熟练运用运算法则,本题属于基础题型.3. 2021年我市用于资助贫困学生的助学金总额是445800000元,将445800000用科学记数法表示为 A. B. C. D. 【答案】B【解析】解:,故选:B.科学记数法的表示形式为的形式,其中,n为整数确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同当原数绝对值时,n是非负数;当原数的绝对值时,n是负数.此题考查了科学记数法的表示方法科学记数法的表示形式为的形式,其中,n为整数,表示时关键要正确确定a的值以及n的值.4. 在平面内,将一个直角三角板按如图所示摆放在一组平行线上;若,则的度数是A. B. C. D. 【答案】D【解析】解:由题意可得:,.故选:D.直接利用平行线的性质结合已知直角得出的度数.第1页,共15页此题主要考查了平行线的性质,正确得出的度数是解题关键.5. 下面几何的主视图是A.B.C.D.【答案】B【解析】解:从几何体正面看,从左到右的正方形的个数为:2,1,故选B.主视图是从物体正面看所得到的图形.本题考查了三视图的知识,主视图是从物体的正面看得到的视图,解答时学生易将三种视图混淆而错误地选其它选项.E分别是AB、AC的中点,6. 如图,在中,点D、若的面积为4,则的面积为 A. 8 B. 12 C. 14 D. 16 【答案】D【解析】解:在中,点D、E分别是AB、AC的中点,,,∽,,,的面积为4,的面积为:16,故选:D.,直接利用三角形中位线定理得出,再利用相似三角形的判定与性质得出答案.此题主要考查了三角形的中位线以及相似三角形的判定与性质,正确得出∽是解题关键.80、98、7. 在一次数学测试后,随机抽取九年级班5名学生的成绩单位:分如下:98、83、91,关于这组数据的说法错误的是 A. 众数是98 B. 平均数是90 C. 中位数是91 D. 方差是56 【答案】D第2页,共15页【解析】解:98出现的次数最多,这组数据的众数是98,A说法正确;,B说法正确;这组数据的中位数是91,C说法正确;,D说法错误;故选:D.根据众数、中位数的概念、平均数、方差的计算公式计算.本题考查的是众数、中位数的概念、平均数和方差的计算,掌握方差的计算公式是解题的关键.8. 回顾初中阶段函数的学习过程,从函数解析式到函数图象,再利用函数图象研究函数的性质,这种研究方法主要体现的数学思想是A. 数形结合B. 类比C. 演绎D. 公理化【答案】A【解析】解:学习了一次函数、二次函数和反比例函数,都是按照列表、描点、连线得到函数的图象,然后根据函数的图象研究函数的性质,这种研究方法主要体现了数形结合的数学思想.故选:A.从函数解析式到函数图象,再利用函数图象研究函数的性质正是数形结合的数学思想的体现.本题考查了函数图象,解题的关键是掌握初中数学常用的数学思想.9. 如图,若内接于半径为R的,且,连接OB、OC,则边BC的长为 A.B. C.D.【答案】D【解析】解:延长BO交于D,连接CD,则,,,,,,故选:D.延长BO交圆于D,连接CD,则,;又,根据第3页,共15页锐角三角函数的定义得此题综合运用了圆周角定理、直角三角形角的性质、勾股定理,注意:作直径构造直角三角形是解决本题的关键.2、3、n,这四个数中任取两数,10. 从、分别记为m、那么点在函数图象的概率是A.【答案】BB.C.D.【解析】解:点在函数的图象上,.列表如下: m n mn 2 3 2 2 2 3 3 3 3 3 62 2 6 6 6 mn的值为6的概率是.故选:B.根据反比例函数图象上点的坐标特征可得出,列表找出所有mn的值,根据表格中所占比例即可得出结论.本题考查了反比例函数图象上点的坐标特征以及列表法与树状图法,通过列表找出的概率是解题的关键.11. 已知圆锥的侧面积是,若圆锥底面半径为,母线长为,则R关于l的函数图象大致是A. B. C. D.【答案】A【解析】解:由题意得,,则,故选:A.根据圆锥的侧面展开图是扇形、扇形面积公式列出关系式,根据反比例函数图象判断即可.本题考查的是圆锥的计算、函数图象,掌握圆锥的圆锥的侧面积的计算公式是解题的关键.第4页,共15页12. 如图,在边长为a正方形ABCD中,把边BC绕点B逆时针旋转,得到线段BM,连接AM并延长交CD于N,连接MC,则的面积为A.B. C.D.【答案】C【解析】解:作于G,于H,则,,,,,,,由旋转变换的性质可知,是等边三角形,,由题意得,,,,,,的面积,故选:C.作于G,于H,根据旋转变换的性质得到是等边三角形,根CH,据直角三角形的性质和勾股定理分别求出MH、根据三角形的面积公式计算即可.本题考查的是旋转变换的性质、正方形的性质,掌握正方形的性质、平行线的性质是解题的关键.二、填空题(本大题共6小题,共24分) 13. 分解因式: ______.【答案】【解析】解:原式提取公因式完全平方公式先提取公因式a,再根据完全平方公式进行二次分解完全平方公式:.本题考查了提公因式法,公式法分解因式,提取公因式后利用完全平方公式进行两次分解,注意要分解要彻底.第5页,共15页14. 化简结果是______.【答案】【解析】解:原式故答案为:根据分式的运算法则即可求出答案.本题考查分式的运算法则,解题的关键是熟练运分式的运算法则,本题属于基础题型.15. 若函数的图象与x轴有且只有一个交点,则m的值为______.【答案】【解析】解:函数的图象与x轴有且只有一个交点,,解得:.故答案为:.由抛物线与x轴只有一个交点,即可得出关于m的一元一次方程,解之即可得出m的值.本题考查了抛物线与x轴的交点,牢记“当时,抛物线与x轴有1个交点”是解题的关键.16. 六一儿童节,某幼儿园用100元钱给小朋友买了甲、乙两种不同的玩具共30个,单价分别为2元和4元,则该幼儿园购买了甲、乙两种玩具分别为______、______个【答案】10;20【解析】解:设甲玩具购买x个,乙玩具购买y个,由题意,得,解得,甲玩具购买10个,乙玩具购买20个,故答案为:10,20.根据二元一次方程组,可得答案.本题考查了二次元一次方程组的应用,根据题意找出两个等量关系是解题关键.17. 观察下列图中所示的一系列图形,它们是按一定规律排列的,依照此规律,第2021个图形共有______个.第6页,共15页【答案】6055【解析】解:观察图形可知:第1个图形共有:,第2个图形共有:,第3个图形共有:,,第n个图形共有:,第2021个图形共有,故答案为:6055.每个图形的最下面一排都是1,另外三面随着图形的增加,每面的个数也增加,据此可得出规律,则可求得答案.本题为规律型题目,找出图形的变化规律是解题的关键,注意观察图形的变化. 18. 如图,在中,,,将它沿AB翻折得到,则四边形ADBC的形状是______形,点P、E、F分别为线段AB、AD、DB的任意点,则的最小值是______.【答案】菱;【解析】解:沿AB翻折得到,,,,,四边形ADBC是菱形,故答案为菱;如图第7页,共15页作出F关于AB的对称点M,再过M作,交ABA于点P,此时最小,此时,过点A作,,,作,,,由勾股定理可得,,,可得,,,最小为,故答案为.根据题意证明四边相等即可得出菱形;作出F关于AB的对称点M,再过M作,交ABA于点P,此时最小,求出ME即可.此题主要考查路径和最短问题,会结合轴对称的知识和“垂线段最短”的基本事实分析出最短路径是解题的关键.三、解答题(本大题共8小题,共78分) 19. 计算:.【答案】解:原式.故答案为2.第8页,共15页【解析】本题涉及绝对值、负整数指数幂、特殊角的三角函数值3个考点在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.本题主要考查了实数的综合运算能力,是各地中考题中常见的计算题型解决此类题目的关键是熟练掌握负整数指数幂、特殊角的三角函数值、绝对值等考点的运算.20. 解不等式组:,并在数轴上表示其解集.【答案】解:解不等式,得:;解不等式,得:,不等式组的解集为:.将其表示在数轴上,如图所示.【解析】分别解不等式、求出x的取值范围,取其公共部分即可得出不等式组的解集,再将其表示在数轴上,此题得解.本题考查了解一元一次不等式组以及在数轴上表示不等式的解集,通过解不等式组求出x的取值范围是解题的关键.21. 某校研究学生的课余爱好情况吧,采取抽样调查的方法,从阅读、运动、娱乐、上网等四个方面调查了若干名学生的兴趣爱好,并将调查结果绘制成下面两幅不完整的统计图,请你根据图中提供的信息解答下列问题:在这次调查中,一共调查了______名学生;补全条形统计图;若该校共有1500名,估计爱好运动的学生有______人;在全校同学中随机选取一名学生参加演讲比赛,用频率估计概率,则选出的恰好是爱好阅读的学生的概率是______.【答案】100;600;【解析】解:爱好运动的人数为40,所占百分比为共调查人数为:爱好上网的人数所占百分比为爱好上网人数为:,爱好阅读人数为:,补全条形统计图,如图所示,爱好运动所占的百分比为,估计爱好运用的学生人数为:第9页,共15页。
中考数学复习专题09反比例函数
反比例函数一、单选题1.(2021·山西)已知反比例函数6y x=,则下列描述不正确的是( ) A .图象位于第一,第三象限 B .图象必经过点34,2⎛⎫⎪⎝⎭C .图象不可能与坐标轴相交D .y 随x 的增大而减小【答案】D【分析】根据反比例函数图像的性质判断即可. 【详解】解:A 、反比例函数6y x=,0k >,经过一、三象限,此选项正确,不符合题意; B 、将点34,2⎛⎫⎪⎝⎭代入6y x =中,等式成立,故此选项正确,不符合题意;C 、反比例函数不可能坐标轴相交,此选项正确,不符合题意;D 、反比例函数图像分为两部分,不能一起研究增减性,故此选项错误,符合题意;故选:D . 【点睛】本题主要考查反比例函数图像的性质,熟知反比例函数的图像的性质是解题关键.2.(2021·四川达州市)在反比例函数21k y x+=(k 为常数)上有三点()11,A x y ,()22,B x y ,()33,C x y ,若1230x x x <<<,则1y ,2y ,3y 的大小关系为( ) A .123y y y << B .213y y y << C .132y y y << D .321y y y <<【答案】C【分析】根据k >0判断出反比例函数的增减性,再根据其坐标特点解答即可. 【详解】解:∵210k +>,∴反比例函数图象的两个分支在第一、三象限,且在每个象限内y 随x 的增大而减小, ∵B (x 2,y 2),C (x 3,y 3)是双曲线ky x=上的两点,且320x x >>,∴点B 、C 在第一象限,0<y 3<y 2,∵A (x 1,y 1)在第三象限,∵y 1<0,∴132y y y <<.故选:C .【点睛】本题考查了由反比例函数图象的性质判断函数图象上点的坐标特征,理解基本性质是解题关键.3.(2021·浙江杭州市)已知1y 和2y 均是以x 为自变量的函数,当x m =时,函数值分别为1M 和2M ,若存在实数m ,使得120M M +=,则称函数1y 和2y 具有性质P .以下函数1y 和2y 具有性质P 的是( )A .212y x x =+和21y x =--B .212y x x =+和21y x =-+C .11y x =-和21y x =--D .11y x=-和21y x =-+【答案】A【分析】根据题中所给定义及一元二次方程根的判别式可直接进行排除选项.【详解】解:当x m =时,函数值分别为1M 和2M ,若存在实数m ,使得120M M +=, 对于A 选项则有210m m +-=,由一元二次方程根的判别式可得:241450b ac -=+=>,所以存在实数m ,故符合题意;对于B 选项则有210m m ++=,由一元二次方程根的判别式可得:241430b ac -=-=-<,所以不存在实数m ,故不符合题意; 对于C 选项则有110m m---=,化简得:210m m ++=,由一元二次方程根的判别式可得:241430b ac -=-=-<,所以不存在实数m ,故不符合题意; 对于D 选项则有110m m--+=,化简得:210m m -+=,由一元二次方程根的判别式可得:241430b ac -=-=-<,所以不存在实数m ,故不符合题意;故选A .【点睛】本题主要考查一元二次方程根的判别式、二次函数与反比例函数的性质,熟练掌握一元二次方程根的判别式、二次函数与反比例函数的性质是解题的关键.4.(2021·天津)若点()()()1235,,1,,5,A y B y C y -都在反比例函数5y x=-的图象上,则123,,y y y 的大小关系是( ) A .123y y y << B .231y y y <<C .132y y y <<D .312y y y <<【答案】B【分析】将A 、B 、C 三点坐标代入反比例函数解析式,即求出123、、y y y 的值,即可比较得出答案.【详解】分别将A 、B 、C 三点坐标代入反比例函数解析式得:1515y =-=-、2551y =-=-、3515y =-=-.则231y y y <<.故选B . 【点睛】本题考查比较反比例函数值.掌握反比例函数图象上的点的坐标满足其解析式是解答本题的关键.5.(2021·四川乐山市)如图,直线1l 与反比例函数3(0)y x x=>的图象相交于A 、B 两点,线段AB 的中点为点C ,过点C 作x 轴的垂线,垂足为点D .直线2l 过原点O 和点C .若直线2l 上存在点(,)P m n ,满足APB ADB ∠=∠,则m n +的值为( )A .3B .3或32C .3+3D .3【答案】A【分析】根据题意,得()1,3A ,()3,1B ,直线2l :y x =;根据一次函数性质,得m n =;根据勾股定理,得PC =连接PA ,PB ,FB ,根据等腰三角形三线合一性质,得()2,2C ,OC AB ⊥;根据勾股定理逆定理,得90ABD ∠=︒;结合圆的性质,得点A 、B 、D 、P 共圆,直线2l 和AB 交于点F ,点F 为圆心;根据圆周角、圆心角、等腰三角形的性质,得2FC =;分PC PF FC =+或PC PF FC =-两种情况,根据圆周角、二次根式的性质计算,即可得到答案.【详解】根据题意,得3,33A ⎛⎫ ⎪⎝⎭,33,3B ⎛⎫⎪⎝⎭,即()1,3A ,()3,1B∵直线2l 过原点O 和点C ∴直线2l :y x = ∵(,)P m n 在直线2l 上∴m n = ∴PC =连接PA ,PB ,FB ∴PA PB =,线段AB 的中点为点C ∴()2,2C ,OC AB ⊥ 过点C 作x 轴的垂线,垂足为点D ∴()2,0D ∴AD ==,AB ==BD ==∴222AD AB BD =+ ∴90ABD ∠=︒∴点A 、B 、D 、P 共圆,直线2l 和AB 交于点F ,点F为圆心∴cos BD ADB AD ∠==∵AC BC =,12FB FA AD ==∴12BFC AFB ∠=∠ ∵APB ADB ∠=∠,且12APB AFB ∠=∠ ∴APB ADB BFC ∠=∠=∠∴cos cos FC APB BFC FB ∠=∠===FC = ∴PC PF FC =+或PC PF FC =- 当PC PF FC =-时,APB ∠和ADB ∠位于直线AB 两侧,即180APB ADB ∠+∠=︒ ∴PC PF FC=-不符合题意∴22PC PF FC =+=+,且2m <∴)2PC m==-)22m -=∴32m =∴23m n m +==A .【点睛】本题考查了圆、等腰三角形、反比例函数、一次函数、三角函数、勾股定理、二次根式的知识;解题的关键是熟练掌握圆心角、圆周角、等腰三角形三线合一、三角函数、勾股定理的性质,从而完成求解.6.(2021·重庆)如图,在平面直角坐标系中,菱形ABCD 的顶点D 在第二象限,其余顶点都在第一象限,AB ∥X 轴,AO ⊥AD ,AO =A D .过点A 作AE ⊥CD ,垂足为E ,DE =4CE .反比例函数()0ky x x=>的图象经过点E ,与边AB 交于点F ,连接OE ,OF ,EF .若118EOFS=,则k 的值为( )A .73B .214C .7D .212【答案】A【分析】延长EA 交x 轴于点G ,过点F 作x 轴的垂线,垂足分别为H ,则可得△DEA ≌△AGO ,从而可得DE =AG ,AE =OG ,若设CE =a ,则DE =AG =4a ,AD =DC =DE +CE =5a ,由勾股定理得AE =OG =3a ,故可得点E 、A 的坐标,由AB 与x 轴平行,从而也可得点F 的坐标,根据EOFEOGFOHEGHF SSS S=+-梯形 ,即可求得a 的值,从而可求得k 的值.【详解】如图,延长EA 交x 轴于点G ,过点F 作x 轴的垂线,垂足分别为H∵四边形ABCD 是菱形∴CD =AD =AB ,CD ∥AB ∵AB ∥x 轴,AE ⊥CD ∴EG ⊥x 轴,∠D +∠DAE =90゜∵OA ⊥AD ∴∠DAE +∠GAO =90゜∴∠GAO =∠D ∵OA =OD ∴△DEA ≌△AGO (AAS )∴DE =AG ,AE =OG设CE =a ,则DE =AG =4CE =4a ,AD =AB =DC =DE +CE =5a在Rt △AED 中,由勾股定理得:AE =3a ∴OG =AE =3a ,GE =AG +AE =7a ∴A (3a ,4a ),E (3a ,7a ) ∵AB ∥x 轴,AG ⊥x 轴,FH ⊥x 轴∴四边形AGHF 是矩形 ∴FH =AG =3a ,AF =GH∵E点在双曲线()0ky x x=>上∴221k a= 即221a y x=∵F 点在双曲线221a y x =上,且F 点的纵坐标为4a ∴214a x = 即214a OH =∴94a GH OH OG =-=∵EOFEOGFOHEGHF SSS S=+-梯形∴1191211137(74)4224248a a a a a a a ⨯⨯++⨯-⨯⨯= 解得:219a = ∴217212193k a ==⨯= 故选:A .【点睛】本题是反比例函数与几何的综合题,考查了菱形的性质,矩形的判定与性质,三角形全等的判定与性质等知识,关键是作辅助线及证明△DEA ≌△AGO ,从而求得E 、A 、F 三点的坐标.7.(2021·江苏扬州市)如图,点P 是函数()110,0k y k x x =>>的图像上一点,过点P 分别作x 轴和y 轴的垂线,垂足分别为点A 、B ,交函数()220,0ky k x x=>>的图像于点C 、D ,连接OC 、OD 、CD 、AB ,其中12k k >,下列结论:①//CD AB ;②122OCDk kS -=;③()21212DCPk k Sk -=,其中正确的是( )A .①②B .①③C .②③D .①【答案】B 【分析】设P (m ,1k m),分别求出A ,B ,C ,D 的坐标,得到PD ,PC ,PB ,P A 的长,判断PD PB和PCPA 的关系,可判断①;利用三角形面积公式计算,可得△PDC 的面积,可判断③;再利用OCD OAPB OBD OCA DPC S S S S S =---△△△△计算△OCD 的面积,可判断②.【详解】解:∵PB ⊥y 轴,P A ⊥x 轴,点P 在1k y x =上,点C ,D 在2k y x =上,设P (m ,1km), 则C (m ,2k m ),A (m ,0),B (0,1k m ),令12k km x =,则21k m x k =,即D (21k m k ,1k m ),∴PC =12k k m m -=12k k m -,PD =21k m m k -=()121m k k k -,∵()121121m k k k k k PD PB m k --==,121211k k k k PC m k PA k m--==,即PD PCPB PA=, 又∠DPC =∠BP A ,∴△PDC ∽△PBA ,∴∠PDC =∠PBC ,∴CD ∥AB ,故①正确;△PDC 的面积=12PD PC ⨯⨯=()1212112m k k k k k m --⨯⨯=()21212k k k-,故③正确; OCDOAPB OBD OCA DPC S S S S S =---△△△△=()112221222112k k k k k k ----=()2121122k k k k k ---=()()21121112222k k k k k k k ---=()22112211222k k k k k k ---=221212k k k -,故②错误;故选B . 【点睛】此题主要考查了反比例函数的图象和性质,k 的几何意义,相似三角形的判定和性质,解题关键是表示出各点坐标,得到相应线段的长度.8.(2021·浙江宁波市)如图,正比例函数()1110y k x k =<的图象与反比例函数()2220k y k x=<的图象相交于A ,B 两点,点B 的横坐标为2,当12y y >时,x 的取值范围是( )A .2x <-或2x >B .20x -<<或2x >C .2x <-或02x <<D .20x -<<或02x << 【答案】C【分析】根据轴对称的性质得到点A 的横坐标为-2,利用函数图象即可确定答案. 【详解】解:∵正比例函数与反比例函数都关于原点对称,∴点A 与点B 关于原点对称, ∵点B 的横坐标为2,∴点A 的横坐标为-2,由图象可知,当2x <-或02x <<时,正比例函数()1110y k x k =<的图象在反比例函数()2220k y k x=<的图象的上方,∴当2x <-或02x <<时,12y y >,故选:C . 【点睛】此题考查正比例函数与反比例函数的性质及相交问题,函数值的大小比较,正确理解图象是解题的关键.9.(2021·浙江金华市)已知点()()1122,,,A x y B x y 在反比例函数12y x=-的图象上.若120x x <<,则( ) A .120y y << B .210y y <<C .120y y <<D .210y y <<【答案】B【分析】根据反比例函数的图象与性质解题. 【详解】解:反比例函数12y x=-图象分布在第二、四象限,当0x <时,0y > 当0x >时,0y < 120x x <<120y y ∴>>故选:B .【点睛】本题考查反比例函数的图象与性质,是重要考点,难度较易,掌握相关知识是解题关键.10.(2021·江苏连云港市)关于某个函数表达式,甲、乙、丙三位同学都正确地说出了该函数的一个特征.甲:函数图像经过点(1,1)-;乙:函数图像经过第四象限; 丙:当0x >时,y 随x 的增大而增大.则这个函数表达式可能是( )A .y x =-B .1y x=C .2yxD .1y x=-【答案】D【分析】根据所给函数的性质逐一判断即可.【详解】解:A .对于y x =-,当x =-1时,y =1,故函数图像经过点(1,1)-;函数图象经过二、四象限;当0x >时,y 随x 的增大而减小.故选项A 不符合题意;B .对于1y x=,当x =-1时,y =-1,故函数图像不经过点(1,1)-;函数图象分布在一、三象限;当0x >时,y 随x 的增大而减小.故选项B 不符合题意; C .对于2yx ,当x =-1时,y =1,故函数图像经过点(1,1)-;函数图象分布在一、二象限;当0x >时,y 随x 的增大而增大.故选项C 不符合题意;D .对于1y x=-,当x =-1时,y =1,故函数图像经过点(1,1)-;函数图象经过二、四象限;当0x >时,y 随x 的增大而增大.故选项D 符合题意;故选:D【点睛】本题考查的是一次函数、二次函数以及反比例函数性质,熟知相关函数的性质是解答此题的关键.11.(2021·浙江温州市)如图,点A ,B 在反比例函数ky x=(0k >,0x >)的图象上,AC x⊥轴于点C ,BD x ⊥轴于点D ,BE y ⊥轴于点E ,连结AE .若1OE =,23OC OD =,AC AE =,则k 的值为( )A .2B .2C .94D .【答案】B【分析】设OD =m ,则OC =23m ,设AC =n ,根据213m n m =⨯求得32n =,在Rt △AEF 中,运用勾股定理可求出m =2,故可得到结论.【详解】解:如图,设OD =m ,∵23OC OD =∴OC =23m∵BD x ⊥轴于点D ,BE y ⊥轴于点E ,∴四边形BEOD 是矩形∴BD =OE =1∴B (m ,1)设反比例函数解析式为ky x=,∴k =m ×1=m 设AC =n ∵AC x ⊥轴∴A (23m ,n )∴23m n k m ==,解得,n =32,即AC =32∵AC =AE ∴AE =32在Rt △AEF 中,23EF OC m ==,31122AF AC FC =-=-=由勾股定理得,222321()()()232m =+ 解得,2m =(负值舍去)∴2k =故选:B 【点睛】此题考查了反比例函数的性质、待定系数法求函数的解析式.此题难度较大,注意掌握数形结合思想与方程思想的应用.12.(2021·浙江嘉兴市)已知三个点()11,x y ,()22,x y ,()33,x y 在反比例函数2y x=的图象上,其中1230x x x <<<,下列结论中正确的是( )A .2130y y y <<<B .1230y y y <<<C .3210y y y <<<D .3120y y y <<< 【答案】A【分析】根据反比例函数图像的增减性分析解答. 【详解】解:反比例函数2y x=经过第一,三象限,在每一象限内,y 随x 的增大而减小, ∴当1230x x x <<<时,2130y y y <<<故选:A .【点睛】本题考查反比例函数的图像性质,掌握反比例函数的图像性质,利用数形结合思想解题是关键.13.(2021·重庆)如图,在平面直角坐标系中,矩形ABCD 的顶点A ,B 在x 轴的正半轴上,反比例函数(0,0)ky k x x=>>的图象经过顶点D ,分别与对角线AC ,边BC 交于点E ,F ,连接EF ,AF .若点E 为AC 的中点,AEF 的面积为1,则k 的值为( )A .125B .32C .2D .3【答案】D【分析】设D 点坐标为()ka a,,表示出E 、F 、B 点坐标,求出ABF 的面积,列方程即可求解.【详解】解:设D 点坐标为()ka a,,∵四边形ABCD 是矩形,则A 点坐标为(0)a ,,C 点纵坐标为k a,∵点E 为AC 的中点,则E 点纵坐标为022k k a a+=,∵点E 在反比例函数图象上,代入解析式得2k ka x=,解得,2x a =, ∴E 点坐标为(2)2k a a ,,同理可得C 点坐标为(3)ka a,,∵点F 在反比例函数图象上,同理可得F 点坐标为(3)3ka a,,∵点E 为AC 的中点,AEF 的面积为1, ∴2ACFS=,即122CF AB ⋅=,可得,1()(3)223k ka a a a--=,解得3k =,故选:D .【点睛】本题考查了反比例函数的性质和矩形的性质,解题关键是设出点的坐标,依据面积列出方程.14.(2021·四川自贡市)已知蓄电池的电压为定值,使用蓄电池时,电流O (单位:A )与电阻R (单位:Ω)是反比例函数关系,它的图象如图所示.下列说法正确的是( )A .函数解析式为13I R=B .蓄电池的电压是18VC .当10A I ≤时, 3.6R ≥ΩD .当6R =Ω时,4A I = 【答案】C【分析】将将()4,9代入UI R=求出U 的值,即可判断A ,B ,D ,利用反比例函数的增减性可判断C .【详解】解:设U I R=,将()4,9代入可得36I R =,故A 错误;∴蓄电池的电压是36V ,故B 错误;当10A I ≤时, 3.6R ≥Ω,该项正确; 当当6R =Ω时,6A I =,故D 错误,故选:C .【点睛】本题考查反比例函数的实际应用,掌握反比例函数的图象与性质是解题的关键. 15.(2021·浙江丽水市)一杠杆装置如图,杆的一端吊起一桶水,水桶对杆的拉力的作用点到支点的杆长固定不变.甲、乙、丙、丁四位同学分别在杆的另一端竖直向下施加压力F F F F 丁乙甲丙、、、,将相同重量的水桶吊起同样的高度,若 F F F F <<<甲丁丙乙,则这四位同学对杆的压力的作用点到支点的距离最远的是( )A .甲同学B .乙同学C .丙同学D .丁同学【答案】B【分析】根据物理知识中的杠杆原理:动力×动力臂=阻力×阻力臂,力臂越大,用力越小,即可求解.【详解】解:由物理知识得,力臂越大,用力越小,根据题意,∵ F F F F <<<甲丁丙乙,且将相同重量的水桶吊起同样的高度, ∴乙同学对杆的压力的作用点到支点的距离最远,故选:B .【点睛】本题考查反比例函数的应用,属于数学与物理学科的结合题型,立意新颖,掌握物理中的杠杆原理是解答的关键. 二、填空题1.(2021·浙江绍兴市)如图,在平面直角坐标系中,正方形ABCD 的顶点A 在x 轴正半轴上,顶点B ,C 在第一象限,顶点D 的坐标5(,2)2. 反比例函数k y x=(常数0k >,0x >)的图象恰好经过正方形ABCD 的两个顶点,则k 的值是_______.【答案】5或22.5【分析】先设一个未知数用来表示出B 、C 两点的坐标,再利用反比例函数图像恰好经过B 、C 、D 的其中两个点进行分类讨论,建立方程求出未知数的值,符合题意时进一步求出k 的值即可.【详解】解:如图所示,分别过B 、D 两点向x 轴作垂线,垂足分别为F 、E 点,并过C 点向BF 作垂线,垂足为点G ;∵正方形ABCD ,∴∠DAB =90°,AB =BC =CD =DA ,∴∠DAE +∠BAF =90°, 又∵∠DAE +∠ADE =90°,∠BAF +∠ABF =90°, ∴∠DAE =∠ABF ,∠ADE =∠BAF ,∴ADE ≌BAF ,同理可证△ADE ≌△BAF ≌△CBG ;∴DE =AF =BG ,AE =BF =CG ;设AE =m ,∵点D 的坐标 (52,2) ,∴OE=52,DE =AF =BG =2,∴B (92m +,m ),C (92,2m +), ∵5252⨯=,当()9252m +=时,809m =-<,不符题意,舍去;当952m m ⎛⎫+= ⎪⎝⎭时,由0m ≥解得m =,符合题意;故该情况成立,此时 5k =; 当()99222m m m ⎛⎫+=+ ⎪⎝⎭时,由 0m ≥解得3m =,符合题意,故该情况成立,此时()93222.52k =⨯+=;故答案为:5或22.5.【点睛】本题综合考查了全等三角形的判定与性质、正方形的性质、反比例函数的图像与性质、解一元二次方程等内容,解题的关键是牢记相关概念与性质,能根据题意建立相等关系列出方程等,本题涉及到了分类讨论和数形结合的思想方法等. 2.(2021·湖南)在反比例函数3m y x-=的图象的每一支曲线上,函数值y 随自变量x 的增大而增大,则m 的取值范围是________. 【答案】m <3【分析】根据反比例函数的增减性,列出关于m 的不等式,进而即可求解. 【详解】解:∵在反比例函数3m y x-=的图象的每一支曲线上,函数值y 随自变量x 的增大而增大,∴m -3<0,即:m <3.故答案是:m <3.【点睛】本题主要考查反比例函数的性质,掌握反比例函数ky x=,在反比例函数的图象的每一支曲线上,函数值y 随自变量x 的增大而增大,则k <0,是解题的关键.3.(2021·湖北武汉市)已知点()1,A a y ,()21,B a y +在反比例函数21m y x +=(m是常数)的图象上,且12y y <,则a 的取值范围是__________. 【答案】10a -<<【分析】根据反比例函数的增减性解答.【详解】解:∵210m +>,∴图象经过第一、三象限,在每个象限内,y 随着x 的增大而减小,∵点()1,A a y ,()21,B a y +在反比例函数21m y x+=(m是常数)的图象上,且12y y <,1a a <+ ,∴010a a <⎧⎨+>⎩,∴10a -<<,故答案为:10a -<<. 【点睛】此题考查反比例函数的性质:当0k >时,在每个象限内y 随着x 的增大而增大;当0k <时,在每个象限内y 随x 的增大而减小.4.(2021·湖南株洲市)点()11,A x y 、()121,B x y +是反比例函数ky x=图像上的两点,满足:当1>0x 时,均有12y y <,则k 的取值范围是__________.【答案】k <0【分析】先分析该两点所在的图像的象限和增减性,最后确定k 的取值范围即可. 【详解】解:因为当10x >时,110x +>,说明A 、B 两点同时位于第一或第四象限, ∵当10x >时,均有12y y <,∴在该图像上,y 随x 的增大而增大, ∴A 、B 两点同时位于第四象限,所以k <0,故答案为:k <0.【点睛】本题考查了反比例函数的图像和性质,解决本题的关键是理解并牢记反比例函数的图像和性质,能根据点的坐标情况分析其图像特点等,涉及了数形结合的思想方法. 5.(2021·陕西)若()11,A y ,()23,B y 是反比例函数2112m y m x -⎛⎫=< ⎪⎝⎭图象上的两点,则1y 、2y 的大小关系是1y ______2y (填“>”、“=”或“<”) 【答案】<【分析】先根据不等式的性质判断2-10m <,再根据反比例函数的增减性判断即可. 【详解】解:∵12m <∴1222m <⨯即2-10m < ∴反比例函数图像每一个象限内,y 随x 的增大而增大∵1<3∴1y <2y 故答案为:<.【点睛】本题考查反比例函数的增减性、不等式的性质、熟练掌握反比例函数的性质是关键. 6.(2021·浙江宁波市)在平面直角坐标系中,对于不在坐标轴上的任意一点(),A x y ,我们把点11,B x y ⎛⎫⎪⎝⎭称为点A 的“倒数点”.如图,矩形OCDE 的顶点C 为()3,0,顶点E 在y 轴上,函数()20=>y x x的图象与DE 交于点A .若点B 是点A 的“倒数点”,且点B 在矩形OCDE 的一边上,则OBC 的面积为_________.【答案】14或32【分析】根据题意,点B 不可能在坐标轴上,可对点B 进行讨论分析:①当点B 在边DE 上时;②当点B 在边CD 上时;分别求出点B 的坐标,然后求出OBC 的面积即可.【详解】解:根据题意,∵点11,B x y ⎛⎫⎪⎝⎭称为点(),A x y 的“倒数点”,∴0x ≠,0y ≠,∴点B 不可能在坐标轴上; ∵点A 在函数()20=>y x x 的图像上,设点A 为2(,)x x ,则点B 为1(,)2x x , ∵点C 为()3,0,∴3OC =,①当点B 在边DE 上时;点A 与点B 都在边DE 上,∴点A 与点B 的纵坐标相同,即22xx =,解得:2x =, 经检验,2x =是原分式方程的解;∴点B 为1(,1)2,∴OBC 的面积为:133122S =⨯⨯=;②当点B 在边CD 上时;点B 与点C 的横坐标相同,∴13x =,解得:13x =,经检验,13x =是原分式方程的解;∴点B 为1(3,)6,∴OBC 的面积为:1113264S =⨯⨯=;故答案为:14或32.【点睛】本题考查了反比例函数的图像和性质,矩形的性质,解分式方程,坐标与图形等知识,解题的关键是熟练掌握反比例函数的性质,运用分类讨论的思想进行分析.7.(2021·云南)若反比例函数的图象经过点()1,2-,则该反比例函数的解析式(解析式也称表达式)为_________.【答案】2y x=-【分析】先设ky x=,再把已知点的坐标代入可求出k 值,即得到反比例函数的解析式. 【详解】解:设反比例函数的解析式为ky x =(k ≠0),∵函数经过点(1,-2),∴21k -=,得k =-2,∴反比例函数解析式为2y x =-,故答案为:2y x=-. 【点睛】此题比较简单,考查的是用待定系数法求反比例函数的解析式,是中学阶段的重点. 三、解答题1.(2021·湖北随州市)如图,一次函数1y kx b =+的图象与x 轴、y 轴分别交于点A ,B ,与反比例函数2my x=(0m >)的图象交于点()1,2C ,()2,D n .(1)分别求出两个函数的解析式;(2)连接OD ,求BOD 的面积. 【答案】(1)22y x=,13y x =-+;(2)3 【分析】(1)将点C 、D 的横、纵坐标代入反比例函数的解析式,求得m 、n 的值,从而点D 纵坐标已知,将点C 、D 的横、纵坐标代入一次函数的解析式,求得k 、b 的值,从而两个函数解析式可求;(2)求出点B 的坐标,可知OB 的长,利用三角形的面积公式可求三角形BOD 的面积. 【详解】解:(1)∵双曲线2my x=(m >0)过点C (1,2)和D (2,n ), ∴212mm n ⎧=⎪⎪⎨⎪=⎪⎩,解得,21m n =⎧⎨=⎩.∴反比例函数的解析式为22y x =.∵直线1y kx b =+过点C (1,2)和D (2,1),∴221k b k b +=⎧⎨+=⎩,解得,13k b =-⎧⎨=⎩.∴一次函数的解析式为13y x =-+.(2)当x =0时,y 1=3,即B (0,3).∴3OB =.如图所示,过点D 作DE ⊥y 轴于点E .∵D (2,1),∴DE =2.∴1132322BOD S OB DE ==⨯⨯=△.【点睛】本题考查了待定系数法求函数解析式、二元一次方程组、三角形的面积等知识点,熟知解析式、点坐标、线段长三者的相互转化是解题的关键.2.(2021·湖北恩施州)如图,在平面直角坐标系中,Rt ABC 的斜边BC 在x 轴上,坐标原点是BC 的中点,30ABC ∠=︒,4BC =,双曲线ky x=经过点A .(1)求k ;(2)直线AC 与双曲线y =D .求ABD △的面积.【答案】(1)k =(2)ABD △的面积【分析】(1)过点A 作AE ⊥x 轴于点E ,由题意易得2,60AC ACB =∠=︒,进而可得1,==CE AE (A ,最后问题可求解;(2)由(1)可先求出直线AC 的解析式为y =+,然后联立直线AC 的解析式与反比例函数y =D 的坐标,最后利用割补法求解三角形的面积即可.【详解】解:(1)过点A 作AE ⊥x 轴于点E ,如图所示:∵30ABC ∠=︒,4BC =,90BAC ∠=︒, ∴122AC BC ==,60ACB ∠=︒,∴30EAC ∠=︒,∴112EC AC ==, ∴在Rt △AEC中,AE ==∵点O 是BC 的中点,∴OC =2,∴OE =1,∴(A,∴1k == (2)由(1)可得:(A ,()2,0C ,∴设直线AC 的解析式为y kx b =+,则把点A 、C代入得:20k b k b ⎧+=⎪⎨+=⎪⎩k b ⎧=⎪⎨=⎪⎩,∴直线AC的解析式为y =+,联立y =+与反比例函数y =+=, 解得:123,1x x ==-(不符合题意,舍去),∴点(3,D ,∴142ABDABCBCDSSS=+=⨯⨯=【点睛】本题主要考查反比例函数与几何的综合及含30°直角三角形的性质、勾股定理,熟练掌握反比例函数与几何的综合及含30°直角三角形的性质、勾股定理是解题的关键. 3.(2021·四川广安市)如图,一次函数()1y kx b k 0=+≠的图象与反比例函数()2my m 0x=≠的图象交于()1,A n -,()3,2B -两点.(1)求一次函数和反比例函数的解析式;(2)点P 在x 轴上,且满足ABP △的面积等于4,请直接写出点P 的坐标.【答案】(1)124y x =-+,26y x=-;(2)(1,0)或(3,0)【分析】(1)根据点B 坐标求出m ,得到反比例函数解析式,据此求出点A 坐标,再将A ,B 代入一次函数解析式;(2)设点P 的坐标为(a ,0),求出直线AB 与x 轴交点,再结合△ABP 的面积为4得到关于a 的方程,解之即可.【详解】解:(1)由题意可得:点B (3,-2)在反比例函数2my x=图像上, ∴23m-=,则m =-6,∴反比例函数的解析式为26y x=-, 将A (-1,n )代入26y x=-,得:661n =-=-,即A (-1,6),将A ,B 代入一次函数解析式中,得236k b k b -=+⎧⎨=-+⎩,解得:24k b =-⎧⎨=⎩,∴一次函数解析式为124y x =-+;(2)∵点P 在x 轴上,设点P 的坐标为(a ,0),∵一次函数解析式为124y x =-+,令y =0,则x =2,∴直线AB 与x 轴交于点(2,0), 由△ABP 的面积为4,可得:()1242A B y y a ⨯-⨯-=,即18242a ⨯⨯-=,解得:a =1或a =3, ∴点P 的坐标为(1,0)或(3,0).【点睛】本题考查一次函数和反比例函数相交的有关问题;通常先求得反比例函数解析式;较复杂三角形的面积可被x 轴或y 轴分割为2个三角形的面积和.4.(2021·浙江杭州市)在直角坐标系中,设函数11ky x =(1k 是常数,10k >,0x >)与函数22y k x=(2k 是常数,20k ≠)的图象交于点A ,点A 关于y 轴的对称点为点B .(1)若点B 的坐标为()1,2-,①求1k ,2k 的值.②当12y y <时,直接写出x 的取值范围. (2)若点B 在函数33k y x=(3k 是常数,30k ≠)的图象上,求13k k +的值. 【答案】(1)①12k =,22k =;②1x >;(2)0【分析】(1)①根据点A 关于y 轴的对称点为点B ,可求得点A 的坐标是()1,2,再将点A 的坐标分别代入反比例函数、正比例函数的解析式中,即可求得12k =,22k =;②观察图象可解题;(2)将点B 代入33k y x=,解得3k 的值即可解题. 【详解】解(1)①由题意得,点A 的坐标是()1,2, 因为函数11k y x=的图象过点A ,所以12k =,同理22k =. ②由图象可知,当12y y <时,反比例函数的图象位于正比例函数图象的下方,即当12y y <时,1x >.(2)设点A 的坐标是()00,x y ,则点B 的坐标是()00,x y -,所以100k x y =,300k x y =-,所以310k k +=.【点睛】本题考查关于y 轴对称的点的特征、待定系数法求反比例函数、正比例函数的解析式等知识,是重要考点,难度较易,掌握相关知识是解题关键.5.(2021·山东临沂市)已知函数()()()31 31131x x y x x x x ⎧≤-⎪⎪=-⎨⎪⎪≥⎩<<(1)画出函数图象;列表:描点,连线得到函数图象:(2)该函数是否有最大或最小值?若有,求出其值,若没有,简述理由; (3)设1122(,),(,)x y x y 是函数图象上的点,若120x x +=,证明:120y y +=.【答案】(1)见解析;(2)有,当1x =时,最大值为3;当1x =-时,函数有最小值3-;(3)见解析【分析】(1)选取特殊值,代入函数解析式,求出y 值,列表,在图像中描点,画出图像即可; (2)观察图像可得函数的最大值;(3)根据120x x +=,得到1x 和2x 互为相反数,再分111x -<<,11x ≤-,11x ≥,分别验证120y y +=.【详解】解:(1)列表如下:函数图像如图所示:(2)根据图像可知:当x =1时,函数有最大值3;当1x =-时,函数有最小值3-; (3)∵1122(,),(,)x y x y 是函数图象上的点,120x x +=,∴1x 和2x 互为相反数, 当111x -<<时,211x -<<,∴113y x =,223y x =,∴()1212123330y y x x x x +=+=+=; 当11x ≤-时,21x ≥,则()121212123330x x y y x x x x ++=+==; 同理:当11x ≥时,21x ≤-,()121212123330x x y y x x x x ++=+==,综上:120y y +=.【点睛】本题主要考查正比例函数,反比例函数的图像和性质,描点法画函数图像,准确画出图像,理解120x x +=是解题的关键.6.(2021·安徽)已知正比例函数(0)y kx k =≠与反比例函数6y x=的图象都经过点A (m ,2).(1)求k ,m 的值;(2)在图中画出正比例函数y kx =的图象,并根据图象,写出正比例函数值大于反比例函数值时x 的取值范围.【答案】(1),k m 的值分别是23和3;(2)30x -<<或3x > 【分析】(1)把点A (m ,2)代入6y x=求得m 的值,从而得点A 的坐标,再代入(0)y kx k =≠求得k 值即可;(2)在坐标系中画出y kx =的图象,根据正比例函数(0)y kx k =≠的图象与反比例函数6y x=图象的两个交点坐标关于原点对称,求得另一个交点的坐标,观察图象即可解答. 【详解】(1)将(,2)A m 代入6y x=得62m =, 3m ∴=, (3,2)A ∴,将(3,2)A 代入y kx =得23k =, 23k ∴=, ,k m ∴的值分别是23和3.(2)正比例函数23y x =的图象如图所示,∵正比例函数(0)y kx k =≠与反比例函数6y x=的图象都经过点A (3,2),∴正比例函数(0)y kx k =≠与反比例函数6y x=的图象的另一个交点坐标为(-3,-2), 由图可知:正比例函数值大于反比例函数值时x 的取值范围为30x -<<或3x >.【点睛】本题是正比例函数与反比例函数的综合题,利用数形结合思想是解决问题的关键. 7.(2021·浙江)已知在平面直角坐标系xOy 中,点A 是反比例函数1(0)y x x=>图象上的一个动点,连结,AO AO 的延长线交反比例函数(0,0)ky k x x=><的图象于点B ,过点A 作AE y ⊥轴于点E .(1)如图1,过点B 作BF x ⊥轴于点F ,连结EF .①若1k =,求证:四边形AEFO 是平行四边形;②连结BE ,若4k =,求BOE △的面积.(2)如图2,过点E 作//EP AB ,交反比例函数(0,0)ky k x x=><的图象于点P ,连结OP .试探究:对于确定的实数k ,动点A 在运动过程中,POE △的面积是否会发生变化?请说明理由. 【答案】(1)①证明见解析,②1;(2)不改变,见解析【分析】(1)①计算得出AE OF a ==,利用平行四边形的判定方法即可证明结论;②证明AEO BDO ∽,利用反比例函数k 的几何意义求得212()2AO BO=,即可求解; (2)点A 的坐标为1()a a ,,点P 的坐标为()k b b,,可知四边形AEGO 是平行四边形,由AEO GHP ∽,利用相似三角形的性质得到关于ba 的一元二次方程,利用三角形的面积公式即可求解.【详解】(1)①证明:设点A 的坐标为1()a a,,则当1k =时,点B 的坐标为1()a a--,,AE OF a ∴==,AE y ⊥轴,//AE OF ∴,∴四边形AEFO 是平行四边形; ②解:过点B 作BD y ⊥轴于点D ,AE y ⊥轴,//AE BD ∴,AEO BDO ∴∽, 2()AEO BDOSAO SBO∴=, ∴当4k =时,则212()2AO BO=,即12AO BO =.21BOEAOES S∴==;(2)解 不改变. 理由如下:过点P 作PH x ⊥轴于点H PE ,与x 轴交于点G ,设点A 的坐标为1()a a ,,点P 的坐标为()k b b,,则1kAE a OE PH a b ===-,,,OH =b ,由题意,可知四边形AEGO 是平行四边形,∴OG =AE =a ,∠HPG =∠OEG =∠EOA ,且∠PHG =∠OEA =90°,∴AEO GHP ∽, AE EOGH a b GH PH=--=,,即1a a k ab b=---, ∴1b a k a b +=,2()0b b k a a ∴+-=,解得12b a -±=, a b ,异号,0k ≥,b a ∴=,111()22POEb S b a a ∴=⨯⨯-=-⨯=∴对于确定的实数k ,动点A 在运动过程中,POE △的面积不会发生变化.。
2021全国各地中考数学真题专项汇编: 平行线与三角形 (含答案解析)
专题11.平行线与三角形一、单选题1.(2021·山东临沂市)如图,在//AB CD 中,40AEC ∠=︒,CB 平分DCE ∠,则ABC ∠的度数为( )A .10︒B .20︒C .30D .40︒【答案】B 【分析】根据平行线的性质得到∠ABC =∠BCD ,再根据角平分线的定义得到∠ABC =∠BCD ,再利用三角形外角的性质计算即可.【详解】解:∵AB ∥CD ,∴∠ABC =∠BCD ,∵CB 平分∠DCE ,∴∠BCE =∠BCD ,∴∠BCE =∠ABC , ∵∠AEC =∠BCE +∠ABC =40°,∴∠ABC =20°,故选B .【点睛】本题考查了平行线的性质,角平分线的定义和外角的性质,掌握平行线的性质:两直线平行,内错角相等是解题的关键.2.(2021·四川眉山市)如图,将直角三角板放置在矩形纸片上,若148∠=︒,则2∠的度数为( )A .42°B .48°C .52°D .60°【答案】A 【分析】先通过作辅助线,将∠1转化到∠BAC ,再利用直角三角形两锐角互余即可求出∠2.【详解】解:如图,延长该直角三角形一边,与该矩形纸片一边的交点记为点A ,由矩形对边平行,可得∠1=∠BAC ,因为BC ⊥AB ,∴∠BAC +∠2=90°,∴∠1+∠2=90°,因为∠1=48°,∴∠2=42°;故选:A .【点睛】本题考查了矩形的性质、平行线的性质、直角三角形的性质等内容,要求学生能根据题意理解其中的隐含关系,解决本题的关键是对角进行的转化,因此需要牢记并能灵活应用相关性质等.3.(2021·四川乐山市)七巧板起源于我国先秦时期,古算书《周髀算经》中有关于正方形的分割术,经历代演变而成七巧板,如图1所示.19世纪传到国外,被称为“唐图”(意为“来自中国的拼图”),图2是由边长为4的正方形分割制作的七巧板拼摆成的“叶问蹬”图.则图中抬起的“腿”(即阴影部分)的面积为()A.3 B.72C.2 D.52【答案】A【分析】根据由边长为4的正方形分割制作的七巧板,可得共5种图形,然后根据阴影部分的构成图形,计算阴影部分面积即可.【详解】解:如下图所示,由边长为4的正方形分割制作的七巧板,共有以下几种图形:○1腰长是2的等腰直角三角形,2,顶角分别是45和135的平行四边形,根据图2可知,图中抬起的“腿”的等腰直角三角形,和一个边长分别是2,顶角分别是45和135的平行四边形组成,如下图示,根据平行四边形的性质可知,顶角分别是45和135的平行四边形的高是DB,且DB=的等腰直角三角形的面积是:112=,顶角分别是45和1352=,∴阴影部分的面积为:123+=,故选:A.【点睛】本题考查了七巧板中的图形的构成和面积计算,熟悉七巧板中图形的分类是解题的关键.4.(2021·湖南岳阳市)下列命题是真命题的是()A.五边形的内角和是720︒B.三角形的任意两边之和大于第三边C.内错角相等D.三角形的重心是这个三角形的三条角平分线的交点【答案】B【分析】根据相关概念逐项分析即可.【详解】A、五边形的内角和是540︒,故原命题为假命题,不符合题意;B、三角形的任意两边之和大于第三边,原命题是真命题,符合题意;C、两直线平行,内错角相等,故原命题为假命题,不符合题意;D、三角形的重心是这个三角形的三条中线的交点,故原命题为假命题,不符合题意;故选:B.【点睛】本题考查命题判断,涉及多边形的内角和,三角形的三边关系,平行线的性质,以及三角形的重心等,熟记基本性质和定理是解题关键.5.(2021·安徽)两个直角三角板如图摆放,其中90BAC EDF ∠=∠=︒,45E ∠=︒,30C ∠=︒,AB 与DF 交于点M .若//BC EF ,则BMD ∠的大小为( )A .60︒B .67.5︒C .75︒D .82.5︒【答案】C 【分析】根据//BC EF ,可得45FDB F ∠=∠=︒,再根据三角形内角和即可得出答案.【详解】由图可得6045B F ∠=︒∠=︒,,∵//BC EF ,∴45FDB F ∠=∠=︒, ∴180180456075BMD FDB B ∠=︒-∠-∠=︒-︒-︒=︒,故选:C .【点睛】本题考查了平行线的性质和三角形的内角和,掌握平行线的性质和三角形的内角和是解题的关键. 6.(2021·浙江金华市)某同学的作业如下框,其中※处填的依据是( )A .两直线平行,内错角相等B .内错角相等,两直线平行C .两直线平行,同位角相等D .两直线平行,同旁内角互补 【答案】C【分析】首先准确分析题目,已知12//l l ,结论是34∠=∠,所以应用的是平行线的性质定理,从图中得知∠3和∠4是同位角关系,即可选出答案.【详解】解:∵12//l l ,∴34∠=∠(两直线平行,同位角相等).故选C .【点睛】本题主要考查了平行线的性质的应用,解题的关键是理解平行线之间内错角的位置,从而准确地选择出平行线的性质定理.7.(2021·云南)如图,直线c 与直线a 、b 都相交.若//a b ,155∠=︒,则2∠=( )A .60︒B .55︒C .50︒D .45︒【答案】B 【分析】直接利用平行线的性质:两直线平行,同位角相等,即可得出答案.【详解】解:如图,1=55∠︒,3=55,∴∠︒ ∵a ∥b ,∠3=55°,∴∠2=∠3=55°.故选B .【点睛】此题主要考查了平行线的性质,正确掌握平行线的基本性质是解题关键.8.(2021·山东)如图,AB ∥CD ∥EF ,若∠ABC =130°,∠BCE =55°,则∠CEF 的度数为( )A .95°B .105°C .110°D .115°【答案】B 【分析】由//AB CD 平行的性质可知ABC DCB ∠=∠,再结合//EF CD 即可求解.【详解】解://AB CD 130ABC DCB ∴∠=∠=︒1305575ECD DCB BCE ∴∠=∠-∠=︒-︒=︒//EF CD 180ECD CEF ∴∠+∠=︒18075105CEF ∴∠=︒-︒=︒故答案是:B .【点睛】本题考查平行线的性质和角度求解,难度不大,属于基础题.解题的关键是掌握平行线的性质.9.(2021·山东泰安市)如图,直线//m n ,三角尺的直角顶点在直线m 上,且三角尺的直角被直线m 平分,若160∠=︒,则下列结论错误的是( )A .275∠=︒B .345∠=︒C .4105∠=︒D .5130∠=︒【答案】D 【分析】根据角平分线的定义求出∠6和∠7的度数,再利用平行线的性质以及三角形内角和求出∠3,∠8,∠2的度数,最后利用邻补角互补求出∠4和∠5的度数.【详解】首先根据三角尺的直角被直线m 平分,∴∠6=∠7=45°;A 、∵∠1=60°,∠6=45°,∴∠8=180°-∠1-∠6=180-60°-45°=75°,m ∥n ,∴∠2=∠8=75°结论正确,选项不合题意;B 、∵∠7=45°,m ∥n ,∴∠3=∠7=45°,结论正确,选项不合题意;C 、∵∠8=75°,∴∠4=180-∠8=180-75°=105°,结论正确,选项不合题意;D 、∵∠7=45°,∴∠5=180-∠7=180-45°=135°,结论错误,选项符合题意.故选:D .【点睛】本题考查了角平分线的定义,平行线的性质,三角形内角和,邻补角互补,解答本题的关键是掌握平行线的性质:两直线平行,同位角相等,内错角相等,同旁内角互补.10.(2021·四川资阳市)如图,已知直线//,140,230m n ∠=︒∠=︒,则3∠的度数为( )A .80︒B .70︒C .60︒D .50︒【答案】B 【分析】如图,由题意易得∠4=∠1=40°,然后根据三角形外角的性质可进行求解.【详解】解:如图,∵//,140m n ∠=︒,∴∠4=∠1=40°,∵230∠=︒,∴34270∠=∠+∠=︒;故选B .【点睛】本题主要考查平行线的性质及三角形外角的性质,熟练掌握平行线的性质及三角形外角的性质是解题的关键.11.(2021·四川广元市)如图,在ABC 中,90ACB ∠=︒,4AC BC ==,点D 是BC 边的中点,点P 是AC 边上一个动点,连接PD ,以PD 为边在PD 的下方作等边三角形PDQ ,连接CQ .则CQ 的最小值是( )A B .1 C D .32【答案】B【分析】以CD 为边作等边三角形CDE ,连接EQ ,由题意易得∠PDC =∠QDE ,PD =QD ,进而可得△PCD ≌△QED ,则有∠PCD =∠QED =90°,然后可得点Q 是在QE 所在直线上运动,所以CQ 的最小值为CQ ⊥QE 时,最后问题可求解.【详解】解:以CD 为边作等边三角形CDE ,连接EQ ,如图所示:∵PDQ 是等边三角形,∴60,,CED PDQ CDE PD QD CD ED ∠=∠=∠=︒==,∵∠CDQ 是公共角,∴∠PDC =∠QDE ,∴△PCD ≌△QED (SAS ),∵90ACB ∠=︒,4AC BC ==,点D 是BC 边的中点,∴∠PCD =∠QED =90°,122CD DE CE BC ====,∴点Q 是在QE 所在直线上运动, ∴当CQ ⊥QE 时,CQ 取的最小值,∴9030QEC CED ∠=︒-∠=︒,∴112CQ CE ==;故选B . 【点睛】本题主要考查等边三角形的性质、含30°直角三角形的性质及最短路径问题,熟练掌握等边三角形的性质、含30°直角三角形的性质及最短路径问题是解题的关键.12.(2021·河北)定理:三角形的一个外角等于与它不相邻的两个内角的和.已知:如图,ACD ∠是ABC 的外角.求证:ACD A B ∠=∠+∠.下列说法正确的是( )A .证法1还需证明其他形状的三角形,该定理的证明才完整B .证法1用严谨的推理证明了该定理C .证法2用特殊到一般法证明了该定理D .证法2只要测量够一百个三角形进行验证,就能证明该定理【答案】B【分析】根据三角形的内角和定理与平角的定义可判断A 与B ,利用理论与实践相结合可判断C 与D .【详解】解:A . 证法1给出的证明过程是完整正确的,不需要分情况讨论,故A 不符合题意;B . 证法1给出的证明过程是完整正确的,不需要分情况讨论,故选项B 符合题意;C . 证法2用量角器度量两个内角和外角,只能验证该定理的正确性,用特殊到一般法证明了该定理缺少理论证明过程,故选项C 不符合题意;D . 证法2只要测量够一百个三角形进行验证,验证的正确性更高,就能证明该定理还需用理论证明,故选项D 不符合题意.故选择:.B【点睛】本题考查三角形外角的证明问题,命题的正确性需要严密推理证明,三角形外角分三种情形,锐角、直角、和钝角,证明中应分类才严谨.13.(2021·四川凉山州)如图,ABC 中,90,8,6ACB AC BC ∠=︒==,将ADE 沿DE 翻折,使点A 与点B 重合,则CE 的长为( )A .198B .2C .254D .74【答案】D【分析】先在RtABC 中利用勾股定理计算出AB =10,再利用折叠的性质得到AE =BE ,AD =BD =5,设AE =x ,则CE =AC -AE =8-x ,BE =x ,在Rt △BCE 中根据勾股定理可得到x 2=62+(8-x )2,解得x ,可得CE .【详解】解:∵∠ACB =90°,AC =8,BC =6,∴AB ,∵△ADE 沿DE 翻折,使点A 与点B 重合,∴AE =BE ,AD =BD =12AB =5, 设AE =x ,则CE =AC -AE =8-x ,BE =x ,在Rt △BCE 中∵BE 2=BC 2+CE 2,∴x 2=62+(8-x )2,解得x =254,∴CE =2584-=74,故选:D . 【点睛】本题考查了折叠的性质:折叠前后两图象全等,即对应角相等,对应边相等.也考查了勾股定理. 14.(2021·陕西)如图,点D 、E 分别在线段BC 、AC 上,连接AD 、BE .若35A ∠=︒,25B ∠=︒,50C ∠=︒,则1∠的大小为( )A .60°B .70°C .75°D .85°【答案】B 【分析】由题意易得105BEC ∠=︒,然后根据三角形外角的性质可进行求解.【详解】解:∵25B ∠=︒,50C ∠=︒,∴在Rt △BEC 中,由三角形内角和可得105BEC ∠=︒,∵35A ∠=︒,∴170BEC A ∠=∠-∠=︒;故选B .【点睛】本题主要考查三角形内角和及外角的性质,熟练掌握三角形内角和及外角的性质是解题的关键. 15.(2021·安徽)在△ABC 中,90ACB ∠=︒,分别过点B ,C 作BAC ∠平分线的垂线,垂足分别为点D ,E ,BC 的中点是M ,连接CD ,MD ,ME .则下列结论错误的是( )A .2CD ME =B .//ME ABC .BD CD = D .ME MD = 【答案】A【分析】设AD 、BC 交于点H ,作HF AB ⊥于点F ,连接EF .延长AC 与BD 并交于点G .由题意易证△CAE ≌△FAE ,从而证明ME 为△CBF 中位线,即//ME AB ,故判断B 正确;又易证△AGD ≌△ABD ,从而证明D 为BG 中点.即利用直角三角形斜边中线等于斜边一半即可求出CD BD =,故判断C 正确;由90HDM DHM ∠+∠=︒、90HCE CHE ∠+∠=︒和DHM CHE ∠=∠可证明HDM HCE ∠=∠.再由90HEM EHF ∠+∠=︒、EHC EHF ∠=∠和90EHC HCE ∠+∠=︒可推出 HCE HEM ∠=∠,即推出HDM HEM ∠=∠,即MD ME =,故判断D 正确;假设2CD ME =,可推出2CD MD =,即可推出30DCM ∠=︒.由于无法确定DCM ∠的大小,故2CD ME =不一定成立,故可判断A 错误.【详解】如图,设AD 、BC 交于点H ,作HF AB ⊥于点F ,连接EF .延长AC 与BD 并交于点G .∵AD 是BAC ∠的平分线,HF AB ⊥,HC AC ⊥,∴HC =HF ,∴AF =AC .∴在△CAE 和△FAE 中,AF AC CAE FAE AE AE =⎧⎪∠=∠⎨⎪=⎩,∴△CAE ≌△FAE ,∴CE FE =,∠AEC =∠AEF =90°,∴C 、E 、F 三点共线,∴点E 为CF 中点.∵M 为BC 中点,∴ME 为△CBF 中位线,∴//ME AB ,故B 正确,不符合题意;∵在AGD △和ABD △中,90GAD BAD AD AD ADG ADB ∠=∠⎧⎪=⎨⎪∠=∠=︒⎩,∴△AGD ≌△ABD , ∴12GD BD BG ==,即D 为BG 中点.∵在BCG 中,90BCG ∠=︒,∴12CD BG =, ∴CD BD =,故C 正确,不符合题意;∵90HDM DHM ∠+∠=︒,90HCE CHE ∠+∠=︒,DHM CHE ∠=∠,∴HDM HCE ∠=∠. ∵HF AB ⊥,//ME AB ,∴HF ME ⊥,∴90HEM EHF ∠+∠=︒.∵AD 是BAC ∠的平分线,∴EHC EHF ∠=∠.∵90EHC HCE ∠+∠=︒, ∴HCE HEM ∠=∠, ∴HDM HEM ∠=∠,∴MD ME =,故D 正确,不符合题意;∵假设2CD ME =,∴2CD MD =,∴在Rt △CDM 中,30DCM ∠=︒.∵无法确定DCM ∠的大小,故原假设不一定成立,故A 错误,符合题意.故选A .【点睛】本题考查角平分线的性质,三角形全等的判定和性质,直角三角形的性质,三角形中位线的判定和性质以及含30角的直角三角形的性质等知识,较难.正确的作出辅助线是解答本题的关键. 16.(2021·重庆)如图,在△ABC 和△DCB 中,ACB DBC ∠=∠ ,添加一个条件,不能..证明和△ABC 和△DCB 全等的是( )A .ABC DCB ∠=∠ B .AB DC = C .AC DB =D .A D ∠=∠【答案】B【分析】根据已知条件和添加条件,结合全等三角形的判断方法即可解答.【详解】选项A ,添加ABC DCB ∠=∠,在△ABC 和△DCB 中,ABC DCB BC CB ACB DBC ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△ABC ≌△DCB (ASA ),选项B ,添加 AB DC =,在△ABC 和△DCB 中, AB DC =,BC CB =,ACB DBC ∠=∠,无法证明△ABC ≌△DCB ;选项C ,添加AC DB =,在ABC 和DCB 中,BC CB ACB DBC AC DB =⎧⎪∠=∠⎨⎪=⎩,∴△ABC ≌△DCB (SAS );选项D ,添加A D ∠=∠,在ABC 和DCB 中,A D ACB DBC BC CB ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ABC ≌△DCB (AAS );综上,只有选项B 符合题意.故选B .【点睛】本题考查了全等三角形的判定方法,熟知全等三角形的判定方法是解决问题的关键. 17.(2021·浙江丽水市)如图,在Rt ABC △纸片中,90,4,3ACB AC BC ∠=︒==,点,D E 分别在,AB AC 上,连结DE ,将△ADE 沿DE 翻折,使点A 的对应点F 落在BC 的延长线上,若FD 平分EFB ∠,则AD 的长为( )A .259B .258C .157D .207【答案】D【分析】先根据勾股定理求出AB ,再根据折叠性质得出∠DAE=∠DFE ,AD=DF ,然后根据角平分线的定义证得∠BFD=∠DFE =∠DAE ,进而证得∠BDF=90°,证明Rt △ABC ∽Rt △FBD ,可求得AD 的长.【详解】解:∵90,4,3ACB AC BC ∠=︒==,∴AB ==,由折叠性质得:∠DAE=∠DFE ,AD=DF ,则BD =5﹣AD ,∵FD 平分EFB ∠,∴∠BFD =∠DFE=∠DAE ,∵∠DAE +∠B =90°,∴∠BDF +∠B =90°,即∠BDF =90°,∴Rt △ABC ∽Rt △FBD ,∴BD BC DF AC =即534AD AD -=,解得:AD =205,故选:D . 【点睛】本题考查折叠性质、角平分线的定义、勾股定理、相似三角形的判定与性质、三角形的内角和定理,熟练掌握折叠性质和相似三角形的判定与性质是解答的关键.18.(2021·四川自贡市)如图,()8,0A,()2,0C -,以点A 为圆心,AC 长为半径画弧,交y 轴正半轴于点B ,则点B 的坐标为( )A .()0,5B .()5,0C .()6,0D .()0,6【答案】D 【分析】先根据题意得出OA =8,OC =2,再根据勾股定理计算即可【详解】解:由题意可知:AC =AB ∵()8,0A,()2,0C -∴OA =8,OC =2∴AC =AB =10在Rt △OAB 中,6OB ==∴B (0,6)故选:D【点睛】本题考查勾股定理、正确写出点的坐标,圆的半径相等、熟练进行勾股定理的计算是关键 19.(2021·重庆)如图,点B ,F ,C ,E 共线,∠B =∠E ,BF =EC ,添加一个条件,不等判断△ABC ≌△DEF 的是( )A .AB =DEB .∠A =∠DC .AC =DFD .AC ∥FD【答案】C 【分析】根据全等三角形的判定与性质逐一分析即可解题. 【详解】解:BF =EC ,BC EF ∴=A. 添加一个条件AB =DE ,又,BC EF B E =∠=∠()ABC DEF SAS ∴△≌△ 故A 不符合题意;B. 添加一个条件∠A =∠D ,又,BC EF B E =∠=∠,∴△ABC ≌△DEF (AAS ),故B 不符合题意;C. 添加一个条件AC =DF ,不能判断△ABC ≌△DEF ,故C 符合题意;D. 添加一个条件AC ∥FD , ACB EFD ∴∠=∠,又,BC EF B E =∠=∠,△ABC ≌△DEF (ASA ),故D 不符合题意,故选:C .【点睛】本题考查添加条件使得三角形全等即全等三角形的判定,是重要考点,难度较易,掌握相关知识是解题关键.20.(2021·江苏扬州市)如图,在44⨯的正方形网格中有两个格点A 、B ,连接AB ,在网格中再找一个格点C ,使得ABC 是等腰直角....三角形,满足条件的格点C 的个数是( )A .2B .3C .4D .5【答案】B 【分析】根据题意,结合图形,分两种情况讨论:①AB 为等腰直角△ABC 底边;②AB 为等腰直角△ABC 其中的一条腰.【详解】解:如图:分情况讨论:①AB 为等腰直角△ABC 底边时,符合条件的C 点有0个;②AB 为等腰直角△ABC 其中的一条腰时,符合条件的C 点有3个.故共有3个点,故选:B .【点睛】本题考查了等腰三角形的判定;解答本题关键是根据题意,画出符合实际条件的图形,数形结合的思想是数学解题中很重要的解题思想.21.(2021·浙江宁波市)如图,在△ABC 中,45,60,B C AD BC ∠=︒∠=︒⊥于点D ,BD =.若E ,F 分别为AB ,BC 的中点,则EF 的长为( )A B C .1 D 【答案】C【分析】根据条件可知△ABD 为等腰直角三角形,则BD =AD ,△ADC 是30°、60°的直角三角形,可求出AC 长,再根据中位线定理可知EF =2AC . 【详解】解:因为AD 垂直BC ,则△ABD 和△ACD 都是直角三角形,又因为45,60,B C ∠=︒∠=︒所以AD =BD =,因为sin ∠C =2AD AC =,所以AC =2, 因为EF 为△ABC 的中位线,所以EF =2AC =1,故选:C . 【点睛】本题主要考查了等腰直角三角形、锐角三角形函数值、中位线相关知识,根据条件分析利用定理推导,是解决问题的关键.22.(2021·青海)如图,在四边形ABCD 中,∠A=90°,AD=3,BC=5,对角线BD 平分∠ABC ,则△BCD 的面积为( )A .7.5B .8C .15D .无法确定【答案】A 【详解】如图,过点D 作DE ⊥BC 于点E .∵∠A=90°,∴AD ⊥AB .∴AD=DE=3.又∵BC=5,∴S △BCD =12BC•DE=12×5×3=7.5.故选A . 考点:角平分线的性质;全等三角形的判定与性质.二、填空题 1.(2021·浙江)由沈康身教授所著,数学家吴文俊作序的《数学的魅力》一书中记载了这样一个故事:如图,三姐妹为了平分一块边长为1的祖传正方形地毯,先将地毯分割成七块,再拼成三个小正方形(阴影部分).则图中AB 的长应是______.1【分析】据裁剪和拼接的线段关系可知CD =,1BD CE ==,在Rt ACD △中应用勾股定理即可求解.【详解】解:∵地毯平均分成了3=CD =在Rt ACD △中,根据勾股定理可得AD =,根据裁剪可知1BD CE ==,∴1AB AD BD =-=1.【点睛】本题考查勾股定理,根据裁剪找出对应面积和线段的关系是解题的关键.2.(2021·河北)下图是可调躺椅示意图(数据如图),AE 与BD 的交点为C ,且A ∠,B ,E ∠保持不变.为了舒适,需调整D ∠的大小,使110EFD ∠=︒,则图中D ∠应___________(填“增加”或“减少”)___________度.【答案】减少 10【分析】先通过作辅助线利用三角形外角的性质得到∠EDF 与∠D 、∠E 、∠DCE 之间的关系,进行计算即可判断.【详解】解:∵∠A +∠B =50°+60°=110°,∴∠ACB =180°-110°=70°,∴∠DCE =70°,如图,连接CF 并延长,∴∠DFM =∠D +∠DCF =20°+∠DCF ,∠EFM =∠E +∠ECF =30°+∠ECF , ∴∠EFD =∠DFM +∠EFM =20°+∠DCF+30°+∠ECF=50°+∠DCE=50°+70°=120°,要使∠EFD =110°,则∠EFD 减少了10°,若只调整∠D 的大小,由∠EFD =∠DFM +∠EFM =∠D +∠DCF +∠E +∠ECF =∠D +∠E +∠ECD =∠D +30°+70°=∠ D +100°,因此应将∠D 减少10度;故答案为:①减少;②10.【点睛】本题考查了三角形外角的性质,同时涉及到了三角形的内角和与对顶角相等的知识;解决本题的关键是理解题意,读懂图形,找出图形中各角之间的关系以及牢记公式建立等式求出所需的角,本题蕴含了数形结合的思想方法.3.(2021·青海)如图,AB ∥CD ,FE ⊥DB ,垂足为E ,∠1=50°,则∠2的度数是_____.【答案】40°【分析】由EF ⊥BD ,∠1=50°,结合三角形内角和为180°,即可求出∠D 的度数,再由“两直线平行,同位角相等”即可得出结论.【详解】解:在△DEF 中,∠1=50°,∠DEF=90°,∴∠D=180°-∠DEF-∠1=40°.∵AB ∥CD ,∴∠2=∠D=40°.故答案为40°.【点睛】本题考查平行线的性质以及三角形内角和为180°,解题关键是求出∠D=40°.解决该题型题目时,根据平行线的性质,找出相等或互补的角是解题技巧.4.(2021·山东聊城市)如图,在△ABC 中,AD ⊥BC ,CE ⊥AB ,垂足分别为点D 和点E ,AD 与CE 交于点O ,连接BO 并延长交AC 于点F ,若AB =5,BC =4,AC =6,则CE :AD :BF 值为____________.【答案】12:15:10【分析】由题意得:BF ⊥AC ,再根据三角形的面积公式,可得5432ABC SAD CE BF ===,进而即可得到答案.【详解】解:∵在△ABC 中,AD ⊥BC ,CE ⊥AB ,垂足分别为点D 和点E ,AD 与CE 交于点O ,∴BF ⊥AC ,∵AB =5,BC =4,AC =6,∴111222ABC SBC AD AB CE AC BF =⋅=⋅=⋅, ∴5432ABC S AD CE BF ===,∴CE :AD :BF =12:15:10,故答案是:12:15:10. 【点睛】本题主要考查三角形的高,掌握“三角形的三条高交于一点”是解题的关键.5.(2021·江苏南京市)如图,在四边形ABCD 中,AB BC BD ==.设ABC α∠=,则ADC ∠=______(用含α的代数式表示).【答案】11802α︒- 【分析】由等腰的性质可得:∠ADB =1902ABD ︒-∠,∠BDC =1902CBD ︒-∠,两角相加即可得到结论. 【详解】解:在△ABD 中,AB =BD ∴∠A =∠ADB =11(180)9022ABD ABD ︒-∠=︒-∠ 在△BCD 中,BC =BD ∴∠C =∠BDC =11(180)9022CBD CBD ︒-∠=︒-∠ ∵ABC ABD CBD α∠=∠+∠= ∴ADC ADB CBD ∠=∠+∠ =11909022ABD CBD ︒-∠+︒-∠ =1180()2ABD CBD ︒-∠+∠=11802ABC ︒-∠=11802α︒-故答案为:11802α︒-. 【点睛】此题主要考查了等腰三角形的性质和三角形内角和定理,分别求出∠ADB=1902ABD ︒-∠,∠BDC=1902CBD ︒-∠是解答本题的关键. 6.(2021·江苏连云港市)如图,BE 是ABC 的中线,点F 在BE 上,延长AF 交BC 于点D .若3BF FE =,则BD DC=______.【答案】32【分析】连接ED ,由BE 是ABC 的中线,得到BE BCE S S =△A △,AED EDC S S =,由3BF FE =,得到3,3ABF BFD AFEFEDS S SS ==,设=,AEF EFDSx Sy =,由面积的等量关系解得53x y =,最后根据等高三角形的性质解得ABD ADCS BDSDC=,据此解题即可. 【详解】解:连接EDBE 是ABC 的中线,ABEBCESS∴=,AEDEDCSS=3BF FE =3,3ABF BFD AFEFEDS S SS∴==设=,AEFEFDSx Sy =,33ABFBFDSx Sy ∴==,4,4,4ABE BECBEDSx Sx Sy ∴===44EDCBECBEDSSSx y ∴=-=-ADEEDCSS=44x y x y ∴+=-53x y∴=ABD 与ADC 是等高三角形,53+33333833=516445325333ABD ADCy yS BD x y x y y SDC x y x y x y y y y ⨯++∴=====++--⨯-,故答案为:32. 【点睛】本题考查三角形的中线、三角形面积等知识,是重要考点,难度一般,掌握相关知识是解题关键.7.(2021·浙江绍兴市)如图,在ABC 中,AB AC =,70B ∠=︒,以点C 为圆心,CA 长为半径作弧,交直线BC 于点P ,连结AP ,则BAP ∠的度数是_______.【答案】15︒或75︒【分析】分①点P 在BC 的延长线上,②点P 在CB 的延长线上两种情况,再利用等腰三角形的性质即可得出答案.【详解】解:①当点P 在BC 的延长线上时,如图∵AB AC =,70B ∠=︒,∴70B ACB ∠=∠=︒∴40CAB ∠=︒∵以点C 为圆心,CA 长为半径作弧,交直线BC 于点P ,∴AC =PC ∴∠=∠P CAP∵70∠=∠+∠=︒ACB B CAP ∴35∠=∠=P CAP ∴403575∠=∠+∠=+=BAP BAC CAP②当点P 在CB 的延长线上时,如图由①得70C ∠=︒,40CAB ∠=︒∵AC =PC ∴=55∠=∠P CAP ∴-55-4015∠=∠∠==BAP CAP BAC 故答案为:15︒或75︒【点睛】本题主要考查了等腰三角形的性质,分类讨论不重不漏是解题的关键.8.(2021·四川广安市)如图,将三角形纸片ABC 折叠,使点B 、C 都与点A 重合,折痕分别为DE 、FG .已知15ACB ∠=︒,AE EF =,DE =BC 的长为_______.【答案】4+【分析】由折叠的性质得出BE =AE ,AF =FC ,∠F AC =∠C =15°,得出∠AFE =30°,由等腰三角形的性质得出∠EAF =∠AFE =30°,证出△ABE 是等边三角形,得出∠BAE =60°,求出AE =BE =2,证出∠BAF =90°,利用勾股定理求出AF ,即CF ,可得BC .【详解】解:∵把三角形纸片折叠,使点B 、点C 都与点A 重合,折痕分别为DE ,FG , ∴BE =AE ,AF =FC ,∠F AC =∠C =15°,∴∠AFE =30°,又AE =EF ,∴∠EAF =∠AFE =30°,∴∠AEB =60°,∴△ABE 是等边三角形,∠AED =∠BED =30°,∴∠BAE =60°,∵DE AE =BE =AB =cos30DE︒=2,∴BF =BE +EF =4,∠BAF =60°+30°=90°,∴FC =AF =BC =BF +FC =4+,故答案为:4+.【点睛】此题考查了翻折变换的性质、等腰三角形的性质、等边三角形的判定与性质、直角三角形的性质;根据折叠的性质得出相等的边和角是解题关键.9.(2021·四川遂宁市)如图,在△ABC 中,AB =5,AC =7,直线DE 垂直平分BC ,垂足为E ,交AC 于点D ,则△ABD 的周长是 _____ .【答案】12.【分析】根据线段的垂直平分线的性质得到DB DC =,根据三角形的周长公式计算即可. 【详解】解:∵直线DE 垂直平分BC ,∴DB DC =,∴△ABD 的周长5712AB AD BD AB AD DC AB AC =++=++=+=+=,故答案为:12.【点睛】本题考查的是线段的垂直平分线的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.10.(2021·江苏宿迁市)《九章算术》中有一道“引葭赴岸”问题:“仅有池一丈,葭生其中央,出水一尺,引葭赴岸,适与岸齐.问水深,葭长各几何?”题意是:有一个池塘,其地面是边长为10尺的正方形,一棵芦苇AB 生长在它的中央,高出水面部分BC 为1尺.如果把芦苇沿与水池边垂直的方向拉向岸边,那么芦苇的顶部B 恰好碰到岸边的B '(示意图如图,则水深为__尺.【答案】12【分析】依题意画出图形,设芦苇长AB =AB '=x 尺,则水深AC =(x ﹣1)尺,因为B 'E =10尺,所以B 'C =5尺,利用勾股定理求出x 的值即可得到答案..【详解】解:依题意画出图形,设芦苇长AB =AB '=x 尺,则水深AC =(x ﹣1)尺, 因为B 'E =10尺,所以B 'C =5尺,在Rt △AB 'C 中,52+(x ﹣1)2=x 2,解之得x =13,即水深12尺,芦苇长13尺.故答案为:12.【点睛】此题考查勾股定理的实际应用,正确理解题意,构建直角三角形利用勾股定理解决问题是解题的关键. 三、解答题1.(2021·湖北武汉市)如图,//AB CD ,B D ∠=∠,直线EF 与AD ,BC 的延长线分别交于点E ,F .求证:DEF F ∠=∠.【答案】见解析【分析】根据已知条件//AB CD ,B D ∠=∠,得到DCF D ∠=∠,从而得到//AD BC ,即可证明DEF F ∠=∠.【详解】证明:∵//AB CD ,∴DCF B ∠=∠.∵B D ∠=∠,∴DCF D ∠=∠.∴//AD BC .∴DEF F ∠=∠.【点睛】本题考查平行线的性质和判定.平行线的性质:两直线平行,内错角相等.平行线的判定:同位角相等,两直线平行.2.(2021·浙江温州市)如图,BE 是ABC 的角平分线,在AB 上取点D ,使DB DE =. (1)求证://DE BC .(2)若65A ∠=︒,45AED ∠=︒,求EBC ∠的度数.【答案】(1)见解析;(2)35°【分析】(1)直接利用角平分线的定义和等边对等角求出BED EBC ∠=∠,即可完成求证; (2)先求出∠ADE ,再利用平行线的性质求出∠ ABC ,最后利用角平分线的定义即可完成求解. 【详解】解:(1)BE 平分ABC ∠,∴ABE EBC ∠=∠.DB DE =,∴ABE BED ∠=∠,∴BED EBC ∠=∠,∴//DE BC .(2)65A ∠=︒,45AED ∠=︒,∴18070ADE A AED ∠=︒-∠-∠=︒.//DE BC .∴70ABC ADE ∠=∠=︒.BE 平分ABC ∠,∴1352EBC ABC ∠=∠=︒,即35EBC ∠=︒. 【点睛】本题综合考查了角平分线的定义、等腰三角形的性质、平行线的判定与性质等内容,解决本题的关键是牢记概念与性质,本题的解题思路较明显,属于几何中的基础题型,着重考查了学生对基本概念的理解与掌握.3.(2021·四川南充市)如图,90BAC ∠=︒,AD 是BAC ∠内部一条射线,若AB AC =,BE AD ⊥于点E ,CF AD ⊥于点F .求证:AF BE =.【答案】见详解【分析】根据AAS 证明△BAE ≌△ACF ,即可得AF BE =. 【详解】证明:∵90BAC ∠=︒,∴∠BAE +∠CAF =90°, ∵BE ⊥AD ,CF ⊥AD ,∴∠BEA =∠AFC =90°, ∴∠BAE +∠EBA =90°,∴∠CAF =∠EBA , ∵AB =AC ,∴△BAE ≌△ACF ,∴AF BE =.【点睛】本题主要考查全等三角形的判定和性质,熟练掌握全等三角形的判定定理是解题的关键. 4.(2021·浙江绍兴市)如图,在ABC 中,40A ∠=︒,点D ,E 分別在边AB ,AC 上,BD BC CE ==,连结CD ,BE .(1)若80ABC ∠=︒,求BDC ∠,ABE ∠的度数.(2)写出BEC ∠与BDC ∠之间的关系,并说明理由.【答案】(1)50BDC ∠=︒;20ABE ∠=︒;(2)110BEC BDC ∠+∠=︒,见解析【分析】(1)利用三角形的内角和定理求出ACB ∠的大小,再利用等腰三角形的性质分别求出BDC ∠,ABE ∠.(2)利用三角形的内角和定理、三角形外角的性质和等腰三角形的性质,求出用含ABE ∠分别表示BEC ∠,BDC ∠,即可得到两角的关系.【详解】(1)80ABC ∠=︒,BD BC =,50BDC BCD ∴∠=∠=︒. 在ABC 中,180A ABC ACB ∠+∠+∠=︒,40A ∠=︒,60ACB ∠=︒∴,CE BC =,60EBC ∴∠=︒.20ABE ABC EBC ∴∠=∠-∠=︒.(2)BEC ∠,BDC ∠的关系:110BEC BDC ∠+∠=︒.理由如下:设BEC α∠=,BDC β∠=.在ABE △中,40A ABE ABE α=∠+∠=︒+∠,CE BC =,CBE BEC α∴∠=∠=.2402ABC ABE CBE A ABE ABE ∴∠=∠+∠=∠+∠=︒+∠,在BDC 中,BD BC =,2402180BDC BCD DBC ABE β∴∠+∠+∠=+︒+∠=︒.70ABE β︒∴=-∠.4070110ABE ABE αβ∴+=︒+∠+︒-∠=︒.110BEC BDC ∴∠+∠=︒.【点睛】本题主要通过求解角和两角之间的关系,考查三角形的内角和定理、三角形外角的性质和等腰三角形的性质.三角形的内角和等于180︒ .三角形的外角等于与其不相邻的两个内角之和.等腰三角形等边对等角.5.(2021·陕西中考真题)如图,//BD AC ,BD BC =,点E 在BC 上,且BE AC =.求证:D ABC ∠=∠.【答案】见解析【分析】由题意易得EBD C ∠=∠,进而可证EDB ABC ≌△△,然后问题可求证. 【详解】证明:∵//BD AC ,∴EBD C ∠=∠.∵BD BC =,BE AC =,∴()EDB ABC SAS ≌.∴D ABC ∠=∠.【点睛】本题主要考查全等三角形的性质与判定,熟练掌握全等三角形的性质与判定是解题的关键. 6.(2021·湖南衡阳市)如图,点A 、B 、D 、E 在同一条直线上,,//,//AB DE AC DF BC EF =.求证:ABC DEF △≌△.【答案】见解析【分析】根据//,//AC DF BC EF ,可以得到,A FDE ABC DEF ∠=∠∠=∠,然后根据题目中的条件,利用ASA 证明△ABC ≌△DEF 即可.【详解】证明:点A ,B ,C ,D ,E 在一条直线上 ∵//,//AC DF BC EF ∴,A FDE ABC DEF ∠=∠∠=∠在△ABC 与△DEF 中CAB FDEAB DE ABC DEF ∠=∠⎧⎪=⎨⎪∠=∠⎩∴()ABC DEF ASA △≌△【点睛】本题重点考查了三角形全等的判定定理,普通两个三角形全等共有四个定理,即AAS 、ASA 、SAS、SSS ,直角三角形可用HL 定理,但AAA 、SSA ,无法证明三角形全等,本题是一道较为简单的题目. 7.(2021·浙江)已知在ACD △中,Р是CD 的中点,B 是AD 延长线上的一点,连结,BC AP .(1)如图1,若90,60,,ACB CAD BD AC AP ︒∠=︒∠===,求BC 的长.(2)过点D 作//DE AC ,交AP 延长线于点E ,如图2所示.若60,CAD BD AC ∠︒==,求证:2BC AP =. (3)如图3,若45CAD ∠=︒,是否存在实数m ,当BD mAC =时,2BC AP =?若存在,请直接写出m 的值;若不存在,请说明理由.【答案】(1)(2)见解析;(3)存在,m =【分析】(1)先解直角三角形ABC 得出2AB AC =,从而得出△ADC 是等边三角形,再解直角三角形ACP 即可求出AC 的长,进而得出BC 的长;(2)连结BE ,先利用AAS 证出△CPA ≌△DPE ,得出AE =2PE ,AC =DE ,再得出△ADC 是等边三角形,然后由SAS 得出△CAB ≌△EBA ,得出AE =BC 即可得出结论; (3)过点D 作//DE AC ,交AP 延长线于点E ,连接BE ,过C 作CG ⊥AB 于G ,过E 作EN ⊥AB 于N ,由(2)得AE =2AP ,DE =AC ,再证明△AEN ≌△BCG ,从而得出△CAB ≌△EBA 得出DE =BE ,然后利用勾股定理即可得出m 的值. 【详解】(1)解90,60ACB CAD ∠=∠=︒︒,2cos60ACAB AC ︒==,BD AC =,AD AC =∴,∴△ADC 是等边三角形,60ACD ∴∠=︒Р是CD 的中点,AP CD ∴⊥,在Rt APC 中,AP =2sin 60APAC ∴==︒,tan 60BC AC =︒=∴(2)证明:连结BE ,//DE AC ,CAP DEP ∴∠=∠,,CP DP CPA DPE =∠=∠,∴△CPA ≌△DPE , 1,2AP EP AE DE AC ∴===, BD AC =,BD DE ∴=,又//DE AC ,60BDE CAD ∴∠=∠=︒,∴△BDE 是等边三角形,,60BD BE EBD ∴=∠=︒BD AC =,AC BE ∴=,又60,CAB EBA AB BA ∠=∠=︒=,∴△CAB ≌△EBA , AE BC ∴=,2BC AP ∴=.。
2022年中考数学真题-专题17 图形变换(平移、旋转、对称)(1)(全国通用解析版)
专题17图形变换(平移、旋转、对称)一.选择题(2022·湖南娄底)1. 下列与2022年冬奥会相关的图案中,是中心对称图形的是()A. B. C. D.【答案】D【解析】【分析】中心对称图形定义:如果一个图形绕某一点旋转180度,旋转后的图形能和原图形回完全重合,那么这个答图形叫做中心对称图形,根据中心对称图形定义逐项判定即可.【详解】解:根据中心对称图形定义,可知D符合题意,故选:D.【点睛】本题考查中心对称图形的识别,掌握中心对称图形的定义是解决问题的关键.(2022·四川自贡)2. 剪纸与扎染、龚扇被称为自贡小三绝,以下学生剪纸作品中,轴对称图形是()A. B.C. D.【答案】D【解析】【分析】根据轴对称图形的定义判断即可.【详解】∵不是轴对称图形,∴A不符合题意;∵不是轴对称图形,∴B不符合题意;∵不是轴对称图形,∴C不符合题意;∵是轴对称图形,∴D符合题意;故选D.【点睛】本题考查了轴对称图形即沿着某条直线折叠,直线两旁的部分完全重合,熟练掌握定义是解题的关键.(2022·山东泰安)3. 下列图形:其中轴对称图形的个数是()A. 4B. 3C. 2D. 1【答案】B【解析】【分析】对每个图形逐一分析,能够找到对称轴的图形就是轴对称图形.【详解】从左到右依次对图形进行分析:第1个图在竖直方向有一条对称轴,是轴对称图形,符合题意;第2个图在水平方向有一条对称轴,是轴对称图形,符合题意;第3个图找不到对称轴,不是轴对称图形,不符合题意;第4个图在竖直方向有一条对称轴,是轴对称图形,符合题意;因此,第1、2、4都是轴对称图形,共3个.故选:B.【点睛】本题考查轴对称图形的概念,解题的关键是寻找对称轴.(2022·江苏苏州)0,2,点B是x轴正半轴上的一点,将线段AB绕点A按4. 如图,点A的坐标为()m,则m的值为()逆时针方向旋转60°得到线段AC.若点C的坐标为(),3A.【答案】C【解析】【分析】过C作CD⊥x轴于D,CE⊥y轴于E,根据将线段AB绕点A按逆时针方向旋转60°得到线段AC,可得△ABC是等边三角形,又A(0,2),C(m,3),即得AC BC AB==,可得BD=m=.OB=m=,即可解得3【详解】解:过C 作CD ⊥x 轴于D ,CE ⊥y 轴于E ,如图所示:∵CD ⊥x 轴,CE ⊥y 轴,∴∠CDO =∠CEO =∠DOE =90°,∴四边形EODC 是矩形,∵将线段AB 绕点A 按逆时针方向旋转60°得到线段AC ,∴AB =AC ,∠BAC =60°,∴△ABC 是等边三角形,∴AB =AC =BC ,∵A (0,2),C (m ,3),∴CE =m =OD ,CD =3,OA =2,∴AE =OE −OA =CD −OA =1,∴AC BC AB ===,在Rt △BCD 中,BD =在Rt △AOB 中,OB ==∵OB +BD =OD =m ,m =,化简变形得:3m 4−22m 2−25=0,解得:3m =或3m =-(舍去),∴m=,故C正确.故选:C.【点睛】本题考查直角坐标系中的旋转变换,解题的关键是熟练应用勾股定理,用含m的代数式表示相关线段的长度.(2022·浙江湖州)5. 如图,将△ABC沿BC方向平移1cm得到对应的△A′B′C′.若B′C=2cm,则BC′的长是()A. 2cmB. 3cmC. 4cmD. 5cm【答案】C【解析】【分析】据平移的性质可得BB′=CC′=1,列式计算即可得解.【详解】解:∵△ABC沿BC方向平移1cm得到△A′B′C′,∴BB′=CC′=1cm,∵B′C=2cm,∴BC′= BB′+ B′C+CC′=1+2+1=4(cm).故选:C.【点睛】本题考查了平移的性质,熟记性质得到相等的线段是解题的关键.(2022·浙江嘉兴)6. “方胜”是中国古代妇女的一种发饰,其图案由两个全等正方形相叠组成,寓意是同心吉祥.如图,将边长为2cm的正方形ABCD沿对角线BD方向平移1cm得'''',形成一个“方胜”图案,则点D,B′之间的距离为()到正方形A B C DA. 1cmB. 2cmC. 1)cmD. -1)cm 【答案】D【解析】【分析】先求出BD,再根据平移性质求得BB'=1cm,然后由BD BB-′求解即可.【详解】解:由题意,BD=,由平移性质得BB'=1cm,∴点D,B′之间的距离为DB'=BD BB-′=(1)cm,故选:D.【点睛】本题考查平移性质、正方形的性质,熟练掌握平移性质是解答的关键.(2022·湖南怀化)7. 如图,△ABC沿BC方向平移后的像为△DEF,已知BC=5,EC=2,则平移的距离是()A. 1B. 2C. 3D. 4【答案】C【解析】【分析】根据题意判断BE的长就是平移的距离,利用已知条件求出BE即可.【详解】因为ABC沿BC方向平移,点E是点B移动后的对应点,所以BE的长等于平移的距离,由图可知,点B、E、C在同一直线上,BC=5,EC=2,所以BE=BC-ED=5-2=3,故选C.【点睛】本题考查了平移,正确找出平移对应点是求平移距离的关键.(2022·湖南邵阳)8. 下列四种图形中,对称轴条数最多的是()A. 等边三角形B. 圆C. 长方形D. 正方形【答案】B【解析】【分析】分别求出各个图形的对称轴的条数,再进行比较即可.【详解】解:因为等边三角形有3条对称轴;圆有无数条对称轴;长方形有2条对称轴;正方形有4条对称轴;经比较知,圆的对称轴最多.故选:B.【点睛】此题考查了轴对称图形对称轴条数的问题,解题的关键是掌握轴对称图形对称轴的定义以及性质.(2022·江苏连云港)9. 下列图案中,是轴对称图形的是()A. B. C. D.【答案】A【解析】【分析】根据轴对称图形的概念逐项分析判断即可,轴对称图形的概念:平面内,一个图形沿一条直线折叠,直线两旁的部分能够完全重合的图形.【详解】A.是轴对称图形,故该选项正确,符合题意;B.不是轴对称图形,故该选项不正确,不符合题意;C.不是轴对称图形,故该选项不正确,不符合题意;D.不是轴对称图形,故该选项不正确,不符合题意;故选A【点睛】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.(2022·四川遂宁)10. 下面图形中既是轴对称图形又是中心对称图形的是()科克曲线笛卡尔心形线阿基米德螺旋线赵爽弦图A. 科克曲线B. 笛卡尔心形线C. 阿基米德螺旋线D. 赵爽弦图【答案】A【解析】【分析】根据轴对称图形和中心对称图形的概念,对各选项分析判断即可得解.把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形;如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形.【详解】解:A、科克曲线既是轴对称图形又是中心对称图形,故本选项符合题意;B、笛卡尔心形线是轴对称图形,不是中心对称图形,故本选项不符合题意;C、阿基米德螺旋线不是轴对称图形,也不是中心对称图形,故本选项不符合题意;D、赵爽弦图不是轴对称图形,是中心对称图形,故本选项不符合题意.故选:A.【点睛】本题考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后与原图重合.(2022·新疆)11. 平面直角坐标系中,点P (2,1)关于x 轴对称的点的坐标是( )A. ()2,1B. ()2,1-C. ()2,1-D. ()2,1--【答案】B【解析】【分析】直接利用关于x 轴的对称点的坐标特点:横坐标不变,纵坐标互为相反数,得出答案.【详解】解:点P (2,1)关于x 轴对称的点的坐标是(2,-1).故选:B .【点睛】本题主要考查了关于x 轴对称点的性质,正确掌握横纵坐标的关系是解题关键.(2022·天津) 12. 在一些美术字中,有的汉字是轴对称图形.下面4个汉字中,可以看作是轴对称图形的是( )A. B. C. D.【答案】D【解析】【分析】根据轴对称图形的概念对各项分析判断即可得解.【详解】A .不是轴对称图形,故本选项错误;B .不是轴对称图形,故本选项错误;C .不是轴对称图形,故本选项错误;D .是轴对称图形,故本选项正确.故选:D .【点睛】本题考查轴对称图形,理解轴对称图形的概念是解答的关键.(2022·天津)13. 如图,在△ABC 中,AB =AC ,若M 是BC 边上任意一点,将△ABM 绕点A 逆时针旋转得到△ACN ,点M 的对应点为点N ,连接MN ,则下列结论一定正确的是( )A. AB AN =B. AB NC ∥C. AMN ACN ∠=∠D. MN AC ⊥【答案】C【解析】 【分析】根据旋转的性质,对每个选项逐一判断即可.【详解】解:∵将△ABM 绕点A 逆时针旋转得到△ACN ,∴△ABM ≌△ACN , ∴AB =AC ,AM =AN ,∴AB 不一定等于AN ,故选项A 不符合题意; ∵△ABM ≌△ACN ,∴∠ACN =∠B ,而∠CAB 不一定等于∠B ,∴∠ACN 不一定等于∠CAB ,∴AB 与CN 不一定平行,故选项B 不符合题意; ∵△ABM ≌△ACN ,∴∠BAM =∠CAN ,∠ACN =∠B ,∴∠BAC =∠MAN ,∵AM =AN ,AB =AC ,∴△ABC 和△AMN 都是等腰三角形,且顶角相等, ∴∠B =∠AMN ,∴∠AMN =∠ACN ,故选项C 符合题意;∵AM =AN ,而AC 不一定平分∠MAN ,∴AC 与MN 不一定垂直,故选项D 不符合题意; 故选:C . 【点睛】本题考查了旋转的性质,等腰三角形的判定与性质.旋转变换是全等变换,利用旋转不变性是解题的关键.(2022·江苏扬州)14. 如图,在ABC ∆中,AB AC <,将ABC 以点A 为中心逆时针旋转得到ADE ,点D 在BC 边上,DE 交AC 于点F .下列结论:①AFE DFC △△;②DA 平分BDE ∠;③CDF BAD ∠=∠,其中所有正确结论的序号是( )A. ①②B. ②③C. ①③D. ①②③【答案】D【解析】【分析】根据旋转的性质可得对应角相等,对应边相等,进而逐项分析判断即可求解.【详解】解:∵将ABC 以点A 为中心逆时针旋转得到ADE ,∴ADE ABC ≌, E C ∴∠=∠,AFE DFC ∠=∠,∴AFE DFC △△,故①正确;ADE ABC ≌,AB AD ∴=,ABD ADB ∴∠=∠,ADE ABC ∠=∠,ADB ADE ∴∠=∠,∴DA 平分BDE ∠,故②正确;ADE ABC ≌,BAC DAE ∴∠=∠,BAD CAE ∴∠=∠,AFE DFC △△,CAE CDF ∴∠=∠,CDF BAD ∠=∠∴,故③正确故选D【点睛】本题考查了性质的性质,等边对等角,相似三角形的性质判定与性质,全等三角形的性质,掌握以上知识是解题的关键.(2022·四川南充)15. 如图,将直角三角板ABC 绕顶点A 顺时针旋转到AB C ''△,点B '恰好落在CA 的延长线上,3090∠=︒∠=︒,B C ,则BAC '∠为( )A. 90︒B. 60︒C. 45︒D. 30【答案】B【解析】 【分析】根据直角三角形两锐角互余,求出BAC ∠的度数,由旋转可知BAC B AC ''∠=∠,在根据平角的定义求出BAC '∠的度数即可.【详解】∵3090∠=︒∠=︒,B C ,∴90903060BAC B ∠=︒-∠=︒-︒=︒,∵由旋转可知60B A BAC C ''∠=︒∠=,∴618060860100C B A BA BA C C '''=︒-∠=︒-︒-︒=︒∠∠-,故答案选:B .【点睛】本题考查直角三角形的性质以及图形的旋转的性质,找出旋转前后的对应角是解答本题的关键.(2022·山东泰安)16. 如图,将正方形网格放置在平面直角坐标系中,其中每个小正方形的边长均为1,ABC ∆经过平移后得到111A B C ∆,若AC 上一点(1.2,1.4)P 平移后对应点为1P ,点1P 绕原点顺时针旋转180,对应点为2P ,则点2P 的坐标为( ,A. (2.8,3.6)B. 2.8,6()3.--C. (3.8,2.6)D. ( 3.8, 2.6)--【答案】A【解析】 【详解】分析:由题意将点P 向下平移5个单位,再向左平移4个单位得到P 1,再根据P 1与P 2关于原点对称,即可解决问题,详解,由题意将点P 向下平移5个单位,再向左平移4个单位得到P 1,∵P ,1.2,1.4,,∴P 1,,2.8,,3.6,,∵P 1与P 2关于原点对称,∴P 2,2.8,3.6,,故选A,点睛:本题考查了坐标与图形变化,平移变换,旋转变换等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型.(2022·湖北宜昌)17. 将四个数字看作一个图形,则下列四个图形中,是中心对称图形的是( )A.B. C. D.【答案】D【解析】【分析】中心对称图形的定义:把一个图形绕着某个点旋转180°,如果旋转后的图形能与原来的图形重合,那么这个图形叫做中心对称图形,根据中心对称图形的定义逐项判定即可.【详解】解:根据中心对称图形定义,可知符合题意, 故选:D .【点睛】本题考查中心对称图形,掌握中心对称图形定义,能根据定义判定图形是否是中心对称图形是解决问题的关键.(2022·湖南常德)18. 如图,在Rt ABC △中,90ABC ∠=︒,30ACB ∠=︒,将ABC 绕点C 顺时针旋转60︒得到DEC ,点A 、B 的对应点分别是D ,E ,点F 是边AC 的中点,连接BF ,BE ,FD .则下列结论错误的是( )A. BE BC =B. BF DE ∥,BF DE =C. 90DFC ∠=︒D. 3DG GF =【答案】D【解析】 【分析】根据旋转的性质可判断A ;根据直角三角形的性质、三角形外角的性质、平行线的判定方法可判断B ;根据平行四边形的判定与性质以及全等三角形的判定与性质可判断C ;利用等腰三角形的性质和含30°角的直角三角形的性质可判断D .【详解】A .∵将,ABC 绕点C 顺时针旋转60°得到,DEC ,∴∠BCE =∠ACD =60°,CB =CE ,∴△BCE 是等边三角形,∴BE =BC ,故A 正确;B .,点F 是边AC 中点,,CF =BF =AF =12AC ,,,BCA =30°,,BA =12AC ,,BF =AB =AF =CF ,,,FCB =,FBC =30°,延长BF 交CE 于点H ,则∠BHE =∠HBC +∠BCH =90°,∴∠BHE =∠DEC =90°,∴BF //ED ,∵AB =DE ,∴BF =DE ,故B 正确.C .∵BF ∥ED ,BF =DE ,∴四边形BEDF 是平行四边形,∴BC =BE =DF ,∵AB =CF , BC =DF ,AC =CD ,∴△ABC ≌△CFD ,∴=90DFC ABC ∠=∠︒,故C 正确;D .∵∠ACB =30°, ∠BCE =60°,∴∠FCG =30°,∴FG =12CG ,∴CG =2FG .∵∠DCE =∠CDG =30°,∴DG =CG ,∴DG =2FG .故D 错误.故选D .【点睛】本题考查了旋转的性质,全等三角形的判定与性质,等边三角形的判定与性质,含30°角的直角边等于斜边的一半,以及平行四边形的判定与性质等知识,综合性较强,正确理解旋转性质是解题的关键.(2022·湖南常德) 19. 国际数学家大会每四,举行一届,下面四届国际数学家大会会标中是中心对称图形的是()A. B.C. D.【答案】B【解析】【分析】根据中心对称的概念对各图形分析判断即可得解.【详解】解:A不是中心对称图形,故A错误;B是中心对称图形,故B正确;C不是中心对称图形,故C错误;D不是中心对称图形,故D错误;故选B.【点睛】本题考查了中心对称图形的概念,中心对称图形是要寻找对称中心,旋转180︒后两部分重合,理解并掌握如何判断中心对称图形的条件是解题的关键.(2022·河北)20. 题目:“如图,∠B=45°,BC=2,在射线BM上取一点A,设AC=d,若对于d的一个数值,只能作出唯一一个△ABC,求d的取值范围.”对于其答案,甲答:d≥,乙答:d=1.6,丙答:d=)2A. 只有甲答的对B. 甲、丙答案合在一起才完整C. 甲、乙答案合在一起才完整D. 三人答案合在一起才完整【答案】B【解析】 【分析】过点C 作CA BM '⊥于A ',在A M '上取A A BA ''''=,发现若有两个三角形,两三角形的AC 边关于A C '对称,分情况分析即可【详解】过点C 作CA BM '⊥于A ',在A M '上取A A BA ''''=∵∠B =45°,BC =2,CA BM '⊥∴BA C '是等腰直角三角形∴A C BA ''===∵A A BA ''''=∴2A C ''==若对于d 的一个数值,只能作出唯一一个△ABC通过观察得知:点A 在A '点时,只能作出唯一一个△ABC (点A 在对称轴上),此时d =的答案;点A 在A M ''射线上时,只能作出唯一一个△ABC (关于A C '对称的AC 不存在),此时2d ≥,即甲的答案,点A 在BA ''线段(不包括A '点和A ''点)上时,有两个△ABC (二者的AC 边关于A C '对称);故选:B【点睛】本题考查三角形的存在性质,勾股定理,解题关键是发现若有两个三角形,两三角形的AC边关于A C'对称(2022·山西)21. 2022年4月16日,神舟十三号载人飞船圆满完成全部既定任务,顺利返回地球家园.六个月的飞天之旅展现了中国航天科技的新高度下列航天图标,其文字上方的图案是中心对称图形的是()A. B. C. D.【答案】B【解析】【分析】利用中心对称图形的定义直接判断.【详解】解:根据中心对称图形的定义,四个选项中,只有B选项的图形绕着某点旋转180°后能与原来的图形重合,故选B.【点睛】本题考查中心对称图形的判定,掌握中心对称图形的定义是解题的关键.中心对称图形:在平面内,把一个图形绕着某个点旋转180°,如果旋转后的图形能与原来的图形重合,那么这个图形叫做中心对称图形,这个点叫做它的对称中心.(2022·河南)22. 如图,在平面直角坐标系中,边长为2的正六边形ABCDEF的中心与原点O∥轴,交y轴于点P.将,OAP绕点O顺时针旋转,每次旋转90°,则重合,AB x第2022次旋转结束时,点A的坐标为()A. )1-B. (1,-C. ()1-D. (【答案】B【解析】【分析】首先确定点A 的坐标,再根据4次一个循环,推出经过第2022次旋转后,点A 的坐标即可.【详解】解:正六边形ABCDEF 边长为2,中心与原点O 重合,AB x ∥轴, ∴AP =1, AO =2,∠OP A =90°,∴OP∴A (1,第1次旋转结束时,点A -1);第2次旋转结束时,点A 的坐标为(-1,;第3次旋转结束时,点A 的坐标为(1);第4次旋转结束时,点A 的坐标为(1;∵将,OAP 绕点O 顺时针旋转,每次旋转90°,∴4次一个循环,∵2022÷4=505……2,∴经过第2022次旋转后,点A 的坐标为(-1,,故选:B【点睛】本题考查正多边形与圆,规律型问题,坐标与图形变化﹣旋转等知识,解题的关键是学会探究规律的方法,属于中考常考题型.(2022·四川宜宾)23. 如图,ABC 和ADE 都是等腰直角三角形,90BAC DAE ∠=∠=︒,点D 是BC 边上的动点(不与点B 、C 重合),DE 与AC 交于点F ,连结CE .下列结论:①BD CE =;②DAC CED ∠=∠;③若2BD CD =,则45CF AF =;④在ABC 内存在唯一一点P ,使得PA PB PC ++的值最小,若点D 在AP 的延长线上,且AP 的长为2,则2CE =+ )A. ①②④B. ①②③C. ①③④D. ①②③④ 【答案】B【解析】【分析】证明BAD CAE ≌,即可判断①,根据①可得ADB AEC ∠=∠,由180ADC AEC ∠+∠=︒可得,,,A D C E 四点共圆,进而可得DAC DEC ∠=∠,即可判断②,过点A 作AG BC ⊥于G ,交ED 的延长线于点H ,证明FAH FCE ∽,根据相似三角形的性质可得45CF AF =,即可判断③,将APC △绕A 点逆时针旋转60度,得到AB P ''△,则APP '是等边三角形,根据当,,,B P P C ''共线时,PA PB PC ++取得最小值,可得四边形ADCE 是正方形,勾股定理求得DP , 根据CE AD AP PD ==+即可判断④. 【详解】解:ABC 和ADE 都是等腰直角三角形,90BAC DAE ∠=∠=︒, ,,AB AC AD AE BAD CAE ∴==∠=∠BAD CAE ∴△≌△BD CE ∴=故①正确;BAD CAE ≌ADB AEC ∴∠=∠180ADC AEC ∴∠+∠=︒,,,A D C E ∴四点共圆,CD CD =DAC DEC ∴∠=∠故②正确;如图,过点A 作AG BC ⊥于G ,交ED 的延长线于点H ,BAD CAE ≌,45,45ACE ABD ACB ∴∠=∠=︒∠=︒90DCE ∴∠=︒FC AH ∴∥2BD CD =,BD CE =1tan 2DC DEC CE ∴∠==,13CD BC = 设6BC a =,则2DC a =,132AG BC a ==,24EC DC a == 则32GD GC DC a a a =-=-=FC AH ∥1tan 2GD H GH ∴== 22GH GD a ∴==325AH AG GH a a a ∴=+=+=AH ,CE ,FAH FCE ∴∽CF CE AF AH∴= 4455CF a AF a ∴== 则45CF AF =; 故③正确如图,将ABP 绕A 点逆时针旋转60度,得到AB P ''△,则APP '是等边三角形,PA PB PC PP P B PC B C '''+++∴'+=≥,当,,,B P P C ''共线时,PA PB PC ++取得最小值,此时180********CPA APP '∠=-∠=︒-=︒︒︒,180********APB AP B AP P ∠=∠=︒-∠=︒-︒='''︒,360360*********BPC BPA APC ∠=︒-∠-∠=︒-︒-︒=︒,此时120APB BPC APC ∠=∠=∠=︒,AC AB AB '==,AP AP '=,APC AP B ''∠=∠,AP B APC ''∴≌,PC P B PB ''∴==,60APP DPC '∠=∠=︒,DP ∴平分BPC ∠,PD BC ∴⊥,,,,A D C E 四点共圆,90AEC ADC ∴∠=∠=︒,又AD DC BD ==,BAD CAE ≌,AE EC AD DC ∴===,则四边形ADCE 是菱形,又90ADC ∠=︒,∴四边形ADCE 是正方形,9060150B AC B AP PAC P AP ''''∠=∠+∠+∠=︒+︒=︒,则'B A BA AC ==,()1180152B ACB B AC '''∠=∠=︒-∠=︒, 30PCD ∠=︒,DC ∴=,DC AD =,2AP =,则)12AP AD DP DP =-==,1DP ∴==, 2AP =,3CE AD AP PD ∴==+=,故④不正确,故选B .【点睛】本题考查了旋转的性质,费马点,圆内接四边形的性质,相似三角形的性质与判定,全等三角形的性质与判定,勾股定理,解直角三角形,正方形的性质与判定,掌握以上知识是解题的关键.二.填空题(2022·云南)24. 点A (1,-5)关于原点的对称点为点B ,则点B 的坐标为______.【答案】(-1,5)【解析】【分析】根据若两点关于坐标原点对称,横纵坐标均互为相反数,即可求解.【详解】解:∵点A (1,-5)关于原点的对称点为点B ,∴点B 的坐标为(-1,5).故答案为:(-1,5)【点睛】本题主要考查了平面直角坐标系内点关于原点对称的特征,熟练掌握若两点关于坐标原点对称,横纵坐标均互为相反数是解题的关键.(2022·湖南湘潭)25. 如图,一束光沿CD 方向,先后经过平面镜OB 、OA 反射后,沿EF 方向射出,已知120AOB ∠=︒,20CDB ∠=︒,则∠=AEF _________.【答案】40°##40度【解析】【分析】根据入射角等于反射角,可得,CDB EDO DEO AEF ∠=∠∠=∠,根据三角形内角和定理求得40OED ∠=︒,进而即可求解.【详解】解:依题意,,CDB EDO DEO AEF ∠=∠∠=∠,∵120AOB ∠=︒,20CDB ∠=︒,20CDB EDO ∴∠=∠=︒,∴18040OED ODE AOB ∠=-∠-∠=︒,∴40AEF DEO ∠=∠=︒.故答案为:40.【点睛】本题考查了轴对称的性质,三角形内角和定理的应用,掌握轴对称的性质是解题的关键.(2022·浙江丽水)26. 一副三角板按图1放置,O 是边()BC DF 的中点,12cm BC =.如图2,将ABC 绕点O 顺时针旋转60︒,AC 与EF 相交于点G ,则FG 的长是___________cm .【答案】3【解析】【分析】BC 交EF 于点N ,由题意得,=90EDF BAC ∠=∠︒,60DEF ∠=︒,30DFE ∠=︒,=45ABC ACB ∠=∠︒,BC =DF =12,根据锐角三角函数即可得DE ,FE ,根据旋转的性质得ONF △是直角三角形,根据直角三角形的性质得3ON =,即3NC =,根据角之间的关系得CNG △是等腰直角三角形,即3NG NC ==cm ,根据90FNO FED ∠=∠=︒,30NFO DFE ∠=∠=︒得FON FED △∽△,即ON FNDE DF=,解得FN = 【详解】解:如图所示,BC 交EF 于点N ,由题意得,=90EDF BAC ∠=∠︒,60DEF ∠=︒,30DFE ∠=︒,=45ABC ACB ∠=∠︒,BC =DF =12,在Rt EDF 中,12tan tan 60DF DE EDF ===∠︒12sin sin 60DF EF EDF ===∠︒∵△ABC 绕点O 顺时针旋转60°,∴60BOD NOF ∠=∠=︒,∴90NOF F ∠+∠=︒,∴18090FNO NOF F ∠=︒-∠-∠=︒,∴ONF △是直角三角形, ∴132ON OF ==(cm ), ∴3NC OC ON =-=(cm ),∵90FNO ∠=︒,∴18090GNC FNO ∠=︒-∠=︒,∴NGC 是直角三角形,∴18045NGC GNC ACB ∠=-∠-∠=︒,∴CNG △是等腰直角三角形,∴3NG NC ==cm ,∵90FNO FED ∠=∠=︒,30NFO DFE ∠=∠=︒,∴FON FED △∽△, 即ON FN DE DF=,12FN =,FN =∴3FG FN NG =-=(cm ),故答案为:3.【点睛】本题考查了直角三角形的性质,相似三角形的判定与性质,旋转的性质,解题的关键是掌握这些知识点.(2022·河南)27. 如图,将扇形AOB 沿OB 方向平移,使点O 移到OB 的中点O '处,得到扇形A O B '''.若∠O =90°,OA =2,则阴影部分的面积为______.【答案】3π+【解析】【分析】设A O '与扇形AOB 交于点C ,连接OC ,解Rt OCO ',求得60O C COB '=∠=︒,根据阴影部分的面积为()OCO A O B OCB S S S''''--扇形扇形,即可求解.【详解】如图,设A O '与扇形AOB 交于点C ,连接OC ,如图O '是OB 的中点11122OO OB OA '∴===, OA =2, AOB ∠=90°,将扇形AOB 沿OB 方向平移,90A O O ''∴∠=︒1cos 2OO COB OC '∴∠== 60COB ∴∠=︒sin 60O C OC '∴=︒=∴阴影部分的面积为()OCO A O B OCB S S S ''''--扇形扇形OCO AOB OCB S S S ''=-+扇形扇形22906012213603602ππ=⨯-⨯+⨯32π=+故答案为:32π+ 【点睛】本题考查了解直角三角形,求扇形面积,平移的性质,求得60COB ∠=︒是解题的关键.(2022·河南)28. 如图,在Rt △ABC 中,∠ACB =90°,AC BC ==,点D 为AB 的中点,点P 在AC 上,且CP =1,将CP 绕点C 在平面内旋转,点P 的对应点为点Q ,连接AQ ,DQ .当∠ADQ =90°时,AQ 的长为______.【解析】【分析】连接CD ,根据题意可得,当∠ADQ =90°时,分Q 点在线段CD 上和DC 的延长线上,且1CQ CP ==,勾股定理求得AQ 即可.【详解】如图,连接CD ,在Rt △ABC 中,∠ACB =90°,AC BC ==4AB ∴=,CD AD ⊥,122CD AB ∴==, 根据题意可得,当∠ADQ =90°时,Q 点在CD 上,且1CQ CP ==,211DQ CD CQ ∴=-=-=,如图,在Rt ADQ △中,AQ ===在Rt ADQ △中,2,3AD CD QD CD CQ ===+=AQ ∴===【点睛】本题考查了旋转的性质,勾股定理,直角三角形斜边上中线的性质,确定点Q 的位置是解题的关键.(2022·浙江金华)29. 如图,在Rt ABC 中,90,30,2cm ACB A BC ∠=︒∠=︒=.把ABC 沿AB 方向平移1cm ,得到A B C ''',连结CC ',则四边形AB C C ''的周长为_____cm .【答案】8+【解析】【分析】通过勾股定理,平移的特性,特殊角的三角函数,分别计算出四边形的四条边长,再计算出周长即可.【详解】解:∵90,30,2cm ACB A BC ∠=︒∠=︒=,∴AB =2BC =4,∴∵把ABC 沿AB 方向平移1cm ,得到A B C ''',∴1CC '=,=4+1=5AB ', =2B C BC ''=,∴四边形的周长为:1528++=+故答案为:8+【点睛】本题考查勾股定理,平移的特性,特殊角的三角函数,能够熟练掌握勾股定理是解决本题的关键.(2022·四川德阳)30. 如图,直角三角形ABC 纸片中,90ACB ∠=︒,点D 是AB 边上的中点,连接CD ,将ACD △沿CD 折叠,点A 落在点E 处,此时恰好有CE AB ⊥.若1CB =,那么CE =______.【解析】【分析】根据D 为AB 中点,得到AD =CD =BD ,即有,A =,DCA ,根据翻折的性质有,DCA =,DCE ,CE =AC ,再根据CE ,AB ,求得,A =,BCE ,即有,BCE =,ECD =,DCA =30°,则有,A =30°,在Rt △ACB 中,即可求出AC ,则问题得解.【详解】,,ACB =90°,,,A +,B =90°,,D 为AB 中点,,在直角三角形中有AD =CD =BD ,,,A =,DCA ,根据翻折的性质有,DCA =,DCE ,CE =AC ,,CE ,AB ,,,B +,BCE =90°,,,A +,B =90°,,,A =,BCE ,,,BCE =,ECD =,DCA ,,,BCE +,ECD +,DCA=,ACB =90°,,,BCE =,ECD =,DCA =30°,,A =30°,,在Rt △ACB 中,BC =1, 则有13tan tan 30BC AC A ===∠,CE AC ==【点睛】本题考查了翻折的性质、直角三角形斜边中线的性质、等边对等角以及解直角三角形的知识,求出,BCE =,ECD =,DCA =30°是解答本题的关键. (2022·山东泰安)31. 如图,将半径为2,圆心角为120°的扇形OAB 绕点A 逆时针旋转60°,点O ,B 的对应点分别为O ′,B ′,连接BB ′,则图中阴影部分的面积是__________________.【答案】23π 【解析】 【分析】连接OO ′,BO ′,根据旋转的性质得到AO AO '=,OA OB =,O B OB ''=,60OAO '∠=︒,120AOB AO B ''∠=∠=︒,推出△OAO ′是等边三角形,得到60AOO '∠=︒,因为∠AOB =120°,所以60O OB '∠=︒,则OO B '是等边三角形,得到120AO B '∠=︒,得到30O B B O BB ''''∠=∠=︒,90B BO '∠=︒,根据直角三角形的性质得24B O OB '==,根据勾股定理得B B '=,用B OB '△的面积减去扇形O OB '的面积即可得.【详解】解:如图所示,连接OO ′,BO ′,∵将半径为2,圆心角为120°的扇形OAB 绕点A 逆时针旋转60°,∴AO AO '=,OA OB =,O B OB ''=,60OAO '∠=︒,120AOB AO B ''∠=∠=︒ ∴△OAO ′是等边三角形,∴60AOO '∠=︒,OO OA '=,∴点O '在,O 上,∵∠AOB =120°,∴60O OB '∠=︒,∴OO B '是等边三角形,∴120AO B '∠=︒,∵120AO B ''∠=︒,∴120B O B ''∠=︒, ∴11(180)(180120)3022O B B O BB B O B ''''''∠=∠=︒-∠=⨯︒-︒=︒, ∴180180306090B BO OB B B OB '''∠=︒-∠-∠=︒-︒-︒=︒,∴24B O OB '==,在Rt B OB '中,根据勾股定理得,B B '==∴图中阴影部分的面积=2160222=223603B OB O OB S S ''⨯-=⨯⨯扇形ππ,故答案为:23π. 【点睛】本题考查了圆与三角形,旋转的性质,勾股定理,解题的关键是掌握这些知识点.(2022·湖南怀化)32. 已知点A (﹣2,b )与点B (a ,3)关于原点对称,则a ﹣b =______.【答案】5【解析】【分析】根据平面直角坐标系中,关于原点对称的点横、纵坐标都互为相反数,求出a ,b 的值即可.【详解】∵点A (﹣2,b )与点B (a ,3)关于原点对称,∴2a =,3b =-,∴()235a b -=--=故答案为:5.【点睛】本题考查平面直角坐标系中,关于原点对称的点的坐标的特点,掌握特殊位置关系的点的坐标变化是解答本题的关键.(2022·浙江台州)33. 如图,△ABC 的边BC 长为4cm .将△ABC 平移2cm 得到△A ′B ′C ′,且BB ′⊥BC ,则阴影部分的面积为______2cm .【答案】8【解析】【分析】根据平移的性质即可求解.【详解】解:由平移的性质S △A ′B ′C ′=S △ABC ,BC =B ′C ′,BC ∥B ′C ′,∴四边形B ′C ′CB 为平行四边形,∵BB ′⊥BC ,∴四边形B ′C ′CB 为矩形,∵阴影部分的面积=S △A ′B ′C ′+S 矩形B ′C ′CB -S △ABC=S 矩形B ′C ′CB=4×2=8(cm 2).故答案为:8.【点睛】本题考查了矩形的判定和平移的性质:①平移不改变图形的形状和大小;②经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.三.解答题(2022·湖南湘潭)34. 如图,在平面直角坐标系中,已知ABC 的三个顶点的坐标分别为()1,1A -,()4,0B -,()2,2C -.将ABC 绕原点O 顺时针旋转90︒后得到111A B C △.(1)请写出1A 、1B 、1C 三点的坐标:1A _________,1B _________,1C _________(2)求点B 旋转到点1B 的弧长.【答案】(1)(1,1);(0,4);(2,2)(2)2π【解析】【分析】(1)将,ABC绕着点O按顺时针方向旋转90°得到,A1B1C1,点A1,B1,C1的坐标即为点A,B,C绕着点O按顺时针方向旋转90°得到的点,由此可得出结果.(2)由图知点B旋转到点1B的弧长所对的圆心角是90º,OB=4,根据弧长公式即可计算求出.【小问1详解】解:将,ABC绕着点O按顺时针方向旋转90°得到,A1B1C1,点A1,B1,C1的坐标即为点A,B,C绕着点O按顺时针方向旋转90°得到的点,所以A1(1,1);B1(0,4);C1(2,2)【小问2详解】解:由图知点B旋转到点1B的弧长所对的圆心角是90度,OB=4,∴点B旋转到点1B的弧长=904 180π⨯⨯=2π【点睛】本题主要考查点的旋转变换和弧长公式,解题的关键是熟练掌握旋转变换的定义和弧长公式.(2022·湖北武汉)35. 如图是由小正方形组成的96⨯网格,每个小正方形的顶点叫做格点.ABC的三个顶点都是格点.仅用无刻度的直尺在给定网格中完成画图,画图过程用虚线表示.(1)在图(1)中,D,E分别是边AB,AC与网格线的交点.先将点B绕点E 旋转180︒得到点F,画出点F,再在AC上画点G,使DG BC∥;(2)在图(2)中,P是边AB上一点,BACα∠=.先将AB绕点A逆时针旋转。
2023年四川省自贡市中考数学试卷(含答案)055011
2023年四川省自贡市中考数学试卷试卷考试总分:144 分 考试时间: 120 分钟学校:__________ 班级:__________ 姓名:__________ 考号:__________一、 选择题 (本题共计 12 小题 ,每题 4 分 ,共计48分 )1. 数轴上的点到原点的距离是,则点表示的数为( )A.B.C.或D.或2. 据报道:年广西高考报名人数约为人,再创历史新高,其中数据用科学记数法表示为( )A.B.C.D. 3.如图所示,该几何体的主视图为( ) A. B. C.D.4. 如图所示,已知,则下列结论:①;②;③;④;⑤.其中结论正确的序号是( )A.②⑤A 2A 2−21−12−220205200005200000.52×1065.2×1055.2×10452×104AD//BC ∠1=∠2∠2=∠3∠6=∠8∠5=∠8∠1=∠4B.②③⑤C.①③④D.②④5. 数学课上,王老师让同学们对给定的正方形建立合适的平面直角坐标系,并表示出各顶点的坐标.下面是名同学表示各顶点坐标的结果:甲同学:,,,;乙同学:,,,;丙同学:,,,;丁同学:,,,.王老师看了名同学表示的结果后,说只有一名同学的结果是错误的,这名同学是( )A.甲B.乙C.丙D.丁6. 下面的图形是用数学家的名字命名的,其中是轴对称图形但不是中心对称图形的是( )A.科克曲线B.马螺线C.笛卡尔心形线D.斐波那契螺旋线7. 下列事件为必然事件的是( )A.打开电视,正在播放东台新闻B.下雨后天空出现彩虹C.抛掷一枚质地均匀的硬币,落地后正面朝上ABCD 4A(0,1)B(0,0)C(1,0)D(1,1)A(0,0)B(0,−1)C(1,−1)D(1,0)A(1,0)B(1,−2)C(3,−2)D(3,0)A(−1,2)B(−1,0)C(0,0)D(0,2)4D.早晨太阳从东方升起8. 点是的外心,若,则的度数为 A.B.C.或D.或9. 如图,若干个全等的正五边形排成环状,图中所示的是前个正五边形,要完成这一圆环还需正五边形的个数为( )A.B.C.D.10. 一辆公共汽车从车站开出,加速行驶一段时间后开始匀速行驶.过了一段时间,汽车到达下一车站.乘客上下车后汽车开始加速,一段时间后又开始匀速行驶.下图中近似地刻画出汽车在这段时间内的速度变化情况的是( ) A. B. C. D.11. 已知函数的部分图象如图所示,若,则的取值范围是( )O △ABC ∠BOC =80∘∠BAC ()40∘100∘40∘140∘40∘100∘310987y =+bx+c x 2y <0xA.B.C.或D.或 12. 如图在 D 是BC 边上一点以DB 为直径的 圣过 AB 的中点E 交AD 的延长线于点月连接求证 若 求内值二、 填空题 (本题共计 6 小题 ,每题 4 分 ,共计24分 )13. 计算的结果等于________.14. 满足的最大整数_________.15. 约分:________.16. 在一个不透明的盒子中装有三张卡片,分别标有数字,,,这些卡片除数字不同外其余均相同,小明从盒子中随机抽取一张卡片记下数字后放回,搅匀后再随机抽取一张卡片,则两次抽取的卡片上数字之积为奇数的概率是________.17. 若圆锥的底面半径为,母线长为,则圆锥的侧面积为________.18. 方程组的解是________;直线与直线的交点是________.三、 解答题 (本题共计 8 小题 ,每题 9 分 ,共计72分 )19. 计算:20. 如图,在四边形中,,平分交于,且,求证:. 21. 计算.某商场春节促销活动出售、两种商品,活动方案如下两种:方案一每件标价元元每件商品返利按标价的按标价的例如买一件商品,只需付款元方案二所购商品一律按标价的返利某单位购买商品件,商品件,选用何种方案划算?某单位购买商品件(为正整数),购买商品的件数是商品件数的倍少件,则两方案的实−1<x <4−1<x <3x <−1x >4x <−1x >3△ABC ∠C =90∘OO (1)∴AE =EF(2)CD =3,EF =25–√AC BC a +1<41−−√a ==−25b a 2c 315a cb 212325{y =3x−1,y =x+3y =3x−1y =x+3(+|−2|−(π−23–√)2)0ABCD AB//CD BE ∠ABC AD E AB =AE AB =CD A B A B 9010030%15%A 90(1−30%)20%(1)A 30B 20(2)A x x B A 21际付款各为多少?若两方案的实际付款一样,求的值.22. 某校名学生参加植树活动,要求每人植树棵,活动结束后抽查了名学生每人的植树量,并分为四类:类棵、类棵、类棵、类棵,将各类的人数绘制成如图所示不完整的条形统计图,回答下列问题:补全条形图;写出这名学生每人植树量的众数和中位数;估计这名学生共植树多少棵?23. 如图①,在平行四边形中, ,,点为对角线上一动点,连接,将绕点逆时针旋转 得到,连接.求证;若所在的直线交于点,求的面积;如图②,当点落在的外部,构成四边形时,求四边形的面积.24. 已知直线=与反比例函数的图象相交于,两点,且的坐标为.(1)求常数,的值;(2)直接写出点的坐标.25. 某校数学小组想测量一栋大楼的高度,如图,大楼前有一段斜坡,已知的长为米,它的坡比,在离点米的点处用测角仪测大楼顶端的仰角为,测角仪的高为米,求大楼的高度约为多少米?(结果精确到米,参考数据:,,, 26. 对某一个函数给出如下定义:若存在实数,对于任意的函数值,都满足,则称这个函数是有界函数,在所有满足条件的中,其最小值称为这个函数的边界值.例如,右图中的函数是有界函数,其边界值是.(3)x 2404∼720A 4B 5C 6D 7(1)(2)20(3)240ABCD AD =BD =2BD ⊥AD E AC DE DE D 90∘DF BF (1)BF =AE (2)BF AC M △ADM (3)F △OBC DEMF DEMF y mx y =k xA B A (−2,3)m k B AB BC BC 16i=1:3–√C50D A 37∘DE 1.5AB 0.1sin ≈0.6037∘cos37∘≈0.80tan ≈0.7537∘≈1.73)3–√M >0y −M ≤y ≤M M 1=(x >0)1(1)分别判断函数和=是不是有界函数?若是有界函数,求其边界值;(2)若函数=的边界值是,且这个函数的最大值也是,求的取值范围;(3)将函数=的图象向下平移个单位,得到的函数的边界值是,当在什么范围时,满足?y =(x >0)1x y x+2(−4≤x ≤2)y −x+2(a ≤x ≤b,b >a)33b y (−1≤x ≤m,m≥0)x 2m t m ≤t ≤134参考答案与试题解析2023年四川省自贡市中考数学试卷试卷一、 选择题 (本题共计 12 小题 ,每题 4 分 ,共计48分 )1.【答案】D【考点】数轴【解析】此题暂无解析【解答】此题暂无解答2.【答案】B【考点】科学记数法--表示较大的数【解析】科学记数法的表示形式为的形式,其中,为整数.确定的值时,要看把原数变成时,小数点移动了多少位,的绝对值与小数点移动的位数相同.当原数绝对值时,是正数;当原数的绝对值时,是负数.【解答】将用科学记数法表示为:.3.【答案】B【考点】简单几何体的三视图【解析】找到从正面看所得到的图形即可.【解答】解:从正面看是两个矩形,中间的线为虚线.故选.4.【答案】a ×10n 1≤|a |<10n n a n ≥10n <1n 520000 5.2×104;BA【考点】平行线的性质【解析】本题主要考查平行线的性质,需要根据平行线得到内错角和同位角.【解答】解:∵,∴,,故只有②⑤正确.故选.5.【答案】D【考点】正方形的性质坐标与图形性质【解析】根据正方形的性质,四边都相等,再根据两点间的距离,即可判断.【解答】解:甲同学,易知点为原点,则,故甲同学表示的结果正确;乙同学,易知点为原点,则,故乙同学表示的结果正确;丙同学,∵,,,,∴,故丙同学表示的结果正确;丁同学,∵,,,,,故丁同学表示的结果错误.故选.6.【答案】C【考点】轴对称图形中心对称图形【解析】根据轴对称图形与中心对称图形的概念求解.【解答】解:,既是轴对称图形,又是中心对称图形,故不符合题意;,不是轴对称图形,是中心对称图形,故不符合题意;,是轴对称图形,不是中心对称图形,故符合题意;,不是轴对称图形,也不是中心对称图形,故不符合题意.AD//BC ∠1=∠4∠2=∠3A B AB =BC =CD =AD =1A AB =BC =CD =AD =1AB =2BC =2CD =2AD =2AB =BC =CD =AD AB =2BC =1CD =2AD =1AB ≠BC D A A B B C C D D故选.7.【答案】D【考点】随机事件【解析】根据事件的确定性和不确定性,以及随机事件的含义和特征,逐项判断即可.【解答】解:∵打开电视,正在播放东台新闻是一个随机事件,∴选项不正确;∵下雨后天空出现彩虹是一个随机事件,∴选项不正确;∵抛掷一枚质地均匀的硬币,落地后正面朝上是一个随机事件,∴选项不正确;∵早晨太阳从东方升起是一个必然事件,∴选项正确.故选:.8.【答案】C【考点】圆周角定理三角形的外接圆与外心【解析】利用圆周角定理以及圆内接四边形的性质得出的度数.【解答】解:如图所示,∵是的外心,,∴,,故的度数为:或.故选.9.【答案】DC A B CD D ∠BAC O △ABC ∠BOC =80∘∠A =40∘∠A'=140∘∠BAC 40∘140∘C【考点】正多边形和圆【解析】先根据多边形的内角和公式求出正五边形的每一个内角的度数,再延长五边形的两边相交于一点,并根据四边形的内角和求出这个角的度数,然后根据周角等于求出完成这一圆环需要的正五边形的个数,然后减去即可得解.【解答】∵五边形的内角和为=,∴正五边形的每一个内角为=,如图,延长正五边形的两边相交于点,则===,=,∵已经有个五边形,∴=,即完成这一圆环还需个五边形.10.【答案】B【考点】函数的图象【解析】横轴表示时间,纵轴表示速度,根据加速、匀速、减速时,速度的变化情况,进行选择.【解答】解:公共汽车经历:加速-匀速-减速到站-加速-匀速,加速:速度增加,匀速:速度保持不变,减速:速度下降,到站:速度为.观察四个选项的图象是否符合题干要求,只有选项符合.故选.11.【答案】B【考点】抛物线与x 轴的交点二次函数图象上点的坐标特征【解析】根据抛物线与轴的交点坐标及对称轴求出它与轴的另一交点坐标,求当,的取值范围就是求函数图象位于轴的下方的图象相对应的自变量的取值范围.【解答】解:由图象知,抛物线与轴交于,对称轴为,∴抛物线与轴的另一交点坐标为.∵时,函数的图象位于轴的下方,且当时函数图象位于轴的下方,(n−2)⋅180∘360∘3(5−2)⋅180∘540∘÷5540∘108∘O ∠1−×3360∘108∘−360∘324∘36∘÷360∘36∘10310−3770B B x x y <0x x x x (−1,0)x =1x (3,0)y <0x −1<x <3x∴当时,.故选.12.【答案】【考点】圆周角定理解直角三角形【解析】【解答】二、 填空题 (本题共计 6 小题 ,每题 4 分 ,共计24分 )13.【答案】【考点】合并同类项【解析】根据合并同类项法则,系数相加即可【解答】解:故答案为14.【答案】【考点】估算无理数的大小【解析】由结合,即可得出的值.【解答】解: ,,,为整数,最大整数.−1<x <3y <0B 7a 25+2=(5+2)a 2a 2a 2=7a 27a 25=41()41−−√236<41<49a ∵=41()41−−√236<41<49∴a +1≤6a ∴a =5故答案为:.15.【答案】【考点】约分【解析】将分子与分母的公因式约去即可.【解答】.16.【答案】【考点】列表法与树状图法【解析】此题暂无解析【解答】解:列表如下:由表知,共有种情况,则抽取卡片上的数字之积为奇数的情况有:,,,,所以取卡片上的数字之积为奇数的概率为.故答案为:.17.【答案】【考点】圆锥的展开图及侧面积扇形面积的计算【解析】圆锥的侧面积=底面半径母线长,把相关数值代入即可求解.【解答】5−5ac 23b==−−25b a 2c 315a c b 25abc ⋅(−5a )c 25abc ⋅3b 5ac 23b 491231(1,1)(2,1)(3,1)2(1,2)(2,2)(3,2)3(1,3)(2,3)(3,3)9(1,1)(1,3)(3,1)(3,3)494910ππ××解:由题意得,圆锥的底面周长为:,则圆锥的侧面积为:.故答案为:.18.【答案】,【考点】一次函数与二元一次方程(组)一次函数图象上点的坐标特征一次函数的图象【解析】此题暂无解析【解答】解:对原方程组使用加减消元法,两式相减得,解得,带入原方程得.所以方程组的解为所以直线与直线的交点为.故答案为:.三、 解答题 (本题共计 8 小题 ,每题 9 分 ,共计72分 )19.【答案】原式==.【考点】实数的运算零指数幂【解析】直接利用绝对值的性质以及零指数幂的性质分别化简得出答案.【解答】原式==.20.【答案】证明:∵平分交于,且,∴,,∴,∴.又∵,∴四边形是平行四边形,2π×2=4π×4π×5=10π1210π{x =2,y =5(2,5)2x−4=0x =2y =5{x =2,y =5,y =3x−1y =x+3(2,5){x =2,y =5;(2,5)3+2−143+2−14BE ∠ABC AD E AB =AE ∠ABE =∠CBE ∠ABE =∠AEB ∠CBE =∠AEB AD//BC AB//CD ABCD∴.【考点】平行四边形的性质与判定【解析】暂无【解答】证明:∵平分交于,且,∴,,∴,∴.又∵,∴四边形是平行四边形,∴.21.【答案】解:方案一付款:(元),方案二付款:(元),∵,∴选用方案一划算.设某单位购买商品件,则购买商品件,方案一需付款:,方案二需付款:.当两方案实际付款一样时,,解得:.【考点】一元一次方程的应用——方案选择【解析】(1)分别求出方案一和方案二所付的款数,然后选择省钱的方案,求出所省的钱数;分别表述出方案一和方案二所需付款,根据两方案的实际付款一样,求出的值.【解答】解:方案一付款:(元),方案二付款:(元),∵,∴选用方案一划算.设某单位购买商品件,则购买商品件,方案一需付款:,方案二需付款:.当两方案实际付款一样时,,解得:.22.【答案】AB =CD BE ∠ABC AD E AB =AE ∠ABE =∠CBE ∠ABE =∠AEB ∠CBE =∠AEB AD//BC AB//CD ABCD AB =CD (1)30×90×(1−30%)+20×100×(1−15%)=3590(30×90+20×100)×(1−20%)=37603590<3760(2)A x B (2x−1)90(1−30%)x+100(1−15%)(2x−1)=233x−85[90x+100(2x−1)](1−20%)=232x−80(3)233x−85=232x−80x =5(2)(3)x (1)30×90×(1−30%)+20×100×(1−15%)=3590(30×90+20×100)×(1−20%)=37603590<3760(2)A x B (2x−1)90(1−30%)x+100(1−15%)(2x−1)=233x−85[90x+100(2x−1)](1−20%)=232x−80(3)233x−85=232x−80x =5解:类的人数为:人,由图可知,植树棵的人数最多,是人,所以,众数为,按照植树的棵树从少到多排列,第人与第人都是植棵数,所以,中位数是;(棵),(棵).答:估计这名学生共植树棵.【考点】众数中位数加权平均数条形统计图用样本估计总体【解析】此题暂无解析【解答】解:类的人数为:人,由图可知,植树棵的人数最多,是人,所以,众数为,按照植树的棵树从少到多排列,第人与第人都是植棵数,所以,中位数是;23.【答案】证明:∵绕点逆时针旋转得到,∴,,∵,∴,∴,又∵,∴ ,∴.过点作于,∵四边形是平行四边形,∴,,∵,∴,∵,,∴,∴,(1)D 20−4−8−6=20−18=2(2)585101155(3)==5.3x ¯¯4×4+5×8+6×6+7×220240×5.3=12722401272(1)D 20−4−8−6=20−18=2(2)585101155(1)DE D 90∘DF DE =DF ∠EDF =90∘BD ⊥AD ∠ADB =90∘∠ADE =∠BDF AD =BD △ADE ≅△BDF (SAS)BF =AE (2)D DN ⊥AO N ABCD AO =CO BO =DO =1△ADE ≅△BDF ∠DAE =∠DBF ∠ADB =90∘∠AOD =∠BOC ∠DAE+∠AOD =∠DBF +∠BOC =90∘∠BMO =90∘∵,,,∴,∴,∵,,,∴根据勾股定理得,∴,∴,∴根据勾股定理得,∴,∴,∴.如图,将绕点逆时针旋转得到,∴,,,∵,∴,∴,∴点,点,点三点共线,∵,∴四边形是矩形,又∵,∴四边形为正方形,∴.【考点】全等三角形的性质与判定旋转的性质平行四边形的性质勾股定理三角形的面积正方形的判定与性质【解析】(1)由可证可得(2)过作于,可证,可得,由勾股定理可求的长,由面积法可求的长,由勾股定理可求出,最后求出即可求解;(3)将绕点逆时针旋转得到,通过证明四边形为正方形,即可求解.【解答】证明:∵绕点逆时针旋转得到,∴,,∵,∴,∴,又∵,∠DNO =∠BMO =90∘∠DON =∠BOM BO =DO △DON ≅△BOM(AAS)OM =ON AD =2DO =1∠ADO =90∘AO ===A +D D 2O 2−−−−−−−−−−√1+4−−−−√5–√=AD×DO =×AO ×DN S △ADO 1212DN ==1×25–√25–√5NO ===D −D O 2N 2−−−−−−−−−−√1−45−−−−−√5–√5OM =ON =5–√5AM =AO +OM =+=5–√155–√655–√=AM ×DN =××=S △ADM 1212655–√255–√65(3)△DEN D 90∘△DFG DG =DN ∠DNE =∠DGF =90∘∠DEN =∠DFG ∠EDF =∠FME =90∘∠DEM +∠DFM =180∘∠DFG+∠DFM =180∘G F M ∠DGF =∠DNM =∠FMN =90∘DNMG DN =DG DNMG =S 四边形DEMF S 四边形DNMG==()25–√5245SAS ′△ADE ≅△BDF,BF =AE;D DN ⊥AO N △DON ≅△BOM OM =ON AO DN OM AM △DEN D 90∘△DFG DNMG (1)DE D 90∘DF DE =DF ∠EDF =90∘BD ⊥AD ∠ADB =90∘∠ADE =∠BDF AD =BD∴ ,∴.过点作于,∵四边形是平行四边形,∴,,∵,∴,∵,,∴,∴,∵,,,∴,∴,∵,,,∴根据勾股定理得,∴,∴,∴根据勾股定理得,∴,∴,∴.如图,将绕点逆时针旋转得到,∴,,,∵,∴,∴,∴点,点,点三点共线,∵,∴四边形是矩形,又∵,∴四边形为正方形,∴.24.【答案】把的坐标为.分别代入直线=与反比例函数得,=,==,∴,=;根据正比例函数、反比例函数的对称性可得,点与点关于原点对称,点关于原点对称的点.【考点】反比例函数与一次函数的综合△ADE ≅△BDF (SAS)BF =AE (2)D DN ⊥AO N ABCD AO =CO BO =DO =1△ADE ≅△BDF ∠DAE =∠DBF ∠ADB =90∘∠AOD =∠BOC ∠DAE+∠AOD =∠DBF +∠BOC =90∘∠BMO =90∘∠DNO =∠BMO =90∘∠DON =∠BOM BO =DO △DON ≅△BOM(AAS)OM =ON AD =2DO =1∠ADO =90∘AO ===A +D D 2O 2−−−−−−−−−−√1+4−−−−√5–√=AD×DO =×AO ×DN S △ADO 1212DN ==1×25–√25–√5NO ===D −D O 2N 2−−−−−−−−−−√1−45−−−−−√5–√5OM =ON =5–√5AM =AO +OM =+=5–√155–√655–√=AM ×DN =××=S △ADM 1212655–√255–√65(3)△DEN D 90∘△DFG DG =DN ∠DNE =∠DGF =90∘∠DEN =∠DFG ∠EDF =∠FME =90∘∠DEM +∠DFM =180∘∠DFG+∠DFM =180∘G F M ∠DGF =∠DNM =∠FMN =90∘DNMG DN =DG DNMG =S 四边形DEMF S 四边形DNMG==()25–√5245A (−2,3)y mx y =k x 3−2m k −2×3−6m=−32k −6A B A(−2,3)B(2,−3)【解析】(1)把把的坐标为.分别代入直线=与反比例函数即可求出、的值,(2)根据对称性可直接写出点的坐标.【解答】把的坐标为.分别代入直线=与反比例函数得,=,==,∴,=;根据正比例函数、反比例函数的对称性可得,点与点关于原点对称,点关于原点对称的点.25.【答案】解:延长交直线于点,过作,垂足为点,∵在中,,设,则,,又∵,∴,∴,.∵,∴,∵在中,,∴.∵,∴.∵,∴.答:大楼的高度约为米.【考点】解直角三角形的应用-坡度坡角问题解直角三角形的应用-仰角俯角问题【解析】无【解答】解:延长交直线于点,过作,垂足为点,∵在中,,A (−2,3)y mx y =k xm k B A (−2,3)y mx y =k x 3−2m k −2×3−6m=−32k −6A B A(−2,3)B(2,−3)AB DC F E EH ⊥AF H Rt △BCF =1∶BF CF 3–√BF =k CF =k 3–√BC =2k BC =16k =8BF =8CF =83–√DF =DC +CF DF =50+83–√Rt △AEH tan ∠AEH =AH EH AH =(50+8)tan ≈47.88(m)3–√37∘BH =BF −FH BH =8−1.5=6.5(m)AB =AH−HB AB =47.88−6.5≈41.4(m)AB 41.4AB DC F E EH ⊥AF H Rt △BCF =1∶BF CF 3–√CF =k–√设,则,,又∵,∴,∴,.∵,∴,∵在中,,∴.∵,∴.∵,∴.答:大楼的高度约为米.26.【答案】∵的无最大值,∴不是有界函数;∵=是有界函数,当=时,=,当=时,=,对于时,任意函数值都满足,∴边界值为;∵=,随的增大而减小,∴当=时,=,当=时,=,∵边界值是,,∴∴若,图象向下平移个单位后,=时,,此时函数的边界值,不合题意,故.∴函数=,当=时,=,当=时,=∴向下平移个单位后,=,=∵边界值∴或∴或.【考点】二次函数综合题【解析】(1)在的取值范围内,的无最大值,不是有界函数;=是有界函数,其边界值是;(2)由一次函数的增减性,可得当=时,=,当=时,=,由边界值定义可列出不等式,即可求解;(3)先设,函数向下平移个单位后,=时,=,此时边界值,与题意不符,故,判断出函数=所过的点,结合平移,可求或.【解答】∵的无最大值,∴不是有界函数;∵=是有界函数,当=时,=,当=时,=,对于时,任意函数值都满足,∴边界值为;∵=,随的增大而减小,∴当=时,=,当=时,=,∵边界值是,,CF BF =k CF =k 3–√BC =2k BC =16k =8BF =8CF =83–√DF =DC +CF DF =50+83–√Rt △AEH tan ∠AEH =AH EH AH =(50+8)tan ≈47.88(m)3–√37∘BH =BF −FH BH =8−1.5=6.5(m)AB =AH−HB AB =47.88−6.5≈41.4(m)AB 41.4y =(x >0)1x y y =1x y x+2(−4≤x ≤2)x −4y −2x 2y 4−4≤x ≤2−4<y ≤44y −x+2y x x a y max 3x b y −b +23b >a −3≤−b +2<3−1<b ≤5m>1m x 0y <−m<−1t >1m≤1y (−1≤x ≤m,m≥0)x 2x −1y max 1x 0y min 0m y max 1−m y min −m ≤t ≤134≤1−m≤134−1≤−m≤−340≤m≤14≤m≤134x y =(x >0)1x y y x+2(−4≤x ≤2)4x a y max 3x b y −b +2m>1m x 0y −m<−1t >1m≤1y x 20≤m≤14≤m≤134y =(x >0)1x y y =1x y x+2(−4≤x ≤2)x −4y −2x 2y 4−4≤x ≤2−4<y ≤44y −x+2y x x a y max 3x b y −b +23b >a∴∴若,图象向下平移个单位后,=时,,此时函数的边界值,不合题意,故.∴函数=,当=时,=,当=时,=∴向下平移个单位后,=,=∵边界值∴或∴或.−3≤−b +2<3−1<b ≤5m>1m x 0y <−m<−1t >1m≤1y (−1≤x ≤m,m≥0)x 2x −1y max 1x 0y min 0m y max 1−m y min −m ≤t ≤134≤1−m≤134−1≤−m≤−340≤m≤14≤m≤134。
四川自贡中考数学试题及答案
四川自贡中考数学试题及答案一、选择题(每题3分,共30分)1. 下列哪个选项是正确的?A. \(2^2 = 5\)B. \(3^3 = 27\)C. \(4^4 = 64\)D. \(5^5 = 125\)答案:B2. 已知一个等腰三角形的两边长分别为3和5,那么第三边的长度是多少?A. 2B. 3C. 5D. 8答案:C3. 如果一个数的平方等于9,那么这个数是多少?A. 3B. -3C. 3或-3D. 9答案:C4. 以下哪个分数是最简分数?A. \(\frac{6}{8}\)B. \(\frac{4}{6}\)C. \(\frac{3}{5}\)D. \(\frac{2}{4}\)答案:C5. 一个圆的直径是10厘米,那么它的周长是多少?A. 31.4厘米B. 20厘米C. 15.7厘米D. 10厘米答案:A6. 一个数的绝对值是5,那么这个数可能是?A. 5B. -5C. 5或-5D. 0答案:C7. 一个角的补角是120度,那么这个角的度数是多少?A. 60度B. 30度C. 120度D. 180度答案:B8. 一个数除以-2的结果是3,那么这个数是多少?A. -6B. 6C. -3D. 3答案:A9. 以下哪个图形是轴对称图形?A. 等边三角形B. 矩形C. 不规则四边形D. 圆答案:D10. 一个数的立方根是2,那么这个数是多少?A. 6B. 8C. 2D. 4答案:D二、填空题(每题3分,共30分)11. 一个数的相反数是-4,那么这个数是________。
答案:412. 一个数的倒数是\(\frac{1}{3}\),那么这个数是________。
答案:313. 一个角的余角是45度,那么这个角是________。
答案:45度14. 如果一个数的平方根是4,那么这个数是________。
答案:1615. 一个数的绝对值是7,那么这个数可能是________或________。
答案:7或-716. 一个角的补角是75度,那么这个角是________。
四川省自贡市2021年中考[数学]考试真题与答案解析
四川省自贡市2021年中考[数学]考试真题与答案解析一、选择题共12个小题,每小题4分,共48分,在每题给出的四个选项中,只有一项是符合题目要求的。
1. 自贡恐龙博物馆是世界三大恐龙遗址博物馆之一.今年“五一黄金周”共接待游客8.87万人次,人数88700用科学记数法表示为( )A. B. C. D. 50.88710⨯38.8710⨯48.8710⨯388.710⨯答案:C2. 如图是一个小正方体的展开图,把展开图折叠成小正方体后,有“迎”字一面的相对面上的字是()A. 百B. 党C. 年D. 喜答案:B3. 下列运算正确的是( )A. B. 22541a a -=()22346a b a b-=C. D. 933a a a ÷=222(2)4a b a b-=-答案:B4. 下列图形中,是轴对称图形且对称轴条数最多的是( )A.B.C.D.5. 如图,AC 是正五边形ABCDE 的对角线,的度数是()ACD ∠A. 72°B. 36°C. 74°D. 88°答案:A6. 学校为了解“阳光体育”活动开展情况,随机调查了50名学生一周参加体育锻炼时间,数据如下表所示:人数(人)9161411时间(小时)78910这些学生一周参加体育锻炼时间的众数、中位数分别是( )A. 16,15 B. 11,15C. 8,8.5D. 8,9答案:C7. 已知,则代数式的值是( )23120x x --=2395x x -++A. 31 B. C. 41D. 31-41-答案:B8. 如图,,,以点A 为圆心,AC 长为半径画弧,交y 轴正半轴于()8,0A ()2,0C -点B ,则点B 的坐标为()A. B. C. D. ()0,5()5,0()6,0()0,69. 已知蓄电池的电压为定值,使用蓄电池时,电流O (单位:A )与电阻R (单位:)是反比例函数关系,它的图象如图所示.下列说法正确的是()ΩA. 函数解析式为B. 蓄电池的电压是18V 13I R=C. 当时, D. 当时,10A I ≤ 3.6R ≥Ω6R =Ω4AI =答案:C10. 如图,AB 为⊙O 的直径,弦于点F ,于点E ,若,,CD AB ⊥OE AC ⊥3OE =5OB =则CD 的长度是()A. 9.6B.C.D. 19答案:A11. 如图,在正方形ABCD 中,,M 是AD 边上的一点,.将6AB =:1:2AM MD =沿BM 对折至,连接DN ,则DN 的长是( )BMA △BMN △A. B.C. 3D.5212. 如图,直线与坐标轴交于A 、B 两点,点P 是线段AB 上的一个动22y x =-+点,过点P 作y 轴的平行线交直线于点Q ,绕点O 顺时针旋转3y x =-+OPQ △45°,边PQ 扫过区域(阴影部份)面积的最大值是()A. B. C. D. 23π12π1116π2132π答案:A二、填空题13. 请写出一个满足不等式的整数解_________.7x >答案:6(答案不唯一)14. 某中学规定学生的学期体育成绩满分为100,其中体育课外活动占30%,期末考试成绩占70%,小彤的这两项成绩依次是90,80.则小彤这学期的体育成绩是_________.答案:83分.15. 化简: _________.22824a a -=--答案:22a +16. 某校园学子餐厅把WIFI 密码做成了数学题,小亮在餐厅就餐时,思索了一会,输入密码,顺利地连接到了学子餐厅的网络,那么他输入的密码是______.答案:14354917. 如图,的顶点均在正方形网格格点上.只用不带刻度的直尺,作出ABC 的角平分线BD (不写作法,保留作图痕迹).ABC答案:.18. 当自变量时,函数(k 为常数)的最小值为,则满足条13x -≤≤y x k =-3k +件的k 的值为_________.答案:2-三、解答题19. .|7|(2-+-答案:1-20. 如图,在矩形ABCD 中,点E 、F 分别是边AB 、CD 的中点.求证:DE=BF .答案:证明见试题解析.21. 在一次数学课外实践活动中,小明所在的学习小组从综合楼顶部B 处测得办公楼底部D 处的俯角是53°,从综合楼底部A 处测得办公楼顶部C 处的仰角恰好是30°,综合楼高24米.请你帮小明求出办公楼的高度.(结果精确到0.1,参考数据,)tan 370.75︒≈tan 53 1.33︒≈ 1.73≈答案:办公楼的高度约为10.4米.22. 随着我国科技事业的不断发展,国产无人机大量进入快递行业.现有A ,B 两种型号的无人机都被用来运送快件,A 型机比B 型机平均每小时多运送20件,A 型机运送700件所用时间与B 型机运送500件所用时间相等,两种无人机平均每小时分别运送多少快件?答案:A 型机平均每小时运送70件,B 型机平均每小时运送50件23. 为了弘扬爱国主义精神,某校组织了“共和国成就”知识竞赛,将成绩分为:A (优秀)、B (良好)、C (合格)、D (不合格)四个等级.小李随机调查了部分同学的竞赛成绩,绘制了如下统计图.(1)本次抽样调查的样本容量是_________,请补全条形统计图;(2)已知调查对象中只有两位女生竞赛成绩不合格,小李准备随机回访两位竞赛成绩不合格的同学,请用树状图或列表法求出恰好回访到一男一女的概率;(3)该校共有2000名学生,请你估计该校竞赛成绩“优秀”的学生人数.答案:(1)100,补全条形统计图见解析;(2)P(恰好回访到一男一女);35=(3)700人24. 函数图象是研究函数的重要工具.探究函数性质时,我们经历了列表、描点、连线画出函数图象,然后观察分析图象特征,概括函数性质的过程.请结合已有的学习经验,画出函数的图象,并探究其性质.284xy x =-+列表如下:x (4)-3-2-1-01234…y…852413a85b2-2413-85-…(1)直接写出表中a 、b 的值,并在平面直角坐标系中画出该函数的图象;(2)观察函数的图象,判断下列关于该函数性质的命题:284xy x =-+①当时,函数图象关于直线对称;22x -≤≤y x =②时,函数有最小值,最小值为;2x =2-③时,函数y 的值随x 的增大而减小.11x -<<其中正确的是_________.(请写出所有正确命题的序号)(3)结合图象,请直接写出不等式的解集_________.284xx x >+答案:(1),,画出函数的图象见解析;(2)②;(3)2a =85b =-0x <25. 如图,点D 在以AB 为直径的⊙O 上,过D 作⊙O 的切线交AB 延长线于点C ,于点E ,交⊙O 于点F ,连接AD ,FD .AE CD ⊥(1)求证:;DAE DAC ∠=∠(2)求证:;DF AC AD DC ⋅=⋅(3)若,EF 的长.1sin 4C ∠=AD =答案:(1)见解析;(2)见解析;(3)EF .6=26. 如图,抛物线(其中)与x 轴交于A 、B 两点,交y 轴于点(1)()y x x a =+-1a >C .(1)直接写出的度数和线段AB 的长(用a 表示);OCA ∠(2)若点D 为的外心,且与,求此抛物ABC BCD △ACO △:4线的解析式;(3)在(2)的前提下,试探究抛物线上是否存在一点P ,使得(1)()y x x a =+-若存在,求出点P 的坐标;若不存在,请说明理由.CAP DBA ∠=∠答案:(1)∠OCA =45°,AB = a +1;(2);(3)存在,P 1(,2y x x 2=--12-),P 2(1,-2).54-。
中考数学真题专项汇编解析—投影与视图、命题、尺规作图
中考数学真题专项汇编解析—投影与视图、命题、尺规作图一.选择题1.(2022·新疆·中考真题)如图是某几何体的展开图,该几何体是()A.长方体B.正方体C.圆锥D.圆柱【答案】C【分析】观察所给图形可知展开图由一个扇形和一个圆构成,由此可以判断该几何体是圆锥.【详解】解:∵展开图由一个扇形和一个圆构成,∵该几何体是圆锥.故选C.【点睛】本题考查圆锥的展开图,熟记圆锥展开图的形状是解题的关键.2.(2022·江苏宿迁·中考真题)下列展开图中,是正方体展开图的是()A.B.C.D.【答案】C【分析】根据正方体的表面展开图共有11种情况,A,D是“田”型,对折不能折成正方体,B是“凹”型,不能围成正方体,由此可进行选择.【详解】解:根据正方体展开图特点可得C答案可以围成正方体,故选:C.【点睛】此题考查了正方体的平面展开图.关键是掌握正方体展开图特点.3.(2022·浙江金华·中考真题)如图,圆柱的底面直径为AB,高为AC,一只蚂蚁在C处,沿圆柱的侧面爬到B处,现将圆柱侧面沿AC“剪开”,在侧面展开图上画出蚂蚁爬行的最近路线,正确的是()A.B.C.D.【答案】C【分析】根据圆柱的侧面展开特征,两点之间线段最短判断即可;【详解】解:∵AB为底面直径,∵将圆柱侧面沿AC“剪开”后,B点在长方形上面那条边的中间,∵两点之间线段最短,故选:C.【点睛】本题考查了圆柱的侧面展开,掌握两点之间线段最短是解题关键.4.(2022·四川遂宁·中考真题)如图是正方体的一种展开图,那么在原正方体中与“我”字所在面相对的面上的汉字是()A.大B.美C.遂D.宁【答案】B【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.【详解】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“我”与“美”是相对面.故选:B.【点睛】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手.5.(2022·四川自贡·中考真题)如图,将矩形纸片ABCD绕边CD所在的直线旋转一周,得到的立体图形是()A.B.C.D.【答案】A【分析】根据矩形绕一边旋转一周得到圆柱体示来解答.【详解】解:矩形纸片ABCD绕边CD所在的直线旋转一周,得到的立体图形是圆柱体.故选:A.【点睛】本题考查了点、线、面、体,熟练掌握“面动成体”得到的几何体的形状是解题的关键.6.(2022·湖南衡阳·中考真题)石鼓广场供游客休息的石板凳如图所示,它的主视图是()A.B.C.D.【答案】A【分析】根据主视图的定义和画法进行判断即可.【详解】解:从正面看过去,看到上下共三个矩形,所以主视图是:故选A【点睛】本题考查简单几何体的主视图,主视图就是从正面看物体所得到的图形.7.(2022·云南·中考真题)下列图形是某几何体的三视图(其中主视图也称正视图,左视图也称侧视图),则这个几何体是()A.三棱柱B.三棱锥C.四棱柱D.圆柱【答案】D【分析】根据三视图逆向即可得.【详解】解:此几何体为一个圆柱.故选:D.【点睛】此题考查由三视图还原几何体,既要考虑各视图的形状,还要把各视图的情况综合考虑才能得到几何体的形状.8.(2022·天津·中考真题)下图是一个由5个相同的正方体组成的立体图形,它的主视图是()A.B.C.D.【答案】A【分析】画出从正面看到的图形即可得到它的主视图.【详解】解:几何体的主视图为:故选:A【点睛】本题考查了简单组合体的三视图:画简单组合体的三视图要循序渐进,通过仔细观察和想象,再画它的三视图.9.(2022·江西·中考真题)如图是四个完全相同的小正方体搭成的几何体,它的俯视图为()A.B.C.D.【答案】A【分析】从上面观察该几何体得到一个“T”字形的平面图形,横着两个正方形,中间有一个正方形,且有两条垂直的虚线,下方有半个正方形.画出图形即可.【详解】俯视图如图所示.故选:A.【点睛】本题主要考查了几何体的三视图,俯视图是从上面观察几何体得出的平面图形..注意:能看到的线用实线,看不到而存在的线用虚线.10.(2022·浙江温州·中考真题)某物体如图所示,它的主视图是()A.B.C.D.【答案】D【分析】根据主视图的定义和画法进行判断即可.【详解】解:某物体如图所示,它的主视图是:故选:D.【点睛】本题考查简单几何体的主视图,主视图就是从正面看物体所得到的图形.11.(2022·浙江宁波·中考真题)如图所示几何体是由一个球体和一个圆柱组成的,它的俯视图是()A.B.C.D.【答案】C【分析】根据俯视图的意义和画法可以得出答案.【详解】根据俯视图的意义可知,从上面看物体所得到的图形,选项C符合题意,故答案选:C.【点睛】本题主要考查组合体的三视图,注意虚线、实线的区别,掌握俯视图是从物体的上面看得到的视图是解题的关键.12.(2022·江苏扬州·中考真题)如图是某一几何体的主视图、左视图、俯视图,该几何体是()A.四棱柱B.四棱锥C.三棱柱D.三棱锥【答案】B【分析】根据各个几何体三视图的特点进行求解即可.【详解】解:∵该几何体的主视图与左视图都是三角形,俯视图是一个矩形,而且两条对角线是实线,∵该几何体是四棱锥,故选B.【点睛】本题主要考查了由三视图还原几何体,熟知常见几何体的三视图是解题的关键.13.(2022·浙江绍兴·中考真题)由七个相同的小立方块搭成的几何体如图所示,则它的主视图是()A.B.C.D.【答案】B【分析】根据题目中的图形,可以画出主视图,本题得以解决.【详解】解:由图可得,题目中图形的主视图是,故选:B.【点睛】本题考查简单组合体的三视图,解题的关键是画出相应的图形.14.(2022·浙江嘉兴·中考真题)如图是由四个相同的小立方体搭成的几何体,它的主视图是()A.B.C.D.【答案】B【分析】主视图有3列,每列小正方形数目分别为2,1,1.【详解】如图所示:它的主视图是:.故选:B.【点睛】此题主要考查了简单组合体的三视图,正确把握观察角度是解题关键.15.(2022·浙江丽水·中考真题)如图是运动会领奖台,它的主视图是()A.B.C.D.【答案】A【分析】根据从正面看得到的图形是主视图,可得答案.【详解】解:领奖台的主视图是:故选:A.【点睛】本题考查了简单几何体的三视图,从正面看得到的图形是主视图.16.(2022·安徽·中考真题)一个由长方体截去一部分后得到的几何体如图水平放置,其俯视图是()A.B.C.D.【答案】A【分析】找到从上面看所得到的图形即可,注意所有的看到的棱都应表现在俯视图中.【详解】解:该几何体的俯视图为:,故选:A【点睛】本题考查了三视图的知识,俯视图是从物体的上面看得到的视图.17.(2022·浙江舟山·中考真题)用尺规作一个角的角平分线,下列作法中错误的是( )A .B .C .D .【答案】D【分析】根据作图轨迹及角平分线的定义判断即可得出答案.【详解】A 、如图,由作图可知:,OA OC AB BC ==,又∵OB OB =,∵OAB OCB ≅,∵AOB COB ∠=∠,∵OB 平分AOC ∠.故A 选项是在作角平分线,不符合题意;B 、如图,由作图可知:,OA OB OC OD ==,又∵COB AOD ∠=∠,∵OBC OAD ≅,∵OA OB OAD OBC OCB ODA =∠=∠∠=∠,,,∵AC BD =,∵CEA BED ∠=∠,ECA EDB ∠=∠,∵AEC BED ≅△△,∵AE BE =,∵,EAO EBO OA OB ∠=∠=,∵AOE BOE ∠=∠,∵OE 平分AOB ∠.故B 选项是在作角平分线,不符合题意;C 、如图,由作图可知:,AOB MCN OC CD ∠=∠=,∵CD OB ∥,COD CDO =∠∠,∵DOB CDO ∠=∠,∵COD DOB ∠=∠,∵OD 平分AOB ∠.故C 选项是在作角平分线,不符合题意;D 、如图,由作图可知:,OA BC OC AB ==,又∵OB OB =,∵AOB CBO ≅,∵,,AOB OBC COB ABO ∠=∠∠=∠故D 选项不是在作角平分线,符合题意;故选:D【点睛】本题考查了角平分线的作图,全等三角形的性质与判定,掌握以上知识是解题的关键.18.(2022·山东泰安·中考真题)某种零件模型如图所示,该几何体(空心圆柱)的俯视图是( )A .B .C .D .【答案】C【详解】找到从上面看所得到的图形即可:空心圆柱由上向下看,看到的是一个圆环.故选C19.(2022·湖北十堰·中考真题)如图,工人砌墙时,先在两个墙脚的位置分别插一根木桩,再拉一条直的参照线,就能使砌的砖在一条直线上.这样做应用的数学知识是()A.两点之间,线段最短B.两点确定一条直线C.垂线段最短D.三角形两边之和大于第三边【答案】B【分析】由直线公理可直接得出答案.【详解】解:建筑工人砌墙时,经常在两个墙脚的位置分别插一根木桩,然后拉一条直的参照线,这种做法用几何知识解释应是:两点确定一条直线.故选:B.【点睛】此题主要考查了直线的性质,要想确定一条直线,至少要知道两点.20.(2022·四川达州·中考真题)下列命题是真命题的是()A.相等的两个角是对顶角B.相等的圆周角所对的弧相等C.若a b<,则22ac bc<D.在一个不透明的箱子里放有1个白球和2个红球,它们除颜色外其余都相同,从箱子里任意摸出1个球,摸到白球的概率是1 3【答案】D【分析】分别根据对顶角的定义,圆周角定理,不等式的基本性质及概率公式进行判断即可得到答案.【详解】有公共顶点且两条边互为反向延长线的两个角是对顶角,故A选项错误,不符合题意;在同圆或等圆中,相等的圆周角所对的弧相等,故B选项错误,不符合题意;若a b<,则22ac bc≤,故C选项错误,不符合题意;在一个不透明的箱子里放有1个白球和2个红球,它们除颜色外其余都相同,从箱子里任意摸出1个球,摸到白球的概率是13,故D选项正确,符合题意;故选:D.【点睛】本题考查了命题的真假,涉及对顶角的定义,圆周角定理,不等式的基本性质及概率公式,熟练掌握知识点是解题的关键.21.(2022·湖北随州·中考真题)如图是一个放在水平桌面上的半球体,该几何体的三视图中完全相同的是()A.主视图和左视图B.主视图和俯视图C.左视图和俯视图D.三个视图均相同【答案】A【分析】根据三视图的形成,从正面、左面和上面三个方向看立体图形得到的平面图形,注意所有的看到的或看不到的棱都应表现在三视图中,看得见的用实线,看不见的用虚线,虚实重合用实线.【详解】解:从正面和左面看,得到的平面图形均是半圆,而从上面看是一个圆,因此该几何体主视图与左视图一致,故选:A.【点睛】本题考查了三视图的知识,准确把握从正面、左面和上面三个方向看立体图形得到的平面图形是解决问题的关键.22.(2022·湖北黄冈·中考真题)某几何体的三视图如图所示,则该几何体是()A.圆锥B.三棱锥C.三棱柱D.四棱柱【答案】C【分析】由主视图和左视图得出该几何体是柱体,再结合俯视图可得答案.【详解】解:由三视图知,该几何体是三棱柱,故选:C.【点睛】本题主要考查由三视图判断几何体,由三视图想象几何体的形状,首先,应分别根据主视图、俯视图和左视图想象几何体的前面、上面和左侧面的形状,然后综合起来考虑整体形状.23.(2022·广西梧州·中考真题)下列命题中,假命题...是()A.2-的绝对值是2-B.对顶角相等C.平行四边形是中心对称图形D.如果直线,∥∥,那么直线a ba cb c∥【答案】A【分析】根据绝对值的意义,对顶角的性质,平行四边形的性质,平行线的判定逐一判断即可.【详解】解:A.2-的绝对值是2,故原命题是假命题,符合题意;B.对顶角相等,故原命题是真命题,不符合题意;C.平行四边形是中心对称图形,故原命题是真命题,不符合题意;D.如果直线,a cb c∥∥,那么直线a b∥,故原命题是真命题,不符合题意;故选:A.【点睛】本题考查了命题真假的判断,属于基础题.根据定义:符合事实真理的判断是真命题,不符合事实真理的判断是假命题,不难选出正确项.24.(2022·内蒙古包头·中考真题)几个大小相同,且棱长为1的小正方体所搭成几何体的俯视图如图所示,图中小正方形中的数字表示在该位置小正方体的个数,则这个几何体的左视图的面积为()A.3B.4C.6D.9【答案】B【分析】根据该几何体的俯视图以及该位置小正方体的个数,可以画出左视图,从而求出左视图的面积;【详解】由俯视图以及该位置小正方体的个数,左视图共有两列,第一列两个小正方体,第二列两个小正方体,可以画出左视图如图,所以这个几何体的左视图的面积为4故选:B【点睛】本题考查了物体的三视图,解题饿到关键是根据俯视图,以及该位置小正方体的个数,正确作出左视图.25.(2022·湖北武汉·中考真题)如图是一个立体图形的三视图,该立体图形是()A.长方体B.正方体C.三棱柱D.圆柱【答案】A【分析】根据题意可得这个几何体的三视图为长方形和正方形,即可求解.【详解】解:根据题意得:该几何体的三视图为长方形和正方形,∵该几何体是长方体.故选:A【点睛】本题考查由三视图确定几何体的名称,熟记常见几何体的三视图的特征是解题的关键.26.(2022·黑龙江齐齐哈尔·中考真题)由一些大小相同的小正方体搭成的几何体的主视图、左视图和俯视图都是如图所示的“田”字形,则搭成该几何体的小正方体的个数最少为()A.4个B.5个C.6个D.7个【答案】C【分析】从俯视图中可以看出最底层小正方体的个数及形状,从左视图可以看出第二层的个数,从而算出总的个数.【详解】解:由题中所给出的左视图知物体共两层,每一层都是两个小正方体;从俯视图可以可以看出最底层的个数所以图中的小正方体最少2+4=6.故选:C.【点睛】本题主要考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.如果掌握口诀“俯视图打地基,正视图疯狂盖,左视图拆违章”就更容易得到答案.27.(2022·黑龙江绥化·中考真题)下列图形中,正方体展开图错误的是()A.B.C.D.【答案】D【分析】利用正方体及其表面展开图的特点解题.【详解】D选项出现了“田字形”,折叠后有一行两个面无法折起来,从而缺少面,不能折成正方体,A、B、C选项是一个正方体的表面展开图.故选:D.【点睛】此题考查了几何体的展开图,只要有“田”“凹”字的展开图都不是正方体的表面展开图.28.(2022·广西贺州·中考真题)下面四个几何体中,主视图为矩形的是()A.B.C.D.【答案】A【分析】依次分析每个选项中的主视图,找出符合题意的选项即可.【详解】解:A选项图形的主视图为矩形,符合题意;B选项图形的主视图为三角形,中间由一条实线,不符合题意;C选项图形的主视图为三角形,不符合题意;D选项图形的主视图为梯形,不符合题意;故选:A.【点睛】本题考查了几何体的主视图,解题关键是理解主视图的定义.29.(2022·湖南永州·中考真题)我市江华县有“神州摇都”的美涨,每逢“盘王节”会表演长鼓舞,长鼓舞中使用的“长鼓”内腔挖空,两端相通,两端鼓口为圆形,中间鼓腰较为细小.如图为类似“长鼓”的几何体,其俯视图的大致形状是()A.B.C.D.【答案】B【分析】根据题目描述,判断几何体的俯视图即可;【详解】解:根据长鼓舞中使用的“长鼓”内腔挖空,两端相通,可知俯视图中空,两端鼓口为圆形可知俯视图是圆形,鼓腰也是圆形,且是不能直接看见,所以中间是虚圆;故选:B.【点睛】本题主要考查几何体的三视图中的俯视图,解本题的关键在于需学生具备一定的空间想象能力.30.(2022·湖南岳阳·中考真题)某个立体图形的侧面展开图如图所示,它的底面是正三角形,那么这个立体图形是()A.圆柱B.圆锥C.三棱柱D.四棱柱【答案】C【分析】根据常见立体图形的底面和侧面即可得出答案.【详解】解:A选项,圆柱的底面是圆,故该选项不符合题意;B选项,圆锥的底面是圆,故该选项不符合题意;C选项,三棱柱的底面是三角形,侧面是三个长方形,故该选项符合题意;D选项,四棱柱的底面是四边形,故该选项不符合题意;故选:C.【点睛】本题考查了几何体的展开图,掌握n棱柱的底面是n边形是解题的关键.31.(2022·河南·中考真题)2022年北京冬奥会的奖牌“同心”表达了“天地合·人心同”的中华文化内涵,将这六个汉字分别写在某正方体的表面上,如图是它的一种展开图,则在原正方体中,与“地”字所在面相对的面上的汉字是()A.合B.同C.心D.人【答案】D【分析】根据正方体的展开图进行判断即可;【详解】解:由正方体的展开图可知“地”字所在面相对的面上的汉字是“人”;故选:D.【点睛】本题主要考查正方体的展开图相对两个面上的文字,注意正方体的空间图形,从相对面入手是解题的关键.32.(2022·湖南湘潭·中考真题)如图,小明在学了尺规作图后,作了一个图形,其作图步骤是:∵作线段2AB ,分别以点A、B为圆心,以AB长为半径画弧,两弧相交于点C、D;∵连接AC、BC,作直线CD,且CD与AB相交于点H.则下列说法不正确的是()A.ABC是等边三角形B.AB CD⊥C.AH BH=D.45∠=︒ACD【答案】D【分析】根据等边三角形的判定和性质,线段垂直平分线的性质一一判断即可.【详解】解:由作图可知:AB=BC=AC,∵∵ABC是等边三角形,故A选项正确∵等边三角形三线合一,由作图知,CD是线段AB的垂直平分线,∵AB CD⊥,故B选项正确,∵AH BH=,30∠=︒,故C选项正确,D选项错误.故选:D.ACD【点睛】此题考查了作图-基本作图,等边三角形的判定和性质,线段垂直平分线的性质,解题的关键是理解题意,灵活运用所学知识解决问题.33.(2022·四川广元·中考真题)如图,在∵ABC中,BC=6,AC=8,∵C=90°,以点B为圆心,BC长为半径画弧,与AB交于点D,再分别以A、D为圆心,AD的长为半径画弧,两弧交于点M、N,作直线MN,分别交AC、AB于大于12点E 、F ,则AE 的长度为( )A .52B .3C .D .103【答案】A【分析】由题意易得MN 垂直平分AD ,AB =10,则有AD =4,AF =2,然后可得4cos 5AC A AB ∠==, 进而问题可求解.【详解】解:由题意得:MN 垂直平分AD ,6BD BC ==,∵1,902AF AD AFE =∠=︒,∵BC =6,AC =8,∵C =90°,∵10AB ,∵AD =4,AF =2,4cos 5AC A AB ∠==,∵5cos 2AF AE A ==∠;故选A . 【点睛】本题主要考查勾股定理、垂直平分线的性质及三角函数,熟练掌握勾股定理、垂直平分线的性质及三角函数是解题的关键.34.(2022·河北·中考真题)∵~∵是由相同的小正方体粘在一起的几何体,若组合其中的两个,恰是由6个小正方体构成的长方体,则应选择( )A.∵∵B.∵∵C.∵∵D.∵∵【答案】D【解析】【分析】观察图形可知,∵~∵的小正方体的个数分别为4,3,3,2,其中∵∵组合不能构成长方体,∵∵组合符合题意【详解】解:观察图形可知,∵~∵的小正方体的个数分别为4,3,3,2,其中∵∵组合不能构成长方体,∵∵组合符合题意故选D【点睛】本题考查了立体图形,应用空间想象能力是解题的关键.二、填空题35.(2022·江苏无锡·中考真题)请写出命题“如果a b>,那么0-<”的逆命题:b a________.【答案】如果0-<,那么a b>b a【分析】根据逆命题的概念解答即可.【详解】解:命题“如果a b>,那么0b a-<,那么a b>”,-<”的逆命题是“如果0b a故答案为:如果0-<,那么a b>.b a【点睛】此题考查了互逆命题的知识,两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论又是第二个命题的条件,那么这两个命题叫做互逆命题.其中一个命题称为另一个命题的逆命题.36.(2022·湖南常德·中考真题)如图是一个正方体的展开图,将它拼成正方体后,“神”字对面的字是________.【答案】月【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.【详解】解:由正方体的展开图特点可得:“神”字对面的字是“月”.故答案为:月.【点睛】此题考查了正方体相对两个面上的文字的知识;掌握常见类型展开图相对面上的两个字的特点是解决本题的关键.37.(2022·浙江湖州·中考真题)“如果a b =,那么a b =”的逆命题是___________.【答案】如果a b =,那么a b =【分析】把一个命题的条件和结论互换就得到它的逆命题,从而得出答案.【详解】解:“如果a b =,那么a b =”的逆命题是:“如果a b =,那么a b =”,故答案为:如果a b =,那么a b =.【点睛】本题考查命题与定理,解题的关键是理解题意,掌握逆命题的定义. 38.(2022·浙江温州·中考真题)如图是某风车示意图,其相同的四个叶片均匀分布,水平地面上的点M 在旋转中心O 的正下方.某一时刻,太阳光线恰好垂直照射叶片,OA OB ,此时各叶片影子在点M 右侧成线段CD ,测得8.5m,13mMC CD==,垂直于地面的木棒EF与影子FG的比为2∵3,则点O,M之间的距离等于___________米.转动时,叶片外端离地面的最大高度等于___________米.【答案】1010【分析】过点O作AC、BD的平行线,交CD于H,过点O作水平线OJ交BD 于点J,过点B作BI∵OJ,垂足为I,延长MO,使得OK=OB,求出CH的长度,根据23EF OMFG MH==,求出OM的长度,证明BIO JIB∽,得出23BI IJ=,49OI IJ=,求出IJ、BI、OI的长度,用勾股定理求出OB的长,即可算出所求长度.【详解】如图,过点O作AC、BD的平行线,交CD于H,过点O作水平线OJ 交BD于点J,过点B作BI∵OJ,垂足为I,延长MO,使得OK=OB,由题意可知,点O是AB的中点,∵OH AC BD,∵点H是CD的中点,∵13m CD=,∵16.5m2CH HD CD===,∵8.5 6.515m MH MC CH=+=+=,又∵由题意可知:23EF OMFG MH==,∵2153OM=,解得10m=OM,∵点O、M之间的距离等于10m,∵BI∵OJ,∵90BIO BIJ∠=∠=︒,∵由题意可知:90OBJ OBI JBI ∠=∠+∠=︒,又∵90BOI OBI ∠+∠=︒,∵BOI JBI ∠=∠,∵BIO JIB ∽,∵23BI OI IJ BI ==,∵23BI IJ =,49OI IJ =, ∵,OJ CD OH DJ ,∵四边形IHDJ 是平行四边形,∵ 6.5m OJ HD ==, ∵46.5m 9OJ OI IJ IJ IJ =+=+=,∵ 4.5m IJ =,3m BI =,2m OI =,∵在Rt OBI △中,由勾股定理得:222OB OI BI =+,∵OB ,∵OB OK ==,∵(10m MK MO OK =+=,∵叶片外端离地面的最大高度等于(10m,故答案为:10,10+【点睛】本题主要考查了投影和相似的应用,及勾股定理和平行四边形的判定与性质,正确作出辅助线是解答本题的关键.39.(2022·浙江杭州·中考真题)某项目学习小组为了测量直立在水平地面上的旗杆AB 的高度,把标杆DE 直立在同一水平地面上(如图).同一时刻测得旗杆和标杆在太阳光下的影长分别是BC =8.72m ,EF =2.18m .已知B ,C ,E ,F 在同一直线上,AB ∵BC ,DE ∵EF ,DE =2.47m ,则AB =_________m .【答案】9.88【分析】根据平行投影得AC ∵DE ,可得∵ACB =∵DFE ,证明Rt ∵ABC ∵∵Rt ∵DEF ,然后利用相似三角形的性质即可求解.【详解】解:∵同一时刻测得旗杆和标杆在太阳光下的影长分别是BC =8.72m ,EF =2.18m .∵AC ∵DE ,∵∵ACB =∵DFE ,∵AB ∵BC ,DE ∵EF ,∵∵ABC =∵DEF =90°,∵Rt ∵ABC ∵∵Rt ∵DEF , ∵AB BC DE EF =,即8.722.47 2.18AB =,解得AB =9.88, ∵旗杆的高度为9.88m .故答案为:9.88.【点睛】本题考查了相似三角形的判定与性质,平行投影:由平行光线形成的投影是平行投影,如物体在太阳光的照射下形成的影子就是平行投影.证明Rt ∵ABC ∵∵Rt ∵DEF 是解题的关键.40.(2022·湖南衡阳·中考真题)如图,在ABC 中,分别以点A 和点B 为圆心,大于12AB 的长为半径作圆弧,两弧相交于点M 和点N ,作直线MN 交CB 于点D ,连接AD .若8AC =,15BC =,则ACD △的周长为_________.【答案】23【分析】由作图可得:MN 是AB 的垂直平分线,可得,DA DB =再利用三角形的周长公式进行计算即可.【详解】解:由作图可得:MN 是AB 的垂直平分线,,DA DB ∴=8AC =,15BC =,81523,ACD CAC CD AD AC CD BD AC BC 故答案为:23【点睛】本题考查的是线段的垂直平分线的作图,线段的垂直平分线的性质,掌握“线段的垂直平分线的性质”是解本题的关键.三.解答题41.(2022·陕西·中考真题)小明和小华利用阳光下的影子来测量一建筑物顶部旗杆的高.如图所示,在某一时刻,他们在阳光下,分别测得该建筑物OB 的影长OC 为16米,OA 的影长OD 为20米,小明的影长FG 为2.4米,其中O 、C 、D 、F 、G 五点在同一直线上,A 、B 、O 三点在同一直线上,且AO ∵OD ,EF ∵FG .已知小明的身高EF 为1.8米,求旗杆的高AB .【答案】旗杆的高AB 为3米.【分析】证明∵AOD ∵∵EFG ,利用相似比计算出AO 的长,再证明∵BOC ∵∵AOD ,然后利用相似比计算OB 的长,进一步计算即可求解. 【详解】解:∵AD ∵EG ,∵∵ADO =∵EGF . 又∵∵AOD =∵EFG =90°,∵∵AOD ∵∵EFG . ∵AO ODEF FG =.∵ 1.820152.4EF OD AO FG ⋅⨯===. 同理,∵BOC ∵∵AOD .∵BO OCAO OD =.∵15161220AO OC BO OD ⋅⨯===. ∵AB =OA −OB =3(米).∵旗杆的高AB 为3米.【点睛】本题考查了平行投影:由平行光线形成的投影是平行投影,如物体在太阳光的照射下形成的影子就是平行投影.平行投影中物体与投影面平行时的投影是全等的.42.(2022·陕西·中考真题)如图,已知,,ABC CA CB ACD =∠△是ABC 的一个外角.请用尺规作图法,求作射线CP ,使CP AB ∥.(保留作图痕迹,不写作法)。
2020年四川省自贡市中考数学试卷及答案 (解析版)
2020年四川省自贡市中考数学试卷一.选择题(共12个小题).1.(4分)如图,直线a∥b,∠1=50°,则∠2的度数为()A.40°B.50°C.55°D.60°2.(4分)5月22日晚,中国自贡第26届国际恐龙灯会开启网络直播,有着近千年历史的自贡灯会进入“云游”时代,70余万人通过“云观灯”感受了“天下第一灯”的璀璨.人数700000用科学记数法表示为()A.70×104B.0.7×107C.7×105D.7×1063.(4分)如图所示的几何体的左视图是()A.B.C.D.4.(4分)关于x的一元二次方程ax2﹣2x+2=0有两个相等实数根,则a的值为()A.B.﹣C.1D.﹣15.(4分)在平面直角坐标系中,将点(2,1)向下平移3个单位长度,所得点的坐标是()A.(﹣1,1)B.(5,1)C.(2,4)D.(2,﹣2)6.(4分)下列图形中,是轴对称图形,但不是中心对称图形的是()A.B.C.D.7.(4分)对于一组数据3,7,5,3,2,下列说法正确的是()A.中位数是5B.众数是7C.平均数是4D.方差是38.(4分)如果一个角的度数比它补角的2倍多30°,那么这个角的度数是()A.50°B.70°C.130°D.160°9.(4分)如图,在Rt△ABC中,∠ACB=90°,∠A=50°,以点B为圆心,BC长为半径画弧,交AB于点D,连接CD,则∠ACD的度数是()A.50°B.40°C.30°D.20°10.(4分)函数y=与y=ax2+bx+c的图象如图所示,则函数y=kx﹣b的大致图象为()A.B.C.D.11.(4分)某工程队承接了80万平方米的荒山绿化任务,为了迎接雨季的到来,实际工作时每天的工作效率比原计划提高了35%,结果提前40天完成了这一任务.设实际工作时每天绿化的面积为x万平方米,则下面所列方程中正确的是()A.﹣=40B.﹣=40C.﹣=40D.﹣=4012.(4分)如图,在平行四边形ABCD中,AD=2,AB=,∠B是锐角,AE⊥BC于点E,F是AB的中点,连结DF、EF.若∠EFD=90°,则AE长为()A.2B.C.D.二、填空题(共6个小题,每小题4分,共24分)13.(4分)分解因式:3a2﹣6ab+3b2=.14.(4分)与﹣2最接近的自然数是.15.(4分)某中学新建食堂正式投入使用,为提高服务质量,食堂管理人员对学生进行了“最受欢迎菜品”的调查统计.以下是打乱了的调查统计顺序,请按正确顺序重新排序(只填番号):.①绘制扇形图;②收集最受学生欢迎菜品的数据;③利用扇形图分析出最受学生欢迎的菜品;④整理所收集的数据.16.(4分)如图,我市在建高铁的某段路基横断面为梯形ABCD,DC∥AB.BC长6米,坡角β为45°,AD的坡角α为30°,则AD长为米(结果保留根号).17.(4分)如图,矩形ABCD中,E是AB上一点,连接DE,将△ADE沿DE翻折,恰好使点A落在BC边的中点F处,在DF上取点O,以O为圆心,OF长为半径作半圆与CD相切于点G.若AD=4,则图中阴影部分的面积为.18.(4分)如图,直线y=﹣x+b与y轴交于点A,与双曲线y=在第三象限交于B、C两点,且AB•AC=16.下列等边三角形△OD1E1,△E1D2E2,△E2D3E3,…的边OE1,E1E2,E2E3,…在x轴上,顶点D1,D2,D3,…在该双曲线第一象限的分支上,则k=,前25个等边三角形的周长之和为.三、解答题(共8个题,共78分)19.(8分)计算:|﹣2|﹣(+π)0+(﹣)﹣1.20.(8分)先化简,再求值:•(+1),其中x是不等式组的整数解.21.(8分)如图,在正方形ABCD中,点E在BC边的延长线上,点F在CD边的延长线上,且CE=DF,连接AE和BF相交于点M.求证:AE=BF.22.(8分)某校为了响应市政府号召,在“创文创卫”活动周中,设置了“A:文明礼仪,B:环境保护,C:卫生保洁,D:垃圾分类”四个主题,每个学生选一个主题参与.为了解活动开展情况,学校随机抽取了部分学生进行调查,并根据调查结果绘制了如图条形统计图和扇形统计图.(1)本次调查的学生人数是人,m=;(2)请补全条形统计图;(3)学校要求每位同学从星期一至星期五选择两天参加活动.如果小张同学随机选择连续两天,其中有一天是星期一的概率是;小李同学星期五要参加市演讲比赛,他在其余四天中随机选择两天,其中有一天是星期三的概率是.23.(10分)甲、乙两家商场平时以同样价格出售相同的商品.新冠疫情期间,为了减少库存,甲、乙两家商场打折促销.甲商场所有商品按9折出售,乙商场对一次购物中超过100元后的价格部分打8折.(1)以x(单位:元)表示商品原价,y(单位:元)表示实际购物金额,分别就两家商场的让利方式写出y关于x的函数解析式;(2)新冠疫情期间如何选择这两家商场去购物更省钱?24.(10分)我国著名数学家华罗庚说过“数缺形时少直观,形少数时难入微”,数形结合是解决数学问题的重要思想方法.例如,代数式|x﹣2|的几何意义是数轴上x所对应的点与2所对应的点之间的距离:因为|x+1|=|x﹣(﹣1)|,所以|x+1|的几何意义就是数轴上x所对应的点与﹣1所对应的点之间的距离.(1)发现问题:代数式|x+1|+|x﹣2|的最小值是多少?(2)探究问题:如图,点A、B、P分别表示数﹣1、2、x,AB=3.∵|x+1|+|x﹣2|的几何意义是线段P A与PB的长度之和,∴当点P在线段AB上时,P A+PB=3,当点P在点A的左侧或点B的右侧时,P A+PB>3.∴|x+1|+|x﹣2|的最小值是3.(3)解决问题:①|x﹣4|+|x+2|的最小值是;②利用上述思想方法解不等式:|x+3|+|x﹣1|>4;③当a为何值时,代数式|x+a|+|x﹣3|的最小值是2.25.(12分)如图,⊙O是△ABC的外接圆,AB为直径,点P为⊙O外一点,且P A=PC =AB,连接PO交AC于点D,延长PO交⊙O于点F.(1)证明:=;(2)若tan∠ABC=2,证明:P A是⊙O的切线;(3)在(2)条件下,连接PB交⊙O于点E,连接DE,若BC=2,求DE的长.26.(14分)在平面直角坐标系中,抛物线y=ax2+bx+3与x轴交于点A(﹣3,0)、B(1,0),交y轴于点N,点M为抛物线的顶点,对称轴与x轴交于点C.(1)求抛物线的解析式;(2)如图1,连接AM,点E是线段AM上方抛物线上一动点,EF⊥AM于点F,过点E 作EH⊥x轴于点H,交AM于点D.点P是y轴上一动点,当EF取最大值时:①求PD+PC的最小值;②如图2,Q点为y轴上一动点,请直接写出DQ+OQ的最小值.2020年四川省自贡市中考数学试卷参考答案与试题解析一.选择题(共12个小题,每小题4分,共48分,在每题给出的四个选项中,只有一项是符合题目要求的)1.(4分)如图,直线a∥b,∠1=50°,则∠2的度数为()A.40°B.50°C.55°D.60°解:如图所示:∵a∥b,∴∠3=∠1=50°,∴∠2=∠3=50°;故选:B.2.(4分)5月22日晚,中国自贡第26届国际恐龙灯会开启网络直播,有着近千年历史的自贡灯会进入“云游”时代,70余万人通过“云观灯”感受了“天下第一灯”的璀璨.人数700000用科学记数法表示为()A.70×104B.0.7×107C.7×105D.7×106解:700000用科学记数法表示为7×105,故选:C.3.(4分)如图所示的几何体的左视图是()A.B.C.D.解:该几何体从左边看有两列,左边一列底层是一个正方形,右边一列是三个正方形.故选:B.4.(4分)关于x的一元二次方程ax2﹣2x+2=0有两个相等实数根,则a的值为()A.B.﹣C.1D.﹣1解:∵关于x的一元二次方程ax2﹣2x+2=0有两个相等实数根,∴,∴a=.故选:A.5.(4分)在平面直角坐标系中,将点(2,1)向下平移3个单位长度,所得点的坐标是()A.(﹣1,1)B.(5,1)C.(2,4)D.(2,﹣2)解:将点P(2,1)向下平移3个单位长度所得点的坐标为(2,1﹣3)即(2,﹣2);故选:D.6.(4分)下列图形中,是轴对称图形,但不是中心对称图形的是()A.B.C.D.解:A、是轴对称图形,不是中心对称图形,故本选项符合题意;B、不是轴对称图形,是中心对称图形,故本选项不合题意;C、既是轴对称图形,又是中心对称图形,故本选项不合题意;D、既不是轴对称图形,又不是中心对称图形,故本选项不合题意.故选:A.7.(4分)对于一组数据3,7,5,3,2,下列说法正确的是()A.中位数是5B.众数是7C.平均数是4D.方差是3解:A、把这组数据从小到大排列为:2,3,3,5,7,最中间的数是3,则中位数是3,故本选项错误;B、3出现了2次,出现的次数最多,则众数是3,故本选项错误;C、平均数是:(3+7+5+3+2)÷5=4,故本选项正确;D、方差是:[2×(3﹣4)2+(7﹣4)2+(5﹣4)2+(2﹣4)2]=3.2,故本选项错误;故选:C.8.(4分)如果一个角的度数比它补角的2倍多30°,那么这个角的度数是()A.50°B.70°C.130°D.160°解:设这个角是x°,根据题意,得x=2(180﹣x)+30,解得:x=130.即这个角的度数为130°.故选:C.9.(4分)如图,在Rt△ABC中,∠ACB=90°,∠A=50°,以点B为圆心,BC长为半径画弧,交AB于点D,连接CD,则∠ACD的度数是()A.50°B.40°C.30°D.20°解:∵在Rt△ABC中,∠ACB=90°,∠A=50°,∴∠B=40°,∵BC=BD,∴∠BCD=∠BDC=(180°﹣40°)=70°,∴∠ACD=90°﹣70°=20°,故选:D.10.(4分)函数y=与y=ax2+bx+c的图象如图所示,则函数y=kx﹣b的大致图象为()A.B.C.D.解:根据反比例函数的图象位于一、三象限知k>0,根据二次函数的图象确知a<0,b<0,∴函数y=kx﹣b的大致图象经过一、二、三象限,故选:D.11.(4分)某工程队承接了80万平方米的荒山绿化任务,为了迎接雨季的到来,实际工作时每天的工作效率比原计划提高了35%,结果提前40天完成了这一任务.设实际工作时每天绿化的面积为x万平方米,则下面所列方程中正确的是()A.﹣=40B.﹣=40C.﹣=40D.﹣=40解:设实际工作时每天绿化的面积为x万平方米,则原计划每天绿化的面积为万平方米,依题意,得:﹣=40,即﹣=40.故选:A.12.(4分)如图,在平行四边形ABCD中,AD=2,AB=,∠B是锐角,AE⊥BC于点E,F是AB的中点,连结DF、EF.若∠EFD=90°,则AE长为()A.2B.C.D.解:如图,延长EF交DA的延长线于Q,连接DE,设BE=x.∵四边形ABCD是平行四边形,∴DQ∥BC,∴∠Q=∠BEF,∵AF=FB,∠AFQ=∠BFE,∴△QF A≌△EFB(AAS),∴AQ=BE=x,∵∠EFD=90°,∴DF⊥QE,∴DQ=DE=x+2,∵AE⊥BC,BC∥AD,∴AE⊥AD,∴∠AEB=∠EAD=90°,∵AE2=DE2﹣AD2=AB2﹣BE2,∴(x+2)2﹣4=6﹣x2,整理得:2x2+4x﹣6=0,解得x=1或﹣3(舍弃),∴BE=1,∴AE=,故选:B.二、填空题(共6个小题,每小题4分,共24分)13.(4分)分解因式:3a2﹣6ab+3b2=3(a﹣b)2.解:3a2﹣6ab+3b2=3(a2﹣2ab+b2)=3(a﹣b)2.故答案为:3(a﹣b)2.14.(4分)与﹣2最接近的自然数是2.解:∵3.5<<4,∴1.5<﹣2<2,∴与﹣2最接近的自然数是2.故答案为:2.15.(4分)某中学新建食堂正式投入使用,为提高服务质量,食堂管理人员对学生进行了“最受欢迎菜品”的调查统计.以下是打乱了的调查统计顺序,请按正确顺序重新排序(只填番号):②④①③.①绘制扇形图;②收集最受学生欢迎菜品的数据;③利用扇形图分析出最受学生欢迎的菜品;④整理所收集的数据.解:②收集最受学生欢迎菜品的数据;④整理所收集的数据;①绘制扇形图;③利用扇形图分析出最受学生欢迎的菜品;故答案为:②④①③.16.(4分)如图,我市在建高铁的某段路基横断面为梯形ABCD,DC∥AB.BC长6米,坡角β为45°,AD的坡角α为30°,则AD长为6米(结果保留根号).解:过点D作DE⊥AB于E,过点C作CF⊥AB于F.∵CD∥AB,DE⊥AB,CF⊥AB,∴DE=CF,在Rt△CFB中,CF=BC•sin45°=3(米),∴DE=CF=3(米),在Rt△ADE中,∵∠A=30°,∠AED=90°,∴AD=2DE=6(米),故答案为6.17.(4分)如图,矩形ABCD中,E是AB上一点,连接DE,将△ADE沿DE翻折,恰好使点A落在BC边的中点F处,在DF上取点O,以O为圆心,OF长为半径作半圆与CD相切于点G.若AD=4,则图中阴影部分的面积为.解:连接OG,∵将△ADE沿DE翻折,恰好使点A落在BC边的中点F处,∴AD=DF=4,BF=CF=2,∵矩形ABCD中,∠DCF=90°,∴∠FDC=30°,∴∠DFC=60°,∵⊙O与CD相切于点G,∴OG⊥CD,∵BC⊥CD,∴OG∥BC,∴△DOG∽△DFC,∴,设OG=OF=x,则,解得:x=,即⊙O的半径是.连接OQ,作OH⊥FQ,∵∠DFC=60°,OF=OQ,∴△OFQ为等边△;同理△OGQ为等边△;∴∠GOQ=∠FOQ=60°,OH=OQ=,S扇形OGQ=S扇形OQF,∴S阴影=(S矩形OGCH﹣S扇形OGQ﹣S△OQH)+(S扇形OQF﹣S△OFQ)=S矩形OGCH﹣S△OFQ=×﹣(××)=.故答案为:.18.(4分)如图,直线y=﹣x+b与y轴交于点A,与双曲线y=在第三象限交于B、C两点,且AB•AC=16.下列等边三角形△OD1E1,△E1D2E2,△E2D3E3,…的边OE1,E1E2,E2E3,…在x轴上,顶点D1,D2,D3,…在该双曲线第一象限的分支上,则k=4,前25个等边三角形的周长之和为60.解:设直线y=﹣x+b与x轴交于点D,作BE⊥y轴于E,CF⊥y轴于F.∵y=﹣x+b,∴当y=0时,x=b,即点D的坐标为(b,0),当x=0时,y=b,即A点坐标为(0,b),∴OA=b,OD=b.∵在Rt△AOD中,tan∠ADO==,∴∠ADO=60°.∵直线y=﹣x+b与双曲线y=在第一象限交于点B、C两点,∴﹣x+b=,整理得,﹣x2+bx﹣k=0,由韦达定理得:x1x2=k,即EB•FC=k,∵=cos60°=,∴AB=2EB,同理可得:AC=2FC,∴AB•AC=(2EB)(2FC)=4EB•FC=k=16,解得:k=4.由题意可以假设D1(m,m),∴m2•=4,∴m=2∴OE1=4,即第一个三角形的周长为12,设D2(4+n,n),∵(4+n)•n=4,解得n=2﹣2,∴E1E2=4﹣4,即第二个三角形的周长为12﹣12,设D3(4+a,a),由题意(4+a)•a=4,解得a=2﹣2,即第三个三角形的周长为12﹣12,…,∴第四个三角形的周长为6﹣6,∴前25个等边三角形的周长之和12+12﹣12+12﹣12+12﹣12+…+12﹣12=12=60,故答案为4,60.三、解答题(共8个题,共78分)19.(8分)计算:|﹣2|﹣(+π)0+(﹣)﹣1.解:原式=2﹣1+(﹣6)=1+(﹣6)=﹣5.20.(8分)先化简,再求值:•(+1),其中x是不等式组的整数解.解:•(+1)===,由不等式组,得﹣1≤x<1,∵x是不等式组的整数解,∴x=﹣1,0,∵当x=﹣1时,原分式无意义,∴x=0,当x=0时,原式==﹣.21.(8分)如图,在正方形ABCD中,点E在BC边的延长线上,点F在CD边的延长线上,且CE=DF,连接AE和BF相交于点M.求证:AE=BF.解:在正方形ABCD中,AB=CD=CD=AD,∵CE=DF,∴BE=CF,在△AEB与△BFC中,,∴△AEB≌△BFC(SAS),∴AE=BF.22.(8分)某校为了响应市政府号召,在“创文创卫”活动周中,设置了“A:文明礼仪,B:环境保护,C:卫生保洁,D:垃圾分类”四个主题,每个学生选一个主题参与.为了解活动开展情况,学校随机抽取了部分学生进行调查,并根据调查结果绘制了如图条形统计图和扇形统计图.(1)本次调查的学生人数是60人,m=30;(2)请补全条形统计图;(3)学校要求每位同学从星期一至星期五选择两天参加活动.如果小张同学随机选择连续两天,其中有一天是星期一的概率是;小李同学星期五要参加市演讲比赛,他在其余四天中随机选择两天,其中有一天是星期三的概率是.解:(1)12÷20%=60(人),×100%=30%,则m=30;故答案为:60,30;(2)C组的人数为60﹣18﹣12﹣9=21(人),补全条形统计图如图:(3)如果小张同学随机选择连续两天,画树状图如图:共有20个等可能的结果,其中连续两天,有一天是星期一的结果有2个,∴其中有一天是星期一的概率为=;小李同学星期五要参加市演讲比赛,他在其余四天中随机选择两天,画树状图如图:共有12个等可能的结果,其中有一天是星期三的结果有6个,∴其中有一天是星期三的概率为=;故答案为:,.23.(10分)甲、乙两家商场平时以同样价格出售相同的商品.新冠疫情期间,为了减少库存,甲、乙两家商场打折促销.甲商场所有商品按9折出售,乙商场对一次购物中超过100元后的价格部分打8折.(1)以x(单位:元)表示商品原价,y(单位:元)表示实际购物金额,分别就两家商场的让利方式写出y关于x的函数解析式;(2)新冠疫情期间如何选择这两家商场去购物更省钱?解:(1)由题意可得,y甲=0.9x,当0≤x≤100时,y乙=x,当x>100时,y乙=100+(x﹣100)×0.8=0.8x+20,由上可得,y乙=;(2)当0.9x<0.8x+20时,得x<200,即此时选择甲商场购物更省钱;当0.9x=0.8x+20时,得x=200,即此时两家商场购物一样;当0.9x>0.8x+200时,得x>200,即此时选择乙商场购物更省钱.24.(10分)我国著名数学家华罗庚说过“数缺形时少直观,形少数时难入微”,数形结合是解决数学问题的重要思想方法.例如,代数式|x﹣2|的几何意义是数轴上x所对应的点与2所对应的点之间的距离:因为|x+1|=|x﹣(﹣1)|,所以|x+1|的几何意义就是数轴上x所对应的点与﹣1所对应的点之间的距离.(1)发现问题:代数式|x+1|+|x﹣2|的最小值是多少?(2)探究问题:如图,点A、B、P分别表示数﹣1、2、x,AB=3.∵|x+1|+|x﹣2|的几何意义是线段P A与PB的长度之和,∴当点P在线段AB上时,P A+PB=3,当点P在点A的左侧或点B的右侧时,P A+PB>3.∴|x+1|+|x﹣2|的最小值是3.(3)解决问题:①|x﹣4|+|x+2|的最小值是6;②利用上述思想方法解不等式:|x+3|+|x﹣1|>4;③当a为何值时,代数式|x+a|+|x﹣3|的最小值是2.解:(1)发现问题:代数式|x+1|+|x﹣2|的最小值是多少?(2)探究问题:如图,点A、B、P分别表示数﹣1、2、x,AB=3.∵|x+1|+|x﹣2|的几何意义是线段P A与PB的长度之和,∴当点P在线段AB上时,P A+PB=3,当点P在点A的左侧或点B的右侧时,P A+PB>3.∴|x+1|+|x﹣2|的最小值是3.(3)解决问题:①|x﹣4|+|x+2|的最小值是6;故答案为:6;②如图所示,满足|x+3|+|x﹣1|>4的x范围为x<﹣3或x>1;③当a为1或5时,代数式|x+a|+|x﹣3|的最小值是2.25.(12分)如图,⊙O是△ABC的外接圆,AB为直径,点P为⊙O外一点,且P A=PC =AB,连接PO交AC于点D,延长PO交⊙O于点F.(1)证明:=;(2)若tan∠ABC=2,证明:P A是⊙O的切线;(3)在(2)条件下,连接PB交⊙O于点E,连接DE,若BC=2,求DE的长.【解答】(1)证明:连接OC.∵PC=P A,OC=OA,∴OP垂直平分线段AC,∴=.(2)证明:设BC=a,∵AB是直径,∴∠ACB=90°,∵tan∠ABC==2,∴AC=2a,AB===3a,∴OC=OA=OB=,CD=AD=a,∵P A=PC=AB,∴P A=PC=3a,∵∠PDC=90°,∴PD===4a,∵DC=DA,AO=OB,∴OD=BC=a,∴AD2=PD•OD,∴=,∵∠ADP=∠ADO=90°,∴△ADP∽△ODA,∴∠P AD=∠DOA,∵∠DOA+∠DAO=90°,∴∠P AD+∠DAO=90°,∴∠P AO=90°,∴OA⊥P A,∴P A是⊙O的切线.(3)解:如图,过点E作EJ⊥PF于J,BK⊥PF于K.∵BC=2,由(1)可知,P A=6,AB=6,∵∠P AB=90°,∴PB===6,∵P A2=PE•PB,∴PE==4,∵∠CDK=∠BKD=∠BCD=90°,∴四边形CDKB是矩形,∴CD=BK=2,BC=DK=2,∵PD=8,∴PK=10,∵EJ∥BK,∴==,∴==,∴EJ=,PJ=,∴DJ=PD﹣PJ=8﹣=,∴DE===.26.(14分)在平面直角坐标系中,抛物线y=ax2+bx+3与x轴交于点A(﹣3,0)、B(1,0),交y轴于点N,点M为抛物线的顶点,对称轴与x轴交于点C.(1)求抛物线的解析式;(2)如图1,连接AM,点E是线段AM上方抛物线上一动点,EF⊥AM于点F,过点E 作EH⊥x轴于点H,交AM于点D.点P是y轴上一动点,当EF取最大值时:①求PD+PC的最小值;②如图2,Q点为y轴上一动点,请直接写出DQ+OQ的最小值.解:(1)抛物线的表达式为:y=a(x+3)(x﹣1)=a(x2+2x﹣3)=ax2+2ax﹣3a,即﹣3a=3,解得:a=﹣1,故抛物线的表达式为:y=﹣x2﹣2x+3;(2)由抛物线的表达式得,点M(﹣1,4),点N(0,3),则tan∠MAC==2,则设直线AM的表达式为:y=2x+b,将点A的坐标代入上式并解得:b=6,故直线AM的表达式为:y=2x+6,∵∠EFD=∠DHA=90°,∠EDF=∠ADH,∴∠MAC=∠DEF,则tan∠DEF=2,则cos∠DEF=,设点E(x,﹣x2﹣2x+3),则点D(x,2x+6),则FE=ED cos∠DEF=(﹣x2﹣2x+3﹣2x﹣6)×=(﹣x2﹣4x﹣3),∵﹣<0,故EF有最大值,此时x=﹣2,故点D(﹣2,2);①点C(﹣1,0)关于y轴的对称点为点B(1,0),连接BD交y轴于点P,则点P为所求点,PD+PC=PD+PB=DB为最小,则BD==;②过点O作直线OK,使sin∠NOK=,过点D作DK⊥OK于点K,交y轴于点Q,则点Q为所求点,DQ+OQ=DQ+QK=DK为最小值,则直线OK的表达式为:y=x,∵DK⊥OK,故设直线DK的表达式为:y=﹣x+b,将点D的坐标代入上式并解得:b=2﹣,则直线DK的表达式为:y=﹣x+2﹣,故点Q(0,2﹣),由直线KD的表达式知,QD与x负半轴的夹角(设为α)的正切值为,则cosα=,则DQ===,而OQ=(2﹣),则DQ+OQ为最小值=+(2﹣)=.。
2021年中考数学真题分类汇编:专题24圆的有关性质(解析版)
2021年中考数学真题分类汇编:专题24圆的有关性质一、单选题1.(2021·甘肃武威市·中考真题)如图,点,,,,A B C D E 在O 上,,42AB CD AOB =∠=︒,则CED ∠=( )A .48︒B .24︒C .22︒D .21︒ 【答案】D【分析】先证明,AB CD =再利用等弧的性质及圆周角定理可得答案.【详解】 解: 点,,,,A B C D E 在O 上,,42AB CD AOB =∠=︒,,AB CD ∴=114221,22CED AOB ∴∠=∠=⨯︒=︒ 故选:.D【点睛】本题考查的两条弧,两个圆心角,两条弦之间的关系,圆周角定理,等弧的概念与性质,掌握同弧或等弧的概念与性质是解题的关键.2.(2021·广西玉林市·中考真题)学习圆的性质后,小铭与小熹就讨论起来,小铭说:“被直径平分的弦也与直径垂直”,小熹说:“用反例就能说明这是假命题” .下列判断正确的是( )A .两人说的都对B .小铭说的对,小燕说的反例不存在C .两人说的都不对D .小铭说的不对,小熹说的反例存在【答案】D【分析】根据垂径定理可直接进行排除选项.【详解】解:由垂径定理的推论“平分弦(不是直径)的直径垂直于弦,并且平分弦所对的弧”可知:小铭忽略了垂径定理中的“弦不能是直径”这一条件,因为一个圆中的任意两条直径都互相平分,但不垂直,所以小铭说法错误,小熹所说的反例即为两条直径的情况下;故选D.【点睛】本题主要考查垂径定理,熟练掌握垂径定理是解题的关键.3.(2021·青海中考真题)如图是一位同学从照片上剪切下来的海上日出时的画面,“图上”太阳与海平线交AB 厘米.若从目前太阳所处位置到太阳完全跳出于A,B两点,他测得“图上”圆的半径为10厘米,16海平面的时间为16分钟,则“图上”太阳升起的速度为().A.1.0厘米/分B.0.8厘米分C.12厘米/分D.1.4厘米/分【答案】A【分析】首先过⊙O的圆心O作CD⊙AB于C,交⊙O于D,连接OA,由垂径定理,即可求得OC的长,继而求得CD的长,又由从目前太阳所处位置到太阳完全跳出海面的时间为10分钟,即可求得“图上”太阳升起的速度.【详解】解:过⊙O的圆心O作CD⊙AB于C,交⊙O于D,连接OA,⊙AC=12AB=12×16=8(厘米),在Rt⊙AOC中,6OC===(厘米),⊙CD=OC+OD=16(厘米),⊙从目前太阳所处位置到太阳完全跳出海面的时间为16分钟,⊙16÷16=1(厘米/分).⊙“图上”太阳升起的速度为1.0厘米/分.故选:A.【点睛】此题考查了垂径定理的应用.解题的关键是结合图形构造直角三角形,利用勾股定理求解.4.(2021·山东聊城市·中考真题)如图,A,B,C是半径为1的⊙O上的三个点,若AB⊙CAB=30°,则⊙ABC的度数为()A.95°B.100°C.105°D.110°【答案】C【分析】连接OB,OC,根据勾股定理逆定理可得⊙AOB=90°,⊙ABO=⊙BAO=45°,根据圆周角定理可得⊙COB=2⊙CAB=60°,⊙OBC=⊙OCB=60°,由此可求得答案.【详解】解:如图,连接OB,OC,⊙OA =OB =1,AB⊙OA 2+OB 2=AB 2,⊙⊙AOB =90°,又⊙OA =OB ,⊙⊙ABO =⊙BAO =45°,⊙⊙CAB =30°,⊙⊙COB =2⊙CAB =60°,又⊙OC =OB ,⊙⊙OBC =⊙OCB =60°,⊙⊙ABC =⊙ABO +⊙OBC =105°,故选:C .【点睛】本题考查了勾股定理的逆定理,等腰三角形的性质,圆周角定理,熟练掌握圆周角定理是解决本题的关键. 5.(2021·湖北鄂州市·中考真题)已知锐角40AOB ∠=︒,如图,按下列步骤作图:⊙在OA 边取一点D ,以O 为圆心,OD 长为半径画MN ,交OB 于点C ,连接CD .⊙以D 为圆心,DO 长为半径画GH ,交OB 于点E ,连接DE .则CDE ∠的度数为( )A .20︒B .30C .40︒D .50︒【答案】B【分析】 根据画图过程,得到OD =OC ,由等边对等角与三角形内角和定理得到⊙ODC =⊙OCD =70︒,同理得到⊙DOE =⊙DEO =40⊙,由⊙OCD 为⊙DCE 的外角,得到结果.【详解】解:⊙以O 为圆心,OD 长为半径画MN ,交OB 于点C ,⊙OD =OC ,⊙⊙ODC =⊙OCD ,⊙⊙AOB =40⊙,⊙⊙ODC =⊙OCD =118040702⨯︒-︒=︒, ⊙以D 为圆心,DO 长为半径画GH ,交OB 于点E ,⊙DO =DE ,⊙⊙DOE =⊙DEO =40⊙,⊙⊙OCD 为⊙DCE 的外角,⊙⊙OCD =⊙DEC +⊙CDE ,⊙70⊙=40⊙+⊙CDE ,⊙⊙CDE =30⊙,故选:B .【点睛】本题考查了等腰三角形的判定与性质、以及三角形外角的性质,关键在于等边对等角与三角形的外角等于与它不相邻的两个内角之和两个知识点的熟练运用.6.(2021·海南中考真题)如图,四边形ABCD 是O 的内接四边形,BE 是O 的直径,连接AE .若2BCD BAD ∠=∠,则DAE ∠的度数是( )A .30B .35︒C .45︒D .60︒【答案】A【分析】 先根据圆内接四边形的性质可得60BAD ∠=︒,再根据圆周角定理可得90BAE ∠=︒,然后根据角的和差即可得.【详解】 解:四边形ABCD 是O 的内接四边形,180BCD BAD ∴∠+∠=︒,2BCD BAD ∠=∠,1180603BAD =⨯︒∴∠=︒, BE 是O 的直径,90BAE ∴∠=︒,906030DAE BAE BAD ∴∠=∠-∠=︒-︒=︒,故选:A .【点睛】本题考查了圆内接四边形的性质、圆周角定理,熟练掌握圆内接四边形的性质是解题关键.7.(2021·四川眉山市·中考真题)如图,在以AB 为直径的O 中,点C 为圆上的一点,3BC AC =,弦CD AB ⊥于点E ,弦AF 交CE 于点H ,交BC 于点G .若点H 是AG 的中点,则CBF ∠的度数为( )A .18°B .21°C .22.5°D .30°【答案】C【分析】根据直径所对的圆周角是90︒,可知90ACB AFB ∠=∠=︒,根据3BC AC =,可知ABC ∠、BAC ∠的度数,根据直角三角形斜边上的中线等于斜边的一半可知,AHC 为等腰三角形,再根据CAE BFG BCA ∽∽可求得CBF ∠的度数.【详解】解:⊙AB 为O 的直径,⊙90ACB AFB ∠=∠=︒,⊙3BC AC =,⊙=22.5ABC ∠︒,=67.5BAC ∠︒,⊙点H 是AG 的中点,⊙CE AH =,⊙CAH ACH ∠=∠,⊙CD AB ⊥,⊙AEC GCA ∽,又⊙,CAF CBF CGA FGB ∠=∠∠=∠,⊙AEC GCA GFB ∽∽,⊙90ACE ECB ABC ECB ∠+∠=∠+∠=︒,⊙ABE ABC ∠=∠,⊙AEC GCA GFB ACB ∽∽∽,⊙22.5ABC ACE GAC GBF ∠=∠=∠=∠=︒,⊙=22.5CBF ∠︒,故选:C .【点睛】本题主要考查圆周角定理,垂径定理,相似三角形,直角三角形斜边上中线等知识点,找出图形中几个相似三角形是解题关键.8.(2021·四川南充市·中考真题)如图,AB 是O 的直径,弦CD AB ⊥于点E ,2CD OE =,则BCD ∠的度数为( )A .15︒B .22.5︒C .30D .45︒【答案】B【分析】连接OD ,根据垂径定理得CD =2DE ,从而得ODE 是等腰直角三角形,根据圆周角定理即可求解.【详解】解:连接OD ,⊙AB 是O 的直径,弦CD AB ⊥于点E ,⊙CD =2DE ,⊙2CD OE =,⊙DE =OE ,⊙ODE 是等腰直角三角形,即⊙BOD =45°,⊙BCD ∠=12⊙BOD =22.5°, 故选B .【点睛】本题主要考查圆的基本性质,熟练掌握垂径定理和圆周角定理,是解题的关键.9.(2021·四川广安市·中考真题)如图,公园内有一个半径为18米的圆形草坪,从A 地走到B 地有观赏路(劣弧AB )和便民路(线段AB ).已知A 、B 是圆上的点,O 为圆心,120AOB ∠=︒,小强从A 走到B ,走便民路比走观赏路少走( )米.A .6π-B .6π-C .12π-D .12π-【答案】D【分析】 作OC ⊙AB 于C ,如图,根据垂径定理得到AC =BC ,再利用等腰三角形的性质和三角形内角和计算出⊙A ,从而得到OC 和AC ,可得AB ,然后利用弧长公式计算出AB 的长,最后求它们的差即可.【详解】解:作OC ⊙AB 于C ,如图,则AC =BC ,⊙OA =OB ,⊙⊙A =⊙B =12(180°-⊙AOB )=30°, 在Rt ⊙AOC 中,OC =12OA =9,AC =⊙AB =2AC =又⊙12018180AB π⨯⨯==12π,⊙走便民路比走观赏路少走12π-故选D .【点睛】本题考查了垂径定理:垂径定理和勾股定理相结合,构造直角三角形,可解决计算弦长、半径、弦心距等问题.10.(2021·重庆中考真题)如图,AB 是⊙O 的直径,AC ,BC 是⊙O 的弦,若20A ∠=︒,则B 的度数为( )A .70°B .90°C .40°D .60°【答案】A【分析】直接根据直径所对的圆周角为直角进行求解即可.【详解】⊙AB 是⊙O 的直径,⊙⊙ACB =90°,⊙在Rt ⊙ABC 中,⊙B =90°-⊙A =70°,故选:A .【点睛】本题考查直径所对的圆周角为直角,理解基本定理是解题关键.11.(2021·浙江丽水市·中考真题)如图,AB 是O 的直径,弦CD OA ⊥于点E ,连结,OC OD .若O 的半径为,m AOD α∠=∠,则下列结论一定成立的是( )A .tan OE m α=⋅B .2sin CD m α=⋅C .cos AE m α=⋅D .2sin COD S m α=⋅【答案】B【分析】 根据垂径定理、锐角三角函数的定义进行判断即可解答.【详解】解:⊙AB 是O 的直径,弦CD OA ⊥于点E , ⊙12DE CD = 在Rt EDO ∆中,OD m =,AOD α∠=∠ ⊙tan =DE OEα ⊙=tan 2tan DE CD OE αα=,故选项A 错误,不符合题意;又sin DE ODα= ⊙sin DE OD α=⊙22sin CD DE m α==,故选项B 正确,符合题意; 又cos OE ODα= ⊙cos cos OE OD m αα==⊙AO DO m ==⊙cos AE AO OE m m α=-=-,故选项C 错误,不符合题意;⊙2sin CD m α=,cos OE m α= ⊙2112sin cos sin cos 22COD S CD OE m m m αααα∆=⨯=⨯⨯=,故选项D 错误,不符合题意; 故选B .【点睛】本题考查了垂径定理,锐角三角函数的定义以及三角形面积公式的应用,解本题的关键是熟记垂径定理和锐角三角函数的定义.12.(2021·山东泰安市·中考真题)如图,在ABC 中,6AB =,以点A 为圆心,3为半径的圆与边BC 相切于点D ,与AC ,AB 分别交于点E 和点G ,点F 是优弧GE 上一点,18CDE ∠=︒,则GFE ∠的度数是( )A .50°B .48°C .45°D .36°【答案】B【分析】 连接AD ,由切线性质可得⊙ADB =⊙ADC =90°,根据AB=2AD 及锐角的三角函数可求得⊙BAD =60°,易求得⊙ADE =72°,由AD=AE 可求得⊙DAE =36°,则⊙GAC =96°,根据圆周角定理即可求得⊙GFE 的度数.【详解】解:连接AD ,则AD =AG =3,⊙BC与圆A相切于点D,⊙⊙ADB=⊙ADC=90°,在Rt⊙ADB中,AB=6,则cos⊙BAD=ADAB=12,⊙⊙BAD=60°,⊙⊙CDE=18°,⊙⊙ADE=90°﹣18°=72°,⊙AD=AE,⊙⊙ADE=⊙AED=72°,⊙⊙DAE=180°﹣2×72°=36°,⊙⊙GAC=36°+60°=96°,⊙⊙GFE=12⊙GAC=48°,故选:B.【点睛】本题考查切线性质、锐角的三角函数、等腰三角形的性质、三角形的内角和定理、圆周角定理,熟练掌握切线性质和圆周角定理,利用特殊角的三角函数值求得⊙BAD=60°是解答的关键.13.(2021·浙江绍兴市·中考真题)如图,正方形ABCD内接于O,点P在AB上,则P∠的度数为()A.30B.45︒C.60︒D.90︒【答案】B【分析】连接OB ,OC ,由正方形ABCD 的性质得90BOC ∠=°,再根据圆周角与圆心角的关系即可得出结论.【详解】解:连接OB ,OC ,如图,⊙正方形ABCD 内接于O ,⊙90BOC ∠=° ⊙11904522BPC BOC ∠=∠=⨯︒=︒ 故选:B .【点睛】此题主要考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.14.(2021·四川凉山彝族自治州·中考真题)点P 是O 内一点,过点P 的最长弦的长为10cm ,最短弦的长为6cm ,则OP 的长为( )A .3cmB .4cmC .5cmD .6cm 【答案】B【分析】根据直径是圆中最长的弦,知该圆的直径是10cm ;最短弦即是过点P 且垂直于过点P 的直径的弦;根据垂径定理即可求得CP 的长,再进一步根据勾股定理,可以求得OP 的长.【详解】解:如图所示,CD ⊙AB 于点P .根据题意,得AB =10cm ,CD =6cm .⊙OC =5,CP =3⊙CD ⊙AB ,⊙CP =12CD =3cm .根据勾股定理,得OP .故选B .【点睛】此题综合运用了垂径定理和勾股定理.正确理解圆中,过一点的最长的弦和最短的弦.15.(2021·四川自贡市·中考真题)如图,AB 为⊙O 的直径,弦CD AB ⊥于点F ,OE AC ⊥于点E ,若3OE =,5OB =,则CD 的长度是( )A .9.6B .C .D .19【答案】A【分析】 先利用垂径定理得出AE =EC ,CF =FD ,再利用勾股定理列方程即可【详解】解:连接OC⊙AB ⊙CD , OE ⊙AC⊙ AE =EC ,CF =FD⊙OE =3,OB =5⊙OB =OC =OA =5⊙在Rt ⊙OAE 中4AE =⊙AE =EC =4设OF =x ,则有2222AC AF OC OF -=-22228(5)5x x -+=-x =1.4在Rt ⊙OFC 中, 4.8FC ==⊙29.6CD FC ==故选:A【点睛】本题考查垂径定理、勾股定理、方程思想是解题关键16.(2021·山东临沂市·中考真题)如图,PA 、PB 分别与O 相切于A 、B ,70P ∠=︒,C 为O 上一点,则ACB ∠的度数为( )A .110︒B .120︒C .125︒D .130︒ 【答案】C【分析】由切线的性质得出⊙OAP =⊙OBP =90°,利用四边形内角和可求⊙AOB =110°,再利用圆周角定理可求⊙ADB =55°,再根据圆内接四边形对角互补可求⊙ACB .【详解】解:如图所示,连接OA ,OB ,在优弧AB 上取点D ,连接AD ,BD ,⊙AP 、BP 是切线,⊙⊙OAP =⊙OBP =90°,⊙⊙AOB =360°-90°-90°-70°=110°,⊙⊙ADB =55°,又⊙圆内接四边形的对角互补,⊙⊙ACB =180°-⊙ADB =180°-55°=125°.故选:C .【点睛】本题考查了切线的性质、圆周角定理、圆内接四边形的性质.解题的关键是连接OA 、OB ,求出⊙AOB .17.(2021·湖北鄂州市·中考真题)如图,Rt ABC 中,90ACB ∠=︒,AC =3BC =.点P 为ABC ∆内一点,且满足22PA PC +2AC =.当PB 的长度最小时,ACP ∆的面积是( )A .3B .CD 【答案】D【分析】由题意知90APC ∠=︒,又AC 长度一定,则点P 的运动轨迹是以AC 中点O 为圆心,12AC 长为半径的圆弧,所以当B 、P 、O 三点共线时,BP 最短;在Rt BCO ∆中,利用勾股定理可求BO 的长,并得到点P 是BO 的中点,由线段长度即可得到PCO ∆是等边三角形,利用特殊Rt APC ∆三边关系即可求解.【详解】解:222PA PC AC +=∴90APC ∠=︒取AC 中点O ,并以O 为圆心,12AC 长为半径画圆 由题意知:当B 、P 、O 三点共线时,BP 最短AO PO CO ∴== 11322CO AC BC ==⨯==BO ∴=BP BO PO ∴=-=∴点P 是BO 的中点∴在Rt BCO ∆中,12CP BO PO === ∴PCO ∆是等边三角形∴60ACP ∠=︒ ∴在Rt APC ∆中,tan 603AP CP =⨯︒=12APC S AP CP ∆∴=⨯==【点睛】本题主要考察动点的线段最值问题、点与圆的位置关系和隐形圆问题,属于动态几何综合题型,中档难度.解题的关键是找到动点P 的运动轨迹,即隐形圆.18.(2021·浙江嘉兴市·中考真题)如图,在ABC ∆中,90BAC ∠=︒,AB =AC =5,点D 在AC 上,且2AD =,点E 是AB 上的动点,连结DE ,点F ,G 分别是BC ,DE 的中点,连接AG ,FG ,当AG =FG 时,线段DE 长为( )A B .2C D .4 【答案】A【分析】连接DF ,EF ,过点F 作FN ⊙AC ,FM ⊙AB ,结合直角三角形斜边中线等于斜边的一半求得点A ,D ,F ,E 四点共圆,⊙DFE =90°,然后根据勾股定理及正方形的判定和性质求得AE 的长度,从而求解.【详解】解:连接DF ,EF ,过点F 作FN ⊙AC ,FM ⊙AB⊙在ABC ∆中,90BAC ∠=︒,点G 是DE 的中点,⊙AG =DG =EG又⊙AG =FG⊙点A ,D ,F ,E 四点共圆,且DE 是圆的直径⊙⊙DFE =90°⊙在Rt ⊙ABC 中,AB =AC =5,点F 是BC 的中点,⊙CF =BF =122BC =,FN =FM =52 又⊙FN ⊙AC ,FM ⊙AB ,90BAC ∠=︒⊙四边形NAMF 是正方形⊙AN =AM =FN =52又⊙90NFD DFM ∠+∠=︒,90DFM MFE ∠+∠=︒⊙NFD MFE ∠=∠⊙⊙NFD ⊙⊙MFE⊙ME =DN =AN -AD =12 ⊙AE =AM +ME =3⊙在Rt ⊙DAE 中,DE故选:A .【点睛】本题考查直径所对的圆周角是90°,四点共圆及正方形的判定和性质和用勾股定理解直角三角形,掌握相关性质定理正确推理计算是解题关键.19.(2021·四川自贡市·中考真题)如图,()8,0A,()2,0C -,以点A 为圆心,AC 长为半径画弧,交y 轴正半轴于点B ,则点B 的坐标为( )A .()0,5B .()5,0C .()6,0D .()0,6 【答案】D【分析】先根据题意得出OA =8,OC =2,再根据勾股定理计算即可【详解】解:由题意可知:AC =AB⊙()8,0A ,()2,0C -⊙OA =8,OC =2⊙AC =AB =10在Rt ⊙OAB 中,6OB ==⊙B (0,6)故选:D【点睛】本题考查勾股定理、正确写出点的坐标,圆的半径相等、熟练进行勾股定理的计算是关键 20.(2021·广西来宾市·中考真题)如图,O 的半径OB 为4,OC AB ⊥于点D ,30BAC ∠=︒,则OD 的长是( )A B C .2 D .3【答案】C【分析】 根据圆周角定理求出⊙COB 的度数,再求出⊙OBD 的度数,根据“30°的锐角所对的直角边等于斜边的一半”求出OD 的长度.【详解】⊙ ⊙BAC =30°,⊙⊙COB =60°,⊙⊙ODB =90°,⊙⊙OBD =30°,⊙OB =4,⊙OD =12OB =142⨯=2. 故选:C .【点睛】本题考查了圆周角定理,直角三角形的性质,掌握相关定理和性质是解题的关键.21.(2021·湖北荆州市·中考真题)如图,矩形OABC 的边OA ,OC 分别在x 轴、y 轴的正半轴上,点D 在OA 的延长线上.若()2,0A ,()4,0D ,以О为圆心、OD 长为半径的弧经过点B ,交y 轴正半轴于点E ,连接DE ,BE 、则BED ∠的度数是( )A .15︒B .22.5︒C .30D .45︒【答案】C【分析】连接OB ,由题意易得⊙BOD =60°,然后根据圆周角定理可进行求解.【详解】解:连接OB ,如图所示:⊙()2,0A ,()4,0D ,⊙2,4OA OB OE OD ====, ⊙12OA OB =, ⊙四边形OABC 是矩形,⊙90OAB ∠=︒,⊙30OBA ∠=︒,⊙9060BOD OBA ∠=︒-∠=︒, ⊙1302BED BOD ∠=∠=︒; 故选C .【点睛】本题主要考查圆周角定理、矩形的性质及含30°的直角三角形的性质,熟练掌握圆周角定理、矩形的性质及含30°的直角三角形的性质是解题的关键.22.(2021·湖北宜昌市·中考真题)如图,C ,D 是O 上直径AB 两侧的两点.设25ABC ∠=︒,则BDC ∠=( )A .85︒B .75︒C .70︒D .65︒【答案】D【分析】 先利用直径所对的圆周角是直角得到⊙ACB =90°,从而求出⊙BAC ,再利用同弧所对的圆周角相等即可求出⊙BDC .【详解】解:⊙C ,D 是⊙O 上直径AB 两侧的两点,⊙⊙ACB =90°,⊙⊙ABC =25°,⊙⊙BAC =90°-25°=65°,⊙⊙BDC =⊙BAC =65°,故选:D .【点睛】本题考查了圆周角定理的推论,即直径所对的圆周角是90°和同弧或等弧所对的圆周角相等,解决本题的关键是牢记相关概念与推论,本题蕴含了属性结合的思想方法.23.(2021·河北中考真题)如图,等腰AOB 中,顶角40AOB ∠=︒,用尺规按⊙到⊙的步骤操作: ⊙以O 为圆心,OA 为半径画圆;⊙在O 上任取一点P (不与点A ,B 重合),连接AP ;⊙作AB 的垂直平分线与O 交于M ,N ;⊙作AP 的垂直平分线与O 交于E ,F .结论⊙:顺次连接M ,E ,N ,F 四点必能得到矩形;结论⊙:O 上只有唯一的点P ,使得OFM OAB S S =扇形扇形.对于结论⊙和⊙,下列判断正确的是( )A .⊙和⊙都对B .⊙和⊙都不对C .⊙不对⊙对D .⊙对⊙不对【答案】D【分析】 ⊙、根据“弦的垂直平分线经过圆心”,可证四边形MENF 的形状;⊙、在确定点P 的过程中,看⊙MOF =40°是否唯一即可.【详解】解:⊙、如图所示.⊙MN 是AB 的垂直平分线,EF 是AP 的垂直平分线,⊙MN 和EF 都经过圆心O ,线段MN 和EF 是⊙O 的直径.⊙OM =ON ,OE =OF .⊙四边形MENF 是平行四边形.⊙线段MN 是⊙O 的直径,⊙⊙MEN =90°.⊙平行四边形MENF 是矩形.⊙结论⊙正确;⊙、如图2,当点P 在直线MN 左侧且AP =AB 时,⊙AP =AB ,⊙AB AP =.⊙MN ⊙AB ,EF ⊙AP , ⊙1122AE AP AN AB ==,. ⊙AE AN =. ⊙1===202AOE AON AOB ∠∠∠.⊙40EON =∠.⊙=40MOF EON =∠∠.⊙扇形OFM 与扇形OAB 的半径、圆心角度数都分别相等,⊙OFM OAB S S =扇形扇形.如图3,当点P 在直线MN 右侧且BP =AB 时,同理可证:FOM AOB S S =扇形扇形.⊙结论⊙错误.故选:D【点睛】本题考查了圆的有关性质、矩形的判定、扇形面积等知识点,熟知圆的有关性质、矩形的判定方法及扇形面积公式是解题的关键.24.(2021·湖北黄冈市·中考真题)如图,O 是Rt ABC △的外接圆,OE AB ⊥交O 于点E ,垂足为点D ,AE ,CB 的延长线交于点F .若3OD =,8AB =,则FC 的长是( )A .10B .8C .6D .4【答案】A【分析】 先根据垂径定理可得4=AD ,再利用勾股定理可得5OE OA ==,然后根据三角形中位线定理即可得.【详解】解:,8OE AB AB ⊥=,142AD AB ∴==, 3OD =,5OA ∴=,5OE ∴=,OE AB ⊥,90A ADO BC =︒∠∴∠=,//OE FC ∴,又OA OC =,OE ∴是ACF 的中位线,210FC OE ∴==,故选:A .【点睛】本题考查了垂径定理、三角形中位线定理等知识点,熟练掌握垂径定理是解题关键.25.(2021·湖南邵阳市·中考真题)如图,点A ,B ,C 是O 上的三点.若90AOC ∠=︒,30BAC ∠=︒,则AOB ∠的大小为( )A .25︒B .30C .35︒D .40︒【答案】B【分析】首先根据圆周角定理求得BOC ∠的度数,根据AOC ∠的度数求AOB AOC BOC ∠=∠-∠即可.【详解】解:⊙30BAC ∠=︒⊙⊙BOC=223060BAC ∠=⨯︒=︒,⊙90AOC ∠=︒,906030AOB AOC BOC ,故选:B .【点睛】考查了圆周角定理及两锐角互余性质,求得BOC ∠的度数是解题的关键.26.(2021·湖南长沙市·中考真题)如图,点A ,B ,C 在⊙O 上,54BAC ∠=︒,则BOC ∠的度数为()A .27︒B .108︒C .116︒D .128︒【答案】B【分析】直接利用圆周角定理即可得.【详解】解:54BAC ∠=︒,∴由圆周角定理得:2108BOC BAC ∠=∠=︒,故选:B .【点睛】本题考查了圆周角定理,熟练掌握圆周角定理是解题关键.27.(2021·湖北武汉市·中考真题)如图,AB 是O 的直径,BC 是O 的弦,先将BC 沿BC 翻折交AB 于点D .再将BD 沿AB 翻折交BC 于点E .若BE DE =,设ABC α∠=,则α所在的范围是( )A .21.922.3α︒<<︒B .22.322.7α︒<<︒C .22.723.1α︒<<︒D .23.123.5α︒<<︒【答案】B【分析】 将⊙O 沿BC 翻折得到⊙O ′,将⊙O ′沿BD 翻折得到⊙O ″,则⊙O 、⊙O ′、⊙O ″为等圆.依据在同圆或等圆中相等的圆周角所对的弧相等可证明AC DC DE EB ===,从而可得到弧AC 的度数,由弧AC 的度数可求得⊙B 的度数.【详解】解:将⊙O 沿BC 翻折得到⊙O ′,将⊙O ′沿BD 翻折得到⊙O ″,则⊙O 、⊙O ′、⊙O ″为等圆.⊙⊙O 与⊙O ′为等圆,劣弧AC 与劣弧CD 所对的角均为⊙ABC ,⊙AC CD =.同理:DE CD =.又⊙F 是劣弧BD 的中点,⊙DE BE =.⊙AC DC DE EB ===.⊙弧AC 的度数=180°÷4=45°.⊙⊙B =12×45°=22.5°. ⊙α所在的范围是22.322.7α︒<<︒;故选:B .【点睛】本题主要考查的是圆的综合应用,解答本题主要应用了翻折的性质、弧、弦、圆周角之间的关系、圆内接四边形的性质,等腰三角形的判定,找出图形中的等弧是解题的关键.二、填空题28.(2021·黑龙江中考真题)如图,在O 中,AB 是直径,弦AC 的长为5cm ,点D 在圆上,且30ADC ∠=︒,则O 的半径为_____.【答案】5cm【分析】连接BC ,由题意易得30ABC ADC ∠=∠=︒,进而问题可求解.【详解】解:连接BC ,如图所示:⊙30ADC ∠=︒,⊙30ABC ADC ∠=∠=︒,⊙AB 是直径,⊙90ACB ∠=︒,⊙5cm AC =,⊙210cm AB AC ==,⊙O 的半径为5cm ;故答案为5cm .【点睛】本题主要考查圆周角定理及含30°直角三角形的性质,熟练掌握圆周角定理及含30°直角三角形的性质是解29.(2021·安徽中考真题)如图,圆O 的半径为1,ABC 内接于圆O .若60A ∠=︒,75B ∠=︒,则AB =______.【分析】先根据圆的半径相等及圆周角定理得出⊙ABO =45°,再根据垂径定理构造直角三角形,利用锐角三角函数解直角三角形即可【详解】解:连接OB 、OC 、作OD ⊙AB⊙60A ∠=︒⊙⊙BOC =2⊙A =120°⊙OB =OC⊙⊙OBC =30°又75B ∠=︒⊙⊙ABO =45°在Rt ⊙OBD 中,OB =1⊙BD⊙BD =AD =⊙AB【点睛】本题考查垂径定理、圆周角定理,正确使用圆的性质及定理是解题关键30.(2021·湖南张家界市·中考真题)如图,ABC 内接于O ,50A ∠=︒,点D 是BC 的中点,连接OD ,OB ,OC ,则BOD ∠=_________.【答案】50︒【分析】圆上弧长对应的圆周角等于圆心角的一半,再利用等腰三角形三线合一的性质,即可得出答案.【详解】解:根据圆上弦长对应的圆周角等于圆心角的一半,12A BOC ∠=∠, 100BOC ∴∠=︒,OB OC =, BOC ∴为等腰三角形, 又点D 是BC 的中点,根据等腰三角形三线合一,OD ∴为BOC ∠的角平分线,50BO D ∴∠=︒,故答案是:50︒.【点睛】本题考查了弦长所对应的圆周角等于圆心角的一半和等腰三角形三线合一的性质,解题的关键是:根据性质求出BOC ∠,再利用角平分线或三角形全等都能求出解.31.(2021·广东中考真题)在ABC 中,90,2,3ABC AB BC ∠=︒==.点D 为平面上一个动点,45ADB ∠=︒,则线段CD 长度的最小值为_____.-【分析】由已知45ADB ∠=︒,2AB =,根据定角定弦,可作出辅助圆,由同弧所对的圆周角等于圆心角的一半可知,点D 在以O 为圆心OB 为半径的圆上,线段CD 长度的最小值为CO OD -.【详解】如图: 以12AB 为半径作圆,过圆心O 作,ON AB OM BC ⊥⊥, 以O 为圆心OB 为半径作圆,则点D 在圆O 上,45ADB ∠=︒90AOB ∠=︒∴2AB =1AN BN ==AO ∴==112ON OM AB ===,3BC =OC ∴==CO OD ∴-线段CD 长度的最小值为-.-【点睛】 本题考查了圆周角与圆心角的关系,圆外一点到圆上的线段最短距离,勾股定理,正确的作出图形是解题的关键.32.(2021·江苏宿迁市·中考真题)如图,在Rt⊙ABC 中,⊙ABC =90°,⊙A =32°,点B 、C 在O 上,边AB 、AC 分别交O 于D 、E 两点﹐点B 是CD 的中点,则⊙ABE =__________.【答案】13︒【分析】如图,连接,DC 先证明,BDC BCD ∠=∠再证明,ABE ACD ∠=∠利用三角形的外角可得:,BDC A ACD A ABE ∠=∠+∠=∠+∠再利用直角三角形中两锐角互余可得:()2902,BDC A ABE ∠=︒-∠+∠再解方程可得答案.【详解】解:如图,连接,DC B 是CD 的中点,,,BD BC BDC BCD ∴=∠=∠,DE DE =,ABE ACD ∴∠=∠,BDC A ACD A ABE ∴∠=∠+∠=∠+∠90,32,ABC A ∠=︒∠=︒()2902,BDC A ABE ∴∠=︒-∠+∠45453213.ABE A ∴∠=︒-∠=︒-︒=︒故答案为:13.︒【点睛】本题考查的是圆周角定理,三角形的外角的性质,直角三角形的两锐角互余,掌握圆周角定理的含义是解题的关键.33.(2021·江苏南京市·中考真题)如图,AB 是O 的弦,C 是AB 的中点,OC 交AB 于点D .若8cm,2cm AB CD ==,则O 的半径为________cm .【答案】5【分析】连接OA ,由垂径定理得AD =4cm ,设圆的半径为R ,根据勾股定理得到方程2224(2)R R =+-,求解即可【详解】解:连接OA ,⊙C 是AB 的中点,⊙OC AB ⊥ ⊙14cm 2AD AB == 设O 的半径为R ,⊙2cm CD =⊙(2)cm OD OC CD R =-=-在Rt OAD ∆中,222OA AD OD =+,即2224(2)R R =+-,解得,5R =即O 的半径为5cm故答案为:5【点睛】本题考查的是垂径定理及勾股定理,根据垂径定理判断出OC 是AB 的垂直平分线是解答此题的关键. 34.(2021·湖北随州市·中考真题)如图,O 是ABC 的外接圆,连接AO 并延长交O 于点D ,若50C ∠=︒,则BAD ∠的度数为______.【答案】40︒【分析】连接BD ,则C D ∠=∠,再根据AD 为直径,求得BAD ∠的度数【详解】如图,连接BD ,则50D C ∠=∠=︒AD 为直径90ABD ∴∠=︒90905040BAD D ∴∠=︒-∠=︒-︒=︒故答案为40︒【点睛】此题主要考查了圆周角定理,圆周角定理是中考中考查重点,熟练掌握圆周角定理是解决问题的关键. 35.(2021·江苏连云港市·中考真题)如图,OA 、OB 是O 的半径,点C 在O 上,30AOB ∠=︒,40OBC ∠=︒,则OAC ∠=______︒.【答案】25【分析】连接OC ,根据等腰三角形的性质和三角形内角和定理得到⊙BOC =100°,求出⊙AOC ,根据等腰三角形的性质计算.【详解】解:连接OC ,⊙OC =OB ,⊙⊙OCB =⊙OBC =40°,⊙⊙BOC =180°-40°×2=100°,⊙⊙AOC =100°+30°=130°,⊙OC =OA ,⊙⊙OAC =⊙OCA =25°,故答案为:25.【点睛】本题考查的是圆的基本性质、等腰三角形的性质,三角形内角和定理,掌握三角形内角和等于180°是解题的关键.36.(2021·四川成都市·中考真题)如图,在平面直角坐标系xOy 中,直线33y x =+与O 相交于A ,B 两点,且点A 在x 轴上,则弦AB 的长为_________.【答案】【分析】过O 作OE ⊙AB 于C ,根据垂径定理可得AC =BC =12AB ,可求OA =2,OD Rt ⊙AOD 中,由勾股定理AD =,可证⊙OAC ⊙⊙DAO ,由相似三角形性质可求AC 即可. 【详解】 解:过O 作OE ⊙AB 于C ,⊙AB 为弦,⊙AC =BC =12AB ,⊙直线33y x =+与O 相交于A ,B 两点,⊙当y =00x +=,解得x =-2, ⊙OA =2,⊙当x =0时,y =⊙OD=3, 在Rt ⊙AOD中,由勾股定理3AD ===, ⊙⊙ACO =⊙AOD =90°,⊙CAO =⊙OAD ,⊙⊙OAC ⊙⊙DAO ,AC AO AO AD =即2AO AC AD === ⊙AB =2AC故答案为【点睛】本题考查直线与圆的位置关系,垂径定理,直线与两轴交点,勾股定理,三角形相似判定与性质,掌握以上知识、正确添加辅助线是解题关键.37.(2021·江苏扬州市·中考真题)在一次数学探究活动中,李老师设计了一份活动单:“追梦”学习小组通过操作、观察、讨论后汇报:点A 的位置不唯一,它在以BC 为弦的圆弧上(点B 、C 除外),…….小华同学画出了符合要求的一条圆弧(如图1).(1)小华同学提出了下列问题,请你帮助解决.⊙该弧所在圆的半径长为___________;⊙ABC 面积的最大值为_________;(2)经过比对发现,小明同学所画的角的顶点不在小华所画的圆弧上,而在如图1所示的弓形内部,我们记为A ',请你利用图1证明30BA C '∠>︒;(3)请你运用所学知识,结合以上活动经验,解决问题:如图2,已知矩形ABCD 的边长2AB =,3BC =,点P 在直线CD 的左侧,且4tan 3DPC ∠=. ⊙线段PB 长的最小值为_______;⊙若23PCD PAD S S =,则线段PD 长为________.【答案】(1)⊙2;2;(2)见解析;(3);⊙4 【分析】(1)⊙设O 为圆心,连接BO ,CO ,根据圆周角定理得到⊙BOC =60°,证明⊙OBC 是等边三角形,可得半径;⊙过点O 作BC 的垂线,垂足为E ,延长EO ,交圆于D ,以BC 为底,则当A 与D 重合时,⊙ABC 的面积最大,求出OE ,根据三角形面积公式计算即可;(2)延长BA ′,交圆于点D ,连接CD ,利用三角形外角的性质和圆周角定理证明即可;(3)⊙根据4tan 3DPC ∠=,连接PD ,设点Q 为PD 中点,以点Q 为圆心,12PD 为半径画圆,可得点P 在优弧CPD 上,连接BQ ,与圆Q 交于P ′,可得BP ′即为BP 的最小值,再计算出BQ 和圆Q 的半径,相减即可得到BP ′;⊙根据AD ,CD 和23PCD PAD S S =推出点P 在⊙ADC 的平分线上,从而找到点P 的位置,过点C 作CF ⊙PD ,垂足为F ,解直角三角形即可求出DP .【详解】解:(1)⊙设O 为圆心,连接BO ,CO ,⊙⊙BAC =30°,⊙⊙BOC =60°,又OB =OC ,⊙⊙OBC 是等边三角形,⊙OB =OC =BC =2,即半径为2;⊙⊙⊙ABC 以BC 为底边,BC =2,⊙当点A 到BC 的距离最大时,⊙ABC 的面积最大,如图,过点O 作BC 的垂线,垂足为E ,延长EO ,交圆于D ,⊙BE =CE =1,DO =BO =2,⊙OE⊙DE 2,⊙⊙ABC 的最大面积为)1222⨯⨯2;(2)如图,延长BA ′,交圆于点D ,连接CD ,⊙点D 在圆上,⊙⊙BDC =⊙BAC ,⊙⊙BA ′C =⊙BDC +⊙A ′CD ,⊙⊙BA ′C >⊙BDC ,⊙⊙BA ′C >⊙BAC ,即⊙BA ′C >30°;(3)⊙如图,当点P在BC上,且PC=32时,⊙⊙PCD=90°,AB=CD=2,AD=BC=3,⊙tan⊙DPC=CDPC=43,为定值,连接PD,设点Q为PD中点,以点Q为圆心,12PD为半径画圆,⊙当点P在优弧CPD上时,tan⊙DPC=43,连接BQ,与圆Q交于P′,此时BP′即为BP的最小值,过点Q作QE⊙BE,垂足为E,⊙点Q是PD中点,⊙点E为PC中点,即QE=12CD=1,PE=CE=12PC=34,⊙BE=BC-CE=3-34=94,⊙BQ4,⊙PD 52,⊙圆Q的半径为155 224⨯=,⊙BP′=BQ-P′Q,即BP;⊙⊙AD =3,CD =2,23PCD PAD S S =, 则23CD AD =, ⊙⊙P AD 中AD 边上的高=⊙PCD 中CD 边上的高,即点P 到AD 的距离和点P 到CD 的距离相等,则点P 到AD 和CD 的距离相等,即点P 在⊙ADC 的平分线上,如图,过点C 作CF ⊙PD ,垂足为F ,⊙PD 平分⊙ADC ,⊙⊙ADP =⊙CDP =45°,⊙⊙CDF 为等腰直角三角形,又CD =2,⊙CF =DF⊙tan⊙DPC =CF PF =43,⊙PF =4,⊙PD =DF +PF【点睛】本题是圆的综合题,考查了圆周角定理,三角形的面积,等边三角形的判定和性质,最值问题,解直角三角形,三角形外角的性质,勾股定理,知识点较多,难度较大,解题时要根据已知条件找到点P 的轨迹. 38.(2021·辽宁本溪市·中考真题)如图,由边长为1的小正方形组成的网格中,点A ,B ,C 都在格点上,以AB 为直径的圆经过点C 和点D ,则tan =ADC ∠________.。
2022年四川省自贡市中考数学试卷(解析版)
2022年四川省自贡市中考数学试卷参考答案与试题解析一、选择题(共12个小题,每小题4分,共48分,在每题给出的四个选项中,只有一项是符合题目要求的)1.(4分)如图,直线AB 、CD 相交于点O ,若130∠=︒,则2∠的度数是()A .30︒B .40︒C .60︒D .150︒【分析】根据对顶角相等可得2130∠=∠=︒.【解答】解:130∠=︒ ,1∠与2∠是对顶角,2130∴∠=∠=︒.故选:A .2.(4分)自贡市江姐故里红色教育基地自去年底开放以来,截止到今年5月,共接待游客180000余人.人数180000用科学记数法表示为()A .41.810⨯B .41810⨯C .51.810⨯D .61.810⨯【分析】科学记数法的表示形式为10n a ⨯的形式,其中1||10a <,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值10时,n 是正数;当原数的绝对值1<时,n 是负数.【解答】解:5180000 1.810=⨯,故选:C .3.(4分)如图,将矩形纸片ABCD 绕边CD 所在直线旋转一周,得到的立体图形是()A .B .C .D .【分析】将矩形纸片ABCD 绕边CD 所在直线旋转一周,可知上面和下面都是平面,所以得到的立体图形是圆体.【解答】解:根据“点动成线,线动成面,面动成体”,将矩形纸片ABCD 绕边CD 所在直线旋转一周,所得到的立体图形是圆柱.故选:A .4.(4分)下列运算正确的是()A .2(1)2-=-B .1-=C .632a a a ÷=D .01()02022-=【分析】根据有理数的乘方判断A 选项;根据平方差公式判断B 选项;根据同底数幂的除法判断C 选项;根据零指数幂判断D 选项.【解答】解:A 、原式1=,故该选项不符合题意;B 、原式22321=-=-=,故该选项符合题意;C 、原式3a =,故该选项不符合题意;D 、原式1=,故该选项不符合题意;故选:B .5.(4分)如图,菱形ABCD 对角线交点与坐标原点O 重合,点(2,5)A -,则点C 的坐标是()A .(5,2)-B .(2,5)-C .(2,5)D .(2,5)--【分析】菱形的对角线相互平分可知点A与C关于原点对称,从而得结论.【解答】解: 四边形ABCD是菱形,∴=,即点A与点C关于原点对称,OA OCA-,点(2,5)-.∴点C的坐标是(2,5)故选:B.6.(4分)剪纸与扎染、龚扇被称为自贡小三绝,以下学生剪纸作品中,轴对称图形是() A.B.C.D.【分析】根据轴对称图形定义进行分析即可.如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形.【解答】解:选项A,B,C都不能找到这样的一条直线,使这些图形沿一条直线折叠,直线两旁的部分能够互相重合,所以不是轴对称图形;选项D能找到这样的一条直线,使这个图形沿一条直线折叠,直线两旁的部分能够互相重合,所以是轴对称图形.故选:D.7.(4分)如图,四边形ABCD内接于O∠=︒,则BCD∠的的直径,20ABD,AB是O度数是()A.90︒B.100︒C.110︒D.120︒【分析】方法一:根据圆周角定理可以得到AOD∠的度数,再根据三角形内角和可以求得OAD ∠的度数,然后根据圆内接四边形对角互补,即可得到BCD ∠的度数.方法二:根据AB 是O 的直径,可以得到90ADB ∠=︒,再根据20ABD ∠=︒和三角形内角和,可以得到A ∠的度数,然后根据圆内接四边形对角互补,即可得到BCD ∠的度数.【解答】解:方法一:连接OD ,如图所示,20ABD ∠=︒ ,40AOD ∴∠=︒,OA OD = ,OAD ODA ∴∠=∠,180OAD ODA AOD ∠+∠+∠=︒ ,70OAD ODA ∴∠=∠=︒,四边形ABCD 是圆内接四边形,180OAD BCD ∴∠+∠=︒,110BCD ∴∠=︒,故选:C .方法二:AB 是O 的直径,90ADB ∴∠=︒,20ABD ∠=︒ ,70A ∴∠=︒,四边形ABCD 是圆内接四边形,180A BCD ∴∠+∠=︒,110BCD ∴∠=︒,故选:C .8.(4分)六位同学的年龄分别是13、14、15、14、14、15岁,关于这组数据,正确说法是()A .平均数是14B .中位数是14.5C .方差是3D .众数是14【分析】分别计算这组数据的平均数,中位数,方差,众数即可得出答案.【解答】解:A 选项,平均数1(131415141415)6146=+++++÷=(岁),故该选项不符合题意;B 选项,这组数据从小到大排序为:13,14,14,14,15,15,中位数1414142+==(岁),故该选项不符合题意;C 选项,方差222111117[(1314(1414)3(15142]666636=⨯-+-⨯+-⨯=,故该选项不符合题意;D 选项,14出现的次数最多,众数是14岁,故该选项符合题意;故选:D .9.(4分)等腰三角形顶角度数比一个底角度数的2倍多20︒,则这个底角的度数是()A .30︒B .40︒C .50︒D .60︒【分析】设底角的度数是x ︒,则顶角的度数为(220)x +︒,根据三角形内角和是180︒列出方程,解方程即可得出答案.【解答】解:设底角的度数是x ︒,则顶角的度数为(220)x +︒,根据题意得:220180x x x +++=,解得:40x =,故选:B .10.(4分)P 为O 外一点,PT 与O 相切于点T ,10OP =,30OPT ∠=︒,则PT 长为()A .B .5C .8D .9【分析】根据切线的性质得到90OTP ∠=︒,根据含30度角的直角三角形的性质得到OT 的值,根据勾股定理即可求解.【解答】解:方法一:如图,PT 与O 相切于点T ,90OTP ∴∠=︒,又10OP = ,30OPT ∠=︒,1110522OT OP ∴==⨯=,PT ∴==.故选:A .方法二:在Rt OPT ∆中,cos PT P OP =,3cos30102PT OP ∴=⋅︒=⨯=.故选:A .11.(4分)九年级2班计划在劳动实践基地内种植蔬菜,班长买回来8米长的围栏,准备围成一边靠墙(墙足够长)的菜园,为了让菜园面积尽可能大,同学们提出了围成矩形、等腰三角形(底边靠墙)、半圆形这三种方案,最佳方案是()A .方案1B .方案2C .方案3D .方案1或方案2【分析】分别计算三个方案的菜园面积进行比较即可.【解答】解:方案1:设AD x =米,则(82)AB x =-米,则菜园面积22(82)282(2)8x x x x x =-=-+=--+,当2x =时,此时菜园最大面积为8米2;方案2:当90BAC ∠=︒时,菜园最大面积14482=⨯⨯=米2;方案3:半圆的半径8π=,∴此时菜园最大面积28()322πππ⨯==米28>米2;故选:C .12.(4分)已知(3,2)A --,(1,2)B -,抛物线2(0)y ax bx c a =++>顶点在线段AB 上运动,形状保持不变,与x 轴交于C ,D 两点(C 在D 的右侧),下列结论:①2c -;②当0x >时,一定有y 随x 的增大而增大;③若点D 横坐标的最小值为5-,则点C 横坐标的最大值为3;④当四边形ABCD 为平行四边形时,12a =.其中正确的是()A .①③B .②③C .①④D .①③④【分析】根据顶点在线段AB 上抛物线与y 轴的交点坐标为(0,)c 可以判断出c 的取值范围,得到①正确;根据二次函数的增减性判断出②错误;先确定1x =时,点D 的横坐标取得最大值,然后根据二次函数的对称性求出此时点C 的横坐标,即可判断③正确;令0y =,利用根与系数的关系与顶点的纵坐标求出CD 的长度的表达式,然后根据平行四边形的对边平行且相等可得AB CD =,然后列出方程求出a 的值,判断出④正确.【解答】解: 点A ,B 的坐标分别为(3,2)--和(1,2)-,∴线段AB 与y 轴的交点坐标为(0,2)-,又 抛物线的顶点在线段AB 上运动,抛物线与y 轴的交点坐标为(0,)c ,2c ∴-,(顶点在y 轴上时取“=”),故①正确;抛物线的顶点在线段AB 上运动,开口向上,∴当1x >时,一定有y 随x 的增大而增大,故②错误;若点D 的横坐标最小值为5-,则此时对称轴为直线3x =-,C 点的横坐标为1-,则4CD =, 抛物线形状不变,当对称轴为直线1x =时,C 点的横坐标为3,∴点C 的横坐标最大值为3,故③正确;令0y =,则20ax bx c ++=,22224()4b c b ac CD a a a -=--⨯=,根据顶点坐标公式,2424ac b a-=-,∴248ac b a -=-,即248b ac a-=,2188CD a a∴=⨯=, 四边形ACDB 为平行四边形,1(3)4CD AB ∴==--=,∴28416a==,解得12a =,故④正确;综上所述,正确的结论有①③④.故选:D .二、填空题(共6个小题,每小题4分,共24分)13.(4分)计算:|2|-=2.【分析】根据绝对值定义去掉这个绝对值的符号.【解答】解:20-< ,|2|2∴-=.故答案为:2.14.(4分)分解因式:2m m +=(1)m m +.【分析】根据多项式的特征选择提取公因式法进行因式分解.【解答】解:2(1)m m m m +=+.故答案为:(1)m m +.15.(4分)化简:223424432a a a a a a --⋅+=++-+2a a +.【分析】先将原分式的分子、分母分解因式,然后约分,再计算加法即可.【解答】解:223424432a a a a a a --⋅+++-+23(2)(2)2(2)32a a a a a a -+-=⋅++-+2222a a a -=+++2a a =+,故答案为:2a a +.16.(4分)为了比较甲、乙两鱼池中的鱼苗数目,小明从两鱼池中各捞出100条鱼苗,每条做好记号,然后放回原鱼池.一段时间后,在同样的地方,小明再从甲、乙两鱼池中各捞出100条鱼苗,发现其中有记号的鱼苗分别是5条、10条,可以初步估计鱼苗数目较多的是甲鱼池.(填甲或乙)【分析】根据题意和题目中的数据可以计算出甲鱼池和乙鱼池中鱼苗的数量,然后比较大小即可.【解答】解:由题意可得,甲鱼池中的鱼苗数量约为:51002000100÷=(条),乙鱼池中的鱼苗数量约为:101001000100÷=(条),20001000> ,∴初步估计鱼苗数目较多的是甲鱼池,故答案为:甲.17.(4分)一块圆形玻璃镜面碎成了几块,其中一块如图所示,测得弦AB 长20厘米,弓形高CD 为2厘米,则镜面半径为26厘米.【分析】根据题意,弦AB 长20厘米,弓形高CD 为2厘米,根据勾股定理和垂径定理可以求得圆的半径.【解答】解:如图,点O 是圆形玻璃镜面的圆心,连接OC ,则点C ,点D ,点O 三点共线,由题意可得:OC AB ⊥,1102AC AB ==(厘米),设镜面半径为x 厘米,由题意可得:22210(2)x x =+-,26x ∴=,∴镜面半径为26厘米,故答案为:26.18.(4分)如图,矩形ABCD 中,4AB =,2BC =,G 是AD 的中点,线段EF 在边AB 上左右滑动,若1EF =,则GE CF +的最小值为【分析】利用已知可以得出GC ,EF 长度不变,求出GE CF +最小时即可得出四边形CGEF 周长的最小值,利用轴对称得出E ,F 位置,即可求出.【解答】解:如图,作G 关于AB 的对称点G ',在CD 上截取1CH =,然后连接HG '交AB 于E ,在EB 上截取1EF =,此时GE CF +的值最小,1CH EF == ,//CH EF ,∴四边形EFCH 是平行四边形,EH CF ∴=,G H EG EH EG CF ''∴=+=+,4AB = ,2BC AD ==,G 为边AD 的中点,213DG AD AG ''∴=+=+=,413DH =-=,由勾股定理得:HG '==即GE CF +的最小值为.故答案为:.三、解答题(共8个题,共78分)19.(8分)解不等式组:365432x x x <⎧⎨+>+⎩,并在数轴上表示其解集.【分析】先求出不等式的解集,求出不等式组的解集即可.【解答】解:由不等式36x <,解得:2x <,由不等式5432x x +>+,解得:1x >-,∴不等式组的解集为:12x -<<,∴在数轴上表示不等式组的解集为:20.(8分)如图,ABC ∆是等边三角形,D 、E 在直线BC 上,DB EC =.求证:D E ∠=∠.【分析】要证明D E ∠=∠,只要证明ABD ACE ∆≅∆即可,根据等边三角形的性质和SAS 可以证明ABD ACE ∆≅∆,本题得以解决.【解答】证明:ABC ∆ 是等边三角形,AB AC ∴=,60ABC ACB ∠=∠=︒,120ABD ACE ∴∠=∠=︒,在ABD ∆和ACE ∆中,AB AC ABD ACE BD CE =⎧⎪∠=∠⎨⎪=⎩,()ABD ACE SAS ∴∆≅∆,D E ∴∠=∠.21.(8分)学校师生去距学校45千米的吴玉章故居开展研学旅行活动,骑行爱好者张老师骑自行车先行2小时后,其余师生乘汽车出发,结果同时到达.已知汽车速度是自行车速度的3倍,求张老师骑车的速度.【分析】根据题意可知:张老师骑车用的时间-汽车用的时间2=,即可列出相应的分式方程,然后求解即可,注意分式方程要检验.【解答】解:设张老师骑车的速度为x 千米/小时,则汽车的速度为3x 千米/小时,由题意可得:454523x x-=,解得15x =,经检验,15x =是原分式方程的解,答:张老师骑车的速度是15千米/小时.22.(8分)为了解学生每周参加课外兴趣小组活动的累计时间t (单位:小时),学校采用随机抽样的方法,对部分学生进行了问卷调查,调查结果按03t <,34t <,45t <,5t 分为四个等级,分别用A 、B 、C 、D 表示.如图是受损的调查统计图,请根据图上残存信息解决以下问题:(1)求参与问卷调查的学生人数n ,并将条形统计图补充完整;(2)全校共有学生2000人,试估计学校每周参加课外兴趣小组活动累计时间不少于4小时的学生人数;(3)某小组有4名同学,A 、D 等级各2人,从中任选2人向老师汇报兴趣活动情况.请用画树状图法或列表法求这2人均属D 等级的概率.【分析】(1)利用抽查的学生总数A =等级的人数÷对应的百分比计算,即可求D 等级的人数;(2)用全校的学生人数乘以每周参加课外兴趣小组活动累计时间不少于4小时的学生所占的百分比,即可求解;(3)设A 等级2人分别用1A ,2A 表示,D 等级2人分别用1D ,2D 表示,画出树状图,即可求解.【解答】解:(1)4010040%n ==,D ∴等级的人数10040151035=---=(人),条形统计图补充如下:(2)学校每周参加课外兴趣小组活动累计时间不少于4小时的学生人数10352000900100+=⨯=(人),∴估计每周参加课外兴趣小组活动累计时间不少于4小时的学生为900人;(3)设A 等级2人分别用1A ,2A 表示,D 等级2人分别用1D ,2D 表示,随机选出2人向老师汇报兴趣活动情况的树状图如下:∴共有12种等可能结果,而选出2人中2人均属D 等级有2种,∴所求概率21126==.23.(10分)如图,在平面直角坐标系中,一次函数y kx b =+的图象与反比例函数n y x =的图象相交于(1,2)A -,(,1)B m -两点.(1)求反比例函数和一次函数的解析式;(2)过点B 作直线//l y 轴,过点A 作AD l ⊥于点D ,点C 是直线l 上一动点,若2DC DA =,求点C 的坐标.【分析】(1)先把(1,2)A -代入反比例函数n y x=求出n 的值即可得出其函数解析式,再把(,1)B m -代入反比例函数的解析式即可得出m 的值,把A ,B 两点的坐标代入一次函数y kx b =+,求出k 、b 的值即可得出其解析式;(2)根据已知确定AD 的长和点D 的坐标,由2DC AD =可得6DC =,从而得点C 的坐标.【解答】解:(1)(1,2)A - 在反比例函数n y x =的图象上,2(1)2n ∴=⨯-=-,∴其函数解析式为2y x=-;(,1)B m - 在反比例函数的图象上,2m ∴-=-,2m ∴=,(2,1)B ∴-.(1,2)A - ,(2,1)B -两点在一次函数y kx b =+的图象上,∴221k b k b -+=⎧⎨+=-⎩,解得11k b =-⎧⎨=⎩,∴一次函数的解析式为:1y x =-+;(2) 直线//l y 轴,AD l ⊥,3AD ∴=,(2,2)D ,2DC DA = ,6DC ∴=,点C 是直线l 上一动点,(2,8)C ∴或(2,4)-.24.(10分)如图,用四根木条钉成矩形框ABCD ,把边BC 固定在地面上,向右边推动矩形框,矩形的形状会发生改变(四边形具有不稳定性).(1)通过观察分析,我们发现图中线段存在等量关系,如线段EB 由AB 旋转得到,所以EB AB =.我们还可以得到FC =CD ,EF =;(2)进一步观察,我们还会发现//EF AD ,请证明这一结论;(3)已知30BC cm =,80DC cm =,若BE 恰好经过原矩形DC 边的中点H ,求EF 与BC 之间的距离.【分析】(1)由推动矩形框时,矩形ABCD 的各边的长度没有改变,可求解;(2)通过证明四边形BEFC 是平行四边形,可得结论;(3)由勾股定理可求BH 的长,由相似三角形的性质可求解.【解答】(1)解: 把边BC 固定在地面上,向右边推动矩形框,矩形的形状会发生改变,∴矩形ABCD 的各边的长度没有改变,AB BE ∴=,EF AD =,CF CD =,故答案为:CD ,AD ;(2)证明: 四边形ABCD 是矩形,//AD BC ∴,AB CD =,AD BC =,AB BE = ,EF AD =,CF CD =,BE CF ∴=,EF BC =,∴四边形BEFC 是平行四边形,//EF BC ∴,//EF AD ∴;(3)如图,过点E 作EG BC ⊥于G ,80DC AB BE cm === ,点H 是CD 的中点,40CH DH cm ∴==,在Rt BHC ∆中,50()BH cm ===,EG BC ⊥ ,//CH EG ∴,BCH BGE ∴∆∆∽,∴BH CH BE EG =,∴504080EG=,64EG ∴=,EF ∴与BC 之间的距离为64cm .25.(12分)某数学兴趣小组自制测角仪到公园进行实地测量,活动过程如下:(1)探究原理制作测角仪时,将细线一端固定在量角器圆心O 处,另一端系小重物G .测量时,使支杆OM 、量角器90︒刻度线ON 与铅垂线OG 相互重合(如图①),绕点O 转动量角器,使观测目标P 与直径两端点A 、B 共线(如图②),此时目标P 的仰角POC GON ∠=∠.请说明这两个角相等的理由.(2)实地测量如图③,公园广场上有一棵树,为测树高,同学们在观测点K 处测得树顶端P 的仰角60POQ ∠=︒,观测点与树的距离KH 为5米,点O 到地面的距离OK 为1.5米,求树高PH . 1.73≈,结果精确到0.1米)(3)拓展探究公园高台上有一凉亭,为测量凉亭顶端P 距地面的高度PH (如图④),同学们经过讨论,决定先在水平地面上选取观测点E 、(F E 、F 、H 在同一直线上),分别测得点P 的仰角α、β,再测得E 、F 间的距离m ,点1O 、2O 到地面的距离1O E 、2O F 均为1.5米.求PH (用α、β、m 表示).【分析】(1)根据图形和同角的余角相等可以说明理由;(2)根据锐角三角函数和题意,可以计算出PH 的长;(3)根据锐角三角函数和题目中的数据,可以用含α、β、m 的式子表示出PH .【解答】解:(1)90COG ∠=︒ ,90AON ∠=︒,POC CON GON CON ∴∠+∠=∠+∠,POC GON ∴∠=∠;(2)由题意可得,5KH OQ ==米, 1.5QH OK ==米,90PQO ∠=︒,60POQ ∠=︒,tan PQ POQ OQ ∠=,tan 605PQ ∴︒=,解得PQ =,1.510.2PH PQ QH ∴=+=≈(米),即树高PH 为10.2米;(3)由题意可得,12O O m =,12 1.5O E O F DH ===米,由图可得,2tan PD O D β=,1tan PD O D α=,2tan PD O D β∴=,1tan PD O D α=,1221O O O D O D =- ,tan tan PD PD m βα∴=-,tan tan tan tan m PD αβαβ∴=-,tan tan (1.5)tan tan m PH PD DH αβαβ∴=+=+-米.26.(14分)已知二次函数2(0)y ax bx c a =++≠.(1)若1a =-,且函数图象经过(0,3),(2,5)-两点,求此二次函数的解析式,直接写出抛物线与x 轴交点及顶点坐标;(2)在图①中画出(1)中函数的大致图象,并根据图象写出函数值3y 时自变量x 的取值范围;(3)若0a b c ++=且a b c >>,一元二次方程20ax bx c ++=两根之差等于a c -,函数图象经过1(2P c -,1)y ,2(13,)Q c y +两点,试比较1y 、2y的大小.【分析】(1)利用待定系数法可求抛物线的解析式,即可求解;(2)由题意画出图象,结合图象可求解;(3)结合题意分别求出1a =,1b c =--,将点P ,点Q 坐标代入可求1y ,2y 的值,即可求解.【解答】解:(1)由题意可得:13542a c a b c =-⎧⎪=⎨⎪-=++⎩,解得:123a b c =-⎧⎪=-⎨⎪=⎩,∴抛物线的解析式为:2223(1)4y x x x =--+=-++,∴顶点坐标为(1,4)-,当0y =时,则2023x x =--+,11x ∴=,23x =-,∴抛物线与x 轴的交点坐标为(1,0),(3,0)-;(2)如图,当3y =时,2323x x =--+,10x ∴=,22x =-,由图象可得:当20x -时,3y ;(3)0a b c ++= 且a b c >>,0a ∴>,0c <,b a c =--,一元二次方程20ax bx c ++=必有一根为1x =, 一元二次方程20ax bx c ++=两根之差等于a c -,∴方程的另一个根为1c a +-,∴抛物线2y ax bx c =++的对称轴为:直线12c a x -=+,122b c a a -∴-=+,22a c a ac a ∴+=-++,(1)()0a a c ∴--=,a c > ,1a ∴=,1(2P c -,1)y ,2(13,)Q c y +,1b c ∴=--,∴抛物线解析式为:2(1)y x c x c =-++,∴当12x c =-时,则2211111()(1)()22224y c c c c c c =--+-+=+-,当13x c =+时,则222(13)(1)(13)63y c c c c c c =+-+++=+,222211159(63)(2)4(241664y y c c c c c ∴-=+-+-=+-,b c > ,1c c ∴-->,12c ∴<-,2594(01664c ∴+->,21y y ∴>.第21页,共21页。
2024年四川省自贡市中考数学试题和答案
自贡市2024年初中学业水平考试暨高中阶段学校招生考试数学本试题卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共6页,满分150分.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上.答卷时,须将答案答在答题卡上,在本试题卷、草稿纸上答题无效.考试结束后,将试题卷和答题卡一并交回.第Ⅰ卷选择题(共48分)注意事项:必须使用2B 铅笔将答案标号填涂在答题卡上对应题目标号的位置上.如需改动,用橡皮擦干净后,再选涂其他答案标号.一、选择题(共12个小题,每小题4分,共48分.在每题给出的四个选项中,只有一项是符合题目要求的)1.在0,2-,,π四个数中,最大的数是()A.2- B.0 C.π D.2.据统计,今年“五一”小长假期间,近70000人次游览了自贡中华彩灯大世界.70000用科学记数法表示为()A.50.710⨯ B.4710⨯ C.5710⨯ D.40.710⨯3.如图,以点A 为圆心,适当的长为半径画弧,交A ∠两边于点M ,N ,再分别以M 、N 为圆心,AM 的长为半径画弧,两弧交于点B ,连接MB NB ,.若40A ∠=︒,则MBN ∠=()A.40︒B.50︒C.60︒D.140︒4.下列几何体中,俯视图与主视图形状相同的是()A. B. C. D.5.学校群文阅读活动中,某学习小组五名同学阅读课外书的本数分别为3,5,7,4,5.这组数据的中位数和众数分别是()A.3,4 B.4,4 C.4,5 D.5,56.如图,在平面直角坐标系中,(4,2)D -,将Rt OCD △绕点O 逆时针旋转90︒到OAB 位置,则点B 坐标为()A.(2,4)B.(4,2)C.(4,2)--D.(2,4)-7.我国汉代数学家赵爽在他所著《勾股圆方图注》中,运用弦图(如图所示)巧妙地证明了勾股定理.“赵爽弦图”曾作为2002年第24届国际数学家大会的会徽图案.下列关于“赵爽弦图”说法正确的是()A.是轴对称图形B.是中心对称图形C.既是轴对称图形又是中心对称图形D.既不是轴对称图形也不是中心对称图形8.关于x 的一元二次方程220x kx +-=的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.只有一个实数根D.没有实数根9.一次函数24y x n =-+,二次函数2(1)3yx n x =+--,反比例函数1n y x +=在同一直角坐标系中图象如图所示,则n 的取值范围是()A.1n >-B.2n >C.11n -<<D.12n <<10.如图,在ABCD Y 中,60B ∠=︒,6cm =AB ,12cm BC =.A 点P 从点A 出发、以1cm/s 的速度沿A D →运动,同时点Q 从点C 出发,以3cm/s 的速度沿C B C →→→⋅⋅⋅往复运动,当点P 到达端点D 时,点Q 随之停止运动.在此运动过程中,线段PQ CD =出现的次数是()A.3B.4C.5D.611.如图,等边ABC 钢架的立柱CD AB ⊥于点D ,AB 长12m .现将钢架立柱缩短成DE ,60BED ∠=︒.则新钢架减少用钢()A.(24m -B.(24m -C.(24m -D.(24m-12.如图,在矩形ABCD 中,AF 平分BAC ∠,将矩形沿直线EF 折叠,使点A ,B 分别落在边AD BC 、上的点A ',B '处,EF ,A F '分别交AC 于点G ,H .若2GH =,8HC =,则BF 的长为()A.2029 B.2039 C. D.5第Ⅱ卷(非选择题共102分)注意事项:必须使用0.5毫米黑色墨水签字笔在答题卡上题目所指示区域内作答,作图题可先用铅笔绘出,确认后再用0.5毫来黑色墨水签字笔描清楚,答在试题卷上无效.二、填空题(共6个小题,每小题4分,共24分)13.分解因式:23x x -=___________.14.计算:31211a a a a +-=++________.15.凸七边形的内角和是________度.16.一次函数(31)2y m x =+-的值随x 的增大而增大,请写出一个满足条件的m 的值________.17.龚扇是自贡“小三绝”之一.为弘扬民族传统文化,某校手工兴趣小组将一个废弃的大纸杯侧面剪开直接当作扇面,制作了一个龚扇模型(如图).扇形外侧两竹条AB AC ,夹角为120︒.AB 长30cm ,扇面的BD 边长为18cm ,则扇面面积为________2cm (结果保留π).18.九(1)班劳动实践基地内有一块面积足够大的平整空地.地上两段围墙AB CD ⊥于点O (如图),其中AB 上的EO 段围墙空缺.同学们测得 6.6AE =m , 1.4OE =m ,6OB =m ,5OC =m ,3OD =m .班长买来可切断的围栏16m ,准备利用已有围墙,围出一块封闭的矩形菜地,则该菜地最大面积是________2cm .三、解答题(共8个题,共78分)19.计算:()0tan452|23|︒-+-20.如图,在ABC 中,DE BC ∥,EDF C ∠=∠.(1)求证:BDF A ∠=∠;(2)若45A ∠=︒,DF 平分BDE ∠,请直接写出ABC 的形状.21.为传承我国传统节日文化,端午节前夕,某校组织了包粽子活动.已知七(3)班甲组同学平均每小时比乙组多包20个粽子,甲组包150个粽子所用的时间与乙组包120个粽子所用的时间相同.求甲,乙两组同学平均每小时各包多少个粽子.22.在Rt ABC △中,90C ∠=︒,O 是ABC 的内切圆,切点分别为D ,E ,F .(1)图1中三组相等的线段分别是CE CF =,AF =________,BD =________;若3AC =,4BC =,则O 半径长为________;(2)如图2,延长AC 到点M ,使AM AB =,过点M 作MNAB ⊥于点N .求证:MN 是O 的切线.23.某校为了解学生身体健康状况,从全校600名学生的体质健康测试结果登记表中,随机选取了部分学生的测试数据进行初步整理(如图1).并绘制出不完整的条形统计图(如图2).成绩频数百分比不及格3a 及格b 20%良好45c 优秀3232%图1学生体质健康统计表(1)图1中=a ________,b =________,c =________;(2)请补全图2的条形统计图,并估计该校学生体质健康测试结果为“良好”和“优秀”的总人数;(3)为听取测试建议,学校选出了3名“良好”1名“优秀”学生,再从这4名学生中随机抽取2人参加学校体质健康测试交流会.请用列表或画树状图的方法,计算所抽取的两人均为“良好”的概率.24.如图,在平面直角坐标系中,一次函数y kx b =+的图象与反比例函数m y x=的图象交于(6,1)A -,(1,)B n 两点.(1)求反比例函数和一次函数的解析式;(2)P 是直线2x =-上的一个动点,PAB 的面积为21,求点P 坐标;(3)点Q 在反比例函数m y x=位于第四象限的图象上,QAB 的面积为21,请直接写出Q 点坐标.25.为测量水平操场上旗杆的高度,九(2)班各学习小组运用了多种测量方法.(1)如图1,小张在测量时发现,自己在操场上的影长EF 恰好等于自己的身高DE .此时,小组同学测得旗杆AB 的影长BC 为11.3m ,据此可得旗杆高度为________m ;(2)如图2,小李站在操场上E 点处,前面水平放置镜面C ,并通过镜面观测到旗杆顶部A .小组同学测得小李的眼睛距地面高度 1.5m DE =,小李到镜面距离2m EC =,镜面到旗杆的距离16m CB =.求旗杆高度;(3)小王所在小组采用图3的方法测量,结果误差较大.在更新测量工具,优化测量方法后,测量精度明显提高,研学旅行时,他们利用自制工具,成功测量了江姐故里广场雕塑的高度.方法如下:如图4,在透明的塑料软管内注入适量的水,利用连通器原理,保持管内水面M ,N 两点始终处于同一水平线上.如图5,在支架上端P 处,用细线系小重物Q ,标高线PQ 始终垂直于水平地面.如图6,在江姐故里广场上E 点处,同学们用注水管确定与雕塑底部B 处于同一水平线的D ,G 两点,并标记观测视线DA 与标高线交点C ,测得标高 1.8m CG =, 1.5m DG =.将观测点D 后移24m 到D ¢处,采用同样方法,测得 1.2m C G ='',2m D G ''=.求雕塑高度(结果精确到1m ).26.如图,抛物线232y ax x c =-+与x 轴交于(1,0)A -,(4,0)B 两点,顶点为P .(1)求抛物线的解析式及P 点坐标;(2)抛物线交y 轴于点C ,经过点A ,B ,C 的圆与y 轴的另一个交点为D ,求线段CD 的长;(3)过点P 的直线y kx n =+分别与抛物线、直线=1x -交于x 轴下方的点M ,N ,直线NB 交抛物线对称轴于点E ,点P 关于E 的对称点为Q ,MH x ⊥轴于点H .请判断点H 与直线NQ 的位置关系,并证明你的结论.自贡市2024年初中学业水平考试暨高中阶段学校招生考试数学本试题卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共6页,满分150分.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上.答卷时,须将答案答在答题卡上,在本试题卷、草稿纸上答题无效.考试结束后,将试题卷和答题卡一并交回.第Ⅰ卷选择题(共48分)注意事项:必须使用2B 铅笔将答案标号填涂在答题卡上对应题目标号的位置上.如需改动,用橡皮擦干净后,再选涂其他答案标号.一、选择题(共12个小题,每小题4分,共48分.在每题给出的四个选项中,只有一项是符合题目要求的)1.在0,2-,,π四个数中,最大的数是()A.2- B.0 C.π D.【答案】C【解析】【分析】此题主要考查了实数大小比较的方法,正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,据此判断即可,解答此题的关键是要明确:正实数0>>负实数,两个负实数绝对值大的反而小.【详解】解:根据实数比较大小的方法,可得:20π-<<<,∴在0,2-,,π四个数中,最大的数是π,故选:C .2.据统计,今年“五一”小长假期间,近70000人次游览了自贡中华彩灯大世界.70000用科学记数法表示为()A.50.710⨯ B.4710⨯ C.5710⨯ D.40.710⨯【答案】B【解析】【分析】本题考查科学记数法.科学记数法的一般形式为10n a ⨯,其中110a ≤<,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值10≥时,n 是正整数;当原数的绝对值小于1时,n 是负整数.【详解】解:70000用科学记数法表示为4710⨯,故选:B .3.如图,以点A 为圆心,适当的长为半径画弧,交A ∠两边于点M ,N ,再分别以M 、N 为圆心,AM 的长为半径画弧,两弧交于点B ,连接MB NB ,.若40A ∠=︒,则MBN ∠=()A .40︒ B.50︒ C.60︒ D.140︒【答案】A【解析】【分析】本题考查了菱形的判定和性质.证明四边形AMBN 是菱形,即可求解.【详解】解:由作图知AM AN BM BN ===,∴四边形AMBN 是菱形,∵40A ∠=︒,∴40MBN A ︒∠∠==,故选:A .4.下列几何体中,俯视图与主视图形状相同的是()A. B. C. D.【答案】C【解析】【分析】本题考查了几何体的三视图,根据俯视图是从上面往下面看到的图形,主视图是从正面看到的图形,据此逐项分析,即可作答.【详解】解:A 、的俯视图与主视图分别是带圆心的圆和三角形,故该选项是错误的;B 、的俯视图与主视图分别是圆和长方形,故该选项是错误的;C 、的俯视图与主视图都是正方形,故该选项是正确的;D 、的俯视图与主视图分别是长方形和梯形,故该选项是错误的;故选:C .5.学校群文阅读活动中,某学习小组五名同学阅读课外书的本数分别为3,5,7,4,5.这组数据的中位数和众数分别是()A.3,4B.4,4C.4,5D.5,5【答案】D【解析】【分析】本题考查中位数和众数.将所给数据从小到大排列,第三和第四个数据的平均数即为中位数,出现次数最多的即为众数.【详解】解:将这组数据从小到大排列:3,4,5,5,7.则这组数据的中位数为5,5出现次数最多,则众数为5,故选:D .6.如图,在平面直角坐标系中,(4,2)D -,将Rt OCD △绕点O 逆时针旋转90︒到OAB 位置,则点B 坐标为()A.(2,4)B.(4,2)C.(4,2)--D.(2,4)-【答案】A【解析】【分析】本题考查坐标与图形,三角形全等的判定和性质.由旋转的性质得到Rt Rt OAB OCD ≌△△,推出4OA OC ==,2AB CD ==即可求解.【详解】解:∵(4,2)D -,∴4OC =,2CD =,∵将Rt OCD △绕点O 逆时针旋转90︒到OAB ,∴Rt Rt OAB OCD ≌△△,∴4OA OC ==,2AB CD ==,∴点B 坐标为(2,4),故选:A .7.我国汉代数学家赵爽在他所著《勾股圆方图注》中,运用弦图(如图所示)巧妙地证明了勾股定理.“赵爽弦图”曾作为2002年第24届国际数学家大会的会徽图案.下列关于“赵爽弦图”说法正确的是()A.是轴对称图形B.是中心对称图形C.既是轴对称图形又是中心对称图形D.既不是轴对称图形也不是中心对称图形【答案】B【解析】【分析】本题考查了轴对称图形的定义、中心对称图形的定义;平面内,一个图形沿一条直线折叠,直线两旁的部分能够完全重合的图形,这个图形就叫做轴对称图形;在平面内,把一个图形绕着某个点旋转180︒,如果旋转后的图形能与原来的图形重合,那么这个图形叫做中心对称图形,即可作答.【详解】解:是中心对称图形,但不是轴对称图形故选:B8.关于x 的一元二次方程220x kx +-=的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.只有一个实数根D.没有实数根【答案】A【解析】【分析】本题考查的是一元二次方程根的判别式,熟知一元二次方程20(0)ax bx c a ++=≠中,当0∆>时,方程有两个不相等的实数根是解题的关键.根据一元二次方程根的判别式解答即可.【详解】解: △()2241280k k =-⨯⨯-=+>,∴方程有两个不相等的实数根.故选:A .9.一次函数24y x n =-+,二次函数2(1)3yx n x =+--,反比例函数1n y x +=在同一直角坐标系中图象如图所示,则n 的取值范围是()A .1n >- B.2n > C.11n -<< D.12n <<【答案】C【解析】【分析】本题考查了反比例函数的图象,一次函数图象,二次函数的图象与系数的关系,根据题意列不等式组,解不等式组即可得到结论,正确地识别图形是解题的关键.【详解】解:根据题意得:24010210n n n -+>⎧⎪-⎪->⎨⎪+>⎪⎩,解得:11n -<<,∴n 的取值范围是11n -<<,故选:C .10.如图,在ABCD Y 中,60B ∠=︒,6cm =AB ,12cm BC =.A 点P 从点A 出发、以1cm/s 的速度沿A D →运动,同时点Q 从点C 出发,以3cm/s 的速度沿C B C →→→⋅⋅⋅往复运动,当点P 到达端点D 时,点Q 随之停止运动.在此运动过程中,线段PQ CD =出现的次数是()A.3B.4C.5D.6【答案】B【解析】【分析】本题考查了平行四边形的判定与性质,一元一次方程的应用,全等三角形的判定与性质,分四种情况:当04t <≤时,当48t <≤时,当812t <≤时,四边形CDPQ 为平行四边形;当04t <≤时,四边形CDPQ 为等腰梯形,分别求解即可,掌握相关知识是解题的关键.【详解】解:在ABCD Y 中,6cm =AB ,12cm BC =,∴6cm CD AB ==12cm AD BC ==,AD BC ∥,∵点P 从点A 出发、以1cm/s 的速度沿A D →运动,∴点P 从点A 出发到达D 点的时间为:()12112s ÷=,∵点Q 从点C 出发,以3cm/s 的速度沿C B C →→→⋅⋅⋅往复运动,∴点Q 从点C 出发到B 点的时间为:1234÷=,∵AD BC ∥,∴DP CQ ∥,当DP CQ =时,四边形CDPQ 为平行四边形,∴PQ CD =,当PQ AB =时,四边形CDPQ 为等腰梯形,∴PQ AB CD ==,设P Q 、同时运动的时间为()s t ,当04t <≤时,123t t -=,∴3t =,此时DP CQ =,四边形CDPQ 为平行四边形,PQ CD =,如图:过点A P 、分别作BC 的垂线,分别交BC 于点M N 、,∴四边形AMNP 是矩形,∴MN AP t ==,AM PN =,∵四边形ABQP 是等腰梯形,∴PQ AB =,PQN B ∠=∠,∵90BAM B ∠=︒-∠,90QPN PQN ∠=︒-∠,∴BAM QPN ∠=∠,∵AM PN BAM QPN AB PQ =⎧⎪∠=∠⎨⎪=⎩,∴()SAS ABM PQN ≌,∴BM QN =,在Rt ABM 中,60B ∠=︒,6cm =AB ,∴9030BAM B ∠=︒-∠=︒,∴13cm 2BM AB ==,∴3cm BM QN ==,∴12333t t =---,∴32t =,此时ABQP 是等腰梯形,PQ AB CD ==,当48t <≤时,()121234t t -=--,∴6t =,此时DP CQ =,四边形CDPQ 为平行四边形,PQ CD =,当812t <≤时,()1238t t -=-,∴9t =,此时DP CQ =,四边形CDPQ 为平行四边形,PQ CD =,综上,当32t =或3t =或6t =或9t =时,PQ CD =,共4次,故选:B .11.如图,等边ABC 钢架的立柱CD AB ⊥于点D ,AB 长12m .现将钢架立柱缩短成DE ,60BED ∠=︒.则新钢架减少用钢()A.(24m -B.(24m -C.(24m -D.(24m-【答案】D【解析】【分析】本题考查了等边三角形的性质,解直角三角形的应用.利用三角函数的定义分别求得DE =,BE AE ==,CD =,利用新钢架减少用钢AC BC CD AE BE DE =++---,代入数据计算即可求解.【详解】解:∵等边ABC ,CD AB ⊥于点D ,AB 长12m ,∴16m 2AD BD AB ===,∵60BED ∠=︒,∴tan 60BD DE︒==∴DE =∴BE AE ===,∵60CBD ∠=︒,∴·tan CD BD CBD =∠==,12m BC AC AB ===,∴新钢架减少用钢AC BC CD AE BE DE=++---(2424m =+-,故选:D .12.如图,在矩形ABCD 中,AF 平分BAC ∠,将矩形沿直线EF 折叠,使点A ,B 分别落在边AD BC 、上的点A ',B '处,EF ,A F '分别交AC 于点G ,H .若2GH =,8HC =,则BF 的长为()A.2029 B.2039 C.2 D.5【答案】A【解析】【分析】本题考查了折叠的性质,相似三角形的判定和性质,勾股定理.先证明AG GF GO ==,设AG GF GO x ===,证明AEG CFG ∽和AA H CFH '∽△△,推出10AE EG x CF x ==和28AA x CF '+=,由2AA AE '=,列式计算求得103x =,在Rt CFG △中,求得CF 的长,据此求解即可.【详解】解:如图,A B ''交AC 于点O ,∵矩形ABCD ,∴AD BC ∥,由折叠的性质得AE A E '=,BF BF '=,四边形ABFE 和四边形A B FE ''都是矩形,∴AB EF OB ' ,∴1AG BF GO B F==',∴AG OG =,∵AF 平分BAC ∠,AB GF ∥,∴GAF BAF GFA ∠=∠=∠,∴AG GF GO ==,设AG GF GO x ===,∵2GH =,8HC =,∴2HO x =-,8210GC =+=,∵AE FC ∥,∴AEG CFG ∽,∴AE EG AG CF GF GC ==,即10AE EG x CF x ==①,∵AA FC '∥,∴AA H CFH '∽△△,∴AA AH CF HC '=,即28AA x CF '+=②,∵2AA AE '=,由①②得285x x +=,解得103x =,则103AG GF GO ===,在Rt CFG △中,3CF ===,103102023=,∴2029AE =,即2029BF =,故答案为:A .第Ⅱ卷(非选择题共102分)注意事项:必须使用0.5毫米黑色墨水签字笔在答题卡上题目所指示区域内作答,作图题可先用铅笔绘出,确认后再用0.5毫来黑色墨水签字笔描清楚,答在试题卷上无效.二、填空题(共6个小题,每小题4分,共24分)13.分解因式:23x x -=___________.【答案】()3x x -【解析】【分析】根据提取公因式法因式分解进行计算即可.【详解】解:()233x x x x -=-,故答案为:()3x x -.【点睛】此题考查了提公因式法因式分解,熟练掌握提取公因式的方法是解本题的关键.14.计算:31211a a a a +-=++________.【答案】1【解析】【分析】本题考查了分式同分母的减法运算,分母不变,分子直接相减,即可作答.【详解】解:312312111111a a a a a a a a a ++-+-===++++.故答案为:1.15.凸七边形的内角和是________度.【答案】900【解析】【分析】本题主要考查了多边形内角和定理.应用多边形的内角和公式计算即可.【详解】解:七边形的内角和()()218072180900n =-⨯︒=-⨯︒=︒,故答案为:900.16.一次函数(31)2y m x =+-的值随x 的增大而增大,请写出一个满足条件的m 的值________.【答案】1(答案不唯一)【解析】【分析】本题考查了一次函数的性质,根据一次函数)的值随x 的增大而增大,得出0k >,写一个满足条件的m 的值即可,根据k 的正负性判断函数增减性是解题的关键.【详解】解:∵(31)2y m x =+-的值随x 的增大而增大,∴310m +>,∴13m >-,∴m 的值可以为:1,故答案为:1(答案不唯一).17.龚扇是自贡“小三绝”之一.为弘扬民族传统文化,某校手工兴趣小组将一个废弃的大纸杯侧面剪开直接当作扇面,制作了一个龚扇模型(如图).扇形外侧两竹条AB AC ,夹角为120︒.AB 长30cm ,扇面的BD 边长为18cm ,则扇面面积为________2cm (结果保留π).【答案】252π【解析】【分析】根据扇形公式进行计算即可.本题考查了扇面面积计算,掌握扇面面积等于两个扇形面积相减是解题的关键.【详解】解:扇面面积=扇形BAC 的面积-扇形DAE 的面积()22120301812030360360ππ⨯⨯-⨯⨯=-30048ππ=-()2252cm π=,故答案为:252π.18.九(1)班劳动实践基地内有一块面积足够大的平整空地.地上两段围墙AB CD ⊥于点O (如图),其中AB 上的EO 段围墙空缺.同学们测得 6.6AE =m , 1.4OE =m ,6OB =m ,5OC =m ,3OD =m .班长买来可切断的围栏16m ,准备利用已有围墙,围出一块封闭的矩形菜地,则该菜地最大面积是________2cm .【答案】46.4【解析】【分析】本题考查了二次函数的应用.要利用围墙和围栏围成一个面积最大的封闭的矩形菜地,那就必须尽量使用原来的围墙,观察图形,利用AO 和OC 才能使该矩形菜地面积最大,分情况,利用矩形的面积公式列出二次函数,利用二次函数的性质求解即可.【详解】解:要使该矩形菜地面积最大,则要利用AO 和OC 构成矩形,设矩形在射线OA 上的一段长为m x ,矩形菜地面积为S ,当8x ≤时,如图,则在射线OC 上的长为16 1.4519.622x x --+-=则()2219.6119.89.848.02222x S x x x x -=⋅=-+=--+,∵102-<,∴当9.8x ≤时,S 随x 的增大而增大,∴当8x =时,S 的最大值为46.4;当8x >时,如图,则矩形菜园的总长为()16 6.6527.6m ++=,则在射线OC 上的长为27.622x -则()()2213.813.8 6.947.61S x x x x x =⋅-=-+=--+,∵10-<,∴当 6.9x <时,S 随x 的增大而减少,∴当8x >时,S 的值均小于46.4;综上,矩形菜地的最大面积是246.4cm ;故答案为:46.4.三、解答题(共8个题,共78分)19.计算:()0tan452|23|︒-+-【答案】1-【解析】【分析】本题考查了含特殊角的三角函数的混合运算,先化简正切值,再运算零次幂,绝对值,算术平方根,再运算加减,即可作答.【详解】解:()0tan 45223︒-+--()01223=-+-113=+-1=-.20.如图,在ABC 中,DE BC ∥,EDF C ∠=∠.(1)求证:BDF A ∠=∠;(2)若45A ∠=︒,DF 平分BDE ∠,请直接写出ABC 的形状.【答案】(1)见解析(2)ABC 是等腰直角三角形.【解析】【分析】本题考查了平行线的判定和性质,等腰直角三角形的判定.(1)由平行证明AED C ∠=∠,由等量代换得到EDF AED ∠=∠,利用平行线的判定“内错角相等,两直线平行”证明DF AC ∥,即可证明BDF A ∠=∠;(2)利用平行线的性质结合角平分线的定义求得90BDE ∠=︒,90B Ð=°,据此即可得到ABC 是等腰直角三角形.【小问1详解】证明:∵DE BC ∥,∴AED C ∠=∠,∵EDF C ∠=∠,∴EDF AED ∠=∠,∴DF AC ∥,∴BDF A ∠=∠;【小问2详解】解:ABC 是等腰直角三角形.∵BDF A ∠=∠,∴45BDF A ∠=∠=︒,∵DF 平分BDE ∠,∴BDF 90BDE 2∠=︒∠=,∵DE BC ∥,∴09018B BDE ∠︒=︒-∠=,∴18045C A B A ∠=︒-∠-∠=︒=∠,∴ABC 是等腰直角三角形.21.为传承我国传统节日文化,端午节前夕,某校组织了包粽子活动.已知七(3)班甲组同学平均每小时比乙组多包20个粽子,甲组包150个粽子所用的时间与乙组包120个粽子所用的时间相同.求甲,乙两组同学平均每小时各包多少个粽子.【答案】甲组平均每小时包100个粽子,乙组平均每小时包80个粽子.【解析】【分析】本题主要考查了分式方程的实际应用.设乙组每小时包x 个粽子,则甲组每小时包()20x +个粽子,根据时间等于总工作量除以工作效率,即可得出关于x 的分式方程,解之并检验后即可得出结果.【详解】解:设乙组平均每小时包x 个粽子,则甲组平均每小时包()20x +个粽子,由题意得:15012020x x=+,解得:80x =,经检验:80x =是分式方程的解,且符合题意,∴分式方程的解为:80x =,∴20100x +=答:甲组平均每小时包100个粽子,乙组平均每小时包80个粽子.22.在Rt ABC △中,90C ∠=︒,O 是ABC 的内切圆,切点分别为D ,E ,F .(1)图1中三组相等的线段分别是CE CF =,AF =________,BD =________;若3AC =,4BC =,则O 半径长为________;(2)如图2,延长AC 到点M ,使AM AB =,过点M 作MNAB ⊥于点N .求证:MN 是O 的切线.【答案】(1)AD ;BE ;1(2)见解析【解析】【分析】(1)根据切线长定理得到3BD BF ==,10==AE AF ,CD CE =,代入求解即可得到答案;(2)证明CAB NAM ≌△△,推出CAB NAM S S =△△,AN AC =,MN BC =,求得()12ABC S AC BC AB r =++⋅ ,()1122AMN S AN AM r MN OG =+⋅+⋅ ,根据CAB NAM S S =△△,列式求得OG r =,根据切线的判定定理,即可得到MN 是O 的切线.【小问1详解】解:连接OE OF ,,设O 半径为r ,∵O 是ABC 的内切圆,切点分别为D ,E ,F ,∴CE CF =,AF AD =,BD BE =;在四边形OFCE 中,90OFC C OEC ∠=∠=∠=︒,∴四边形ODCE 为矩形,又因为OF OE =,∴四边形OFCE 为正方形.则CF CE r ==,则3AF AD r ==-,4BD BE r ==-,在Rt ACB △中,由勾股定理得5AB ==,∴5AD BD AB +==,即345r r -+-=,解得1r =,故答案为:AD ;BE ;1;【小问2详解】证明:连接,,OD OE OF ,OA OM ON ,,,OB ,作OG MN ⊥于点G ,设O 半径为r ,∵MN AB ⊥,∴90ACB ANM ∠=∠=︒,∵CAB NAM ∠=∠,AM AB =,∴CAB NAM ≌△△,∴CAB NAM S S =△△,AN AC =,MN BC =,∵O 是ABC 的内切圆,切点分别为D ,E ,F ,∴OD OE OF r ===,∴()12ABC S AC BC AB r =++⋅ ,同理()1122AMN S AN AM r MN OG =+⋅+⋅ ,∴()()111222AC BC AB r AN AM r MN OG ++⋅=+⋅+⋅,∴OG r =,∵OG MN ⊥,∴MN 是O 的切线.【点睛】本题考查切线的判定,切线长定理,全等三角形的判定和性质,三角形的内切圆及勾股定理,正确引出辅助线解决问题是解题的关键.23.某校为了解学生身体健康状况,从全校600名学生的体质健康测试结果登记表中,随机选取了部分学生的测试数据进行初步整理(如图1).并绘制出不完整的条形统计图(如图2).成绩频数百分比不及格3a 及格b 20%良好45c 优秀3232%图1学生体质健康统计表(1)图1中=a ________,b =________,c =________;(2)请补全图2的条形统计图,并估计该校学生体质健康测试结果为“良好”和“优秀”的总人数;(3)为听取测试建议,学校选出了3名“良好”1名“优秀”学生,再从这4名学生中随机抽取2人参加学校体质健康测试交流会.请用列表或画树状图的方法,计算所抽取的两人均为“良好”的概率.【答案】(1)3%;20;45%(2)补全图见解析,估计该校学生体质健康测试结果为“良好”和“优秀”的总人数为462人;(3)选取的2名学生均为“良好”的概率为12.【解析】【分析】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.也考查了统计图.(1)用“优秀”等级的频数除以它所占的百分比即可得到样本容量;再分别求得a b c、、的值;(2)根据(1)的结果,可补全条形统计图,利用样本估计总体可求解;(3)用列表法表示12种等可能的结果数,再找出抽取的两人均为“良好”的结果数,然后根据概率公式求解.【小问1详解】解:样本容量为3030%100÷=,则3100%3%100a=⨯=,10020%20b=⨯=,45100%45%100c=⨯=,故答案为:3%;20;45%;【小问2详解】解:补全条形统计图,如图:()60045%32%462⨯+=(人),估计该校学生体质健康测试结果为“良好”和“优秀”的总人数为462人;【小问3详解】解:设3名“良好”分别用A 、B 、C 表示,1名“优秀”用D 表示,列表如下:A B C DA (B ,A )(C ,A )(D ,A )B (A ,B )(C ,B )(D ,B )C (A ,C )(B ,C )(D ,C )D (A ,D )(B ,D )(C ,D )由表格可知一共有12种等可能性的结果数,其中选取的2名学生均为“良好”的结果数有6种,∴选取的2名学生均为“良好”的概率为61122=.24.如图,在平面直角坐标系中,一次函数y kx b =+的图象与反比例函数m y x=的图象交于(6,1)A -,(1,)B n 两点.(1)求反比例函数和一次函数的解析式;(2)P 是直线2x =-上的一个动点,PAB 的面积为21,求点P 坐标;(3)点Q 在反比例函数m y x=位于第四象限的图象上,QAB 的面积为21,请直接写出Q 点坐标.【答案】(1)6y x =-,=5y x --(2)点P 坐标为()23-,或()29--,;(3)Q 点坐标为()32-,或1111,22⎛-++- ⎝⎭【解析】【分析】(1)先求出6m =-,再代入(1,)B n ,得出(1,6)B -,再运用待定系数法解一次函数的解析式,即可作答.(2)先得出直线AB 与直线2x =-的交点C 的坐标,根据求不规则面积运用割补法列式化简得137212p ⨯--⨯=,解出p ,即可作答.(3)要进行分类讨论,当点Q 在点B 的右边时和点Q 在点B 的左边时,根据求不规则面积运用割补法列式,其中运用公式法解方程,注意计算问题,即可作答.【小问1详解】解:依题意把(6,1)A -代入m y x =,得出16m =-解得6m =-把(1,)B n 代入6y x =-中,得出661n =-=-∴(1,6)B -则把(6,1)A -和(1,6)B -分别代入y kx b =+得出166k b k b=-+⎧⎨-=+⎩解得15k b =-⎧⎨=-⎩∴=5y x --;【小问2详解】解:记直线AB 与直线2x =-的交点为C∵=5y x --∴当2x =-时,则5253y x =--=-=-∴()23C --,∵P 是直线2x =-上的一个动点,∴设点()2P p -,,∵PAB 的面积为21,∴()()()111122212222A B A B B A PC x PC x PC x x PC x x ⨯⨯--+⨯⨯--=⨯⨯-=⨯⨯-=即137212p ⨯--⨯=∴36p --=解得3p =或9-∴点P 坐标为()23-,或()29--,;【小问3详解】解:由(1)得出6y x=-∵点Q 在反比例函数6y x=-位于第四象限的图象上,∴设点Q 的坐标为()60q q q ⎛⎫-> ⎪⎝⎭,如图:点Q 在点B 的右边时∵QAB 的面积为21,(6,1)A -和(1,6)B -∴()()()()()()116162116616166116222q q q q q ⎛⎫⎛⎫=+⨯+-⨯+⨯+-+⨯+-⨯-⨯-+ ⎪ ⎪⎝⎭⎝⎭整理得()()()49161621766116222q q q q q ⎛⎫⎛⎫=⨯+--⨯+⨯+-⨯-⨯-+ ⎪ ⎪⎝⎭⎝⎭解得3q =(负值已舍去)经检验3q =是原方程的解,∴Q 点坐标为()32-,如图:点Q 在点B 的左边时∵QAB 的面积为21,(6,1)A -和(1,6)B -∴()()()()()6161162116116161616222q q q q q ⎛⎫⎛⎫⎛⎫=+⨯+-⨯+⨯+-⨯+⨯+-⨯-⨯-+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭整理得()()616491621711616222q q q q q ⎛⎫⎛⎫⎛⎫=⨯+-⨯+⨯+--⨯-⨯-+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭解得11145012q -+<=<,符合题意,1114502q -=<,不符合题意,则6111452q +-=-,故1114511145,22Q ⎛⎫-++- ⎪ ⎪⎝⎭综上:Q 点坐标为()32-,或1111,22⎛-++- ⎝⎭.【点睛】本题考查了一次函数与反比例函数的交点问题,几何综合,待定系数法求一次函数的解析式,割补法求面积,公式法解方程,正确掌握相关性质内容是解题的关键.25.为测量水平操场上旗杆的高度,九(2)班各学习小组运用了多种测量方法.(1)如图1,小张在测量时发现,自己在操场上的影长EF 恰好等于自己的身高DE .此时,小组同学测得旗杆AB 的影长BC 为11.3m ,据此可得旗杆高度为________m ;。
专题01实数(共43题)【解析版】--2023年中考数学真题专题讲解汇总
专题01实数(共43题)--2023年中考数学专题训练一、单选题1.(2022年云南省中考数学真题)中国是最早采用正负数表示相反意义的量,并进行负数运算的国家.若零上10℃记作+10℃,则零下10℃可记作()A.10℃B.0℃C.-10℃D.-20℃【答案】C【解析】【分析】零上温度记为正,则零下温度就记为负,则可得出结论.【详解】解:若零上10°C记作+10°C,则零下10°C可记作:−10°C.故选:C.【点睛】此题主要考查正负数的意义,正数与负数表示意义相反的两种量,看清规定哪一个为正,则和它意义相反的就为负.2.(2022年四川省凉山州中考数学真题)−2022的相反数是()A.2022B.−2022C.−12022D.12022【答案】A【解析】【分析】根据相反数的意义即只有符号不同的两个数互为相反数,即可解答.【详解】解:﹣2022的相反数是2022,故选:A.【点睛】本题考查了相反数,熟练掌握相反数的意义是解题的关键.3.(2022年浙江省舟山市中考数学真题)若收入3元记为+3,则支出2元记为()A.1B.-1C.2D.-2【答案】D【解析】【分析】根据正负数的意义可得收入为正,收入多少就记多少即可.【详解】解:∵收入3元记为+3,∴支出2元记为-2.故选:D【点睛】本题考查正、负数的意义;在用正负数表示向指定方向变化的量时,通常把向指定方向变化的量规定为正数,而把向指定方向的相反方向变化的量规定为负数.4.(2022年安徽省中考数学真题)下列为负数的是()A.−2B.3C.0D.−5【答案】D【解析】【分析】根据正负数的意义分析即可;【详解】解:A、−2=2B、3是正数,故该选项不符合题意;C、0不是负数,故该选项不符合题意;D、-5<0是负数,故该选项符合题意.故选D.【点睛】本题考查正负数的概念和意义,熟练掌握绝对值、算术平方根和正负数的意义是解决本题的关键.5.(2022年四川省南充市中考数学试卷)下列计算结果为5的是()A.−(+5)B.+(−5)C.−(−5)D.−|−5|【答案】C【解析】【分析】根据去括号法则及绝对值化简依次计算判断即可.【详解】解:A、-(+5)=-5,不符合题意;B、+(-5)=-5,不符合题意;C、-(-5)=5,符合题意;D、−−5=−5,不符合题意;故选:C.【点睛】题目主要考查去括号法则及化简绝对值,熟练掌握去括号法则是解题关键.6.(2022年甘肃省中考第三次数学模拟测试题)2的相反数是()A.−12B.12C.2D.−2【答案】D【解析】【分析】直接根据相反数的定义解答即可.【详解】解:2的相反数是﹣2.故选:D【点睛】此题考查的是相反数,熟练掌握相反数的定义是解题的关键.7.(2022年云南省中考数学真题)赤道长约为40000000m,用科学记数法可以把数字40000000表示为()A.4×107B.40×106C.400×105D.4000×103【答案】A【解析】【分析】根据科学记数法“把一个大于10的数表示成×10的形式(其中a是整数数位只有一位的数,即a大于或等于1且小于10,n是正整数)”进行解答即可得.【详解】解:40000000=4×107,【点睛】本题考查了科学记数法,解题的关键是掌握科学记数法表示形式中a与n的确定.8.(2022年浙江省舟山市中考数学真题)根据有关部门测算,2022年春节假期7天,全国国内旅游出游251000000人次.数据251000000用科学记数法表示为()A.2.51×108B.2.51×107C.25.1×107D.0.251×109【答案】A【解析】【分析】绝对值大于1的数可以用科学记数法表示,一般形式为a×10n,为正整数,且比原数的整数位数少1,据此可以解答.【详解】解:251000000=2.51×108.故选:A【点睛】本题考查用科学记数法表示较大的数,熟练掌握科学记数法表示较大的数一般形式为×10,其中1≤<10,是正整数,正确确定的值和的值是解题的关键.9.(2022年江苏省连云港市中考数学真题)2021年12月9日,“天宫课堂”正式开课,我国航天员在中国空间站首次进行太空授课,本次授课结束时,网络在线观看人数累计超过14600000人次.把“14600000”用科学记数法表示为()A.0.146×108B.1.46×107C.14.6×106D.146×105【答案】B【解析】【分析】科学记数法的表现形式为×10的形式,其中1≤<10,n为整数,确定n的值时,要看把原数变成a 时,小数点移动了多少位,n的绝对值与小数点移动的位数相同,当原数绝对值大于等于10时,n是正数,当原数绝对值小于1时n是负数;由此进行求解即可得到答案.【详解】解:14600000=1.46×107.【点睛】本题主要考查了科学记数法,解题的关键在于能够熟练掌握科学记数法的具体要求.10.(2022年四川省达州市中考数学真题)2022年5月19日,达州金垭机场正式通航.金亚机场位于达州高新区,占地总面积2940亩,概算投资约为26.62亿元.数据26.62亿元用科学记数法表示为()A.2.662×108元B.0.2662×109元C.2.662×109元D.26.62×1010元【答案】C【解析】【分析】用科学记数法表示较大的数时,一般形式为×10,其中1≤|U<10,为整数.【详解】解:26.62亿=2662000000=2.662×109.故选C.【点睛】本题考查了科学记数法,科学记数法的表示形式为×10的形式,其中1≤|U<10,为整数.确定的值时,要看把原来的数,变成时,小数点移动了多少位,的绝对值与小数点移动的位数相同.当原数绝对值≥10时,是正数;当原数的绝对值<1时,是负数,确定与的值是解题的关键.11.(2022年浙江省金华市中考数学真题)体现我国先进核电技术的“华龙一号”,年发电能力相当于减少二氧化碳排放16320000吨,数16320000用科学记数法表示为()A.1632×104B.1.632×107C.1.632×106D.16.32×105【答案】B【解析】【分析】在用科学记数法表示的大于10的数时,×10的形式中a的取值范围必须是1≤<10,10的指数比原来的整数位数少1.【详解】解:数16320000用科学记数法表示为1.632×107.故选:B.【点睛】本题考查科学记数法,对于一个写成用科学记数法写出的数,则看数的最末一位在原数中所在数位,其中a 是整数数位只有一位的数,10的指数比原来的整数位数少1.12.(2022年安徽省中考数学真题)据统计,2021年我省出版期刊杂志总印数3400万册,其中3400万用科学记数法表示为()A.3.4×108B.0.34×108C.3.4×107D.34×106【答案】C【解析】【分析】将3400万写成34000000,保留1位整数,写成×10(1≤<10)的形式即可,n为正整数.【详解】解:3400万=34000000,保留1位整数为3.4,小数点向左移动7位,因此34000000=3.4×107,故选:C.【点睛】本题考查科学记数法的表示方法,熟练掌握×10(1≤|U<10)中a的取值范围和n的取值方法是解题的关键.13.(2022年四川省凉山州中考数学真题)我州今年报名参加初中学业水平暨高中阶段学校招生考试的总人数为80917)A.8.0917×106B.8.0917×105C.8.0917×104D.8.0917×103【答案】C【解析】【分析】根据科学记数法的定义即可得.【详解】解:科学记数法:将一个数表示成×10的形式,其中1≤<10,为整数,这种记数的方法叫做科学记数法,则80917=8.0917×104,故选:C.【点睛】本题考查了科学记数法,熟记科学记数法的定义(将一个数表示成×10的形式,其中1≤<10,为整数,这种记数的方法叫做科学记数法)是解题关键.确定的值时,要看把原数变成时,小数点移动了多少位,的绝对值与小数点移动的位数相同.14.(2022年四川省成都市中考数学真题)2022年5月17日,工业和信息化部负责人在“2022世界电信和信息社会日”大会上宣布,我国目前已建成5G基站近160万个,成为全球首个基于独立组网模式规模建设5G网络的国家.将数据160万用科学记数法表示为()A.1.6×102B.1.6×105C.1.6×106D.1.6×107【答案】C【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是非负数;当原数的绝对值<1时,n是负数.【详解】解答:解:160万=1600000=1.6×106,故选:C.【点睛】a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.15.(2022年四川省泸州市中考数学真题)2022年5月,四川省发展和改革委员会下达了保障性安居工程2022年第一批中央预算内投资计划,泸州市获得75500000元中央预算内资金支持,将75500000用科学记数法表示为()A.7.55×106B.75.5×106C.7.55×107D.75.5×107【答案】C【解析】【分析】科学记数法表示较大的数形式为a×10n的形式,其中1≤|a|<10,n为整数,10的指数n比原来的整数位数少1.75500000=7.55×107故选:C.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.16.(2022年山东省滨州市中考数学真题)某市冬季中的一天,中午12时的气温是−3℃,经过6小时气温下降了7℃,那么当天18时的气温是()A.10℃B.−10℃C.4℃D.−4℃【答案】B【解析】【分析】根据有理数减法计算−3−7=−10℃即可.【详解】解:∵中午12时的气温是−3℃,经过6小时气温下降了7℃,∴当天18时的气温是−3−7=−10℃.故选B.【点睛】本题考查有理数的减法,掌握有理数的减法法则是解题关键.17.(2022年四川省遂宁市中考数学真题)2022年4月16日,神舟十三号飞船脱离天宫空间站后成功返回地面,总共飞行里程约198000公里.数据198000用科学计数法表示为()A.198×103B.1.98×104C.1.98×105D.1.98×106【答案】C【解析】【分析】用科学记数法表示较大的数时,一般形式为×10,其中1≤|U<10,为整数.【详解】解:198000=1.98×105.故选:C.本题考查了科学记数法,科学记数法的表示形式为×10的形式,其中1≤|U<10,为整数.确定的值时,要看把原来的数变成时,小数点移动了多少位,的绝对值与小数点移动的位数相同.当原数绝对值≥10时,是正数;当原数的绝对值<1时,是负数,确定与的值是解题的关键.18.(2022年浙江省衢州市柯城区九年级第二次模拟考试数学试题)-3的倒数是()A.3B.-3C.13D.−13【答案】D【解析】【分析】根据倒数的定义,即可计算出结果.【详解】解:-3的倒数是−13;故选:D【点睛】本题考查了倒数的定义:乘积是1的两数互为倒数.19.(2022年四川省自贡市中考数学试题)自贡市江姐故里红色教育基地自去年底开放以来,截止今年5月,共接待游客180000余人;人数180000用科学记数法表示为()A.1.8×104B.18×104C.1.8×105D.1.8×106【答案】C【解析】【分析】用移动小数点的方法确定a值,根据整数位数减一原则确定n值,最后写成×10的形式即可.【详解】∵180000=1.8×105,故选C.【点睛】本题考查了科学记数法表示大数,熟练掌握把小数点在左边第一个非零数字的后面确定a,运用整数位数减去1确定n值是解题的关键.20.(2022年四川省自贡市中考数学试题)下列运算正确的是()A.−12=−2B.323−2=1C.6÷3=2D.−=0【答案】B【解析】【分析】根据乘方运算,平方差公式,同底数幂的除法法则,零指数幂的运算法则进行运算即可.【详解】A.−12=1,故A错误;B.3+23−2=32−22=1,故B正确;C.633,故C错误;D.−=1,故D错误.故选:B.【点睛】本题主要考查了整式的运算和实数的运算,熟练掌握平方差公式,同底数幂的除法法则,零指数幂的运算法则,是解题的关键.21.(2022年山东省淄博市高青县中考二模数学试题)−2的倒数是()A.2B.12C.−2D.−12【答案】D【解析】【分析】根据倒数的定义求解即可.【详解】解:-2的倒数是−12,故D正确.故选:D.【点睛】本题主要考查了倒数的定义,熟练掌握乘积为1的两个数互为倒数,是解题的关键.22.(2022年四川省达州市中考数学真题)下列四个数中,最小的数是()A.0B.-2C.1D.2【答案】B【解析】【分析】根据实数的大小比较即可求解.【详解】解:∵−2<0<1<2,∴最小的数是−2,故选B.【点睛】本题考查了实数的大小比较,掌握实数的大小比较是解题的关键.23.(2022年浙江省舟山市中考数学真题)估计6的值在()A.4和5之间B.3和4之间C.2和3之间D.1和2之间【答案】C【解析】【分析】【详解】∵4<6<9∴2<6<3故选:C.【点睛】本题主要考查了无理数的估算能力,要求掌握无理数的基本估算技能,灵活应用.“夹逼法”是估算的一般方法,也是常用方法.24.(2022年浙江省金华市中考数学真题)在−2,12,3,2中,是无理数的是()A.−2B.12C.3D.2【答案】C【解析】【分析】根据无理数的定义判断即可;【详解】解:∵-2,12,2是有理数,3是无理数,故选:C.【点睛】本题考查了无理数的定义:无限不循环小数叫做无理数,如开方开不尽的数的方根、π.25.(2022年四川省凉山州中考数学真题)化简:(−2)2=()A.±2B.-2C.4D.2【答案】D【解析】【分析】先计算(-2)2=4,再求算术平方根即可.【详解】解:−22=4=2,故选:D.【点睛】本题考查算术平方根,熟练掌握算术平方根的定义是解题的关键.26.(2022年山东省滨州市中考数学真题)下列计算结果,正确的是()A.(2)3=5B.8=32C.38=2D.cos30°=12【答案】C【解析】【分析】根据幂的乘方、算术平方根的计算、立方根的化简和特殊角的三角函数值逐一进行计算即可.【详解】解:A、(2)3=2×3=6,该选项错误;B、8=2×2×2=22,该选项错误;C、38=32×2×2=2,该选项正确;D、cos30°=故选:C.【点睛】本题考查了幂的乘方、算术平方根的计算、立方根的化简和特殊角的三角函数值,熟练掌握运算法则是解题的关键.27.(2022年四川省泸州市中考数学真题)与2+15最接近的整数是()A.4B.5C.6D.7【答案】C【解析】【分析】估算无理数的大小即可得出答案.【详解】解:∵12.25<15<16,∴3.5<15<4,∴5.5<2+15<6,∴最接近的整数是6,故选:C.【点睛】本题考查了估算无理数的大小,无理数的估算常用夹逼法,用有理数夹逼无理数是解题的关键.28.(2022年四川省泸州市中考数学真题)−4=()A.−2B.−12C.12D.2【答案】A【解析】【分析】根据算术平方根的定义可求.【详解】解:−4=-2,【点睛】本题考查了算术平方根的定义,要注意正确区分平方根与算术平方根,解题的关键是掌握算术平方根的定义.29.(2022年重庆市中考数学试卷A卷)估计3×(23+5)的值应在()A.10和11之间B.9和10之间C.8和9之间D.7和8之间【答案】B【解析】【分析】先化简3×(23+5)=6+15,利用9<15<16,从而判定即可.【详解】3×(23+5)=6+15,∵9<15<16,∴3<15<4,∴9<6+15<10,故选:B.【点睛】30.(2022年重庆市中考数学真题(B卷))估计54−4的值在()A.6到7之间B.5到6之间C.4到5之间D.3到4之间【答案】D【解析】【分析】根据49<54<64,得到7<54<8,进而得到3<54−4<4,即可得到答案.【详解】解:∵49<54<64,∴7<54<8,∴3<54−4<4,即54−4的值在3到4之间,故选:D.此题考查了无理数的估算,正确掌握无理数的估算方法是解题的关键.二、填空题31.(2022年重庆市中考数学试卷A卷)计算:−4+3−0=_________.【答案】5【解析】【分析】根据绝对值和零指数幂进行计算即可.【详解】解:−4+3−0=4+1=5,故答案为:5.【点睛】本题考查了绝对值和零指数幂的计算,熟练掌握定义是解题的关键.32.(2022年四川省南充市中考数学试卷)比较大小:2−2_______________30.(选填>,=,<)【答案】<【解析】【分析】先计算2−2=14,30=1,然后比较大小即可.【详解】解:2−2=14,30=1,∵14<1,∴2−2<30,故答案为:<.【点睛】本题主要考查有理数的大小比较,负整数指数幂的运算,零次幂的运算,熟练掌握运算法则是解题关键.33.(2022年重庆市中考数学真题(B卷))|−2|+(3−5)0=_________.【答案】3【解析】先计算绝对值和零指数幂,再进行计算即可求解.【详解】解:|−2|+(3−5)0=2+1=3故答案为:3.【点睛】本题考查了实数的运算,解答此题的关键是要掌握负数的绝对值等于它的相反数,任何不为0的数的0次幂都等于1.34.(2022年四川省凉山州中考数学真题)计算:-12+|-2023|=_______.【答案】2022【解析】【分析】先计算有理数的乘方、化简绝对值,再计算加法即可得.【详解】解:原式=−1+2023=2022,故答案为:2022.【点睛】本题考查了含乘方的有理数混合运算,熟练掌握有理数的运算法则是解题关键.三、解答题35.(2022年四川省泸州市中考数学真题)计算:30+2−1+2cos45°−−【答案】2【解析】【分析】根据零指数幂、负整数指数幂、特殊角三角函数、绝对值的性质化简即可.【详解】原式=1+12+2−12=2.本题考查了实数的运算,熟练掌握运算法则是解题的关键.36.(2022年浙江省丽水市中考数学真题)计算:9−(−2022)0+2−1.【答案】52【解析】【分析】根据求一个数的算术平方根、零指数和负整数指数幂的运算法则进行运算,即可求得.【详解】解:9−(−2022)0+2−1=3−1+12=52.【点睛】本题考查了求一个数的算术平方根、零指数和负整数指数幂的运算法则,熟练掌握和运用各运算法则是解决本题的关键.37.(2022年江苏省连云港市中考数学真题)计算:(−10)×−−16+20220.【答案】2【解析】【分析】根据有理数的乘法,二次根式的性质,零指数的计算法则求解即可.【详解】解:原式=5−4+1=2.【点睛】本题主要考查了有理数的乘法,二次根式的性质,零指数,熟知相关计算法则是解题的关键.38.(2022年四川省达州市中考数学真题)计算:(−1)2022+|−2|−−2tan45°.【答案】0【解析】先计算乘方和去绝对值符号,并把特殊角三角函数值代入,再计算乘法,最后计算加减即可求解.【详解】解:原式=1+2-1-2×1=1+2-1-2=0.【点睛】本题考查实数的混合运算,熟练掌握零指数幂的运算、熟记特殊角的三角函数值是解题的关键.39.(2022年浙江省金华市中考数学真题)计算:(−2022)0−2tan45°+|−2|+9.【答案】4【解析】【分析】根据零指数幂,正切三角函数值,绝对值的化简,算术平方根的定义计算求值即可;【详解】解:原式=1−2×1+2+3=1−2+2+3=4;【点睛】本题考查了实数的混合运算,掌握特殊角的三角函数值是解题关键.40.(2022−16+−22.【答案】1【解析】【分析】原式运用零指数幂,二次根式的化简,乘方的意义分别计算即可得到结果.【详解】−16+−22=1−4+4=1故答案为:1【点睛】本题主要考查了实数的运算,熟练掌握零指数幂,二次根式的化简和乘方的意义是解本题的关键.41.(2022−9+3tan30°+2.(2)解不等式组:3(+2)≥2+5 ①2−1<K23 ②.【答案】(1)1;(2)−1≤<2【解析】【分析】(1)本题涉及负整数指数幂、特殊角的三角函数值、绝对值、二次根式化简4个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.(2)分别解出两个不等式的解集再求其公共解.【详解】解:(19+3tan30°+2=2−3+3+2−3=−1+3+2−3=1.(2)3(+2)≥2+5 ①2−1<K23 ②不等式①的解集是x≥-1;不等式②的解集是x<2;所以原不等式组的解集是-1≤x<2.【点睛】本题主要考查了实数的综合运算能力,是各地中考题中常见的计算题型,解决此类题目的关键是熟练掌握负整数指数幂、特殊角的三角函数值、绝对值、二次根式等考点的运算.求不等式组的解集应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.42.(2022年四川省德阳市中考数学真题)计算:12+3.14−0−3tan60°+1−+−2−2.【答案】14【解析】【分析】根据二次根式的化简,零指数幂的定义,特殊角的三角函数值,绝对值的性质以及负整数指数幂的运算法则分别化简后再进行实数的加减法运算.【详解】解:12+(3.14−p0−3tan60°+1−+(−2)−2=23+1−33+3−1+14=14.【点睛】此题考查实数的运算法则,正确掌握二次根式的化简,零指数幂的定义,特殊角的三角函数值,绝对值的性质以及负整数指数幂的运算法则是解题的关键.43.(2022年重庆市中考数学真题(B卷))对于一个各数位上的数字均不为0的三位自然数N,若N能被它的各数位上的数字之和m整除,则称N是m的“和倍数”.例如:∵247÷(2+4+7)=247÷13=19,∴247是13的“和倍数”.又如:∵214÷(2+1+4)=2147=30⋯⋯4,∴214不是“和倍数”.(1)判断357,441是否是“和倍数”?说明理由;(2)三位数A是12的“和倍数”,a,b,c分别是数A其中一个数位上的数字,且>>.在a,b,c中任选两个组成两位数,其中最大的两位数记为op,最小的两位数记为op,若op+op16为整数,求出满足条件的所有数A.【答案】(1)357不是15“和倍数”,441是9的“和倍数”;理由见解析(2)数A可能为732或372或516或156【解析】【分析】(1)根据题目中给出的“和倍数”定义进行判断即可;(2)先根据三位数A是12的“和倍数”得出++=12,根据>>,是最大的两位数,是最小的两位数,得出+=10+2+10,op+op16=(k为整数),结合++=12得出=15−2,根据已知条件得出1<<6,从而得出=3或=5,然后进行分类讨论即可得出答案.(1)解:∵357÷3+5+7=357÷15=23⋅⋅⋅⋅⋅⋅12,∴357不是15“和倍数”;∵441÷4+4+1=441÷9=49,∴441是9的“和倍数”.(2)∵三位数A是12的“和倍数”,∴++=12,∵>>,∴在a,b,c中任选两个组成两位数,其中最大的两位数=10+,最小的两位数=10+,∴+=10++10+=10+2+10,∵op+op16为整数,设op+op16=(k为整数),则10r2r1016=,整理得:5+5+=8,根据++=12得:+=12−,∵>>,∴12−>,解得<6,∵“和倍数”是各数位上的数字均不为0的三位自然数,∴>>>0,∴>1,∴1<<6,把+=12−代入5+5+=8得:512−+=8,整理得:=15−2,∵1<<6,k为整数,∴=3或=5,当=3时,+=12−3=9,∵>>>0,∴>3,0<<3,∴=7,=3,=2,或=8,=3,=1,要使三位数A是12的“和倍数”,数A必须是一个偶数,当=7,=3,=2时,组成的三位数为732或372,∵732÷12=61,∴732是12的“和倍数”,∵372÷12=31,∴372是12的“和倍数”;当=8,=3,=1时,组成的三位数为318或138,∵318÷12=26⋅⋅⋅⋅⋅⋅6,∴318不是12的“和倍数”,∵138÷12=11⋅⋅⋅⋅⋅⋅6,∴138不是12的“和倍数”;当=5时,+=12−5=7,∵>>>0,∴5<<7,∴=6,=5,=1,组成的三位数为516或156,∵516÷12=43,∴516是12的“和倍数”,∵156÷12=13,∴156是12的“和倍数”;综上分析可知,数A可能为732或372或516或156.【点睛】本题主要考查了新定义类问题,数的整除性,列代数式,利用数位上的数字特征和数据的整除性,是解题的关键,分类讨论是解答本题的重要方法,本题有一定的难度.。
2022年四川省自贡市中考数学真题(解析版)
四川省自贡市初2022届毕业生学业考试数 学本试题卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共6页,满分150分.答卷前,考生务必将自己的姓名,准考证号填写在答题卡上;答卷时,须将答案答在答题卡上,在本试题卷、草稿纸上答题无效,考试结束后,将试题卷和答题卡一并交回.第Ⅰ卷 选择题 (共48分)注意事项:必须使用2B 铅笔将答案标号填涂在答题卡对应题目标号的位置上,如需改动,用橡皮擦擦干净后,再选涂答案标号.一.选择题(共12个小题,每小题4分,共48分;在每题给出的四个选项中,只有一项是符合题目要求的)1. 如图,直线,AB CD 相交于点O ,若130Ð=o,则2Ð的度数是( )A. 30°B. 40°C. 60°D. 150°【答案】A【解析】【分析】根据对顶角相等可得2=1=30Ðа.【详解】解:∵130Ð=o ,1Ð与2Ð是对顶角,∴2=1=30Ðа.故选:A .【点睛】本题考查了对顶角,解题的关键是熟练掌握对顶角的性质:对顶角相等.2. 自贡市江姐故里红色教育基地自去年底开放以来,截止今年5月,共接待游客180000余人;人数180000用科学记数法表示为( )A. 41.810´ B. 41810´ C. 51.810´ D. 61.810´【答案】C【解析】【分析】用移动小数点的方法确定a 值,根据整数位数减一原则确定n 值,最后写成10n a ´的形式即可.【详解】∵180000=51.810´,故选C .【点睛】本题考查了科学记数法表示大数,熟练掌握把小数点在左边第一个非零数字的后面确定a ,运用整数位数减去1确定n 值是解题的关键.3. 如图,将矩形纸片ABCD 绕边CD 所在的直线旋转一周,得到的立体图形是( )A. B.C.D.【答案】A【解析】【分析】根据矩形绕一边旋转一周得到圆柱体示来解答.【详解】解:矩形纸片ABCD 绕边CD 所在的直线旋转一周,得到的立体图形是圆柱体.故选:A .【点睛】本题考查了点、线、面、体,熟练掌握“面动成体”得到的几何体的形状是解题的关键.4. 下列运算正确的是( )A. ()212-=- B. 1=C. 632a a a÷= D. 0102022æö-=ç÷èø【答案】B【解析】【分析】根据乘方运算,平方差公式,同底数幂的除法法则,零指数幂的运算法则进行运算即可.【详解】A.()211-=,故A 错误;B.221=-=,故B 正确;C.633a a a ÷=,故C 错误;D.0112022æö-=ç÷èø,故D 错误.故选:B .【点睛】本题主要考查了整式的运算和实数的运算,熟练掌握平方差公式,同底数幂的除法法则,零指数幂的运算法则,是解题的关键.5. 如图,菱形ABCD 对角线交点与坐标原点O 重合,点()2,5A -,则点C 的坐标为( )A. ()5,2- B. ()2,5- C. ()2,5 D. ()2,5--【答案】B【解析】【分析】根据菱形的中心对称性,A 、C 坐标关于原点对称,利用横反纵也反的口诀求解即可.【详解】∵菱形是中心对称图形,且对称中心为原点,∴A 、C 坐标关于原点对称,∴C 的坐标为()2,5-,故选C .【点睛】本题考查了菱形的中心对称性质,原点对称,熟练掌握菱形的性质,关于原点对称点的坐标特点是解题的关键.6. 剪纸与扎染、龚扇被称为自贡小三绝,以下学生剪纸作品中,轴对称图形是( )A. B.C. D.【答案】D【解析】【分析】根据轴对称图形的定义判断即可.【详解】∵不是轴对称图形,∴A 不符合题意;∵不是轴对称图形,∴B 不符合题意;∵不是轴对称图形,∴C 不符合题意;∵是轴对称图形,∴D 符合题意;故选D .【点睛】本题考查了轴对称图形即沿着某条直线折叠,直线两旁的部分完全重合,熟练掌握定义是解题的关键.7. 如图,四边形ABCD 内接于⊙O ,AB 为⊙O 的直径,20ABD Ð=o ,则BCD Ð的度数是( )A. 90°B. 100°C. 110°D. 120°【答案】C【解析】【分析】因为AB 为⊙O 的直径,可得90ADB Ð=o ,70DAB Ð=o ,根据圆内接四边形的对角互补可得BCD Ð的度数,即可选出答案.【详解】∵AB 为⊙O 的直径,∴90ADB Ð=o ,又∵20ABD Ð=o ,∴90902070DAB ABD Ð=--Ð==o o o o ,又∵四边形ABCD 内接于⊙O ,∴180BCD DAB Ð+Ð=o ,∴01101801870BCD DAB Ð=Ð=--=o o o o ,故答案选:C .【点睛】本题考查了圆内接四边形性质,掌握半圆(或直径)所对圆周角是直角,是解答本题的关键.8. 六位同学的年龄分别是13、14、15、14、14、15岁,关于这组数据,正确说法是( )A. 平均数是14B. 中位数是14.5C. 方差3D. 众数是14【答案】D【解析】【分析】分别求出平均数、中位数、方差、众数后,进行判断即可.【详解】解:A .六位同学的年龄的平均数为1314141415158566+++++=,故选项错误,不符合题意;B .六位同学的年龄按照从小到大排列为:13、14、14、14、15、15,的∴中位数为1414142+=,故选项错误,不符合题意;C .六位同学的年龄的方差为222858585(13)3(14)2(15)17666636-+-+-=,故选项错误,不符合题意;D .六位同学的年龄中出现次数最多的是14,共出现3次,故众数为14,故选项正确,符合题意.故选:D .【点睛】此题考查了平均数、中位数、方差、众数,熟练掌握平均数、中位数、方差、众数的求法是解题的关键.9. 等腰三角形顶角度数比一个底角度数的2倍多20°,则这个底角的度数为( )A. 30°B. 40°C. 50°D. 60°【答案】B【解析】【分析】这个底角的度数为x ,则顶角的度数为(2x +20°),根据三角形的内角和等于180°,即可求解.【详解】解:设这个底角度数为x ,则顶角的度数为(2x +20°),根据题意得:2220180x x ++°=°,解得:40x =°,即这个底角的度数为40°.故选:B【点睛】本题主要考查了等腰三角形的性质,三角形的内角和定理,熟练掌握等腰三角形的性质,三角形的内角和定理是解题的关键.10. P 为⊙O 外一点,PT 与⊙O 相切于点T ,10OP =,30OPT Ð=°,则PT 的长为( )A. B. 5 C. 8 D. 9【答案】A【解析】【分析】连接OT ,根据切线的性质求出求90OTP Ð=°,结合30OPT Ð=°利用含30° 的直角三角形的性质求出OT ,再利用勾股定理求得PT 的长度即可.【详解】解:连接OT ,如下图.的∵PT 与⊙O 相切于点T ,∴90OTP Ð=° .∵30OPT Ð=°,10OP =,∴1110522OT OP ==´=,∴PT ===.故选:A .【点睛】本题考查了切线的性质,含30°的直角三角形的性质,勾股定理,求出OT 的长度是解答关键.11. 九年级2班计划在劳动实践基地内种植蔬菜,班长买回来8米长的围栏,准备围成一边靠墙(墙足够长)的菜园,为了让菜园面积尽可能大,同学们提出了围成矩形,等腰三角形(底边靠墙),半圆形这三种方案,最佳方案是( )A. 方案1B. 方案2C. 方案3D. 方案1或方案2【答案】C【解析】【分析】分别计算出三个方案的菜园面积进行比较即可.【详解】解:方案1,设AD x =米,则(82)AB x =-米,则菜园的面积(82)x x =-228x x=-+22(2)8x =--+当2x =时,此时散架的最大面积为8平方米;方案2,当∠90BAC °=时,菜园最大面积14482=´´=平方米;方案3,半圆的半径8,p =此时菜园最大面积28()322p p p´==平方米>8平方米,故选:C【点睛】本题主要考查了同周长的几何图形的面积的问题,根据周长为8米计算三个方案的边长及半径是解本题的关键.12. 已知A (−3,−2) ,B (1,−2),抛物线y =ax 2+bx +c (a >0)顶点在线段AB 上运动,形状保持不变,与x 轴交于C ,D 两点(C 在D 的右侧),下列结论:①c ≥−2 ;②当x >0时,一定有y 随x 的增大而增大;③若点D 横坐标最小值为−5,点C 横坐标的最大值为3;④当四边形ABCD 为平行四边形时,a =12.其中正确的是( )A. ①③B. ②③C. ①④D. ①③④【答案】D【解析】【分析】根据顶点在线段AB 上抛物线与y 轴的交点坐标为(0,c )可以判断出c 的取值范围,可判断①;根据二次函数的增减性判断②;先确定x =1时,点D 的横坐标取得最大值,然后根据二次函数的对称性求出此时点C 的横坐标,即可判断③;令y =0,利用根与系数的关系与顶点的纵坐标求出CD 的长度的表达式,然后根据平行四边形的对边平行且相等可得AB =CD ,然后列出方程求出a 的值,判断④.【详解】解:∵点A ,B 的坐标分别为(-3,-2)和(1,-2),∴线段AB 与y 轴的交点坐标为(0,-2),又∵抛物线的顶点在线段AB 上运动,抛物线与y 轴的交点坐标为(0,c ),的∴C≥-2,(顶点在y轴上时取“=”),故①正确;∵抛物线的顶点在线段AB上运动,开口向上,∴当x>1时,一定有y随x的增大而增大,故②错误;若点D的横坐标最小值为-5,则此时对称轴为直线x=-3,根据二次函数的对称性,点C的横坐标最大值为1+2=3,故③正确;令y=0,则ax2+bx+c=0,设该方程的两根为x1,x2,则x1+x2=-ba,x1x2=ca,∴CD2=( x1-x2) 2=( x1+x2) 2-4x1x22224 ()4b c b aca a a-=--´=,根据顶点坐标公式,2424ac ba-=-,∴248ac ba-=-,即248b aca-=,∵四边形ACDB为平行四边形,∴CD=AB=1-(-3)=4,∴8a=42=16,解得a=12,故④正确;综上所述,正确的结论有①③④.故选:D..【点睛】本题考查了二次函数的综合题型,主要利用了二次函数的顶点坐标,二次函数的对称性,根与系数的关系,平行四边形的对边平行且相等的性质,要注意顶点在y轴上的情况.第Ⅱ卷非选择题(共102分)注意事项:必须使用0.5毫米黑色墨水铅签字笔在答题卡上题目所指示区域内作答,作图题可先用铅笔绘出,确认后用0.5毫米黑色墨水铅签字笔描清楚,答在试题卷上无效.二.填空题(共6个小题,每小题4分,共24分)13. 计算:|﹣2|=___.【答案】2【解析】【分析】根据一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0,即可求解【详解】∵﹣2<0,∴|﹣2|=2故答案为:214. 分解因式:2m m +=___________.【答案】(1)m m +【解析】【分析】利用提公因式法进行因式分解.【详解】解:2(1)m m m m +=+故答案为:(1)m m +.【点睛】本题考查提公因式法因式分解,掌握提取公因式的技巧正确计算是解题关键.15. 化简:22a 3a 42a 3a 2a 4a 4--×+-+++ =____________.【答案】2a a +【解析】【分析】根据分式混合运算的顺序,依次计算即可.【详解】22a 3a 42a 3a 2a 4a 4--×+-+++=2a 3(a 2)(a 2)2a 3a 2(a 2)-+-×+-++22222a a a a a -=+=+++故答案为2a a +【点睛】本题考查了分式的混合运算,熟练掌握约分,通分,因式分解的技巧是解题的关键.16. 为了比较甲、乙两鱼池中的鱼苗数目,小明从两鱼池中各捞出100条鱼苗,每条做好记号,然后放回原鱼池;一段时间后,在同样的地方,小明再从甲、乙两鱼池中各捞出100条鱼苗,发现其中有记号的鱼苗分别是5条、10条,可以初步估计鱼苗数目较多的是____________鱼池(填甲或乙)【答案】甲【解析】【分析】先计算出有记号鱼的频率,再用频率估计概率,利用概率计算鱼的总数,比较两个鱼池中的总数即可得到结论.【详解】解:设甲鱼池鱼的总数为x条,则鱼的概率近似5100100x==,解得x=2000;设乙鱼池鱼的总数为y条,则鱼的概率近似10100100y==,解得y=1000;20001000>Q,\可以初步估计鱼苗数目较多的是甲鱼池,故答案为:甲.【点睛】本题主要考查了频率=所求情况数与总情况数之比,关键是根据有记号的鱼的频率得到相应的等量关系.17. 一块圆形玻璃镜面碎成了几块,其中一块如图所示,测得弦AB长20厘米,弓形高CD为2厘米,则镜面半径为____________厘米.【答案】26【解析】【分析】令圆O的半径为OB=r,则OC=r-2,根据勾股定理求出OC2+BC2=OB2,进而求出半径.【详解】解:如图,由题意,得OD垂直平分AB,∴BC=10厘米,令圆O的半径为OB=r,则OC=r-2,在Rt△BOC中OC2+BC2=OB2,∴(r-2)2+102=r2,解得r =26.故答案为:26.【点睛】本题考查垂径定理和勾股定理求线段长,熟练地掌握圆的基本性质是解决问题的关键.18. 如图,矩形ABCD 中,42AB BC ==,,G 是AD 的中点,线段EF 在边AB 上左右滑动;若1EF =,则GE CF +的最小值为____________.【答案】【解析】【分析】如图,作G 关于AB 的对称点G ',在CD 上截取CH =1,然后连接HG '交AB 于E ,在EB 上截取EF =1,此时GE +CF 的值最小,可得四边形EFCH 是平行四边形,从而得到G 'H =EG'+EH =EG +CF ,再由勾股定理求出HG '的长,即可求解.【详解】解:如图,作G 关于AB 的对称点G ',在CD 上截取CH =1,然后连接HG '交AB 于E ,在EB 上截取EF =1,此时GE +CF 的值最小,∴G 'E =GE ,AG =AG ',∵四边形ABCD 是矩形,∴AB ∥CD ,AD =BC =2∴CH ∥EF ,∵CH =EF =1,∴四边形EFCH 是平行四边形,∴EH =CF ,∴G 'H =EG'+EH =EG +CF ,∵AB =4,BC =AD =2,G 为边AD 的中点,∴AG =AG '=1∴DG ′=AD +AG '=2+1=3,DH =4-1=3,∴HG ¢===,即GE CF +的最小值为故答案为:【点睛】此题主要考查了利用轴对称求最短路径问题,矩形的性质,勾股定理等知识,确定GE +CF 最小时E ,F 位置是解题关键.三.解答题(共8个题,共78分)19. 解不等式组:365432x x x <ìí+>+î,并在数轴上表示其解集.【答案】-1<x <2,数轴表示见解析【解析】【分析】分别解两个不等式,找出其解集的公共部分即不等式组的解集,再把不等式组的解集在数轴上表示出来即可.【详解】解:365432x x x <ìí+>+î①②解不等式①,得:x <2,解不等式②,得:x >-1,则不等式组的解集为-1<x <2,将不等式的解集表示在数轴上如下:【点睛】本题考查了解一元一次不等式组和在数轴上表示不等式组的解集,正确掌握解不等式组的方法是解决本题的关键.20. 如图,△ABC 是等边三角形,,D E 在直线BC 上,DB EC =.求证:D E Ð=Ð .【答案】详见解析【解析】【分析】由等边三角形的性质以及题设条件,可证△ADB ≌△AEC ,由全等三角形的性质可得D E Ð=Ð.【详解】证明:∵△ABC 是等边三角形,∴AB=AC ,∠ABC =∠ACB ,∴∠ABD =∠ACE ,在△ADB 和△AEC 中,AB AC ABD ACE DB EC =ìï=íï=î∠∠∴△ADB ≌△AEC (SAS ),∴D E Ð=Ð.【点睛】本题考查等边三角形的性质、补角的性质、全等三角形的判定和性质,综合性强,但是整体难度不大.21. 学校师生去距学校45千米的吴玉章故居开展研学活动,骑行爱好者张老师骑自行车先行2小时后,其余师生乘汽车出发,结果同时到达;已知汽车速度是自行车速度的3倍,求张老师骑车的速度.【答案】张老师骑车的速度为15千米/小时【解析】【分析】实际应用题的解题步骤“设、列、解、答”,根据问题设未知数,找到题中等量关系张老师先走2小时,结果同时达到列分式方程,求解即可.【详解】解:设张老师骑车速度为x 千米/小时,则汽车速度是3x 千米/小时,的根据题意得:454523x x=+,解之得15x =,经检验15x =是分式方程的解,答:张老师骑车的速度为15千米/小时.【点睛】本题考查分式方程解实际应用题,根据问题设未知数,读懂题意,找到等量关系列出分式方程是解决问题的关键.22. 为了解学生每周参加课外兴趣小组活动累计时间t (单位:小时),学校采用随机抽样的方法,对部分学生进行了问卷调查,调查结果按03t £<,34t £<,45t £<,5t ³分为四个等级,分别用A 、B 、C 、D 表示;下图是受损的调查统计图,请根据图上残存信息解决以下问题:(1)求参与问卷调查的学生人数n ,并将条形统计图补充完整;(2)全校共有学生2000人,试估计学校每周参加课外兴趣小组活动累计时间不少于4小时的学生人数;(3)某小组有4名同学,A 、D 等级各2人,从中任选2人向老师汇报兴趣活动情况,请用画树状图或列表法求这2人均属D 等级的概率.【答案】(1)100,图形见解析(2)900(3)16【解析】【分析】(1)利用抽查的学生总数=A 等级的人数除以对应的百分比计算,求出总人数,即可求D 等级的人数,即可求解;(2)用全校的学生人数乘以每周参加课外兴趣小组活动累计时间不少于4小时的学生所占的百分比,即可求解;(3)设A 等级2人分别用A 1,A 2表示,D 等级2人分别用D 1,D 2表示,画出树状图,即可求解.【小问1详解】的解:根据题意得:4010040%n ==;∴D 等级的人数为100-40-15-10=35(人),补全条形统计图如下:【小问2详解】解:学校每周参加课外兴趣小组活动累计时间不少于4小时的学生人数为10352000900100+´=(人);【小问3详解】解:设A 等级2人分别用A 1,A 2表示,D 等级2人分别用D 1,D 2表示,随机选出2人向老师汇报兴趣活动情况的树状图如下:一共有12中等可能结果,其中这2人均属D 等级的有2种,∴这2人均属D 等级的概率为21126=.【点睛】本题考查的是条形统计图和扇形统计图的综合运用,以及树状图法和列表法,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.23. 如图,在平面直角坐标系中,一次函数y kx b =+的图象与反比例函数n y x=的图象交于()()1,2,,1A B m -- 两点.(1)求反比例函数和一次函数的解析式;(2)过点B 作直线l ∥y 轴,过点A 作直线AD l ^于D ,点C 是直线l 上一动点,若2DC DA = ,求点C 的坐标.【答案】(1)y =2x-,y =﹣x +1; (2)(2,8)或(2,﹣4)【解析】【分析】(1)把点A (﹣1,2)代入n y x=求出n 的值,即可得到反比例函数的解析式,把B (m ,﹣1)代入求得的反比例函数的解析式得到m 的值,把A 、B 两点的坐标代入一次函数y kx b =+,求出k ,b 的值,即可得出一次函数的解析式;(2)根据已知条件确定AD 的长及点D 的坐标,由DC =2AD 得到DC =6,从而求得点C 的坐标.【小问1详解】解:把点A (﹣1,2)代入n y x =得,2=1n -,解得n =﹣2,∴反比例函数的解析式是y =2x -,把B (m ,﹣1)代入y =2x -得,﹣1=2m-,解得m =2,∴ 点B 的坐标是(2,﹣1),把A (﹣1,2),B (2,﹣1)代入y kx b =+得,221k b k b -+=ìí+=-î,解得11k b =-ìí=î,∴一次函数的解析式为y =﹣x +1;【小问2详解】解:∵直线l P y 轴,AD ⊥l ,点A 的坐标是(﹣1,2),点B 的坐标是(2,﹣1),∴ 点D 的坐标是(2,2),∴ AD =2-(﹣1)=3,∵ DC =2DA ,∴ DC =6,设点C 的坐标为(2,m ),则|m -2|=6,∴ m -2=6或m -2=﹣6,解得m =8或﹣4,∴ 点C 的坐标是(2,8)或(2,﹣4)【点睛】此题是一次函数与反比例函数综合题,考查的是反比例函数与一次函数的交点问题,数形结合思想的应用是解答此题的关键.24. 如图,用四根木条钉成矩形框ABCD ,把边BC 固定在地面上,向右推动矩形框,矩形框的形状会发生改变(四边形具有不稳定性).(1)通过观察分析,我们发现图中线段存在等量关系,如线段EB 由AB 旋转得到,所以EB AB =.我们还可以得到FC = , EF = ;(2)进一步观察,我们还会发现EF ∥AD ,请证明这一结论;(3)已知BC 30,DC 80==cmcm ,若BE 恰好经过原矩形DC 边的中点H ,求EF 与BC 之间的距离.【答案】(1)CD,AD;(2)见解析;(3)EF于BC之间的距离为64cm.【解析】【分析】(1)由推动矩形框时,矩形ABCD的各边的长度没有改变,可求解;(2)通过证明四边形BEFC是平行四边形,可得结论;(3)由勾股定理可求BH的长,再证明△BCH∽△BGE,得到BH CHBE EG=,代入数值求解EG,即可得到答案.【小问1详解】解:∵把边BC固定在地面上,向右推动矩形框,矩形框的形状会发生改变(四边形具有不稳定性).∴由旋转的性质可知矩形ABCD的各边的长度没有改变,∴AB=BE,EF=AD,CF=CD,故答案为:CD,AD;【小问2详解】解:∵四边形ABCD是矩形,∴AD P BC,AB=CD,AD=BC,∵AB=BE,EF=AD,CF=CD,∴BE=CF,EF=BC,∴四边形BEFC是平行四边形,∴EF P BC,∴EF P AD;【小问3详解】解:如图,过点E作EG⊥BC于点G,∵DC=AB=BE=80cm,点H是CD的中点,∴CH=DH=40cm,在Rt△BHC中,∠BCH=90°,BH50==(cm),∵EG⊥BC,∴∠EGB=∠BCH=90°,∴CH P EG,∴△BCH∽△BGE,∴BH CH BE EG=,∴5040 80EG=,∴EG=64,∵EF P BC,∴EF与BC之间的距离为64cm.【点睛】此题考查了矩形的性质、平行四边形的判定和性质、勾股定理、相似三角形的判定和性质等知识,灵活运用这些性质解决问题是解题的关键.25. 某数学兴趣小组自制测角仪到公园进行实地测量,活动过程如下:(1)探究原理:制作测角仪时,将细线一段固定在量角器圆心O 处,另一端系小重物G .测量时,使支杆OM 、量角器90°刻度线ON 与铅垂线OG 相互重合(如图①),绕点O 转动量角器,使观测目标P 与直径两端点,A B 共线(如图②),此目标P 的仰角POC GON Ð=Ð.请说明两个角相等的理由.(2)实地测量:如图③,公园广场上有一棵树,为了测量树高,同学们在观测点K 处测得顶端P 的仰角60POQ Ð=o ,观测点与树的距离KH 为5米,点O 到地面的距离OK 为1.5米;求树高PH . 1.73»,结果精确到0.1米)(3)拓展探究:公园高台上有一凉亭,为测量凉亭顶端P 距离地面高度PH (如图④),同学们讨论,决定先在水平地面上选取观测点,E F (,,E F H 在同一直线上),分别测得点P 的仰角,a b ,再测得,E F 间的距离m ,点12,O O 到地面的距离12,O E O F 均为1.5米;求PH (用,,m a b 表示).【答案】(1)证明见解析(2)10.2米(3)tan tan 1.5tan tan m a b a b æö+ç÷-èø米【解析】【分析】(1)根据图形和同角或等角的余角相等可以证明出结果;(2)根据锐角三角函数和题意,可以计算出PH 的长,注意最后的结果;(3)根据锐角三角函数和题目中的数据,可以用含a b 、、m 的式子表示出PH .【小问1详解】证明:∵9090,COG AON Ð=°Ð=°∴POC CON GON CONÐ+Ð=Ð+Ð∴POC GONÐ=Ð【小问2详解】由题意得:KH =OQ =5米,OK =QH =1.5米,9060,OQP POQ Ð=°Ð=°,在Rt △POQ 中tan ∠POQ =5PQ PQ OQ ==∴PQ =∴15102PH PQ QH =+=+»..(米)故答案为:10.2米.【小问3详解】由题意得:1212, 1.5O O EF m O E O F DH m =====,由图得:21==tan tan PD PD O D O Db a 21tan tan PD PD O D O D b a==,∴1221O O O D O D=-∴tan tan PD PD m b a=-∴tan tan tan tan m PD a ba b =-∴tan tan 1.5tan tan m PH PD DH a b a b æö=+=+ç÷-èø米故答案为:tan tan 1.5tan tan m a b a b æö+ç÷-èø米【点睛】本题考查解直角三角形中的仰角、俯角问题,解答本题的关键是明确题意,利用数形结合的思想解答.26. 已知二次函数()20y ax bx c a =++¹.(1)若1a =-,且函数图象经过()0,3,()2,5-两点,求此二次函数的解析式,直接写出抛物线与x 轴交点及顶点的坐标;(2)在图①中画出(1)中函数的大致图象,并根据图象写出函数值3y ³时自变量x 的取值范围;(3)若0a b c ++=且a b c >>,一元二次方程20ax bx c ++= 两根之差等于a c -,函数图象经过121P c,y æö-ç÷èø,()132Q c,y +两点,试比较12,y y 的大小 .【答案】(1)()1,0,()3,0-;()1,4-;(2)见详解;20x -££;(3)21y y >.【解析】【分析】(1)利用待定系数法可求出抛物线的解析式,可得所求点的坐标;(2)由题意画出图象,结合图象写出x 的取值范围;(3)根据题意分别求出1a =,1b c =--,将点P 点Q 的坐标代入分别求出12,y y ,利用作差法比较大小即可.【小问1详解】解:∵1a =-,且函数图象经过()0,3,()2,5-两点,∴11335422a a c c a b c b =-=-ììïï=Þ=ííïï-=++=-îî,∴二次函数的解析式为223y x x =--+,∵当0y =时,则2023x x =--+,解得11x =,23x =-,∴抛物线与x 轴交点的坐标为()1,0,()3,0-,∵()222314y x x x =--+=-++,∴抛物线的顶点的坐标为()1,4-.【小问2详解】解:函数的大致图象,如图①所示:当3y =时,则2323x x =--+,解得10x =,22x =-,由图象可知:当20x -££时,函数值3y ³.【小问3详解】解:∵0a b c ++=且a b c >>,∴0a >,0c <,b a c =--,且一元二次方程20ax bx c =++必有一根为11x =,∵一元二次方程20ax bx c ++= 两根之差等于a c -,且120c x x a =<∴方程的另一个根为21x c a =+-,∴抛物线的对称轴为直线:12c a x -=+,∴122b c a a --=+,∴22b a ac a -=+-,∴22a c a ac a +=+-,∴()()10a a c --=,∵a c >,∴1a =,1b c =--,∴()21y x c x c=-++∵121P c,y æö-ç÷èø,()132Q c,y +,∴()2211111122224y c c c c c c æöæö=--+-+=+-ç÷ç÷èøèø,()()()2221311363y c c c c c c =+-+++=+,∴()2222111596324241664y y c c c c c æöæö-=+-+-=+-ç÷ç÷èøèø,∵b >c ,∴-1-c >c ,∴12c <-,∴259401664c æö+->ç÷èø,∴21y y >.【点睛】本题是二次函数综合题,考查了二次函数的性质,待定系数法求解析式,数形结合的思想,求出b 与c 的关系是解题的关键.。
四川省自贡市2022年中考数学真题试题(含答案)
四川省自贡市初 2022届毕业生学业考试数学试卷一、选择题〔每题4分,共48分〕1.计算〔-1〕 2022的结果是〔 〕A .-1B .1C .- 2022D . 20222.以下成语所描述的事件为随机事件的是〔 〕A .水涨船高B .守株待兔C .水中捞月D .缘木求鱼3.380亿用科学记数法表示为〔 〕A .38×109B .0.38×1013C .3.8×1011D .3.8×10104.不等式组⎩⎨⎧->+24321x x 的解集在数轴上表示正确的选项是〔 〕 A .B . C . D .5.如图,直线a ∥b ,点B 在直线a 上,且AB ⊥BC ,∠1=35°,那么∠2=〔 〕A .45°B .50°C .55°D .60°6.以下图形中,是轴对称图形,但不是中心对称图形的是〔 〕A .B .C .D .7.对于一组统计数据3,3,6,5,3.以下说法错误的选项是〔 〕A .众数是3B .平均数是4C .方差是1.6D .中位数是68.以下几何体中,主视图是矩形的是〔 〕A .B .C .D .9.以下四个命题中,其正确命题的个数是〔 〕①假设a >b ,那么cb c a >; ②垂直于弦的直径平分弦; ③平行四边形的对角线互相平分; ④反比例函数x k y =,当k <0时y 随x 的增大而增大. A .1 B .2 C .3 D .410.如图,AB 是⊙O 的直径,PA 切⊙O 于点A ,PO 交⊙O 于点C ,连接BC ,假设∠P =40°,那么∠B 等于〔 〕A .20°B .25°C .30°D .40°11.填在下面各正方形中的四个数之间都有相同的规律,根据这种规律m 的值为〔 〕A .180B .182C .184D .18612.一次函数b x k y +=11和反比例函数xk y 22=〔021≠⋅k k 〕的图象如下图,假设21y y >,那么x 的取值范围是〔 〕≤A .-2<x <0或x >1B .-2<x <1C .x <-2或x >1D .x <-2或0<x <1二、填空题〔每题4分,共24分〕13.计算:1)21(-= .14.如图,在△ABC 中,MN ∥BC ,分别交AB 、AC 于点M 、N ,假设AM =1,MB =2,BC =3,那么MN 的长为 .15.我国明代数学家程大位的名著?直接算法统宗?里有一道著名算题:“一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚各几丁?〞意思是:有100个和尚分100个馒头,正好分完,如果大和尚一人分3个,小和尚3人分一个,试问大、小和尚和有几人?设大、小和尚各有x 、y 人,那么可列方程组 .16.圆锥底面圆的周长为6πcm ,高为4cm ,那么该圆锥的全面积是 ;侧面展开扇形的圆心角的度数是 .17.如图,等腰△ABC 内接于⊙O ,AB =AC ,∠ABC =30°, BD 是⊙O 的直径,如果CD =334,那么AD = .18.如图,13个边长为1的小正方形,排列形式如图,把它们分割,使分割后能形成一个大的正方形.请在如下图的网格(网格边长为1)中,用直尺作出这个大正方形.三、解答题〔共8个题,共78分〕19.〔8分〕计算:0)31(8245sin 4---+︒ 20.〔8分〕先化简,再求值:21)21(2+-÷++a a a a ,其中a =2. 21.〔8分〕如图,点E 、F 分别在菱形ABCD 的边DC 、DA 上,且CE =AF .求证:∠ABF =∠CBE .22.〔8分〕两个城镇A 、B 与一条公路CD ,一条河流CE 位置如下图,某人要修建一避暑山庄,要求该山庄到A 、B 的距离必须相等,到CD 和CE 的距离也距离也必须相等,且在∠DCE 的内部,请画出该山庄的位置P .〔不要求写作法,保存作图痕迹〕23.〔10分〕某校在一次大课间活动中,采用了四种活动形式:A 、跑步,B 、跳绳,C 、做操,D 、游戏.全校学生都选择了一种形式参与活动,小杰对同学们选用的活动形式进行了随机抽样调查,根据调查统计结果,绘制了不完整的统计图.请结合统计图,答复以下问题:〔1〕本次调查学生共 人,a = ,并将条形图补充完整;〔2〕如果该校有学生2000人,请你估计该校选择“跑步〞这种活动的学生约有多少人?〔3〕学校让每班在A 、B 、C 、D 四种活动形式中,随机抽取两种开展活动,请用画树状图或列表的方法,求每班抽取的两种形式恰好是“跑步〞和“跳绳〞的概率.24.〔10分〕[探究函数x x y 4+=的图象与性质] 〔1〕函数xx y 4+=的自变量x 的取值范围是 ; 〔2〕以下四个函数图象中可能是函数xx y 4+=的图象是 ;〔3〕对于函数x x y 4+=,当x >0时,求y 的取值范围. 解:∵x >0,∴+-=+=+=222)2()2()(4xx x x x x y ∵2)2(x x -≥0,∴y ≥ . [拓展运用] 〔4〕假设函数xx x y 952+-=,那么y 的取值范围是 . 25.〔12分〕如图1,在平面直角坐标系中,O 为坐标原点,点A (-1,0),点B (0,3).〔1〕求∠BAO 的度数;〔2〕如图1,将△AOB 绕点O 顺时针旋转得△A ′OB ′,当点A ′恰好落在AB 边上时,设△AB ′O 的面积为S 2,S 1与S 2有何关系?为什么?〔3〕假设将△AOB 绕点O 顺时针旋转到如图2所示的位置时,S 1与S 2的关系发生变化了吗?证明你的判断.图1 图226.〔14分〕抛物线y =4x 2-2ax +b 与x 轴相交于A (x 1,0),B (x 2,0),〔0<x 1<x 2〕两点,与y 轴相交于点C .〔1〕设AB =2,tan ∠ABC =4,求抛物线的解析式;〔2〕在〔1〕中,假设D 为直线BC 下方抛物线上一动点,当△BCD 的面积最大时,求点D 的坐标;〔3〕是否存在整数a 、b 使1<x 1<2和1<x 2<2同时成立,请证明你的结论.四川省自贡市初 2022届毕业生学业考试数学答案 一、1.A ;2.B ;3.D ;4.C ;5.C ;6.A ;7.D ;8.A ;9.B ;10.B ;11.C ;12.D .二、13.2;14.1;15.⎪⎩⎪⎨⎧=+=+100313100y x y x ;16.24π,216°;17.4;18. 三、19.解:原式=11222221222224=--+=--+⨯ 20.解:原式=111221222-+=-+⋅+++a a a a a a a ∵a =2 ∴原式=31212=-+ 21.证明:∵四边形ABCD 是菱形∴∠A =∠C ,AB =BC又∵CE =AF∴△ABF ≌△CBE 〔SAS 〕∴∠ABF =∠CBE .22.解:如图,作线段AB 的中垂线与∠DCE 的平分线交于点P ,点P 即为所求.23.解:〔1〕300,10.〔2〕2000×40%=800∴估计该校选择“跑步〞这种活动的学生约有800人.〔3〕画树状图为:由树状图可知:每班抽取的两种形式恰好是“跑步〞和“跳绳〞的概率=61122= 24.〔1〕x ≠0;〔2〕C ;〔3〕4,4;〔4〕y ≥1.25.〔1〕∵A 〔-1,0〕,B 〔0,3〕,∠AOB =90° ∴313tan ===∠OA OB BAO ,∴∠BAO =60° 〔2〕S 1=S 2,理由如下:依题意有:A ′A =A ′O ,∠BAO =60°,∴△A ′AO 是等边三角形,∴∠AOA ′=∠BA ′O =60°,∴A ′B ′∥x 轴,∴点A ′、B ′到x 轴的距离相等,∵∠ABO =∠A ′OB =90°-60°=30°∴A ′O =A ′B ′ ∴AO =A ′B ′∵等边△A ′AO 的三条高都相等∴点O 到AB 的距离等于点B ′到x 轴的距离 ∴S 1=S 2〔等底等高的三角形面积相等〕 〔3〕S 1与S 2的关系没变,仍然有S 1=S 2,理由如下:过点B 作BC ⊥AO 于C ,过点B ′作B ′D ⊥x 轴于D ,∴∠BCO =∠B ′DO =90°依题意有:∠BOD =∠A ′OB ′=90°,B ′O =BO ,A ′O =AO ,∴∠1+∠A ′OD =∠2+∠A ′OD =90°∴∠1=∠2∴△BOC ≌△B ′OD 〔AAS 〕∴BC =B ′D又∵AO =A ′O∴S 1=S 2〔等底等高的三角形面积相等〕26.抛物线y =4x 2-2ax +b 与x 轴相交于A (x 1,0),B (x 2,0),〔0<x 1<x 2〕两点,与y 轴相交于点C .〔1〕设AB =2,tan ∠ABC =4,求抛物线的解析式;〔2〕在〔1〕中,假设D 为直线BC 下方抛物线上一动点,当△BCD 的面积最大时,求点D 的坐标;〔3〕是否存在整数a 、b 使1<x 1<2和1<x 2<2同时成立,请证明你的结论.解:〔1〕依题意得:⎪⎪⎪⎩⎪⎪⎪⎨⎧=-=⋅=+24121212121x x b x x a x x 〔3〕依题意有:⎩⎨⎧<<<+<41422121x x x x 即:⎪⎪⎩⎪⎪⎨⎧<<<<44114212b a 解得:⎩⎨⎧<<<<16484b a ∴4)(21=-x x x ∵a 为整数 ∴a =5,6,744)(21221=-+x x x x 又4a 2-16b >0①,4-2a +b >0②,16-4a +b >0③,b 为整数④ 即:4412=-b a ① ∴把a =5代入①②③④解得b 无解 ∵tan ∠ABC =4,∠BOC =90° 把a =6代入①②③④解得b 无解∴4=OB OC ,即42=x b 把a =7代入①②③④解得b 无解 ∵抛物线对称轴为a x 41=,AB =2 综上所述不存在整数a 、b 使1<x 1<2和1<x 2<2同时成立.∴1412+=a x ∴4141=+a b ② 解由①②构成的方程组可得a =-4或a =8经检验只有a =8才成立.把a =8代入①后解得:b =12∴抛物线解析式为y =4x 2-16x +12〔2〕过D 作DE ∥y 轴交BC 于E ,设D 〔x ,y 〕∵y =4x 2-16x +12 ∴D 〔x ,4x 2-16x +12〕在y =4x 2-16x +12中,令x =0,那么y =12 ∴C 〔0,12〕令y =0,那么x 1=1,x 2=3 ∴A 〔1,0〕,B 〔3,0〕设直线BC :y =kx +12,把B 点代入得:3k +12=0,k =-4∴直线BC :y =-x +12 ∴E 〔x ,-x +12〕∴DE =〔-x +12〕-〔4x 2-16x +12〕=-4x 2+12x ∴S △BCD =)124(3212x x +-⨯即:x x S 1862+-= 当x =231218=--时S 有最大值为:S 5.132318)23(62=⨯+⨯-= ∴D 〔23,-3〕 沿滩中学——熊礼刚的参考答案。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
绝密★启用前[考试时间:2010年6月12日上午9∶00-11∶00]2010年四川省自贡市初中毕业生学业考试数学参考答案及评分标准第Ⅰ卷(选择题共36分)一、选择题:(每小题3分,共36分)1.C2.D3.B4.D5.A6.C7.D8.A9.A10.C11.D 12.B绝密★启用前2010年四川省自贡市初中毕业生学业考试数学参考答案及评分标准第Ⅱ卷(非选择题共114分)说明:一、如果考生的解法与下面提供的参考解法不同,只要正确一律给满分,若某一步出现错误,可参照该题的评分意见进行评分。
二、评阅试卷时,不要因解答中出现错误而中断对该题的评阅,当解答中某一步出现错误,影响了后继部分,但该步以后的解答未改变这一道题的内容和难度,后来发生第二次错误前,出现错误的那一步不给分,后面部分只给应给分数之半;明显笔误,可酌情少扣;如有严重概念性错误,则不给分;在同一解答中,对发生第二次错误起的部分不给分。
三、涉及计算过程,允许合理省略非关键性步骤。
四、在几何题中,考生若使用符号“”进行推理,其每一步应得分数,可参照该题的评分意见进行评分。
二、填空题:(每小题5分,共计25分)513.m<-414.22.8 23.6 4.615.y=39+x (x=1,2, (60)16.(21,-21)17.2009.5三、解答题:(每小题6分,共计24分) 18.解:原式=1+3-33·23……………………………………………………(4')=4-29……………………………………………………………………(5')=-21……………………………………………………………………(6')19.解:由①得x >5……………………………………………………………………(2')由②得x ≤-4 ……………………………………………………………………(4')∴原不等式组无解 ……………………………………………………………………(6')20.主视图…………………………………(1')俯视图…………………………………(1')左视图…………………………………(1')位置-------------(1') 内外比例----------(各1分共2')21.(1)m =160,n =0.25 ………………………………………………………………(2') (2)如图…………………………………………(4')(3)捐款金额的中位数落在30元~40元这个金额段 …………………………………(6')四、解答题:(每小题8分,共计24分)22.解:作出示意图连接AB ,同时连结OC 幵延长交AB 于E , …………………………………………(1')因为夹子是轴对称图形,故OE 是对称轴 ……………………………………………(2')∴OE ⊥AB AE =BE …………………………………………………………(3')∴Rt △OCD ∽Rt △OAE ………………………………………………………………(4')∴OA OC =AECD ……………………………………………………………………………(5')而OC =22DC OD +=221224+=26………………………………………………(6')即15+2424=AE10∴AE =261039⨯=15 ………………………………(7')∴AB =2AE =30(mm ) …………………………………………………………(8')答:AB 两点间的距离为30mm.23.解:作AF ⊥l 4,交l 2于E ,交l 4于F ………………………………………………(1')则△ABE 和△AFD 均为直角三角形 …………………………………………(2')在Rt △ABE 中,∠ABE =∠α=32° sin ∠ABE =ABAE………………………………………………………………(3')∴AB =︒32sin 20=5.020=40 ……………………………………………………(4')∵∠FAD =90°-∠BAE∠α=90°-∠BAE∴∠FAD =∠α=32° … ………………………………………………………(5')在Rt △AFD 中, cos ∠FAD =ADAF……………………………………(6')AD =︒32cos AF=8.040=50……………………………………………………(7')∴长方形卡片ABCD 的周长为(40+50)×2=180(mm ) ……………(8')24.证明(1)∵BE ⊥AD ,BF ⊥CD∴∠BEA =∠BFC =90° ………………(1') 又ABCD 是平行四边形,∴∠BAE =∠BCF ……………………(2') ∴△BAE ∽△BCF……………………………………………………(3') (2)∵△BAE ∽△BCF∴∠1=∠2………………………………………………………………(4')又BG =BH∴∠3=∠4∴∠BGA =∠BHC ……………………………………………………(5') ∴△BGA ≌△BHC (ASA ) …………………………………………(6') ∴AB =BC………………………………………………………………(7')∴□ABCD 为菱形 ……………………………………………………(8')五、解答题:(每小题9分,共计18分)25.解:(1)设O 为圆心,连OA 、OB…………(1')∵OA =OC =OB AB =AC∴△ABO ≌△ACO (sss ) 又∠BAC =120° ∴∠BAO =∠CAO =60° ∴△ABO 是等边三角形 ∴AB =21… ……………………………………………………………(3') ∴S 扇形ABC =360120π(21)2=12π ……………………………………………………………(5')∴S 阴影=π (21)2-12π =6π………………………………………………………………(6')(2)在扇形ABC 中,的长为π180120·21=3π (7)) 设底面圆的半径为r 。
则 2πr =3π………………………………………………………………(8') ∴r =61… ……………………………………………………………(9') 26.解:(1)设甲公司的工作效率为m ,乙公司的工作效率为n……………………(1')则⎩⎨⎧1n =9m +41=)1m +(6…………(2')解得 ⎪⎩⎪⎨⎧151101n =m = ……………(3')故从节约时间的角度考虑应选择甲公司 ………………………………(4')(2)由(1)知甲、乙完成这次工程分别需10周、15周………………(4.5')设需付甲公司每周装修费x 万元,乙公司y 万元 …………………………(5')则 ⎩⎨⎧8.4y =9+x 42.5y =6+x 6 …………(6')解得⎪⎪⎩⎪⎪⎨⎧15453y =x = ……………(7')此时⎩⎨⎧)(415)(610万元万元y =x = …………………………………………………………(8')故从节约开支的角度出发应选择乙公司 ……………………………………(9')六、解答题:(本大题共两个小题,27题11分,28题12分,共计23分)27.(1)解:∵AB 是⊙O 的直径.∴∠ACB =90° ………………………(0.5') 又∠A =30°∴∠ABC =60° …………………………(1') 连接OC ,因CD 切⊙O 于C ,则∠OCD =90° ……………………(2')在△OBC 中∵OB =OC ,∠ABC =60° ∴∠OCB =60° ∴∠BCD =30°……………………………………………………(2.5')又∠OBC =∠BCD +∠D ∴∠D =30°…………………………………………………………(3')∴AC =CD =33 ……………………………………………………(3.5')在Rt △ABC 中,cosA =ABAC∴AB =A cos AC =2333=6(cm ) ……………………………………(5') (2)△BMN 中,①当∠BNM =90°时,cos ∠MBC =BMBN即cos60°=t3-6t5.1 ∴t =1………………………(6')此时BM =3 BN =1.5 MN =225.1-3=233 …………(7') ∴S △BMN =21BN ·MN =893 (cm 2) ………………………(8')②当∠NMB =90°时,cos ∠MBC =BNBM即cos60°=t5.1t3-6 ∴ t =1.6 ………………………………………(9')此时BM =56 BN =512 MN =22BM -BN =563 (10)) ∴S △BMN =21 BM·MN =21×51×536=25183(cm 2) ………………(11')28.解:(1)由已知可得点B 的坐标为(2,0)点C 的坐标为(1,1),点D 的坐标为(2,4),且直线OC 的函数解析式为y =x 。
∴点M 的坐标为(2,2),易得S △CMD =1,S 梯形ABMC =23………………(1.5') ∴S △CMD ∶S 梯形ABMC =2∶3,即结论①成立。
设直线CD 的函数解析式为y =kx +b ,则⎩⎨⎧=+=+4b k 21b k 即 ⎩⎨⎧-==2b 3k ∴直线CD 的解析式为y =3x -2。
由上述可得点H 的坐标为(0,-2),即y H =-2 ………………………(2.5')∴x C ·x D =-y H.即结论②成立 ………………………………………………(3')(2)结论S △CMD :S 梯形ABMC =2:3仍成立. ……………………………………………(4')理由如下:∵点A 的坐标为(t ,0),(t >0).则点B 的坐标为(2t ,0)从而点C 的坐标为(t ,t 2),点D 的坐标为(2t ,4t 2). 设直线OC 的解析式为y =kx ,则t 2=kt 得k =t∴直线OC 的解析式为y =tx ……………………………………(5')又设M 的坐标为(2t ,y ) ∵点M 在直线OC 上∴当x =2t 时,y =2t 2∴点M 的坐标为(2t ,2t 2)……………………………………(6')∴S △CMD :S 梯形ABMC =21·2t 2·t ∶21(t 2+2t 2)·t=t 3∶(23t 3)=32…………………………………………(7') (3)x C ,x D 和y H 有关数量关系x C ·x D =-a1y H. …………………………………(8') 由题意,当二次函数的解析式为y =ax 2(a >0),且点A 的坐标为(t ,0)时,点C 的坐标为(t ,at 2),点D 的坐标为(2t ,4at 2) …………………………(9')设直线CD 的解析式为y =kx +b则⎪⎩⎪⎨⎧=+=+22at4b kt 2atb kt得⎪⎩⎪⎨⎧-==2at2b at3k ∴CD 的解析式为y =3atx -2at 2………………………………………………(11')则H 的坐标为(0,-2at 2)即y H =-2at 2 …………………………………(11.5')∵x C ·x D =t·2t =2t 2 ………………………………………… …………………(12')∴x C ·x D =-a1y H.。