2019自贡中考数学试题
2019年四川省自贡市中考真题数学试题(解析版)
2019年四川省自贡市中考数学试卷考试时间:120分钟 满分:150分一、选择题[共12个小题,每小题4分,共48分,在每题给出的四个选项中,只有一项是符合题目要求的) 1.(2019年自贡)﹣2019的倒数是( )A .﹣2019B .﹣12019C .12019D .20192.(2019年自贡)近年来,中国高铁发展迅速,高铁技术不断走出国门,成为展示我国实力的新名片.现在中国高速铁路营运里程将达到23000公里,将23000用科学记数法表示应为( ) A .2.3×104 B .23×103 C .2.3×103 D .0.23×105 3.(2019年自贡)下列图案中,既是轴对称图形又是中心对称图形的是( )A .B .C .D .4.(2019年自贡)在5轮“中国汉字听写大赛”选拔赛中,甲、乙两位同学的平均分都是90分,甲的成绩方差是15,乙的成绩方差是3,下列说法正确的是( ) A .甲的成绩比乙的成绩稳定 B .乙的成绩比甲的成绩稳定 C .甲、乙两人的成绩一样稳定 D .无法确定甲、乙的成绩谁更稳定 5.(2019年自贡)如图是一个水平放置的全封闭物体,则它的俯视图是( )A .B .C .D .6.(2019年自贡)已知三角形的两边长分别为1和4,第三边长为整数,则该三角形的周长为( ) A .7 B .8 C .9 D .10 7.(2019年自贡)实数m ,n 在数轴上对应点的位置如图所示,则下列判断正确的是( )A .|m |<1B .1﹣m >1C .mn >0D .m +1>0 8.(2019年自贡)关于x 的一元二次方程x 2﹣2x +m =0无实数根,则实数m 的取值范围是( ) A .m <1 B .m ≥1 C .m ≤1 D .m >1 9.(2019年自贡)一次函数y =ax +b 与反比列函数y =xc的图象如图所示,则二次函数y =ax 2+bx +c 的大致图象是( )A. B. C.D .10.(2019年自贡)均匀的向一个容器内注水,在注满水的过程中,水面的高度h 与时间t 的函数关系如图所示,则该容器是下列四个中的( )A .B .C .D .11.(2019年自贡)图中有两张型号完全一样的折叠式饭桌,将正方形桌面边上的四个弓形面板翻折起来后,就能形成一个圆形桌面(可近似看作正方形的外接圆),正方形桌面与翻折成的圆形桌面的面积之比最接近( ) A .54 B .43 C .32 D .2112.(2019年自贡)如图,已知A 、B 两点的坐标分别为(8,0)、(0,8),点C 、F 分别是直线x =﹣5和x 轴上的动点,CF =10,点D 是线段CF 的中点,连接AD 交y 轴于点E ,当△ABE 面积取得最小值时,tan ∠BAD 的值是( ) A .178 B .177 C .94 D .95 二、填空题(共6个小题,每小题4分,共24分) 13.(2019年自贡)如图,直线AB 、CD 被直线EF 所截,AB ∥CD ,∠1=120°,则∠2= . 14.(2019年自贡)在一次有12人参加的数学测试中,得100分、95分、90分、85分、75分的人数分别是1、3、4、2、2,那么这组数据的众数是 分. 15.(2019年自贡)分解因式:2x 2﹣2y 2= . 16.(2019年自贡)某活动小组购买了4个篮球和5个足球,一共花费了466元,其中篮球的单价比足球的单价多4元,求篮球的单价和足球的单价.设篮球的单价为x 元,足球的单价为y 元,依题意,可列方程组为 . 17.(2019年自贡)如图,在Rt △ABC 中,∠ACB =90°,AB =10,BC =6,CD ∥AB ,∠ABC 的平分线BD 交AC 于点E ,DE = .18.(2019年自贡)如图,在由10个完全相同的正三角形构成的网格图中,∠α、∠β如图所示,则cos (α+β)= .三、解答題(共8个题,共78分)19.(2019年自贡)计算:|﹣3|﹣4sin45°+8+(π﹣3)020.(8分)(2019年自贡)解方程:121=--xx x . 21.(2019年自贡)如图,⊙O 中,弦AB 与CD 相交于点E ,AB =CD ,连接AD 、BC .求证:(1)»»=AD BC ;(2)AE =CE .22.(2019自贡)某校举行了自贡市创建全国文明城市知识竞赛活动,初一年级全体同学参加了知识竞赛.收集教据:现随机抽取了初一年级30名同学的“创文知识竞赛”成绩,分数如下(单位:分): 90 85 68 92 81 84 95 93 87 89 78 99 89 85 97 88 81 95 86 98 95 93 89 86 84 87 79 85 89 82 整理分析数据:成绩x (单位:分)频数(人数)60≤x <70 1 70≤x <80 80≤x <90 17 90≤x <100(1)请将图表中空缺的部分补充完整;(2)学校决定表彰“创文知识竞赛”成绩在90分及其以上的同学.根据上面统计结果估计该校初一年级360人中,约有多少人将获得表彰;(3)“创文知识竞赛”中,受到表彰的小红同学得到了印有龚扇、剪纸、彩灯、恐龙图案的四枚纪念章,她从中选取两枚送给弟弟,则小红送给弟弟的两枚纪念章中,恰好有恐龙图案的概率是 .23.(2019年自贡)如图,在平面直角坐标系中,一次函数y1=kx+b(k≠0)的图象与反比例函数y2=(m≠0)的图象相交于第一、象限内的A(3,5),B(a,﹣3)两点,与x轴交于点C.(1)求该反比例函数和一次函数的解析式;(2)在y轴上找一点P使PB﹣PC最大,求PB﹣PC的最大值及点P的坐标;(3)直接写出当y1>y2时,x的取值范围.24.(2019年自贡)阅读下列材料:小明为了计算1+2+22+…+22017+22018的值,采用以下方法:设S=1+2+22+…+22017+22018①则2S=2+22+…+22018+22019②②﹣①得2S﹣S=S=22019﹣1∴S=1+2+22+…+22017+22018=22019﹣1请仿照小明的方法解决以下问题:(1)1+2+22+…+29=;(2)3+32+…+310=;(3)求1+a+a2+…+a n的和(a>0,n是正整数,请写出计算过程).25.(2019年自贡)(1)如图1,E是正方形ABCD边AB上的一点,连接BD、DE,将∠BDE绕点D逆时针旋转90°,旋转后角的两边分别与射线BC交于点F和点G.①线段DB和DG的数量关系是;②写出线段BE,BF和DB之间的数量关系.(2)当四边形ABCD为菱形,∠ADC=60°,点E是菱形ABCD边AB所在直线上的一点,连接BD、DE,将∠BDE绕点D逆时针旋转120°,旋转后角的两边分别与射线BC交于点F和点G.①如图2,点E在线段AB上时,请探究线段BE、BF和BD之间的数量关系,写出结论并给出证明;②如图3,点E在线段AB的延长线上时,DE交射线BC于点M,若BE=1,AB=2,直接写出线段GM的长度.26.(2019年自贡)如图,已知直线AB与抛物线C:y=ax2+2x+c相交于点A(﹣1,0)和点B(2,3)两点.(1)求抛物线C函数表达式;(2)若点M是位于直线AB上方抛物线上的一动点,以MA、MB为相邻的两边作平行四边形MANB,当平行四边形MANB的面积最大时,求此时平行四边形MANB的面积S及点M的坐标;(3)在抛物线C的对称轴上是否存在定点F,使抛物线C上任意一点P到点F的距离等于到直线y=174的距离?若存在,求出定点F的坐标;若不存在,请说明理由.2019年四川省自贡市中考数学试卷考试时间:120分钟满分:150分一、选择题[共12个小题,每小题4分,共48分,在每题给出的四个选项中,只有一项是符合题目要求的)1.(2019年自贡)﹣2019的倒数是()A.﹣2019 B.﹣12019C.12019D.2019{答案}B{解析}本题考查了倒数的定义,乘积为1的两个数互为倒数,由于-2019×(-12019)=1,因此本题选B.2.(2019年自贡)近年来,中国高铁发展迅速,高铁技术不断走出国门,成为展示我国实力的新名片.现在中国高速铁路营运里程将达到23000公里,将23000用科学记数法表示应为()A.2.3×104B.23×103C.2.3×103D.0.23×105{答案}D{解析}本题考查了科学记数法,23000=2.3×104,因此本题选A.3.(2019年自贡)下列图案中,既是轴对称图形又是中心对称图形的是()A.B.C.D.{答案}D{解析}本题考查了轴对称图形和中心对称图形的概念,轴对称图形是指沿图形内某直线折叠直线两旁的部分能完全重合的图形,能确定出对称轴的图形为轴对称图形,判断轴对称图形的关键是寻找对称轴,除了直接观察判断外,还可采用折叠法判断,只有选项A、D符合要求,又因为选项A不是中心对称图形,因此本题选D.4.(2019年自贡)在5轮“中国汉字听写大赛”选拔赛中,甲、乙两位同学的平均分都是90分,甲的成绩方差是15,乙的成绩方差是3,下列说法正确的是()A.甲的成绩比乙的成绩稳定B.乙的成绩比甲的成绩稳定C.甲、乙两人的成绩一样稳定D.无法确定甲、乙的成绩谁更稳定{答案}B{解析}本题考查的是平均数和方差.平均数反映的是一组数据的集中程度,方差反映的是一组数据的离散程度.一组数据的方差越大,说明这组数据的波动越大,稳定性较差;根据方差的意义可得选项B是正确的.5.(2019年自贡)如图是一个水平放置的全封闭物体,则它的俯视图是()A .B .C .D .{答案}C{解析}本题考查了由几何体的俯视图的概念,根据俯视图概念,从上面观察可得到一个实线矩形环组成的,故应选C . 6.(2019年自贡)已知三角形的两边长分别为1和4,第三边长为整数,则该三角形的周长为( ) A .7 B .8 C .9 D .10 {答案}C{解析}本题考查了三角形的三边关系,根据三角形的三边关系“第三边大于两边之差,而小于两边之和”,求得第三边的取值范围;设第三边为x ,根据三角形的三边关系,得:4﹣1<x <4+1,即3<x <5,∵x 为整数,∴x 的值为4.三角形的周长为1+4+4=9. 7.(2019年自贡)实数m ,n 在数轴上对应点的位置如图所示,则下列判断正确的是( )A .|m |<1B .1﹣m >1C .mn >0D .m +1>0 {答案}B{解析}本题考查了实数的大小比较,利用数轴得m <0<1<n ,所以﹣m >0,1﹣m >1,mn <0,m +1<0.故应选B. 8.(2019年自贡)关于x 的一元二次方程x 2﹣2x +m =0无实数根,则实数m 的取值范围是( ) A .m <1 B .m ≥1 C .m ≤1 D .m >1 {答案}D{解析}本题考考查了一元二次方程根的判别式,利用判别式的意义得到△=(﹣2)2﹣4m <0,然后解不等式得m >1.故选D .9.(2019年自贡)一次函数y =ax +b 与反比列函数y =xc的图象如图所示,则二次函数y =ax 2+bx +c 的大致图象是( )A. B. C.D .{答案}A{解析}本题考查了二次函数与一次函数、反比例函数的结合,根据一次函数y 1=ax +c 图象过第一、二、四象限可得a <0,b >0,因为﹣ab2>0,所以二次函数y 3=ax 2+bx +c 开口向下,二次函数y 3=ax 2+bx +c 对称轴在y 轴右侧;因为反比例函数y 2=xc的图象在第一、三象限,所以c >0,即与y轴交点在x 轴上方.故应选A . 10.(2019年自贡)均匀的向一个容器内注水,在注满水的过程中,水面的高度h 与时间t 的函数关系如图所示,则该容器是下列四个中的( )A .B .C .D .{答案}D{解析}本题考查了函数的图象,由函数图象可得容器形状不是均匀物体分析判断,由图象及容积可求解.相比较而言,前一个阶段,用时较少,高度增加较快,那么下面的物体应较细.由图可得上面圆柱的底面半径应大于下面圆柱的底面半径.故选D . 11.(2019年自贡)图中有两张型号完全一样的折叠式饭桌,将正方形桌面边上的四个弓形面板翻折起来后,就能形成一个圆形桌面(可近似看作正方形的外接圆),正方形桌面与翻折成的圆形桌面的面积之比最接近( )A .54 B .43C .32 D .21 {答案}C{解析}本题考查了圆的有关计算,连接AC ,设正方形的边长为a ,根据正方形的性质得到∠B =90°,根据圆周角定理得到AC 为圆的直径为a 2,根据正方形面积公式、圆的面积公式计算可得正方形桌面与翻折成的圆形桌面的面积之比为2222a π⨯()=π2≈32,选C .12.(2019年自贡)如图,已知A 、B 两点的坐标分别为(8,0)、(0,8),点C 、F 分别是直线x =﹣5和x 轴上的动点,CF =10,点D 是线段CF 的中点,连接AD 交y 轴于点E ,当△ABE 面积取得最小值时,tan ∠BAD 的值是( )A .178 B .177 C .94 D .95{答案}B{解析}本题考查解直角三角形,坐标与图形的性质,直线与圆的位置关系,三角形的面积等知识,如图,设直线x =﹣5交x 轴于K .由题意KD =21CF =5,∴点D 的运动轨迹是以K 为圆心,5为半径的圆,∴当直线AD 与⊙K 相切时,△ABE 的面积最小, ∵AD 是切线,点D 是切点,∴AD ⊥KD , ∵AK =13,DK =5,∴AD =12,∵tan ∠EAO =OA OE =AD DK ,∴1258=OE , ∴OE =310,∴AE =32622=+OA OE ,作EH ⊥AB 于H .∵S △ABE =21•AB •EH =S △AOB ﹣S △AOE ,∴EH =327,∴AH =321722=-EH AE , ∴tan ∠BAD =AH EH =3217722=177.二、填空题(共6个小题,每小题4分,共24分) 13.(2019年自贡)如图,直线AB 、CD 被直线EF 所截,AB ∥CD ,∠1=120°,则∠2= .{答案}60°{解析}本题考查了平行线的性质,先利用平角的定义结合平行线的性质得出∠2=60°. 14.(2019年自贡)在一次有12人参加的数学测试中,得100分、95分、90分、85分、75分的人数分别是1、3、4、2、2,那么这组数据的众数是 分. {答案}90{解析}根据众数的定义求解可得这组数据的众数是90分. 15.(2019年自贡)分解因式:2x 2﹣2y 2= . {答案}2(x +y )(x ﹣y ){解析}先提取公因式2,再根据平方差公式进行二次分解,即2x 2﹣2y 2=2(x 2﹣y 2)=2(x +y )(x ﹣y ). 16.(2019年自贡)某活动小组购买了4个篮球和5个足球,一共花费了466元,其中篮球的单价比足球的单价多4元,求篮球的单价和足球的单价.设篮球的单价为x 元,足球的单价为y 元,依题意,可列方程组为 . {答案}⎩⎨⎧=+=-46654,4y x y x{解析}本题考查了列二元一次方程组解应用题,解答时首先要找出等量关系:①4个篮球的花费+5个足球的花费=466元,②篮球的单价﹣足球的单价=4元,根据等量关系列出方程组⎩⎨⎧=+=-46654,4y x y x .17.(2019年自贡)如图,在Rt △ABC 中,∠ACB =90°,AB =10,BC =6,CD ∥AB ,∠ABC 的平分线BD 交AC 于点E ,DE = .{答案}559 {解析}本题考查了相似三角形的判定与性质以及勾股定理,由CD ∥AB ,∠D =∠ABE ,∠D =∠CBE ,所以CD =BC =6,再证明△AEB ∽△CED ,根据相似比求出DE 的长为559. 18.(2019年自贡)如图,在由10个完全相同的正三角形构成的网格图中,∠α、∠β如图所示,则cos (α+β)= .{答案}721 {解析}本题考查了解直角三角形、等边三角形的性质,给图中各点标上字母,连接DE ,构造出含一个锐角等于∠α+∠β的直角三角形ADE ,利用等腰三角形的性质及三角形内角和定理可得出∠α=30°,同理,可得出:∠CDE =∠CED =30°=∠α,由∠AEC =60°结合∠AED =∠AEC +∠CED 可得出∠AED =90°,设等边三角形的边长为a ,则AE =2a ,DE =3a ,利用勾股定理可得出AD 的长,再结合余弦的定义即可求出cos (α+β)=ADDE=721.三、解答題(共8个题,共78分)19.(2019年自贡)计算:|﹣3|﹣4sin45°+8+(π﹣3)0{解析}本题考查了实数的运算.先分别计算平方、零指数幂,与化简绝对值、二次根数,特殊角的锐角三角函数值,最后进行加减运算得最简结果. {答案}解:原式=3﹣4×22+22+1=3﹣22+22+1=4. 20.(8分)(2019年自贡)解方程:121=--xx x . {解析}本题考查了分式方程的解法,去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.{答案}解:去分母得:x 2﹣2x +2=x 2﹣x , 解得:x =2,检验:当x =2时,方程左右两边相等, 所以x =2是原方程的解. 21.(2019年自贡)如图,⊙O 中,弦AB 与CD 相交于点E ,AB =CD ,连接AD 、BC .求证:(1)»»=AD BC ;(2)AE =CE .{解析}本题主要考查圆心角、弧、弦的关系,(1)由AB =CD 知»»=AB CD ,利用等式的性质可证;(2)由»»=AD BC 知AD =BC ,结合∠ADE =∠CBE ,∠DAE =∠BCE 可证△ADE ≌△CBE ,从而得出答案.{答案}证明(1)∵AB =CD ,∴»»=AB CD ,即»»»»+=AD AC BC AC , ∴»»=AD BC ; (2)∵»»=AD BC , ∴AD =BC ,又∵∠ADE =∠CBE ,∠DAE =∠BCE , ∴△ADE ≌△CBE (ASA ), ∴AE =CE . 22.(2019年自贡)某校举行了自贡市创建全国文明城市知识竞赛活动,初一年级全体同学参加了知识竞赛.收集教据:现随机抽取了初一年级30名同学的“创文知识竞赛”成绩,分数如下(单位:分): 90 85 68 92 81 84 95 93 87 89 78 99 89 85 97 88 81 95 86 98 95 93 89 86 84 87 79 85 89 82 整理分析数据:成绩x (单位:分)频数(人数)60≤x <70 1 70≤x <80 80≤x <90 17 90≤x <100(1)请将图表中空缺的部分补充完整;(2)学校决定表彰“创文知识竞赛”成绩在90分及其以上的同学.根据上面统计结果估计该校初一年级360人中,约有多少人将获得表彰;(3)“创文知识竞赛”中,受到表彰的小红同学得到了印有龚扇、剪纸、彩灯、恐龙图案的四枚纪念章,她从中选取两枚送给弟弟,则小红送给弟弟的两枚纪念章中,恰好有恐龙图案的概率是 . {解析}本题考查了列表法与树状图法,利用列表法和树状图法求概率,(1)由已知数据计数即可得; (2)用总人数乘以样本中对应部分人数所占比例即可得;(3)根据题意先画出树状图,得出共有12种等可能的结果数,再利用概率公式求解可得. {答案}解:(1)补全图表如下:(2)估计该校初一年级360人中,获得表彰的人数约为360×1030=120(人); (3)将印有龚扇、剪纸、彩灯、恐龙图案分别记为A 、B 、C 、D , 画树状图如下:则共有12种等可能的结果数,其中小红送给弟弟的两枚纪念章中,恰好有恐龙图案的结果数为6, 所以小红送给弟弟的两枚纪念章中,恰好有恐龙图案的概率为12, 23.(2019年自贡)如图,在平面直角坐标系中,一次函数y 1=kx +b (k ≠0)的图象与反比例函数y 2=(m ≠0)的图象相交于第一、象限内的A (3,5),B (a ,﹣3)两点,与x 轴交于点C . (1)求该反比例函数和一次函数的解析式;(2)在y 轴上找一点P 使PB ﹣PC 最大,求PB ﹣PC 的最大值及点P 的坐标; (3)直接写出当y 1>y 2时,x 的取值范围.{解析}本题考查了反比例函数与一次函数的交点问题,(1)利用待定系数法,即可得到反比例函数和一次函数的解析式;(2)根据一次函数y 1=x +2,求得与y 轴的交点P ,此交点即为所求;(3)根据AB 两点的横坐标及直线与双曲线的位置关系求x 的取值范围. {答案}解:(1)把A (3,5)代入y 2=mx(m ≠0),可得m =3×5=15, ∴反比例函数的解析式为y 2=15x; 把点B (a ,﹣3)代入,可得a =﹣5, ∴B (﹣5,﹣3).把A (3,5),B (﹣5,﹣3)代入y 1=kx +b ,可得35,53k b k b +=⎧⎨-+=-⎩解得1,2k b =⎧⎨=⎩∴一次函数的解析式为y 1=x +2;(2)一次函数的解析式为y 1=x +2,令x =0,则y =2, ∴一次函数与y 轴的交点为P (0,2), 此时,PB ﹣PC =BC 最大,P 即为所求, 令y =0,则x =﹣2, ∴C (﹣2,0), ∴BC =22(52)332-++=. (3)当y 1>y 2时,﹣5<x <0或x >3.24.(2019年自贡)阅读下列材料:小明为了计算1+2+22+…+22017+22018的值,采用以下方法: 设S =1+2+22+…+22017+22018① 则2S =2+22+…+22018+22019② ②﹣①得2S ﹣S =S =22019﹣1∴S =1+2+22+…+22017+22018=22019﹣1 请仿照小明的方法解决以下问题: (1)1+2+22+…+29= ; (2)3+32+…+310= ;(3)求1+a +a 2+…+a n 的和(a >0,n 是正整数,请写出计算过程). {解析}本题考查了规律型探究题,(1)利用题中的方法设S =1+2+22+…+29,两边乘以2得到2S =2+22+…+29,然后把两式相减计算出S 即可;(2)利用题中的方法设S =1+3+32+33+34+…+310 ,两边乘以3得到3S =3+32+33+34+35+…+311 ,然后把两式相减计算出S 即可; (3)利用(2)的方法计算.{答案}解:(1)210﹣1(2)1133 2-;(3)设S=1+a+a2+a3+a4+..+a n①,则aS=a+a2+a3+a4+..+a n+a n+1②,②﹣①得:(a﹣1)S=a n+1﹣1,a=1时,不能直接除以a﹣1,此时原式等于n+1;a不等于1时,a﹣1才能做分母,所以S=111naa+--,即1+a+a2+a3+a4+..+a n=111naa+--.25.(2019年自贡)(1)如图1,E是正方形ABCD边AB上的一点,连接BD、DE,将∠BDE绕点D逆时针旋转90°,旋转后角的两边分别与射线BC交于点F和点G.①线段DB和DG的数量关系是;②写出线段BE,BF和DB之间的数量关系.(2)当四边形ABCD为菱形,∠ADC=60°,点E是菱形ABCD边AB所在直线上的一点,连接BD、DE,将∠BDE绕点D逆时针旋转120°,旋转后角的两边分别与射线BC交于点F和点G.①如图2,点E在线段AB上时,请探究线段BE、BF和BD之间的数量关系,写出结论并给出证明;②如图3,点E在线段AB的延长线上时,DE交射线BC于点M,若BE=1,AB=2,直接写出线段GM的长度.{解析}此题是四边形综合题,主要考查了全等三角形的判定和性质,平行线分线段成比例定理,正方形和菱形的性质,直角三角形30度的角性质等知识,(1)①根据旋转的性质解答即可;②根据正方形的性质和全等三角形的判定和性质解答即可;(2)①根据菱形的性质和全等三角形的判定和性质解答即可;②作辅助线,计算BD和BF的长,根据平行线分线段成比例定理可得BM的长,根据线段的差可得结论.{答案}解:(1)①DB=DG;②BF+BE2BD,理由如下:由①知:∠FDG=∠EDB,∠G=∠DBE=45°,BD=DG,∴△FDG≌△EDB(ASA),∴BE=FG,∴BF+FG=BF+BE=BC+CG,Rt△DCG中,∵∠G=∠CDG=45°,∴CD =CG =CB , ∵DG =BD =2BC , 即BF +BE =2BC =2BD ; (2)①如图2,BF +BE =3BD ,理由如下:在菱形ABCD 中,∠ADB =∠CDB =12∠ADC =12×60°=30°, 由旋转120°得∠EDF =∠BDG =120°,∠EDB =∠FDG ,在△DBG 中,∠G =180°﹣120°﹣30°=30°, ∴∠DBG =∠G =30°, ∴DB =DG ,∴△EDB ≌△FDG (ASA ), ∴BE =FG ,∴BF +BE =BF +FG =BG ,过点D 作DM ⊥BG 于点M ,如图2,∵BD =DG , ∴BG =2BM ,在Rt △BMD 中,∠DBM =30°, ∴BD =2DM .设DM =a ,则BD =2a , DM 3a , ∴BG =3a , ∴233BD BG a == ∴BG 3BD , ∴BF +BE =BG 3BD ;②过点A 作AN ⊥BD 于N ,过D 作DP ⊥BG 于P ,如图3,Rt△ABN中,∠ABN=30°,AB=2,∴AN=1,BN=3,∴BD=2BN=23,∵DC∥BE,∴21 CD CMBE BM==,∵CM+BM=2,∴BM=23,Rt△BDP中,∠DBP=30°,BD=23,∴BP=3,由旋转得:BD=BF,∴BF=2BP=6,∴GM=BG﹣BM=6+1﹣23=193.26.(2019年自贡)如图,已知直线AB与抛物线C:y=ax2+2x+c相交于点A(﹣1,0)和点B(2,3)两点.(1)求抛物线C函数表达式;(2)若点M是位于直线AB上方抛物线上的一动点,以MA、MB为相邻的两边作平行四边形MANB,当平行四边形MANB的面积最大时,求此时平行四边形MANB的面积S及点M的坐标;(3)在抛物线C的对称轴上是否存在定点F,使抛物线C上任意一点P到点F的距离等于到直线y=174的距离?若存在,求出定点F的坐标;若不存在,请说明理由.{解析}(1)利用待定系数法,将A,B的坐标代入y=ax2+2x+c即可求得二次函数的解析式;(2)过点M作MH⊥x轴于H,交直线AB于K,求出直线AB的解析式,设点M(a,﹣a2+2a+3),则K(a,a+1),利用函数思想求出MK的最大值,再求出△AMB面积的最大值,可推出此时平行四边形MANB的面积S及点M的坐标;(3)如图2,分别过点B,C作直线y=174的垂线,垂足为N,H,设抛物线对称轴上存在点F,使抛物线C上任意一点P到点F的距离等于到直线y=174的距离,其中F(1,a),连接BF,CF,则可根据BF=BN,CF=CN两组等量关系列出关于a的方程组,解方程组即可.{答案}解:(1)由题意把点(﹣1,0)、(2,3)代入y=ax2+2x+c,得10, 443 a ca c-+=⎧⎨++=⎩解得a=﹣1,c=3,∴此抛物线C函数表达式为:y=﹣x2+2x+3;(2)如图1,过点M作MH⊥x轴于H,交直线AB于K,将点(﹣1,0)、(2,3)代入y=kx+b中,得0, 23k bk b-+=⎧⎨+=⎩解得,k=1,b=1,∴y AB=x+1,设点M(a,﹣a2+2a+3),则K(a,a+1),则MK=﹣a2+2a+3﹣(a+1)=﹣(a﹣12)2+94,根据二次函数的性质可知,当a=12时,MK有最大长度94,∴S△AMB最大=S△AMK+S△BMK=12MK•AH+12MK•(x B﹣x H)=12MK•(x B﹣x A)=12×94×3=278,∴以MA、MB为相邻的两边作平行四边形MANB,当平行四边形MANB的面积最大时,S最大=2S△AMB最大=2×278=274,M(12,154);(3)y=﹣x2+2x+3=﹣(x﹣1)2+4,∴对称轴为直线x=1,当y=0时,x1=﹣1,x2=3,∴抛物线与点x轴正半轴交于点C(3,0),如图2,分别过点B,C作直线y=174的垂线,垂足为N,H,设抛物线对称轴上存在点F,使抛物线C上任意一点P到点F的距离等于到直线y=174的距离,其中F(1,a),连接BF,CF,则BF=BN=174﹣3=54,CF=CH=174,由题意可列:222225(21)(3)()417(31)4aa⎧-+-=⎪⎪⎨⎪-+=⎪⎩解得,a=154,∴F(1,154).。
自贡市初2019届中考数学试题(word版,含解析)
四川省自贡市初2019届初三中考数学试题一.选择题(共12个小题,每小题4分,共48分;) 1. 2019-的倒数是 ( )A.2019-B.12019-C.12019D.2019 2.近年来,中国高铁发展迅速,高铁技术不断走出国门,成为展示我国实力的新名片.现在中国高速铁路营运里程将达到23000公里,将23000用科学记数法表示应为( )A..42310⨯ B.32310⨯ C..32310⨯ D..502310⨯ 3.下列图案中,既是轴对称图形又是中心对称图形的是 ( )4.在5轮“中国汉字听写大赛”选拔赛中,甲、乙两位同学的平均分都是90分,甲的成绩方差是15,乙的成绩的方差是3,下列说法正确的是()A.甲的成绩比乙的成绩稳定B.乙的成绩比甲的成绩稳定C.甲、乙两人的成绩一样稳定D.无法确定甲、乙的成绩谁更稳定 5.下图是水平放置的全封闭物体,则它的俯视图是 ()6.已知三角形的两边分别为1和4,第三边长为整数 ,则该三角形的周长为( )A. 7B. 8C. 9D. 10 7.实数m,n 在数轴上对应点的位置如图所示,则下列判断正确的是( )A. m 1<B. 1m 1->C. mn 0>D. m 10+>8.关于x 的一元二次方程2x 2xm 0-+= 无实数根,则实数m 的取值范围是( )A. m1< B. m 1≥ C. m 1≤ D. m 1> 9.如一次函数yax b =+与反比例函数c y x= 的图像如图所示,则二次函数2y axbx c =++的大致图象是BCDA BCDA nm10.均匀的向一个容器内注水,在注水过程中,水面高度h与时间t的函数关系如图所示,则该容器是下列中的11.圆形桌面(可以近似看作正方形的外接圆),正方形桌面与翻折成圆形桌面的面积之比最接近()A.45B.34C.23D.1212.如图,已知A B、两点的坐标分别为()()8,00,8,,点C F、分别是直线x5=-和x轴上的动点,CF10=,点D是线段CF的中点,连接AD交y轴于点E;当⊿ABE面积取得最小值时,tan BAD∠的值是()A.817B.717C.49D.59二.填空题(共6个小题,每题4分,共24分)13. 如图,直线AB CD、被直线EF所截,AB∥CD,1120∠=;则2∠ = .14.在一次12人参加的数学测试中,得100分、95分、90分、85分、75分的人数分别为1、3、4、2、2,那么这组数据的众数是 .16.某活动小组购买4个篮球和5个足球,一共花费了466元,其中篮球的单价比足球的单价多4元,求篮球的单价和足球的单价.设篮球的单价为x元,足球的单价为y元,依题意,可列方程组为 .15.分解因式:222x2y-= .17.如图,在Rt△ABC中,ACB90,AB10,BC6∠===, CD∥AB,ABC∠的平分线BD交AC 于E,DE= .18.如图,由10个完全相同的正三角形构成的网格图中,αβ∠∠、如图所示,则()cosαβ+= .三.解答题(共8个题,共78分)hHBA DB第17题图E第13题图19.(8分) 计算:()034sin4583π--++-. 20.(8分)解方程:x 21x 1x-=-.21.(本题满分8分)如图,⊙O 中,弦AB 与CD 相交于点E ,AB CD =,连接AD BC 、. 求证:⑴. ;⑵.AE CE =.22.(本题满分8分)某校举行了创建全国文明城市知识竞赛活动,初一年级全体同学参加了竞赛. 收集数据:现随机抽取初一年级30名同学“创文知识竞赛”成绩,分数如下(单位:分):90 85 68 92 81 84 95 93 87 89 78 99 89 85 97 888195869895938986848779858982⑴.请将图表中空缺的部分补充完整;⑵.学校决定表彰“创文知识竞赛”成绩在90分以上的同学,根据上表统计结果估计该校初一年级360人中,约有多少人将获得表彰;⑶.“创文知识竞赛”中,受到表彰的小红同学得到了印有龚扇、剪纸、彩灯、恐龙图案的四枚纪念章,她从中选取两枚送给弟弟,则小红送给弟弟的两枚纪念章中,恰好有恐龙图案的概率是 .23.(10分)如图,在平面直角坐标系中,一次函数()1y kx b k 0=+≠的图象与反比例函数()2my m 0x=≠ 的图象相交于第一、三象限内的()()A 3,5,B a,3-两点,与x 轴交于点C . ⑴.求该反比例函数和一次函数的解析式;⑵.在y 轴上找一点P 使PB PC -最大,求PB PC -的最大值及点P 的坐标;⑶.直接写出当12y y >时,x 的取值范围.24.(本题满分10分)阅读下列材料:小明为了计算22017201812222+++++的值 ,采用以下方法:设220172018S 12222=+++++ ①则2201820192S 2222=++++ ②②-①得 20192S S 21-=- ∴2201720182019S 1222221=+++++=-⑴. 291222++++= ;⑵. 210333+++ = ;⑶.求2n 1a a a ++++的和(a 0> ,n 是正整数,请写出计算过程 ).25.(12分)⑴.如图1,E 是正方形ABCD 边AB 上的一点,连接BD DE 、,将BDE ∠绕着点D 逆时针旋转90°,旋转后角的两边分别与射线BC 交于点F 和点G .①.线段DB 和DG 的数量关系是 ;②.写出线段BE BF 、和DB 之间的数量关系. ⑵.当四边形ABCD 为菱形,ADC 60∠=,点E 是菱形ABCD 边AB 所在直线上的一点,连接BD DE 、,将B D E ∠绕着点D 逆时针旋转120°,旋转后角的两边分别与射线BC 交于点F 和点G .①.如图2,点E 在线段上时,请探究线段BE BF 、和BD 之间的数量关系,写出结论并给出证明;②.如图3,点E 在线段AB 的延长线上时,DE 交射线BC 于点M ;若 BE 1,AB 2==,直接写出线段GM 的长度.26.(14分)如图,已知直线AB 与抛物线C :2y ax 2x c =++ 相交于()A 1,0-和点()B 2,3两点.⑴.求抛物线C 的函数表达式;⑵.若点M 是位于直线AB 上方抛物线上的一动点,以MA MB 、为相邻两边作平行四边形MANB ,当平行四边形MANB 的面积最大时,求此时四边形MANB 的面积S 及点M 的坐标;⑶.在抛物线C 的对称轴上是否存在定点F ,使抛物线C 上任意一点P 到点F 的距离等于到直线17y 4=的距离,若存在,求出定点F 的坐标;若不存在,请说明理由.G(图3)G(图2)FCD(图1)四川省自贡市初2019届初三中考数学试题一.选择题(共12个小题,每小题4分,共48分;) 1. 2019-的倒数是 ( )A.2019-B.12019-C.12019D.2019 考点:倒数.分析:1除以一个不 等于0的数的商就是这个数的倒数;实际上抓住互为倒数的两个数乘积为1就行了. 2019-的倒数12019-.故选B . 2.近年来,中国高铁发展迅速,高铁技术不断走出国门,成为展示我国实力的新名片.现在中国高速铁路营运里程将达到23000公里,将23000用科学记数法表示应为( )A..42310⨯ B.32310⨯ C..32310⨯ D..502310⨯ 考点:科学记数法.分析:把一个数A 记成na 10⨯的形式(其中a 是整数为1位的数,n 恰好为原数的整数的位数减1 ).就为科学记数法,423000 2.310=⨯ .故选A .3.下列图案中,既是轴对称图形又是中心对称图形的是 ( )考点:轴对称图形、中心对称图形.分析:轴对称图形、中心对称图形都是指的一个图形,只是运动方式不一样;轴对称图形是沿某直线翻折与自身重合,中心对称图形是绕着一个点旋转180°后与自身重合,D 选择支符合这一特点.故选D . 4.在5轮“中国汉字听写大赛”选拔赛中,甲、乙两位同学的平均分都是90分,甲的成绩方差是15,乙的成绩的方差是3,下列说法正确的是( ) A.甲的成绩比乙的成绩稳定 B.乙的成绩比甲的成绩稳定 C.甲、乙两人的成绩一样稳定 D.无法确定甲、乙的成绩谁更稳定 考点:方差的性质.分析:在同样条件下,样本数据的方差越大,波动越大;方差越小,波动越小,B 选择支符合这一性质.BCDA故选B .5.下图是水平放置的全封闭物体,则它的俯视图是 ( )考点:三视图之俯视图.分析:几何体的俯视图是从上面往下面看几何体得到的平面图形,要注意看得见的轮廓线画成实线,看不见的轮廓线画成虚线;C 符合这一要求.故选C .6.已知三角形的两边分别为1和4,第三边长为整数 ,则该三角形的周长为( )A. 7B. 8C. 9D. 10 考点:三角形三边之间的关系.分析:三角形的两边之和大于第三边,两边之差小于第三边;所以41-<第三边41<+ ,即3<第三边5<;第三边取整数为4,4419++= .故选C .7.实数m,n 在数轴上对应点的位置如图所示,则下列判断正确的是 ( )A. m 1<B. 1m 1->C. mn 0>D. m 10+> 考点:数轴上点的坐标的意义,实数的运算.分析:∵m 0< ∴1m 1->;也可以用“赋值法” 代入计算判断.故选B . 8.关于x 的一元二次方程2x 2x m 0-+= 无实数根,则实数m 的取值范围是( )A. m 1<B. m 1≥C. m 1≤D. m 1> 考点:一元二次方程跟的判别式、解不等式.分析:∵原一元二次方程无实数根,∴△=()2241m 0--⨯⨯< ,解得m 1>;故选D .9.如一次函数y ax b =+与反比例函数c y x= 的图像如图所示,则二次函数2y ax bx c =++的大致图象是 BCDA nm考点:一次函数、二次函数以及反比例函数的图象及其性质.分析:根据本题的原图并结合一次函数和反比例函数图象的位置可知a 0,b 0,c 0<>>,所以对于二次函数2y ax bx c =++的图象的抛物线开口向下,对称轴直线bx 02a=-> (即抛物线的对称轴在y 的右侧),与y 轴的正半轴,A 符合这一特征;故选A .10.均匀的向一个容器内注水,在注水过程中,水面高度h 与时间t 的函数关系如图所示,则该容器是下列中的考点:函数图象及其性质的实际应用.分析:根据图象折线可知是正比例函数和一次函数的函数关系的大致图象;切斜程度(即斜率)可以反映水面升高的速度;因为D几何体下面的圆柱体的底圆面积比上面圆柱体的底圆面积小,所以在均匀注水的前提下是先快后慢;故选D .11.图中有两张型号完全一样的折叠式饭桌,将正方形桌面边上的四个弓形翻折起来后,就能形成一个圆形桌面(可以近似看作正方形的外接圆) ( ) A.45 B.34C.23 D.12考点:正方形和圆的有关性质和面积计算.分析:连接正方形的对角线;根据圆周角的推论可知是正方形的外接圆的直径;设正方形的边长为a ,H第10题图BA D则正方形的面积为2a ;= ,a,所以圆的面积为221a a 22ππ⎛⎫⨯= ⎪ ⎪⎝⎭ ,所以它们的面积之比为22a 20.63661a 2ππ=≈,与C 的近似值比较接近; 故选C .12.如图,已知A B 、 两点的坐标分别为()()8,00,8,,点C F 、分别是直线x 5=-和x 轴上的动点,CF 10=,点D 是线段CF 的中点,连接AD 交y 轴于点E ;当⊿ABE 面积取得最小值时,tan BAD∠的值是 ( )A.817 B.717C. 49D.59考点:直角三角形、等腰三角形、相似三角形以及圆的有关性质,勾股定理、三角函数等. 分析:见后面的示意图.根据题中“点C F 、分别是直线x 5=-和x 轴上的动点,CF 10=”可以得到线段CF 的中点D 的运动 “轨迹”是以点M 为圆心5半径的圆,当D 运动到x 轴上方的圆上D' 处恰好使AD'圆相切于D'时,此时的图中的1∠最大,则BAD'∠最小,此时△ABE 面积最小.在Rt △'MD A 中,由坐标等可求AM 13,MD'5==AD'12==. 根据题意和圆的切线的性质容易证明△AOE ∽△'AD M ,∴OE AO MD'AD'= ,即OE 8512=解得:10OE 3= ,∴1014BE 833=-= .∵A B 、 两点的坐标分别为()()8,00,8, 且AOB 90∠=∴AB ==过点EN AB ⊥于N ,容易证明△ENB 是等腰直角三角形∴14NE NB 3===∴AN AB NB =-== 在Rt △ANE中,NE tan BAD AE 717∠===.点评:本题首先挖出点D 的运动 “轨迹”是一个圆,然后在此基 础上切入探究三角形面积最小时点D 的特殊位置,并利用关联 知识来使问题得以解决.本题综合知识点较多,技巧性墙,并 渗透“轨迹”思想,是一道高质量的考题.F'ED 'DMO第Ⅱ卷 非选择题 (共102分)注意事项:必须使用0.5毫米黑色墨水铅签字笔在答题卡上题目所指示区域内作答,作图题 可先用铅笔绘出,确认后用0.5毫米黑色墨水铅签字笔描清楚,答在试题卷上无效.二.填空题(共6个小题,每题4分,共24分)13. 如图,直线AB CD 、被直线EF 所截,AB ∥CD ,1120∠=; 则2∠ = .考点:平行线的性质、邻补角的定义. 略解: ∵AB ∥CD ∴13120∠=∠= ∵23180∠+∠= ∴218012060∠=-=故应填:60.14.在一次12人参加的数学测试中,得100分、95分、90分、85分、75分的人数分别为1、3、4、2、2,那么这组数据的众数是 . 考点:众数的定义.分析:众数是指一组 数据中出现次数最多的数据,90分的有4人,次数最多;故应填:90分.15.分解因式:222x 2y -= . 考点:提公因式和公式法分解因式分析:先提取公因式,再利用平方差公式分解.即()()()22222x 2y 2x y 2x y x y -=-=+-故应填:()()2x y x y +- .16.某活动小组购买4个篮球和5个足球,一共花费了466元,其中篮球的单价比足球的单价多4元,求篮球的单价和足球的单价.设篮球的单价为x 元,足球的单价为y 元,依题意,可列方程组为 .15.分解因式:222x 2y -= .E第13题图E考点:列方程组解应用题.分析:本题抓住两个等量关系列方程组:其一.4个篮球的费用+5个足球的费用=466元;其二.篮球的单价-足球的单价=4元.故应填:4x5y466x y4+=⎧⎨-=⎩.17.如图,在Rt△ABC中,ACB90,AB10,BC6∠===, CD∥ABC∠的平分线BD交AC于E,DE= .考点:勾股定理、相似三角形的性质和判定、平行线的性质、等腰三角形的性质以及角平分线的定义等等.略解:在Rt△ABC中求出AC8===∵BD是ABC∠的平分线∴12∠=∠∵CD∥AB∴1D∠=∠∴D2∠=∠∴CD BC6==∵CD∥AB∴△ABE∽△CDE∴CE DE CD63AE BE AB105====∴33CE AC83358==⨯=+又在Rt△BCE中BE===∴33DE BE55==⨯=故应填:5 .18.如图,由10个完全相同的正三角形构成的网格图中,αβ∠∠、如图所示,则()cosαβ+= .考点:正三角形、菱形的性质,勾股定理、三角函数,整体思想等.分析:本题可以先αβ,拼在一个角中按如图方式连接辅助线BC;根据正三角形可菱形的性质求出α1230=∠∠=∠=,360∠=∴ACB2390∠=∠+∠= ;设正三角形的边长为a,则AC2a=,利用菱形的性质并结合三角函数可以求得:BC=在Rt△ACB中,AB===B第17题图B∴BC cos ABC AB ∠===即()αβcos 7+=故应填:7.点评:本题关键抓住把分散的α和β集中拼成在一个角中,通过连接一条辅助线就解决这个问题.然后再利用勾股定理和三角函数使问题得以解决,本题难度不大,但构思巧妙,是一道好题.三.解答题(共8个题,共78分)19.(本题满分8分) 计算:()034sin4583π--++-.考点:实数的运算,含特殊锐角三角函数值、次幂、绝对值以及二次根式的化简等考点. 分析:先算绝对值、三角函数值、化简根式等,再进行加减乘除. 略解:原式= 3412-⨯+ ····························4分=31-=4 ······································· 8分 20..(本题满分8分)解方程:x 21x 1x-=-. 考点:去分母法解分式方程、解一元一次方程.分析:先去分母把分式方程化为整式方程,再解整式方程,注意验根.略解: ()()2x 2x 1x x 1--=- ····························· 2分22x 2x 2x x -+=-x 2=·········································· 6分 当x 2=时,代入()x x 10-≠ ·························· 7分 所以原方程的解为x 2= ······························ 8分21.(本题满分8分)如图,⊙O 中,弦AB 与CD 相交于点E ,AB CD =,连接AD BC 、. 求证:⑴.;⑵.AE CE =.考点:圆的等对等关系、圆周角定理的推论、等腰三角形的判定 分析:⑴.利用弦相等得出对应的弧相等,再利用等式的性质证得;⑵.利用弧相等得到圆周角相等,然后利用“等角对等边”证得证明:⑴.连接 AC···························1分∵AB CD =∴AB CD = ·························· 3分 ∴AB AC CD AC -=- 即 ···········5分⑵.∵∴ACD BAC ∠=∠ ····················· 7分 ∴AE CE = ·························· 8分22.(本题满分8分)某校举行了创建全国文明城市知识竞赛活动,初一年级全体同学参加了竞赛. 收集数据:现随机抽取初一年级30名同学“创文知识竞赛”成绩,分数如下(单位:分):90 85 68 92 81 84 95 93 87 89 78 99 89 85 97 888195869895938986848779858982⑴.请将图表中空缺的部分补充完整;⑵.学校决定表彰“创文知识竞赛”成绩在90分以上的同学,根据上表统计结果估计该校初一年级360人中,约有多少人将获得表彰;⑶.“创文知识竞赛”中,受到表彰的小红同学得到了印有龚扇、剪纸、彩灯、恐龙图案的四枚纪念章,她从中选取两枚送给弟弟,则小红送给弟弟的两枚纪念章中,恰好有恐龙图案的概率是 . 考点:频数分布表和频数分布直方图、样本估计总体、概率.分析:⑴.直接根据提供的数据得到相应的频数,再按频数补全图表的空缺部分;⑵.先计算出30名学生获奖的百分比,以此估算360人中的获奖人数;⑶.列举法求概率,注意属于“不放回”的情况. 略解: ⑴.图表各2分.210⑵.1036012030⨯= (人). 答:初一年级360人中,约有120人将获得表彰. ··················· 6分⑶.树状图分析图:共有12种情况,其中恰好有恐龙图案的是6种。
2019年四川省自贡市中考数学试卷以及解析版
2019年四川省自贡市中考数学试卷一、选择题[共12个小题,每小题4分,共48分,在每题给出的四个选项中,只有一项是符合题目要求的)1.(4分)2019-的倒数是()A.2019-B.12019-C.12019D.20192.(4分)近年来,中国高铁发展迅速,高铁技术不断走出国门,成为展示我国实力的新名片.现在中国高速铁路营运里程将达到23000公里,将23000用科学记数法表示应为( )A.42.310⨯B.32310⨯C.32.310⨯D.50.2310⨯3.(4分)下列图案中,既是轴对称图形又是中心对称图形的是()A.B.C.D.4.(4分)在5轮“中国汉字听写大赛”选拔赛中,甲、乙两位同学的平均分都是90分,甲的成绩方差是15,乙的成绩方差是3,下列说法正确的是()A.甲的成绩比乙的成绩稳定B.乙的成绩比甲的成绩稳定C.甲、乙两人的成绩一样稳定D.无法确定甲、乙的成绩谁更稳定5.(4分)如图是一个水平放置的全封闭物体,则它的俯视图是()A.B.C.D.6.(4分)已知三角形的两边长分别为1和4,第三边长为整数,则该三角形的周长为( )A .7B .8C .9D .107.(4分)实数m ,n 在数轴上对应点的位置如图所示,则下列判断正确的是( )A .||1m <B .11m ->C .0mn >D .10m +>8.(4分)关于x 的一元二次方程220x x m -+=无实数根,则实数m 的取值范围是( )A .1m <B .1m …C .1m …D .1m >9.(4分)一次函数y a x b =+与反比列函数c y x=的图象如图所示,则二次函数2y a x b x c =++的大致图象是( )A .B .C .D .10.(4分)均匀的向一个容器内注水,在注满水的过程中,水面的高度h 与时间t 的函数关系如图所示,则该容器是下列四个中的( )A.B.C.D.11.(4分)图中有两张型号完全一样的折叠式饭桌,将正方形桌面边上的四个弓形面板翻折起来后,就能形成一个圆形桌面(可近似看作正方形的外接圆),正方形桌面与翻折成的圆形桌面的面积之比最接近()A.45B.34C.23D.1212.(4分)如图,已知A、B两点的坐标分别为(8,0)、(0,8),点C、F分别是直线5x=-和x轴上的动点,10CF=,点D是线段CF的中点,连接AD交y轴于点E,当ABE∆面积取得最小值时,tan BAD∠的值是()A.817B.717C.49D.59二、填空题(共6个小题,每小题4分,共24分)13.(4分)如图,直线AB、CD被直线EF所截,//AB CD,1120∠=︒,则2∠=.14.(4分)在一次有12人参加的数学测试中,得100分、95分、90分、85分、75分的人数分别是1、3、4、2、2,那么这组数据的众数是分.15.(4分)分解因式:2222x y -= .16.(4分)某活动小组购买了4个篮球和5个足球,一共花费了466元,其中篮球的单价比足球的单价多4元,求篮球的单价和足球的单价.设篮球的单价为x 元,足球的单价为y 元,依题意,可列方程组为 .17.(4分)如图,在Rt ABC ∆中,90ACB ∠=︒,10AB =,6BC =,//CD AB ,ABC ∠的平分线BD 交AC 于点E ,DE = .18.(4分)如图,在由10个完全相同的正三角形构成的网格图中,α∠、β∠如图所示,则cos()αβ+= .三、解答題(共8个题,共78分)19.(8分)计算:0|3|4sin 45(3)π--︒+-20.(8分)解方程:211x x x-=-. 21.(8分)如图,O 中,弦AB 与CD 相交于点E ,AB CD =,连接AD 、BC . 求证:(1)AD BC =;(2)AE CE =.22.(8分)某校举行了自贡市创建全国文明城市知识竞赛活动,初一年级全体同学参加了知识竞赛.收集教据:现随机抽取了初一年级30名同学的“创文知识竞赛”成绩,分数如下(单位:分):90 85 68 92 81 84 95 93 87 89 78 99 89 85 9788 81 95 86 98 95 93 89 86 84 87 79 85 89 82整理分析数据:(1)请将图表中空缺的部分补充完整;(2)学校决定表彰“创文知识竞赛”成绩在90分及其以上的同学.根据上面统计结果估计该校初一年级360人中,约有多少人将获得表彰;(3)“创文知识竞赛”中,受到表彰的小红同学得到了印有龚扇、剪纸、彩灯、恐龙图案的四枚纪念章,她从中选取两枚送给弟弟,则小红送给弟弟的两枚纪念章中,恰好有恐龙图案的概率是 .23.(10分)如图,在平面直角坐标系中,一次函数1(0)y kx b k =+≠的图象与反比例函数2(0)m y m x=≠的图象相交于第一、象限内的(3,5)A ,(,3)B a -两点,与x 轴交于点C . (1)求该反比例函数和一次函数的解析式;(2)在y 轴上找一点P 使PB PC -最大,求PB PC -的最大值及点P 的坐标;(3)直接写出当12y y >时,x 的取值范围.24.(10分)阅读下列材料:小明为了计算220172018+++⋯++的值,采用以下方法:12222设220172018S=+++⋯++①12222则220182019S=++⋯++②22222②-①得2019-==-221S S S2201720182019∴=+++⋯++=-1222221S请仿照小明的方法解决以下问题:(1)29+++⋯+=;1222(2)210++⋯+=;333(3)求2a>,n是正整数,请写出计算过程).1n+++⋯+的和(0a a a25.(12分)(1)如图1,E是正方形ABCD边AB上的一点,连接BD、DE,将B D E∠绕点D逆时针旋转90︒,旋转后角的两边分别与射线BC交于点F和点G.①线段DB和DG的数量关系是;②写出线段BE,BF和DB之间的数量关系.(2)当四边形ABCD为菱形,60∠=︒,点E是菱形ABCD边AB所在直线上的一点,ADC连接BD、DE,将B D E∠绕点D逆时针旋转120︒,旋转后角的两边分别与射线BC交于点F和点G.①如图2,点E在线段AB上时,请探究线段BE、BF和BD之间的数量关系,写出结论并给出证明;②如图3,点E在线段AB的延长线上时,DE交射线BC于点M,若1AB=,直BE=,2接写出线段GM的长度.26.(14分)如图,已知直线AB 与抛物线2:2C y ax x c =++相交于点(1,0)A -和点(2,3)B 两点.(1)求抛物线C 函数表达式;(2)若点M 是位于直线AB 上方抛物线上的一动点,以MA 、MB 为相邻的两边作平行四边形MANB ,当平行四边形MANB 的面积最大时,求此时平行四边形MANB 的面积S 及点M 的坐标;(3)在抛物线C 的对称轴上是否存在定点F ,使抛物线C 上任意一点P 到点F 的距离等于到直线174y =的距离?若存在,求出定点F 的坐标;若不存在,请说明理由.2019年四川省自贡市中考数学试卷答案与解析一、选择题[共12个小题,每小题4分,共48分,在每题给出的四个选项中,只有一项是符合题目要求的)1.(4分)【分析】直接利用倒数的定义进而得出答案.【解答】解:2019-的倒数是12019-. 故选:B .【点评】此题主要考查了倒数,正确把握倒数的定义是解题关键.2.(4分)【分析】科学记数法的表示形式为10n a ⨯的形式,其中1||10a <…,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值1>时,n 是正数;当原数的绝对值1<时,n 是负数.【解答】解:423000 2.310=⨯,故选:A .【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为10n a ⨯的形式,其中1||10a <…,n 为整数,表示时关键要正确确定a 的值以及n 的值. 3.(4分)【分析】直接利用轴对称图形和中心对称图形的概念求解.【解答】解:A 、是轴对称图形,但不是中心对称图形,故此选项错误;B 、不是轴对称图形,是中心对称图形,故此选项错误;C 、不是轴对称图形,是中心对称图形,故此选项错误;D 、既是中心对称图形也是轴对称图形,故此选项正确.故选:D .【点评】此题主要考查了中心对称与轴对称的概念:轴对称的关键是寻找对称轴,两边图象折叠后可重合,中心对称是要寻找对称中心,旋转180︒后与原图重合.4.(4分)【分析】根据方差的意义求解可得.【解答】解:乙的成绩方差<甲成绩的方差,∴乙的成绩比甲的成绩稳定,【点评】本题主要考查方差,方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.5.(4分)【分析】根据俯视图是从物体上面看,从而得到出物体的形状.【解答】解:从上面观察可得到:.故选:C . 【点评】本题考查了三视图的概简单几何体的三视图,本题的关键是要考虑到俯视图中看见的棱用实线表示.6.(4分)【分析】根据三角形的三边关系“第三边大于两边之差,而小于两边之和”,求得第三边的取值范围;再根据第三边是整数,从而求得周长.【解答】解:设第三边为x ,根据三角形的三边关系,得:4141x -<<+,即35x <<, x 为整数,x ∴的值为4.三角形的周长为1449++=.故选:C .【点评】此题考查了三角形的三边关系.关键是正确确定第三边的取值范围.7.(4分)【分析】利用数轴表示数的方法得到0m n <<,然后对各选项进行判断.【解答】解:利用数轴得01m n <<<,所以0m ->,11m ->,0mn <,10m +<.故选:B .【点评】本题考查了实数与数轴:数轴上的点与实数一一对应;右边的数总比左边的数大.8.(4分)【分析】利用判别式的意义得到△2(2)40m =--<,然后解不等式即可.【解答】解:根据题意得△2(2)40m =--<,故选:D .【点评】本题考查了根的判别式:一元二次方程20(0)ax bx c a ++=≠的根与△24b ac =-有如下关系:当△0>时,方程有两个不相等的两个实数根;当△0=时,方程有两个相等的两个实数根;当△0<时,方程无实数根.9.(4分)【分析】根据一次函数与反比例函数图象找出a 、b 、c 的正负,再根据抛物线的对称轴为2b x a=-,找出二次函数对称轴在y 轴右侧,比对四个选项的函数图象即可得出结论. 【解答】解:一次函数1y ax c =+图象过第一、二、四象限,0a ∴<,0b >,02b a∴->, ∴二次函数23y ax bx c =++开口向下,二次函数23y ax bx c =++对称轴在y 轴右侧; 反比例函数2c y x=的图象在第一、三象限, 0c ∴>, ∴与y 轴交点在x 轴上方.满足上述条件的函数图象只有选项A .故选:A .【点评】本题考查了一次函数的图象、反比例函数的图象以及二次函数的图象,解题的关键是根据一次函数与反比例函数的图象找出a 、b 、c 的正负.本题属于基础题,难度不大,熟悉函数图象与系数的关系是解题的关键.10.(4分)【分析】由函数图象可得容器形状不是均匀物体分析判断,由图象及容积可求解.【解答】解:相比较而言,前一个阶段,用时较少,高度增加较快,那么下面的物体应较细.由图可得上面圆柱的底面半径应大于下面圆柱的底面半径.故选:D .【点评】此题主要考查了函数图象,解决本题的关键是根据用的时间长短来判断相应的函数图象.11.(4分)【分析】连接AC ,根据正方形的性质得到90B ∠=︒,根据圆周角定理得到AC 为圆的直径,根据正方形面积公式、圆的面积公式计算即可. 【解答】解:连接AC , 设正方形的边长为a , 四边形ABCD 是正方形, 90B ∴∠=︒, AC ∴为圆的直径,AC ∴==,2223π=≈, 故选:C .【点评】本题考查的是正多边形和圆,掌握圆周角定理、正方形的性质是解题的关键. 12.(4分)【分析】如图,设直线5x =交x 轴于K .由题意152KD CF ==,推出点D 的运动轨迹是以K 为圆心,5为半径的圆,推出当直线AD 与K 相切时,ABE ∆的面积最小,作EH AB⊥于H .求出EH ,AH 即可解决问题.【解答】解:如图,设直线5x =交x 轴于K .由题意152KD CF ==,∴点D 的运动轨迹是以K 为圆心,5为半径的圆, ∴当直线AD 与K 相切时,ABE ∆的面积最小,AD是切线,点D是切点,AD KD∴⊥,13AK =,5DK=,12AD∴=,tanOE DK EAOOA AD∠==,∴5 812 OE=,103 OE∴=,263AE∴=,作EH AB⊥于H.12ABE AOB AOES AB EHS S∆∆∆==-,3EH∴=,AH∴=8tan17EHBADAH∴∠===,故选:A.【点评】本题考查解直角三角形,坐标与图形的性质,直线与圆的位置关系,三角形的面积等知识,解题的关键是灵活运用所学知识解决问题,属于中考选择题中的压轴题.二、填空题(共6个小题,每小题4分,共24分)13.(4分)如图,直线AB、CD被直线EF所截,//AB CD,1120∠=︒,则2∠=60︒.【分析】直接利用平角的定义结合平行线的性质得出答案.【解答】解:1120∠=︒,318012060∴∠=︒-︒=︒,//AB CD,2360∴∠=∠=︒.故答案为:60︒.【点评】此题主要考查了平行线的性质,正确得出23∠=∠是解题关键.14.(4分)在一次有12人参加的数学测试中,得100分、95分、90分、85分、75分的人数分别是1、3、4、2、2,那么这组数据的众数是 90 分. 【分析】根据众数的定义求解可得. 【解答】解:这组数据的众数是90分, 故答案为:90.【点评】本题主要考查众数,求一组数据的众数的方法:找出频数最多的那个数据,若几个数据频数都是最多且相同,此时众数就是这多个数据. 15.(4分)分解因式:2222x y -= 2()()x y x y +- .【分析】先提取公因式2,再根据平方差公式进行二次分解即可求得答案. 【解答】解:2222222()2()()x y x y x y x y -=-=+-. 故答案为:2()()x y x y +-.【点评】本题考查了提公因式法,公式法分解因式,提取公因式后利用平方差公式进行二次分解,注意分解要彻底.16.(4分)某活动小组购买了4个篮球和5个足球,一共花费了466元,其中篮球的单价比足球的单价多4元,求篮球的单价和足球的单价.设篮球的单价为x 元,足球的单价为y 元,依题意,可列方程组为 445466x y x y -=⎧⎨+=⎩.【分析】根据题意可得等量关系:①4个篮球的花费5+个足球的花费466=元,②篮球的单价-足球的单价4=元,根据等量关系列出方程组即可.【解答】解:设篮球的单价为x 元,足球的单价为y 元,由题意得: 445466x y x y -=⎧⎨+=⎩,故答案为:445466x y x y -=⎧⎨+=⎩,【点评】此题主要考查了由实际问题抽象出二元一次方程组,关键是正确理解题意,找出题目中的等量关系.17.(4分)如图,在Rt ABC ∆中,90ACB ∠=︒,10AB =,6BC =,//CD AB ,ABC ∠的平分线BD 交AC 于点E ,DE【分析】由//CD AB ,D ABE ∠=∠,D CBE ∠=∠,所以6CD BC ==,再证明AEB CED ∆∆∽,根据相似比求出DE 的长.【解答】解:90ACB ∠=︒,10AB =,6BC =, 8AC ∴=,BD 平分ABC ∠,ABE CDE ∴∠=∠, //CD AB ,D ABE ∴∠=∠,D CBE ∴∠=∠, 6CD BC ∴==, AEB CED ∴∆∆∽,∴10563AE BE AB EC ED CD ====, 338388CE AC ∴==⨯=,BE ==, 3355DE BE ==⨯【点评】本题考查了相似三角形,熟练掌握相似三角形的判定与性质以及勾股定理是解题的关键.18.(4分)如图,在由10个完全相同的正三角形构成的网格图中,α∠、β∠如图所示,则cos()αβ+=.【分析】给图中各点标上字母,连接DE ,利用等腰三角形的性质及三角形内角和定理可得出30α∠=︒,同理,可得出:30CDE CED α∠=∠=︒=∠,由60AEC ∠=︒结合A E D A E C C E ∠=∠+∠可得出90AED ∠=︒,设等边三角形的边长为a ,则2AE a =,DE =,利用勾股定理可得出AD 的长,再结合余弦的定义即可求出cos()αβ+的值.【解答】解:给图中各点标上字母,连接DE ,如图所示. 在ABC ∆中,120ABC ∠=︒,BA BC =, 30α∴∠=︒.同理,可得出:30CDE CED α∠=∠=︒=∠. 又60AEC ∠=︒,90AED AEC CED ∴∠=∠+∠=︒.设等边三角形的边长为a ,则2AE a =,2sin 603DE a a =⨯︒=,AD ∴=,cos()DE AD αβ∴+=.【点评】本题考查了解直角三角形、等边三角形的性质以及规律型:图形的变化类,构造出含一个锐角等于αβ∠+∠的直角三角形是解题的关键. 三、解答題(共8个题,共78分)19.(8分)计算:0|3|4sin 45(3)π--︒+-【分析】原式第一项利用绝对值的意义化简,第二项利用特殊角的三角函数值计算,第三项化为最简二次根式,第四项利用零指数幂法则计算即可得到结果.【解答】解:原式341314=-+=-=. 【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键. 20.(8分)解方程:211x x x-=-. 【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.【解答】解:去分母得:2222x x x x -+=-, 解得:2x =,检验:当2x =时,方程左右两边相等, 所以2x =是原方程的解.【点评】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验. 21.(8分)如图,O 中,弦AB 与CD 相交于点E ,AB CD =,连接AD 、BC . 求证:(1)AD BC =;(2)AE CE =.【分析】(1)由AB CD =知AB CD =,即AD AC BC AC +=+,据此可得答案;(2)由A D B C =知AD BC =,结合ADE CBE ∠=∠,DAE BCE ∠=∠可证ADE CBE ∆≅∆,从而得出答案. 【解答】证明(1)AB CD =,∴AB CD =,即AD AC BC AC +=+, ∴AD BC =;(2)AD BC =,∴=,AD BC又ADE CBE∠=∠,DAE BCE∠=∠,∴∆≅∆,()ADE CBE ASA∴=.AE CE【点评】本题主要考查圆心角、弧、弦的关系,圆心角、弧、弦三者的关系可理解为:在同圆或等圆中,①圆心角相等,②所对的弧相等,③所对的弦相等,三项“知一推二”,一项相等,其余二项皆相等.22.(8分)某校举行了自贡市创建全国文明城市知识竞赛活动,初一年级全体同学参加了知识竞赛.收集教据:现随机抽取了初一年级30名同学的“创文知识竞赛”成绩,分数如下(单位:分):90 85 68 92 81 84 95 93 87 89 78 99 89 85 9788 81 95 86 98 95 93 89 86 84 87 79 85 89 82整理分析数据:(1)请将图表中空缺的部分补充完整;(2)学校决定表彰“创文知识竞赛”成绩在90分及其以上的同学.根据上面统计结果估计该校初一年级360人中,约有多少人将获得表彰;(3)“创文知识竞赛”中,受到表彰的小红同学得到了印有龚扇、剪纸、彩灯、恐龙图案的四枚纪念章,她从中选取两枚送给弟弟,则小红送给弟弟的两枚纪念章中,恰好有恐龙图案的概率是.【分析】(1)由已知数据计数即可得;(2)用总人数乘以样本中对应部分人数所占比例即可得;(3)根据题意先画出树状图,得出共有12种等可能的结果数,再利用概率公式求解可得.【解答】解:(1)补全图表如下:(2)估计该校初一年级360人中,获得表彰的人数约为1036012030⨯=(人);(3)将印有龚扇、剪纸、彩灯、恐龙图案分别记为A、B、C、D,画树状图如下:则共有12种等可能的结果数,其中小红送给弟弟的两枚纪念章中,恰好有恐龙图案的结果数为6,所以小红送给弟弟的两枚纪念章中,恰好有恐龙图案的概率为12,故答案为:12.【点评】本题考查了列表法与树状图法:利用列表法和树状图法展示所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,求出概率,也考查了条形统计图与样本估计总体.23.(10分)如图,在平面直角坐标系中,一次函数1(0)y kx b k =+≠的图象与反比例函数2(0)my m x=≠的图象相交于第一、象限内的(3,5)A ,(,3)B a -两点,与x 轴交于点C . (1)求该反比例函数和一次函数的解析式;(2)在y 轴上找一点P 使PB PC -最大,求PB PC -的最大值及点P 的坐标; (3)直接写出当12y y >时,x 的取值范围.【分析】(1)利用待定系数法,即可得到反比例函数和一次函数的解析式; (2)根据一次函数12y x =+,求得与y 轴的交点P ,此交点即为所求; (3)根据AB 两点的横坐标及直线与双曲线的位置关系求x 的取值范围. 【解答】解:(1)把(3,5)A 代入2(0)my m x=≠,可得3515m =⨯=, ∴反比例函数的解析式为215y x=; 把点(,3)B a -代入,可得5a =-, (5,3)B ∴--.把(3,5)A ,(5,3)B --代入1y kx b =+,可得3553k b k b +=⎧⎨-+=-⎩,解得12k b =⎧⎨=⎩,∴一次函数的解析式为12y x =+;(2)一次函数的解析式为12y x =+,令0x =,则2y =,∴一次函数与y 轴的交点为(0,2)P ,此时,PB PC BC -=最大,P 即为所求, 令0y =,则2x =-,(2,0)C ∴-,BC ∴=(3)当12y y >时,50x -<<或3x >.【点评】本题考查了反比例函数与一次函数的交点问题,待定系数法求反比例函数和一次函数的解析式,根据点的坐标求线段长,正确掌握反比例函数的性质是解题的关键. 24.(10分)阅读下列材料:小明为了计算22017201812222+++⋯++的值,采用以下方法: 设22017201812222S =+++⋯++① 则22018201922222S =++⋯++② ②-①得2019221S S S -==-22017201820191222221S ∴=+++⋯++=-请仿照小明的方法解决以下问题: (1)291222+++⋯+= 1021- ; (2)210333++⋯+= ;(3)求21n a a a +++⋯+的和(0a >,n 是正整数,请写出计算过程).【分析】(1)利用题中的方法设291222S =+++⋯+,两边乘以2得到292222S =++⋯+,然后把两式相减计算出S 即可;(2)利用题中的方法设2341133333S =+++++⋯+,两边乘以3得到23453333333S =+++++⋯+,然后把两式相减计算出S 即可; (3)利用(2)的方法计算.【解答】解:(1)设291222S =+++⋯+① 则2102222S =++⋯+② ②-①得10221S S S -==-2910122221S ∴=+++⋯+=-;故答案为:1021-(2)设23410133333S =+++++⋯+①,则2345113333333S =+++++⋯+②,②-①得11231S =-, 所以11312S -=, 即1123410311333332-+++++⋯+=; 故答案为:11312-; (3)设2341..n S a a a a a =++++++①,则2341..n n aS a a a a a a +=++++++②,②-①得:1(1)1n a S a +-=-, 所以111n a S a +-=-, 即123411..1n na a a a a a a +-++++++=-, 【点评】本题考查了规律型:数字的变化类:认真观察、仔细思考,善用联想,利用类比的方法是解决这类问题的方法.25.(12分)(1)如图1,E 是正方形ABCD 边AB 上的一点,连接BD 、DE ,将B D E ∠绕点D 逆时针旋转90︒,旋转后角的两边分别与射线BC 交于点F 和点G .①线段DB 和DG 的数量关系是 DB DG = ;②写出线段BE ,BF 和DB 之间的数量关系.(2)当四边形ABCD 为菱形,60ADC ∠=︒,点E 是菱形ABCD 边AB 所在直线上的一点,连接BD 、DE ,将B D E ∠绕点D 逆时针旋转120︒,旋转后角的两边分别与射线BC 交于点F 和点G .①如图2,点E 在线段AB 上时,请探究线段BE 、BF 和BD 之间的数量关系,写出结论并给出证明;②如图3,点E 在线段AB 的延长线上时,DE 交射线BC 于点M ,若1BE =,2AB =,直接写出线段GM 的长度.【分析】(1)①根据旋转的性质解答即可;②根据正方形的性质和全等三角形的判定和性质解答即可;(2)①根据菱形的性质和全等三角形的判定和性质解答即可;②先同理得:BG=,计算BD的长,从而得BG的长,根据平行线分线段成比例定理可得BM的长,根据线段的差可得结论.【解答】解:(1)①DB DG=,理由是:∠绕点B逆时针旋转90︒,如图1,DBE由旋转可知,BDE FDGBDG∠=︒,∠=∠,90四边形ABCD是正方形,∴∠=︒,45CBD∴∠=︒,45G∴∠=∠=︒,G CBD45∴=;DB DG故答案为:DB DG=;②BF BE+=,理由如下:由①知:FDG EDB=,∠=∠=︒,BD DGG DBE∠=∠,45∴∆≅∆,()FDG EDB ASABE FG∴=,BF FG BF BE BC CG∴+=+=+,Rt DCG∆中,45G CDG∠=∠=︒,CD CG CB∴==,DG BD==,即2BF BE BC+==;(2)①如图2,BF BE+,理由如下:在菱形ABCD中,11603022ADB CDB ADC∠=∠=∠=⨯︒=︒,由旋转120︒得120EDF BDG∠=∠=︒,EDB FDG∠=∠,在DBG∆中,1801203030G∠=︒-︒-︒=︒,30DBG G∴∠=∠=︒,DB DG∴=,()EDB FDG ASA∴∆≅∆,BE FG∴=,BF BE BF FG BG∴+=+=,过点D作DM BG⊥于点M,如图2,BD DG=,2BG BM∴=,在Rt BMD∆中,30DBM∠=︒,2BD DM∴=.设DM a=,则2BD a=,DM=,BG ∴=, ∴BD BG ==,BG ∴=,BF BE BG ∴+==;②过点A 作AN BD ⊥于N ,如图3,Rt ABN ∆中,30ABN ∠=︒,2AB =,1AN ∴=,BN2BD BN ∴==//DC BE , ∴21CD CM BE BM ==, 2CM BM +=,23BM ∴=,由①同理得:BE BF BG +==,6BG ∴,216633GM BG BM ∴=-=-=. 【点评】此题是四边形综合题,主要考查了全等三角形的判定和性质,平行线分线段成比例定理,正方形和菱形的性质,直角三角形30度的角性质等知识,本题证明FDG BDE ∆≅∆是解本题的关键.26.(14分)如图,已知直线AB 与抛物线2:2C y ax x c =++相交于点(1,0)A -和点(2,3)B 两点.(1)求抛物线C 函数表达式;(2)若点M 是位于直线AB 上方抛物线上的一动点,以MA 、MB 为相邻的两边作平行四边形MANB ,当平行四边形MANB 的面积最大时,求此时平行四边形MANB 的面积S 及点M 的坐标;(3)在抛物线C 的对称轴上是否存在定点F ,使抛物线C 上任意一点P 到点F 的距离等于到直线174y =的距离?若存在,求出定点F 的坐标;若不存在,请说明理由.【分析】(1)利用待定系数法,将A ,B 的坐标代入22y ax x c =++即可求得二次函数的解析式;(2)过点M 作MH x ⊥轴于H ,交直线AB 于K ,求出直线AB 的解析式,设点2(,23)M a a a -++,则(,1)K a a +,利用函数思想求出MK 的最大值,再求出AMB ∆面积的最大值,可推出此时平行四边形MANB 的面积S 及点M 的坐标;(3)设抛物线对称轴与直线174y =交于点E ,抛物线顶点为Q ,作点E 关于点Q 的对称点F ,此时抛物线C 上任意一点P 到点F 的距离等于到直线174y =的距离,可分别先求出Q ,F 的坐标,由对称性可求出F 的坐标.【解答】解:(1)由题意把点(1,0)-、(2,3)代入22y ax x c =++,得,20443a c a c -+=⎧⎨++=⎩, 解得1a =-,2b =,∴此抛物线C 函数表达式为:223y x x =-++;(2)如图1,过点M 作MH x ⊥轴于H ,交直线AB 于K ,将点(1,0)-、(2,3)代入y kx b =+中,得,023k b k b -+=⎧⎨+=⎩, 解得,1k =,1b =,1AB y x ∴=+,设点2(,23)M a a a -++,则(,1)K a a +,则223(1)MK a a a =-++-+219()24a =--+, 根据二次函数的性质可知,当12a =时,MK 有最大长度94, AMK BMK AMB S S S ∆∆∆∴=+最大11()22B H MK AH MK x x =+- 1()2B A MK x x =- 19324=⨯⨯ 278=, ∴以MA 、MB 为相邻的两边作平行四边形MANB ,当平行四边形MANB 的面积最大时, 27272284AMB S S ∆==⨯=最大最大,1(2M ,15)4;(3)如图2,设抛物线对称轴与直线174y =交于点E ,抛物线顶点为Q , 作点E 关于点Q 的对称点F ,此时抛物线C 上任意一点P 到点F 的距离等于到直线174y =的距离, 223y x x =-++ 2(1)4x =--+,(1,4)Q ∴,17(1,)4E ,点F 与点E 关于点Q 对称,15(1,)4F ∴.【点评】此题考查了待定系数法求解析式,还考查了用函数思想求极值等,解题关键是能够判断出当平行四边形MANB 的面积最大时,ABM ∆的面积最大,且此时线段MK 的长度也最大。
2019年自贡市数学中考试题含答案
12.D
解析:D 【解析】
【点睛】本题考查了平行线的性质,熟练掌握平行线的性质是解题的关键. 平行线的性质:两直线平行,同位角相等;两直线平行,内错角相等;两直线平行,同旁 内角互补.
2.B
解析:B 【解析】 【分析】 ①点 P 在 AB 上时,点 D 到 AP 的距离为 AD 的长度,②点 P 在 BC 上时,根据同角的余角相 等求出∠APB=∠PAD,再利用相似三角形的列出比例式整理得到 y 与 x 的关系式,从而得 解. 【详解】 ①点 P 在 AB 上时,0≤x≤3,点 D 到 AP 的距离为 AD 的长度,是定值 4; ②点 P 在 BC 上时,3<x≤5,
故选 D. 【点睛】 此题考查圆周角定理,关键是利用圆周角定理得出∠AOC=60°.
8.A
解析:A 【解析】 试题分析:根据只有符号不同的两数互为相反数,可知-2 的相反数为 2. 故选:A. 点睛:此题考查了相反数的意义,解题关键是明确相反数的概念,只有符号不同的两数互 为相反数,可直接求解.
9.A
要求提前 5 天交货,为按时完成订单,设每天就多做 x 套,则 x 应满足的方程为( )
A. 960 960 5 B. 960 5 960 C. 960 960 5
48 x 48
48
48 x 48 x
二、填空题
D. 960 960 5 48 48 x
13.如图,直线 a、b 被直线 l 所截,a∥b,∠1=70°,则∠2= .
当 8<x<9 时,它的图象位于 x 轴的上方,则 m 的值为( )
A.27
B.9
C.﹣7
D.﹣16
5.在 Rt△ABC 中,∠C=90°,AB=4,AC=1,则 cosB 的值为( )
2019年四川省自贡市中考数学试卷及答案(Word解析版)
四川省自贡市2019年中考数学试卷一、选择题(共10个小题,每小题4分,共40分)2.(4分)(2019•自贡)在我国南海某海域探明可燃冰储量约有194亿立方米.194亿用科3.(4分)(2019•自贡)某班七个合作学习小组人数如下:4、5、5、x、6、7、8,已知这4.(4分)(2019•自贡)在四张背面完全相同的卡片上分别印有等腰三角形、平行四边形、菱形、圆的图案,现将印有图案的一面朝下,混合后从中随机抽取两张,则抽到卡片上印有B=.5.(4分)(2019•自贡)如图,在平面直角坐标系中,⊙A经过原点O,并且分别与x轴、y轴交于B、C两点,已知B(8,0),C(0,6),则⊙A的半径为()6.(4分)(2019•自贡)如图,在平行四边形ABCD中,AB=6,AD=9,∠BAD的平分线交BC于E,交DC的延长线于F,BG⊥AE于G,BG=,则△EFC的周长为(),=27.(4分)(2019•自贡)某超市货架上摆放着某品牌红烧牛肉方便面,如图是它们的三视图,则货架上的红烧牛肉方便面至少有()8.(4分)(2019•自贡)如图,将一张边长为3的正方形纸片按虚线裁剪后,恰好围成一个底面是正三角形的棱柱,这个棱柱的侧面积为()B,高为,9.(4分)(2019•自贡)如图,点O 是正六边形的对称中心,如果用一副三角板的角,借助点O (使该角的顶点落在点O 处),把这个正六边形的面积n 等分,那么n 的所有可能取值的个数是( )10.(4分)(2019•自贡)如图,已知A 、B 是反比例函数上的两点,BC ∥x 轴,交y 轴于C ,动点P 从坐标原点O 出发,沿O →A →B →C 匀速运动,终点为C ,过运动路线上任意一点P 作PM ⊥x 轴于M ,PN ⊥y 轴于N ,设四边形OMPN 的面积为S ,P 点运动的时间为t ,则S 关于t 的函数图象大致是( )B二、填空题(共5个小题,每小题4分,共20分)11.(4分)(2019•自贡)多项式ax2﹣a与多项式x2﹣2x+1的公因式是x﹣1.12.(4分)(2019•自贡)计算:=1.﹣×﹣(﹣﹣2+13.(4分)(2019•自贡)如图,边长为1的小正方形网格中,⊙O的圆心在格点上,则∠AED的余弦值是.都对,ABC==故答案为:14.(4分)(2019•自贡)已知关于x的方程x2﹣(a+b)x+ab﹣1=0,x1、x2是此方程的两个实数根,现给出三个结论:①x1≠x2;②x1x2<ab;③.则正确结论的序号是①②.(填上你认为正确结论的所有序号)15.(4分)(2019•自贡)如图,在函数的图象上有点P1、P2、P3…、P n、P n+1,点P1的横坐标为2,且后面每个点的横坐标与它前面相邻点的横坐标的差都是2,过点P1、P2、P3…、P n、P n+1分别作x轴、y轴的垂线段,构成若干个矩形,如图所示,将图中阴影部分的面积从左至右依次记为S1、S2、S3…、S n,则S1=4,S n=.(用含n的代数式表示)的纵坐标为的纵坐标为:﹣)×=2[﹣](×=2[﹣]﹣];.三、解答题(共2个题,每题8分,共16分)16.(8分)(2019•自贡)解不等式组:并写出它的所有的整数解.,17.(8分)(2019•自贡)先化简,然后从1、、﹣1中选取一个你认为合适的数作为a的值代入求值.×﹣,=四、解答题(共2个题,每小题8分,共16分)18.(8分)(2019•自贡)用配方法解关于x的一元二次方程ax2+bx+c=0.x=,等式的两边都加上x++)﹣=±=.19.(8分)(2019•自贡)某校住校生宿舍有大小两种寝室若干间,据统计该校高一年级男生740人,使用了55间大寝室和50间小寝室,正好住满;女生730人,使用了大寝室50间和小寝室55间,也正好住满.(1)求该校的大小寝室每间各住多少人?(2)预测该校今年招收的高一新生中有不少于630名女生将入住寝室80间,问该校有多少种安排住宿的方案?,五、解答题(共2个题,每题10分,共20分)20.(10分)(2019•自贡)为配合我市创建省级文明城市,某校对八年级各班文明行为劝导志愿者人数进行了统计,各班统计人数有6名、5名、4名、3名、2名、1名共计六种情况,并制作如下两幅不完整的统计图.(1)求该年级平均每班有多少文明行为劝导志愿者?并将条形图补充完整;(2)该校决定本周开展主题实践活动,从八年级只有2名文明行为劝导志愿者的班级中任选两名,请用列表或画树状图的方法,求出所选文明行为劝导志愿者有两名来自同一班级的概率.=21.(10分)(2019•自贡)如图,点B、C、D都在⊙O上,过点C作AC∥BD交OB延长线于点A,连接CD,且∠CDB=∠OBD=30°,DB=cm.(1)求证:AC是⊙O的切线;(2)求由弦CD、BD与弧BC所围成的阴影部分的面积.(结果保留π)BD==六、解答题(本题满分12分)22.(12分)(2019•自贡)在东西方向的海岸线l上有一长为1km的码头MN(如图),在码头西端M的正西19.5km处有一观察站A.某时刻测得一艘匀速直线航行的轮船位于A的北偏西30°,且与A相距40km的B处;经过1小时20分钟,又测得该轮船位于A的北偏东60°,且与A相距km的C处.(1)求该轮船航行的速度(保留精确结果);(2)如果该轮船不改变航向继续航行,那么轮船能否正好行至码头MN靠岸?请说明理由.==1660=12(CS=8(cos30=8×=12(×=20=,七、解答题(本题满分12分)23.(12分)(2019•自贡)将两块全等的三角板如图①摆放,其中∠A1CB1=∠ACB=90°,∠A1=∠A=30°.(1)将图①中的△A1B1C顺时针旋转45°得图②,点P1是A1C与AB的交点,点Q是A1B1与BC的交点,求证:CP1=CQ;(2)在图②中,若AP1=2,则CQ等于多少?(3)如图③,在B1C上取一点E,连接BE、P1E,设BC=1,当BE⊥P1B时,求△P1BE 面积的最大值.BE=D=AP,,;BCBC=BE=×x x(+八、解答题(本题满分14分)24.(14分)(2019•自贡)如图,已知抛物线y=ax2+bx﹣2(a≠0)与x轴交于A、B两点,与y轴交于C点,直线BD交抛物线于点D,并且D(2,3),tan∠DBA=.(1)求抛物线的解析式;(2)已知点M为抛物线上一动点,且在第三象限,顺次连接点B、M、C、A,求四边形BMCA面积的最大值;(3)在(2)中四边形BMCA面积最大的条件下,过点M作直线平行于y轴,在这条直线上是否存在一个以Q点为圆心,OQ为半径且与直线AC相切的圆?若存在,求出圆心Q的坐标;若不存在,请说明理由.DBA==y=xx+BF OF+((﹣+x xm==3.=QE=OQ=,即。
四川省自贡市2019年中考数学试卷(word版,有答案)
2019年四川省自贡市中考数学试卷一、选择题:本题共10个小题,每小题4分,共4分1.计算1﹣(﹣1)的结果是()A.2 B.1 C.0 D.﹣22.将0.00025用科学记数法表示为()A.2.5×104B.0.25×10﹣4 C.2.5×10﹣4D.25×10﹣53.下列根式中,不是最简二次根式的是()A. B.C.D.4.把a2﹣4a多项式分解因式,结果正确的是()A.a(a﹣4)B.(a+2)(a﹣2)C.a(a+2)(a﹣2)D.(a﹣2)2﹣45.如图,⊙O中,弦AB与CD交于点M,∠A=45°,∠AMD=75°,则∠B的度数是()A.15°B.25°C.30°D.75°6.若+b2﹣4b+4=0,则ab的值等于()A.﹣2 B.0 C.1 D.27.已知关于x的一元二次方程x2+2x﹣(m﹣2)=0有实数根,则m的取值范围是()A.m>1 B.m<1 C.m≥1 D.m≤18.如图是几何体的俯视图,所表示数字为该位置小正方体的个数,则该几何体的正视图是()A.B.C.D.9.圆锥的底面半径为4cm,高为5cm,则它的表面积为()A.12πcm2B.26πcm2C.πcm2D.(4+16)πcm210.二次函数y=ax2+bx+c的图象如图,反比例函数y=与正比例函数y=bx在同一坐标系内的大致图象是()A.B.C.D.二、填空题:共5个小题,每小题4分,共20分11.若代数式有意义,则x的取值范围是.12.若n边形内角和为900°,则边数n=.13.一只昆虫在如图所示的树枝上寻觅食物,假定昆虫在每个岔路口都会随机选择一条路径,则它获取食物的概率是.14.如图,把Rt△ABC放在直角坐标系内,其中∠CAB=90°,BC=5,点A、B的坐标分别为(1,0)、(4,0),将△ABC沿x轴向右平移,当点C落在直线y=2x﹣6上时,线段BC扫过的面积为cm2.15.如图,在边长相同的小正方形网格中,点A、B、C、D都在这些小正方形的顶点上,AB,CD 相交于点P,则的值=,tan∠APD的值=.三、解答题:共2个题,每小题8分,共16分16.计算:()﹣1+(sin60°﹣1)0﹣2cos30°+|﹣1|17.解不等式组.请结合题意填空,完成本题的解答.(1)解不等式①,得:;(2)解不等式②,得:;(3)把不等式①和②的解集在数轴上表示出来;(4)不等式组的解集为:.四、解答题:共2个体,每小题8分,共16分18.某校为了丰富大家的业余生活,组织了一次工会活动,准备一次性购买若干钢笔和笔记本(2019•自贡)某国发生8.1级强烈地震,我国积极组织抢险队赴地震灾区参与抢险工作,如图,某探测对在地面A、B两处均探测出建筑物下方C处由生命迹象,已知探测线与地面的夹角分别是25°和60°,且AB=4米,求该生命迹象所在位置C的深度.(结果精确到1米,参考数据:sin25°≈0.4,cos25°≈0,9,tan25°≈0.5,≈1.7)五、解答题:共2个题,每题10分,共20分20.我市开展“美丽自宫,创卫同行”活动,某校倡议学生利用双休日在“花海”参加义务劳动,为了解同学们劳动情况,学校随机调查了部分同学的劳动时间,并用得到的数据绘制了不完整的统计图,根据图中信息回答下列问题:(1)将条形统计图补充完整;(2)扇形图中的“1.5小时”部分圆心角是多少度?(3)求抽查的学生劳动时间的众数、中位数.21.如图,⊙O是△ABC的外接圆,AC为直径,弦BD=BA,BE⊥DC交DC的延长线于点E.(1)求证:∠1=∠BAD;(2)求证:BE是⊙O的切线.六、解答题:本题12分22.如图,已知A(﹣4,n),B(2,﹣4)是一次函数y=kx+b和反比例函数y=的图象的两个交点.(1)求一次函数和反比例函数的解析式;(2)观察图象,直接写出方程kx+b﹣=0的解;(3)求△AOB的面积;(4)观察图象,直接写出不等式kx+b﹣<0的解集.七、解答题23.已知矩形ABCD的一条边AD=8,将矩形ABCD折叠,使得顶点B落在CD边上的P点处(Ⅰ)如图1,已知折痕与边BC交于点O,连接AP、OP、OA.若△OCP与△PDA的面积比为1:4,求边CD的长.(Ⅱ)如图2,在(Ⅰ)的条件下,擦去折痕AO、线段OP,连接BP.动点M在线段AP上(点M 与点P、A不重合),动点N在线段AB的延长线上,且BN=PM,连接MN交PB于点F,作ME⊥BP 于点E.试问当动点M、N在移动的过程中,线段EF的长度是否发生变化?若变化,说明变化规律.若不变,求出线段EF的长度.八、解答题24.抛物线y=﹣x2+4ax+b(a>0)与x轴相交于O、A两点(其中O为坐标原点),过点P(2,2a)作直线PM⊥x轴于点M,交抛物线于点B,点B关于抛物线对称轴的对称点为C(其中B、C不重合),连接AP交y轴于点N,连接BC和PC.(1)a=时,求抛物线的解析式和BC的长;(2)如图a>1时,若AP⊥PC,求a的值.2019年四川省自贡市中考数学试卷参考答案与试题解析一、选择题:本题共10个小题,每小题4分,共4分1.计算1﹣(﹣1)的结果是()A.2 B.1 C.0 D.﹣2【考点】有理数的减法.【分析】根据减去一个数等于加上这个数的相反数进行计算即可得解.【解答】解:1﹣(﹣1),=1+1,=2.故选A.【点评】本题考查了有理数的减法,熟记减去一个数等于加上这个数的相反数是解题的关键.2.将0.00025用科学记数法表示为()A.2.5×104B.0.25×10﹣4 C.2.5×10﹣4D.25×10﹣5【考点】科学记数法—表示较小的数.【分析】根据用科学记数法表示较小的数的方法解答即可.【解答】解:0.00025=2.5×10﹣4,故选:C.【点评】本题考查的是用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.3.下列根式中,不是最简二次根式的是()A. B.C.D.【考点】最简二次根式.【分析】判定一个二次根式是不是最简二次根式的方法,就是逐个检查最简二次根式中的两个条件(被开方数不含分母,也不含能开的尽方的因数或因式).是否同时满足,同时满足的就是最简二次根式,否则就不是.【解答】解:因为==2,因此不是最简二次根式.故选B.【点评】规律总结:满足下列两个条件的二次根式,叫做最简二次根式.(1)被开方数不含分母;(2)被开方数中不含能开得尽方的因数或因式.4.把a2﹣4a多项式分解因式,结果正确的是()A.a(a﹣4)B.(a+2)(a﹣2)C.a(a+2)(a﹣2)D.(a﹣2)2﹣4【考点】因式分解-提公因式法.【分析】直接提取公因式a即可.【解答】解:a2﹣4a=a(a﹣4),故选:A.【点评】此题主要考查了提公因式法分解因式,关键是掌握找公因式的方法:当各项系数都是整数时,公因式的系数应取各项系数的最大公约数;字母取各项的相同的字母,而且各字母的指数取次数最低的;取相同的多项式,多项式的次数取最低的.5.如图,⊙O中,弦AB与CD交于点M,∠A=45°,∠AMD=75°,则∠B的度数是()A.15°B.25°C.30°D.75°【考点】圆周角定理;三角形的外角性质.【分析】由三角形外角定理求得∠C的度数,再由圆周角定理可求∠B的度数.【解答】解:∵∠A=45°,∠AMD=75°,∴∠C=∠AMD﹣∠A=75°﹣45°=30°,∴∠B=∠C=30°,故选C.【点评】本题主要考查了三角形的外角定理,圆周角定理,熟记圆周角定理是解题的关键.6.若+b2﹣4b+4=0,则ab的值等于()A.﹣2 B.0 C.1 D.2【考点】非负数的性质:算术平方根;非负数的性质:偶次方.【分析】根据非负数的和为零,可得a、b的值,根据有理数的乘法,可得答案.【解答】解:由+b2﹣4b+4=0,得a﹣1=0,b﹣2=0.解得a=1,b=2.ab=2.故选:D.【点评】本题考查了非负数的性质,利用非负数的和为零得出a、b的值是解题关键.7.已知关于x的一元二次方程x2+2x﹣(m﹣2)=0有实数根,则m的取值范围是()A.m>1 B.m<1 C.m≥1 D.m≤1【考点】根的判别式.【专题】探究型.【分析】根据关于x的一元二次方程x2+2x﹣(m﹣2)=0有实数根,可知△≥0,从而可以求得m的取值范围.【解答】解:∵关于x的一元二次方程x2+2x﹣(m﹣2)=0有实数根,∴△=b2﹣4ac=22﹣4×1×[﹣(m﹣2)]≥0,解得m≥1,故选C.【点评】本题考查根的判别式,解题的关键是明确当一元二次方程有实数根时,△≥0.8.如图是几何体的俯视图,所表示数字为该位置小正方体的个数,则该几何体的正视图是()A.B.C.D.【考点】由三视图判断几何体;简单组合体的三视图.【分析】根据俯视图中每列正方形的个数,再画出从正面看得到的图形即可.【解答】解:主视图,如图所示:.故选:B.【点评】此题主要考查了画几何体的三视图;用到的知识点为:主视图是从物体的正面看得到的图形;看到的正方体的个数为该方向最多的正方体的个数.9.圆锥的底面半径为4cm,高为5cm,则它的表面积为()A.12πcm2B.26πcm2C.πcm2D.(4+16)πcm2【考点】圆锥的计算.【专题】压轴题.【分析】利用勾股定理求得圆锥的母线长,则圆锥表面积=底面积+侧面积=π×底面半径2+底面周长×母线长÷2.【解答】解:底面半径为4cm,则底面周长=8πcm,底面面积=16πcm2;由勾股定理得,母线长= cm,圆锥的侧面面积=×8π×=4πcm2,∴它的表面积=16π+4π=(4+16)πcm2,故选D.【点评】本题利用了勾股定理,圆的周长公式和扇形面积公式求解.10.二次函数y=ax2+bx+c的图象如图,反比例函数y=与正比例函数y=bx在同一坐标系内的大致图象是()A.B.C.D.【考点】二次函数的性质;正比例函数的图象;反比例函数的图象.【分析】根据函数图象的开口方向,对称轴,可得a、b的值,根据a、b的值,可得相应的函数图象.【解答】解:由y=ax2+bx+c的图象开口向下,得a<0.由图象,得﹣>0.由不等式的性质,得b>0.a<0,y=图象位于二四象限,b>0,y=bx图象位于一三象限,故选:C.【点评】本题考查了二次函数的性质,利用函数图象的开口方向,对称轴得出a、b的值是解题关键.二、填空题:共5个小题,每小题4分,共20分11.若代数式有意义,则x的取值范围是x≥1.【考点】二次根式有意义的条件;分式有意义的条件.【分析】根据被开方数大于等于0,分母不等于0列式计算即可得解.【解答】解:由题意得,x﹣1≥0且x≠0,解得x≥1且x≠0,所以,x≥1.故答案为:x≥1.【点评】本题考查的知识点为:分式有意义,分母不为0;二次根式的被开方数是非负数.12.若n边形内角和为900°,则边数n=7.【考点】多边形内角与外角.【分析】由n边形的内角和为:180°(n﹣2),即可得方程180(n﹣2)=900,解此方程即可求得答案.【解答】解:根据题意得:180(n﹣2)=900,解得:n=7.故答案为:7.【点评】此题考查了多边形内角和公式.此题比较简单,注意方程思想的应用是解此题的关键.13.一只昆虫在如图所示的树枝上寻觅食物,假定昆虫在每个岔路口都会随机选择一条路径,则它获取食物的概率是.【考点】列表法与树状图法.【分析】根据树状图判断出蚂蚁一共有多少种路可以选择,有几种可能可以获取食物即可解决问题.【解答】解:根据树状图,蚂蚁获取食物的概率是=.故答案为.【点评】本题考查树状图、概率等知识,记住概率的定义是解决问题的关键,考虑问题要全面,属于中考常考题型.14.如图,把Rt△ABC放在直角坐标系内,其中∠CAB=90°,BC=5,点A、B的坐标分别为(1,0)、(4,0),将△ABC沿x轴向右平移,当点C落在直线y=2x﹣6上时,线段BC扫过的面积为16cm2.【考点】一次函数综合题.【专题】压轴题.【分析】根据题意,线段BC扫过的面积应为一平行四边形的面积,其高是AC的长,底是点C平移的路程.求当点C落在直线y=2x﹣6上时的横坐标即可.【解答】解:如图所示.∵点A、B的坐标分别为(1,0)、(4,0),∴AB=3.∵∠CAB=90°,BC=5,∴AC=4.∴A′C′=4.∵点C′在直线y=2x﹣6上,∴2x﹣6=4,解得x=5.即OA′=5.∴CC′=5﹣1=4.∴S▱BCC′B′=4×4=16 (cm2).即线段BC扫过的面积为16cm2.故答案为16.【点评】此题考查平移的性质及一次函数的综合应用,难度中等.15.如图,在边长相同的小正方形网格中,点A、B、C、D都在这些小正方形的顶点上,AB,CD 相交于点P,则的值=3,tan∠APD的值=2.【考点】锐角三角函数的定义;相似三角形的判定与性质.【专题】网格型.【分析】首先连接BE,由题意易得BF=CF,△ACP∽△BDP,然后由相似三角形的对应边成比例,易得DP:CP=1:3,即可得PF:CF=PF:BF=1:2,在Rt△PBF中,即可求得tan∠BPF的值,继而求得答案.【解答】解:∵四边形BCED是正方形,∴DB∥AC,∴△DBP∽△CAP,∴==3,连接BE,∵四边形BCED是正方形,∴DF=CF=CD,BF=BE,CD=BE,BE⊥CD,∴BF=CF,根据题意得:AC∥BD,∴△ACP∽△BDP,∴DP:CP=BD:AC=1:3,∴DP:DF=1:2,∴DP=PF=CF=BF,在Rt△PBF中,tan∠BPF==2,∵∠APD=∠BPF,∴tan∠APD=2,故答案为:3,2.【点评】此题考查了相似三角形的判定与性质与三角函数的定义.此题难度适中,解题的关键准确作出辅助线,注意转化思想与数形结合思想的应用.三、解答题:共2个题,每小题8分,共16分16.计算:()﹣1+(sin60°﹣1)0﹣2cos30°+|﹣1|【考点】实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.【分析】根据负整数指数幂,零指数幂,特殊角的三角函数值,绝对值的定义化简即可.【解答】解:原式=2+1﹣+﹣1=2.【点评】本题考查负整数指数幂、零指数幂、特殊角的三角函数值、绝对值等知识,熟练掌握这些知识是解决问题的关键,记住a﹣p=(a≠0),a0=1(a≠0),|a|=,属于中考常考题型.17.解不等式组.请结合题意填空,完成本题的解答.(1)解不等式①,得:x<3;(2)解不等式②,得:x≥2;(3)把不等式①和②的解集在数轴上表示出来;(4)不等式组的解集为:2≤x<3.【考点】解一元一次不等式组;在数轴上表示不等式的解集.【分析】分别求出各不等式的解集,再求出其公共解集,并在数轴上表示出来即可.【解答】解:(1)不等式①,得x<3;(2)不等式②,得x≥2;(3)把不等式①和②的解集在数轴上表示出来,4)原不等式组的解集为2≤x<3.故答案分别为:x<3,x≥2,2≤x<3.【点评】本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.四、解答题:共2个体,每小题8分,共16分18.某校为了丰富大家的业余生活,组织了一次工会活动,准备一次性购买若干钢笔和笔记本(2019•自贡)某国发生8.1级强烈地震,我国积极组织抢险队赴地震灾区参与抢险工作,如图,某探测对在地面A、B两处均探测出建筑物下方C处由生命迹象,已知探测线与地面的夹角分别是25°和60°,且AB=4米,求该生命迹象所在位置C的深度.(结果精确到1米,参考数据:sin25°≈0.4,cos25°≈0,9,tan25°≈0.5,≈1.7)【考点】解直角三角形的应用.【分析】过C点作AB的垂线交AB的延长线于点D,通过解Rt△ADC得到AD=2CD=2x,在Rt△BDC 中利用锐角三角函数的定义即可求出CD的值.【解答】解:作CD⊥AB交AB延长线于D,设CD=x米.在Rt△ADC中,∠DAC=25°,所以tan25°==0.5,所以AD==2x.Rt△BDC中,∠DBC=60°,由tan 60°==,解得:x≈3.即生命迹象所在位置C的深度约为3米.【点评】本题考查的是解直角三角形的应用,根据题意作出辅助线,构造出直角三角形是解答此题的关键.五、解答题:共2个题,每题10分,共20分20.我市开展“美丽自宫,创卫同行”活动,某校倡议学生利用双休日在“花海”参加义务劳动,为了解同学们劳动情况,学校随机调查了部分同学的劳动时间,并用得到的数据绘制了不完整的统计图,根据图中信息回答下列问题:(1)将条形统计图补充完整;(2)扇形图中的“1.5小时”部分圆心角是多少度?(3)求抽查的学生劳动时间的众数、中位数.【考点】众数;扇形统计图;条形统计图;中位数.【专题】计算题;数据的收集与整理.【分析】(1)根据学生劳动“1小时”的人数除以占的百分比,求出总人数,(2)进而求出劳动“1.5小时”的人数,以及占的百分比,乘以360即可得到结果;(3)根据统计图中的数据确定出学生劳动时间的众数与中位数即可.【解答】解:(1)根据题意得:30÷30%=100(人),∴学生劳动时间为“1.5小时”的人数为100﹣(12+30+18)=40(人),补全统计图,如图所示:(2)根据题意得:40%×360°=144°,则扇形图中的“1.5小时”部分圆心角是144°;(3)根据题意得:抽查的学生劳动时间的众数为1.5小时、中位数为1.5小时.【点评】此题考查了众数,扇形统计图,条形统计图,以及中位数,弄清题中的数据是解本题的关键.21.如图,⊙O是△ABC的外接圆,AC为直径,弦BD=BA,BE⊥DC交DC的延长线于点E.(1)求证:∠1=∠BAD;(2)求证:BE是⊙O的切线.【考点】三角形的外接圆与外心;圆周角定理;切线的判定.【分析】(1)根据等腰三角形的性质和圆周角定理得出即可;(2)连接BO,求出OB∥DE,推出EB⊥OB,根据切线的判定得出即可;【解答】证明:(1)∵BD=BA,∴∠BDA=∠BAD,∵∠1=∠BDA,∴∠1=∠BAD;(2)连接BO,∵∠ABC=90°,又∵∠BAD+∠BCD=180°,∴∠BCO+∠BCD=180°,∵OB=OC,∴∠BCO=∠CBO,∴∠CBO+∠BCD=180°,∴OB∥DE,∵BE⊥DE,∴EB⊥OB,∵OB是⊙O的半径,∴BE是⊙O的切线.【点评】本题考查了三角形的外接圆与外心,等腰三角形的性质,切线的判定,熟练掌握切线的判定定理是解题的关键.六、解答题:本题12分22.如图,已知A(﹣4,n),B(2,﹣4)是一次函数y=kx+b和反比例函数y=的图象的两个交点.(1)求一次函数和反比例函数的解析式;(2)观察图象,直接写出方程kx+b﹣=0的解;(3)求△AOB的面积;(4)观察图象,直接写出不等式kx+b﹣<0的解集.【考点】反比例函数与一次函数的交点问题;反比例函数的性质.【分析】(1)把B (2,﹣4)代入反比例函数y=得出m的值,再把A(﹣4,n)代入一次函数的解析式y=kx+b,运用待定系数法分别求其解析式;(2)经过观察可发现所求方程的解应为所给函数的两个交点的横坐标;(3)先求出直线y=﹣x﹣2与x轴交点C的坐标,然后利用S△AOB=S△AOC+S△BOC进行计算;(4)观察函数图象得到当x<﹣4或0<x<2时,一次函数的图象在反比例函数图象上方,即使kx+b ﹣<0.【解答】解:(1)∵B(2,﹣4)在y=上,∴m=﹣8.∴反比例函数的解析式为y=﹣.∵点A(﹣4,n)在y=﹣上,∴n=2.∴A(﹣4,2).∵y=kx+b经过A(﹣4,2),B(2,﹣4),∴.解得:.∴一次函数的解析式为y=﹣x﹣2.(2):∵A(﹣4,n),B(2,﹣4)是一次函数y=kx+b的图象和反比例函数y=的图象的两个交点,∴方程kx+b﹣=0的解是x1=﹣4,x2=2.(3)∵当x=0时,y=﹣2.∴点C(0,﹣2).∴OC=2.∴S△AOB=S△ACO+S△BCO=×2×4+×2×2=6;(4)不等式kx+b﹣<0的解集为﹣4<x<0或x>2.【点评】本题考查了反比例函数与一次函数的交点问题:反比例函数与一次函数的交点坐标满足两函数的解析式.也考查了观察函数图象的能力以及用待定系数法确定一次函数的解析式.七、解答题23.已知矩形ABCD的一条边AD=8,将矩形ABCD折叠,使得顶点B落在CD边上的P点处(Ⅰ)如图1,已知折痕与边BC交于点O,连接AP、OP、OA.若△OCP与△PDA的面积比为1:4,求边CD的长.(Ⅱ)如图2,在(Ⅰ)的条件下,擦去折痕AO、线段OP,连接BP.动点M在线段AP上(点M 与点P、A不重合),动点N在线段AB的延长线上,且BN=PM,连接MN交PB于点F,作ME⊥BP 于点E.试问当动点M、N在移动的过程中,线段EF的长度是否发生变化?若变化,说明变化规律.若不变,求出线段EF的长度.【考点】几何变换综合题.【分析】(1)先证出∠C=∠D=90°,再根据∠1+∠3=90°,∠1+∠2=90°,得出∠2=∠3,即可证出△OCP∽△PDA;根据△OCP与△PDA的面积比为1:4,得出CP=AD=4,设OP=x,则CO=8﹣x,由勾股定理得x2=(8﹣x)2+42,求出x,最后根据AB=2OP即可求出边AB的长;(2)作MQ∥AN,交PB于点Q,求出MP=MQ,BN=QM,得出MP=MQ,根据ME⊥PQ,得出EQ=PQ,根据∠QMF=∠BNF,证出△MFQ≌△NFB,得出QF=QB,再求出EF=PB,由(1)中的结论求出PB=,最后代入EF=PB即可得出线段EF 的长度不变【解答】解:(1)如图1,∵四边形ABCD是矩形,∴∠C=∠D=90°,∴∠1+∠3=90°,∵由折叠可得∠APO=∠B=90°,∴∠1+∠2=90°,∴∠2=∠3,又∵∠D=∠C,∴△OCP∽△PDA;∵△OCP与△PDA的面积比为1:4,∴,∴CP=AD=4,设OP=x,则CO=8﹣x,在Rt△PCO中,∠C=90°,由勾股定理得x2=(8﹣x)2+42,解得:x=5,∴AB=AP=2OP=10,∴边CD的长为10;(2)作MQ∥AN,交PB于点Q,如图2,∵AP=AB,MQ∥AN,∴∠APB=∠ABP=∠MQP.∴MP=MQ,∵BN=PM,∴BN=QM.∵MP=MQ,ME⊥PQ,∴EQ=PQ.∵MQ∥AN,∴∠QMF=∠BNF,在△MFQ和△NFB中,,∴△MFQ≌△NFB(AAS).∴QF=QB,∴EF=EQ+QF=PQ+QB=PB,由(1)中的结论可得:PC=4,BC=8,∠C=90°,∴PB=,∴EF=PB=2,∴在(1)的条件下,当点M、N在移动过程中,线段EF的长度不变,它的长度为2.【点评】此题考查了相似形综合,用到的知识点是相似三角形的判定与性质、全等三角形的判定与性质、勾股定理、等腰三角形的性质,关键是做出辅助线,找出全等和相似的三角形.八、解答题24.抛物线y=﹣x2+4ax+b(a>0)与x轴相交于O、A两点(其中O为坐标原点),过点P(2,2a)作直线PM⊥x轴于点M,交抛物线于点B,点B关于抛物线对称轴的对称点为C(其中B、C不重合),连接AP交y轴于点N,连接BC和PC.(1)a=时,求抛物线的解析式和BC的长;(2)如图a>1时,若AP⊥PC,求a的值.【考点】二次函数的性质;轴对称的性质.【分析】(1)根据抛物线经过原点b=0,把a=、b=0代入抛物线解析式,即可求出抛物线解析式,再求出B、C坐标,即可求出BC长.(2)利用△PCB∽△APM,得=,列出方程即可解决问题.【解答】解:(1)∵抛物线y=﹣x2+4ax+b(a>0)经过原点O,∴b=0,∵a=,∴抛物线解析式为y=﹣x2+6x,∵x=2时,y=8,∴点B坐标(2,8),∵对称轴x=3,B、C关于对称轴对称,∴点C坐标(4,8),∴BC=2.(2)∵AP⊥PC,∴∠APC=90°,∵∠CPB+∠APM=90°,∠APM+∠PAM=90°,∴∠CPB=∠PAM,∵∠PBC=∠PMA=90°,∴△PCB∽△APM,∴=,∴=,整理得a2﹣4a+2=0,解得a=2±,∵a>0,∴a=2+.【点评】本题考查二次函数性质、相似三角形的判定和性质、待定系数法等知识,解题的关键是利用相似三角形性质列出方程解决问题,学会转化的思想,属于中考常考题型.。
2019四川省自贡中考数学(Word版,含答案)
绝密★启用前【考试时间:2019年6月12日9:00-11:00】四川省自贡市初2019届毕业生学业考试数 学本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分。
共6页,满分150分.答卷前,考生务必将自己的姓名,准考证号填写在答题卡上,答卷时必须将答案答在答题卡上,在本试卷,草稿纸上,答题无效,考试结束后,将试题卷和答题卡一并交回.第I 卷选择题 (共48分)注意事项:必须使用2B 铅笔将答案标号填涂在答题卡上对应题目标号的位置上.如需改动,用橡皮擦干净后,再选涂其他答案标号一.选择题(每小题4分,共48分)1.-2019的倒数是( B )A.-2019B.20191-C.20191 D.2019 2.近年来,中国高铁发展迅速,高铁技术不断走出国门成为展示强国实力的新名片,现在中国高速铁路营运里程将达到23000公里,将23000用科学记数法表示为( A )A.4103.2⨯B.31023⨯C.3103.2⨯D.51023.0⨯3.下列图案中,既是轴对称图形,又是中心对称图形的是( D )4.在5轮“中国汉字听写大赛”选拔赛中,甲、乙两位同学的平均数都是90分,甲的方差是15,乙的成绩方差是3,下列说法正确的是( B )A.甲的成绩比乙的成绩稳定B.乙的成绩比甲的成绩稳定C.甲、乙两人成绩一样稳定D.无法确定甲、乙的成绩谁更稳定5.下图是一个水平放置的全封闭物体,则它的俯视图是( C )6.已知三角形的两边长分别为1和4,第三边为整数,则该三角形周长为( C )A.7B.8C.9D.107.实数m ,n 在数轴上对应点的位置如图所示,则下列判断正确的是( B )A.|m |<1B.1-m >1C.mn >0D.m +1>08.关于x 的一元二次方程022=+-m x x ,无实数根,则实数m 的取值范围是( D )A.1<mB.1≥mC.1≤mD.1>m9.一次函数y=ax+b 与反比例函数xc y =的图象如图所示,则二次函数y=ax ²+bx+c 的大致图象是( A )10.均匀的向一个容器内注水,在注满水的过程中,水面的高度h 与时间t 的函数关系如图所示,则该容器是下列四个中的( D )11.图中有两张型号完全一样的折叠式饭桌,将正方形桌面边上的四个弓形面板,翻折起来后,就能形成一个圆形桌面(可近似看作正方形的外接圆),正方形桌面与翻折成的圆形桌面的面积之比最接近( C ) A.54 B.43 C.32 D.2112.如图,已知A 、B 两点的坐标分别为(8,0),(0,8)点C 、F 分别是直线5-=x 和x 轴上的动点,CF =10,点D 是线段CF 的中点,连接AD 交y 轴于点E ,当△ABE 面积取最小值时,tan ∠BAD 的值是( B ) A.178 B.177 C.94 D.95第II 卷非选择题 (共102分)注意事项:必须使用0.5毫米黑色墨水签字笔在答题卡上题目所指区域内作答,作图题可先用铅笔绘出,确认后再用0.5毫米黑色墨水签字笔描清楚.答在试题卷上无效.二.填空题(每小题4分,共24分)13.如图直线AB ,CD 被直线EF 所截,AB ∥CD ,∠1=120°,则∠2= 60°.14.在一次有12人参加的数学测试中,得100分,95分,90分,85分,75分的人数分别是1,3,4,2,2,那么这组数据的众数是 90 分15.分解因式=-2222y x ))((2y x y x -+.16.某活动小组购买了4个篮球和5个足球,一共花费了466元,其中篮球的单价比足球的单价多4元,求篮球的单价和足球的单价.设篮球的单价为x 元,足球的单价为y 元,依题意,可列方程组为⎩⎨⎧=-=+446654y x y x 17.如图,在Rt △ABC 中,∠ACB =90°,AB =10,BC =6,CD ∥AB ,∠ABC 的平分线BD 交AC 于点E ,DE =559.18.如图,在由10个完全相同的正三角形构成的网格图中,∠α,∠β如图所示,则cos (α+β)=721三.解答题(共8个小题,共78分)19.(本题满分8分)计算:0)3(8-4sin45|-3|-++︒π解:原式=4122223=++-20.(本题满分8分)解方程:121=--xx x 解:x x x x -=+-2222,.2=∴x 经检验2=x 是原方程的解. 21.(本题满分8分)如图,⊙O 中,弦AB 与CD 相交于点E ,AB=CD ,连接AD ,BC .求证:(1)»»AD BC =;(2)AE=CE ;证明:(1)如图,连接AC.∵AB=CD,∴»»AB CD=,∴»»»»AB AC CD AC-=-,即»»AD BC=(2)∵»»AD BC=,∴∠ACD=∠BAC,∴AE=CE22.(本题满分8分)某校举行了自贡市创建全国文明城市知识竞赛活动,初一年级全体同学参加了知识竞赛.收集数据:现随机抽取了初一年级30名同学的“创文知识竞赛”成绩分数如下(单位:分):90 85 68 92 81 84 95 93 87 89 78 99 89 85 9788 81 95 86 98 95 93 89 86 84 87 79 85 89 82整理分析数据:(1)将图中空缺的部分补充完整;(2)学校决定表彰“创文知识竞赛”成绩在90分及其以上的同学,根据上面统计结果估计该校初一年级360人中有多少人将获得表彰;答案:1203603010=⨯÷(人),答:约有120人受到表彰(3)“创文知识竞赛”中收到表彰的小红同学得到印有龚扇,剪纸,彩灯,恐龙图案的四枚纪念奖章,她从中选取两枚送给弟弟,则小红送给弟弟的两枚纪念奖章中,恰好有恐龙图案的概率是 . 答案:21 23. (本题满分10分)如图,在平面直角坐标系中,一次函数b kx y +=1(0≠k )的图象与反比例函数)0(2≠=m xm y 的图象相交于第一、三象限内的A (3,5),B (a ,-3)两点,与x 轴交于点C . (1)求该反比例函数和一次函数的解析式;(2)在y 轴上找一点P 使PB-PC 最大,求PB-PC 的最大值及点P 的坐标;(3)直接写出当21y y >时,x 的取值范围答案:(1)把A (3,5)代入x m y =2得15=m ,∴反比例函数的解析式为xy 15= 把B (a ,-3)代入xy 15=得5)3(15-=-÷=a ;∴B (-5,-3) 把A (3,5),B (-5,-3)代入b kx y +=1得⎩⎨⎧-=+-=+3553b k b k ,解之得⎩⎨⎧==21b k ∴一次函数的解析式为2+=x y(2)依题意得,直线AB 与y 轴交点即为P 点,在y=x+2中,令x=0,则y=2,令y=0,则x=-2,∴点P 的坐标为(0,2),点C 的坐标为(-2,0),此时PB=52,PC=22,∴PB-PC 的最大值为32(3)当21y y >时,x 的取值范围是-5<x <0或x >324.(本题满分10分)阅读下列材料:小明为了计算20182017222221+++++Λ的值,采用以下方法: 设=S 20182017222221+++++Λ①则=S 220192018222221+++++Λ② ②-①得1222019-==-S S S∴12222212019201820172-=+++++=ΛS请仿照小明的方法解决以下问题:(1)=+++9221Λ1210-; (2)=+++102333Λ23311-; (3)求na a a ++++Λ21的和(0>a ,n 是正整数,请写出计算过程).解:设na a a S ++++=Λ21① 则132+++++=n a a a a aS Λ②②-①得11-=-+n a S aS ∴11112--=++++=+a a a a a S n nΛ25.(本题满分12分)(1)如图1,E 是正方形ABCD 边AB 上的一点,连接BD 、DE ,将∠BDE 绕点D 逆时针旋转90°,旋转后角的两边分别与射线BC 交于点F 和点G .①线段DB 和DG 之间的数量关系是DB=DG ;②写出线段BE ,BF 和DB 之间的数量关系.BD BF BE 2=+(2)当四边形ABCD 为菱形,∠ADC =60°,点E 是菱形ABCD 边AB 所在直线上的一点,连接BD 、DE ,将∠BDE 绕点D 逆时针旋转120°,旋转后角的两边分别与射线BC 交于点F 和点G .①如图2,点E 在线段AB 上时,请探究线段BE 、BF 和BD 之间的数量关系,写出结论并给出证明; ②如图3,点E 在线段AB 的延长线上时,DE 交射线BC 于点M ,若BE =1,AB =2,直接写出线段GM 的长度.图1 图2 图3(2)①BD BF BE 3=+理由如下:在菱形ABCD 中,∠ABD=∠CBD=21∠ABC=30°,由旋转120°可得,∠EDF=∠BDG=120°,∴∠EDF-∠BDF=∠BDG-∠BDF ,即∠FDG=∠BDE.在△DBG 中,∠G=180°-∠BDG-∠DBG=30°,∴∠DBG=∠G=30°,∴BD=DG.在△BDE 和△GDF 中⎪⎩⎪⎨⎧∠=∠=∠=∠DGF DBE DG BD BDE GDF ∴△BDE ≌△△GDF (ASA ),∴BE=GF∴BE+BF=BF+GF=BG.过点D 作DM ⊥BG 于点M 如图所示:∵BD=DG ,∴BG=2BM.在Rt △BMD 中,∠DBM=30°,∴BD=2DM ,设DM=a ,则BD=2a ,BM=a 3.∴BG=a 32,∴3232==aa BD BG ∴BF+BE=3BD.②GM 的长度为319.理由:∵1==BE GF ,FC=2DC=4,CM=32BC=34,∴GM=319 26.(本题满分14分)如图,已知直线AB 与抛物线c x ax y C ++=2:2相交于点A (-1,0)和点B (2,3)两点.(1)求抛物线C 函数表达式;(2)若点M 是位于直线AB 上方抛物线上的一动点,以MA 、MB 为相邻的两边作平行四边形MANB ,当平行四边形MANB 的面积最大时,求此时平行四边形MANB 的面积S 及点M 的坐标;(3)在抛物线C 的对称轴上是否存在定点F ,使抛物线C 上任意一点P 到点F 的距离等于到直线417=y 的距离,若存在,求出定点F 的坐标;若不存在,请说明理由.解:(1)把A (-1,0),B (2,3)代入抛物线得⎩⎨⎧=++=+-34402c a c a 解之得⎩⎨⎧=-=31c a ∴抛物线C 的函数表达式为:322++-=x x y(2)∵A (-1,0),B (2,3),∴直线AB 的解析式为:1+=x y ,如图所示,过M 作MN ∥y 轴交AB 于N ,设)32,(2++-m m m M ,则)1,(+m m N ,(-1<m <2) ∴22++-=-=m m y y MN N M ,∴S △ABM =S △AMN +S △BMN =MN x x A B )(21- ∴S △ABM =827)21(233)2(2122+--=⨯++-m m m ,∴当21=m 时,△ABM 的面积有最大值827,而S □MANB =2S △ABM =427,此时)27,21(M (3)存在,点)415,1(F 理由如下:令抛物线顶点为D ,则D (1,4),则顶点D 到直线417=y 的距离为41,设),1(n F 设)32,(2++-x x x P ,设P 到直线417=y 的距离为PG.则 PG=452)32(41722+-=++--x x x x ,∵P 为抛物线上任意一点都有PG=PF ,∴当P 与顶点D 重合时,也有PG=PF.此时PG=41,即顶点D 到直线417=y 的距离为41 ∴PF=DF=41,∴)415,1(F ,∵PG=PF ,∴22PF PG =, ∵2222222)432()1()32415()1(+-+-=--++-=x x x x x x PF 222)452(+-=x x PG ∴222222)432()1()32415()1(+-+-=--++-x x x x x x 22)452(+-=x x 整理化简可得00=x ,∴当)415,1(F 时,无论x 取任何实数,均有PG=PF。
自贡市2019年中考数学试卷及答案(Word解析版)
四川省自贡市2019年中考数学试卷一、选择题:(共10小题,每小题4分,共40分)423.(4分)(2019•自贡)如图,是由几个小立方体所搭成的几何体的俯视图,小正方形中的数字表示在该位置上的立方体的个数,这个几何体的正视图是( )B4.(4分)(2019•自贡)拒绝“餐桌浪费”刻不容缓,据统计全国每年浪费食物总量约为2..7.(4分)(2019•自贡)一组数据,6、4、a、3、2的平均数是5,这组数据的方差为()8.(4分)(2019•自贡)一个扇形的半径为8cm,弧长为cm,则扇形的圆心角为()=,再解方程即可.=,l=.9.(4分)(2019•自贡)关于x的函数y=k(x+1)和y=(k≠0)在同一坐标系中的图象大致.B..10.(4分)(2019•自贡)如图,在半径为1的⊙O中,∠AOB=45°,则sinC的值为()B×,,=二.填空题:(共5小题,每小题4分,共20分)11.(4分)(2019•自贡)分解因式:x2y﹣y=y(x+1)(x﹣1).12.(4分)(2019•自贡)不等式组的解集是1<x≤.,由①得,13.(4分)(2019•自贡)一个多边形的内角和比外角和的3倍多180°,则它的边数是9.14.(4分)(2019•自贡)一个边长为4cm的等边三角形ABC与⊙O等高,如图放置,⊙O 与BC相切于点C,⊙O与AC相交于点E,则CE的长为3cm.底边高的,即OC=215.(4分)(2019•自贡)一次函数y=kx+b,当1≤x≤4时,3≤y≤6,则的值是2或﹣7.,解得,,解得,三.解答题:(共2小题,每小题8分,共16分)16.(8分)(2019•自贡)解方程:3x(x﹣2)=2(2﹣x)17.(8分)(2019•自贡)计算:(3.14﹣π)0+(﹣)﹣2+|1﹣|﹣4cos45°.=1+4+2×四.解答题:(共2小题,每小题8分,共16分)18.(8分)(2019•自贡)如图,某学校新建了一座吴玉章雕塑,小林站在距离雕塑2.7米的A处自B点看雕塑头顶D的仰角为45°,看雕塑底部C的仰角为30°,求塑像CD的高度.(最后结果精确到0.1米,参考数据:)米,≈19.(8分)(2019•自贡)如图,四边形ABCD是正方形,BE⊥BF,BE=BF,EF与BC交于点G.(1)求证:AE=CF;(2)若∠ABE=55°,求∠EGC的大小.五.解答题:(共2小题,每小题10分,共20分)20.(10分)(2019•自贡)为了提高学生书写汉字的能力,增强保护汉字的意识,我市举办了首届“汉字听写大赛”,经选拔后有50名学生参加决赛,这50名学生同时听写50个汉字,若每正确听写出一个汉字得1分,根据测试成绩绘制出部分频数分布表和部分频数分布直方(1)求表中a的值;(2)请把频数分布直方图补充完整;(3)若测试成绩不低于40分为优秀,则本次测试的优秀率是多少?(4)第5组10名同学中,有4名男同学,现将这10名同学平均分成两组进行对抗练习,且4名男同学每组分两人,求小宇与小强两名男同学能分在同一组的概率.)本次测试的优秀率是则小宇与小强两名男同学分在同一组的概率是21.(10分)(2019•自贡)学校新到一批理、化、生实验器材需要整理,若实验管理员李老师一人单独整理需要40分钟完成,现在李老师与工人王师傅共同整理20分钟后,李老师因事外出,王师傅再单独整理了20分钟才完成任务.(1)王师傅单独整理这批实验器材需要多少分钟?(2)学校要求王师傅的工作时间不能超过30分钟,要完成整理这批器材,李老师至少要工作多少分钟?(﹣÷六.解答题:(本题满分12分)22.(12分)(2019•自贡)如图,一次函数y=kx+b与反比例函数的图象交于A(m,6),B(3,n)两点.(1)求一次函数的解析式;(2)根据图象直接写出的x的取值范围;(3)求△AOB的面积.)代入,,时,七.解答题:(本题满分12分)23.(12分)(2019•自贡)阅读理解:如图①,在四边形ABCD的边AB上任取一点E(点E不与A、B重合),分别连接ED、EC,可以把四边形ABCD分成三个三角形,如果其中有两个三角形相似,我们就把E叫做四边形ABCD的边AB上的“相似点”;如果这三个三角形都相似,我们就把E叫做四边形ABCD的边AB上的“强相似点”.解决问题:(1)如图①,∠A=∠B=∠DEC=45°,试判断点E是否是四边形ABCD的边AB上的相似点,并说明理由;(2)如图②,在矩形ABCD中,A、B、C、D四点均在正方形网格(网格中每个小正方形的边长为1)的格点(即每个小正方形的顶点)上,试在图②中画出矩形ABCD的边AB上的强相似点;(3)如图③,将矩形ABCD沿CM折叠,使点D落在AB边上的点E处,若点E恰好是四边形ABCM的边AB上的一个强相似点,试探究AB与BC的数量关系.BE=BCE==tan30,.八.解答题:(本题满分14分)24.(14分)(2019•自贡)如图,已知抛物线y=ax2﹣x+c与x轴相交于A、B两点,并与直线y=x﹣2交于B、C两点,其中点C是直线y=x﹣2与y轴的交点,连接AC.(1)求抛物线的解析式;(2)证明:△ABC为直角三角形;(3)△ABC内部能否截出面积最大的矩形DEFG?(顶点D、E、F、G在△ABC各边上)若能,求出最大面积;若不能,请说明理由.,,,﹣﹣+2﹣x=,xAD=﹣。
四川省自贡市2019年中考数学试题(含答案解析)
四川省自贡市2019年中考数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.2019-的倒数是( ) A .2019-B .12019-C .12019D .20192.近年来,中国高铁发展迅速,高铁技术不断走出国门,成为展示我国实力的新名片.现在中国高速铁路营运里程将达到23000公里,将23000用科学记数法表示应为( ) A ..42310⨯B .32310⨯C .32.310⨯D ..502310⨯3.下列图案中,既是轴对称图形又是中心对称图形的是( )A .B .C .D .4.在5轮“中国汉字听写大赛”选拔赛中,甲、乙两位同学的平均分都是90分,甲的成绩方差是15,乙的成绩的方差是3,下列说法正确的是( ) A .甲的成绩比乙的成绩稳定 B .乙的成绩比甲的成绩稳定 C .甲、乙两人的成绩一样稳定D .无法确定甲、乙的成绩谁更稳定5.下图是水平放置的全封闭物体,则它的俯视图是( )A .B .C .D .6.已知三角形的两边分别为1和4,第三边长为整数 ,则该三角形的周长为( ) A .7B .8C .9D .107.实数m,n 在数轴上对应点的位置如图所示,则下列判断正确的是( )A .1m <B .1m 1->C .0mn >D .10m +>8.若一元二次方程x 2﹣2x+m=0有两个不相同的实数根,则实数m 的取值范围是( )9.如一次函数y ax b =+与反比例函数cy x=的图像如图所示,则二次函数2y ax bx c =++的大致图象是 ( )A .B .C .D .10.均匀的向一个容器内注水,在注水过程中,水面高度h 与时间t 的函数关系如图所示,则该容器是下列中的( )A .B .C .D .11.如图中有两张型号完全一样的折叠式饭桌,将正方形桌面边上的四个弓形翻折起来后,就能形成一个圆形桌面(可以近似看作正方形的外接圆),正方形桌面与翻折成圆形桌面的面积之比最接近( )A .45B .34C .23D .1212.如图,已知A B 、 两点的坐标分别为()()8,00,8,,点C F 、分别是直线5x =-和x 轴上的动点,CF 10=,点D 是线段CF 的中点,连接AD 交y 轴于点E ;当⊿ABE 面积取得最小值时,tan BAD ∠的值是( )A .817B .717C .49D .59二、填空题13.如图,直线AB CD 、被直线EF 所截,AB ∥CD ,1120∠=;则2∠ =______.14.在一次12人参加的数学测试中,得100分、95分、90分、85分、75分的人数分别为1、3、4、2、2,那么这组数据的众数是_____. 15.分解因式:222x 2y -= ______.16.某活动小组购买4个篮球和5个足球,一共花费了466元,其中篮球的单价比足球的单价多4元,求篮球的单价和足球的单价.设篮球的单价为x 元,足球的单价为y 元,依题意,可列方程组为 ______.17.如图,在Rt △ABC 中,ACB 90,AB 10,BC 6∠===, CD ∥AB ,ABC ∠的平分线BD 交AC 于E ,DE = _____.18.如图,由10个完全相同的正三角形构成的网格图中,αβ∠∠、 如图所示,则()cos αβ+=______.三、解答题20.解方程:x 21x 1x-=-. 21.如图,⊙O 中,弦AB 与CD 相交于点E ,AB CD =,连接AD BC 、. 求证:⑴AD BC =; ⑵AE CE =.22.某校举行了创建全国文明城市知识竞赛活动,初一年级全体同学参加了竞赛.收集数据:现随机抽取初一年级30名同学“创文知识竞赛”成绩,分数如下(单位:分):⑴请将图表中空缺的部分补充完整;⑵学校决定表彰“创文知识竞赛”成绩在90分以上的同学,根据上表统计结果估计该校初一年级360人中,约有多少人将获得表彰;⑶“创文知识竞赛”中,受到表彰的小红同学得到了印有龚扇、剪纸、彩灯、恐龙图案的四枚纪念章,她从中选取两枚送给弟弟,则小红送给弟弟的两枚纪念章中,恰好有恐龙图案的概率是 .23.如图,在平面直角坐标系中,一次函数()1y kx b k 0=+≠的图象与反比例函数()2my m 0x=≠ 的图象相交于第一、三象限内的()()A 3,5,B a,3-两点,与x 轴交于点C .⑴求该反比例函数和一次函数的解析式;⑵在y 轴上找一点P 使PB PC -最大,求PB PC -的最大值及点P 的坐标; ⑶直接写出当12y y >时,x 的取值范围.24.阅读下列材料:小明为了计算22017201812222+++++的值 ,采用以下方法: 设220172018S 12222=+++++ ① 则2201820192S 2222=++++ ②②-①得 20192S S 21-=- ∴2201720182019S 1222221=+++++=- (1)291222++++= ;(2)210333+++ = ;(3)求2n 1a a a ++++的和(0a > ,n 是正整数,请写出计算过程 ).25.⑴如图1,E 是正方形ABCD 边AB 上的一点,连接BD DE 、,将BDE ∠绕着点D 逆时针旋转90°,旋转后角的两边分别与射线BC 交于点F 和点G . ①线段DB 和DG 的数量关系是 ; ②写出线段BE BF 、和DB 之间的数量关系.⑵当四边形ABCD 为菱形,ADC 60∠=,点E 是菱形ABCD 边AB 所在直线上的一点,连接BD DE 、,将BDE ∠绕着点D 逆时针旋转120°,旋转后角的两边分别与射线BC 交于点F 和点G .①如图2,点E 在线段上时,请探究线段BE BF 、和BD 之间的数量关系,写出结论并给出证明;②如图3,点E 在线段AB 的延长线上时,DE 交射线BC 于点M ;若BE 1,AB 2==,直接写出线段GM 的长度.26.如图,已知直线AB 与抛物线C :2y ax 2x c =++ 相交于()1,0A -和点()B 2,3两点.⑴求抛物线C 的函数表达式;⑵若点M 是位于直线AB 上方抛物线上的一动点,以MA MB 、为相邻两边作平行四边形MANB ,当平行四边形MANB 的面积最大时,求此时四边形MANB 的面积S 及点M 的坐标;⑶在抛物线C 的对称轴上是否存在定点F ,使抛物线C 上任意一点P 到点F 的距离等于到直线17y 4=的距离,若存在,求出定点F 的坐标;若不存在,请说明理由.参考答案1.B 【分析】直接利用倒数的定义进而得出答案. 【详解】 ∵2019-×(12019-)=1, ∴2019-的倒数12019-. 故选B. 【点睛】此题主要考查了倒数,正确把握倒数的定义是解题关键. 2.A 【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数. 【详解】423000 2.310=⨯.故选A. 【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值. 3.D 【分析】直接利用轴对称图形和中心对称图形的概念求解. 【详解】A 、是轴对称图形,但不是中心对称图形,故此选项错误;B 、不是轴对称图形,是中心对称图形,故此选项错误;C 、不是轴对称图形,是中心对称图形,故此选项错误;D、既是中心对称图形也是轴对称图形,故此选项正确.故选D.【点睛】此题主要考查了中心对称与轴对称的概念:轴对称的关键是寻找对称轴,两边图象折叠后可重合,中心对称是要寻找对称中心,旋转180°后与原图重合.4.B【分析】根据方差的意义求解可得.【详解】∵乙的成绩方差<甲成绩的方差,∴乙的成绩比甲的成绩稳定,故选B.【点睛】本题主要考查方差,方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.5.C【分析】根据俯视图是从物体上面看,从而得到出物体的形状.【详解】几何体的俯视图是从上面往下面看几何体得到的平面图形,要注意看得见的轮廓线画成实线,看不见的轮廓线画成虚线;从上面观察可得到:.C符合这一要求.故选C.【点睛】本题考查了三视图的概简单几何体的三视图,本题的关键是要考虑到俯视图中看见的棱用实线表示.6.C【分析】根据三角形的三边关系“第三边大于两边之差,而小于两边之和”,求得第三边的取值范围;再根据第三边是整数,从而求得周长. 【详解】 设第三边为x ,根据三角形的三边关系,得:4-1<x <4+1, 即3<x <5, ∵x 为整数, ∴x 的值为4.三角形的周长为1+4+4=9. 故选C. 【点睛】此题考查了三角形的三边关系.关键是正确确定第三边的取值范围. 7.B 【分析】利用数轴表示数的方法得到m <0<n ,然后对各选项进行判断. 【详解】利用数轴得m <0<1<n ,所以-m >0,1-m >1,mn <0,m+1<0. 故选B. 【点睛】本题考查了实数与数轴:数轴上的点与实数一一对应;右边的数总比左边的数大. 8.D 【详解】分析:根据方程的系数结合根的判别式△>0,即可得出关于m 的一元一次不等式,解之即可得出实数m 的取值范围.详解:∵方程2x 2x m 0-+=有两个不相同的实数根, ∴()2240m =-->, 解得:m <1. 故选D .点睛:本题考查了根的判别式,牢记“当△>0时,方程有两个不相等的实数根”是解题的关键. 9.A 【分析】根据一次函数与反比例函数图象找出a 、b 、c 的正负,再根据抛物线的对称轴为x=-2b a,找出二次函数对称轴在y 轴右侧,比对四个选项的函数图象即可得出结论. 【详解】∵一次函数y 1=ax+c 图象过第一、二、四象限, ∴a <0,b >0, ∴-2ba>0, ∴二次函数y 3=ax 2+bx+c 开口向下,二次函数y 3=ax 2+bx+c 对称轴在y 轴右侧; ∵反比例函数y 2=cx的图象在第一、三象限, ∴c >0,∴与y 轴交点在x 轴上方.满足上述条件的函数图象只有选项A . 故选A. 【点睛】本题考查了一次函数的图象、反比例函数的图象以及二次函数的图象,解题的关键是根据一次函数与反比例函数的图象找出a 、b 、c 的正负.本题属于基础题,难度不大,熟悉函数图象与系数的关系是解题的关键. 10.D 【分析】由函数图象可得容器形状不是均匀物体分析判断,由图象及容积可求解. 【详解】根据图象折线可知是正比例函数和一次函数的函数关系的大致图象;切斜程度(即斜率)可以反映水面升高的速度;因为D 几何体下面的圆柱体的底圆面积比上面圆柱体的底圆面积小,所以在均匀注水的前提下是先快后慢; 故选D.此题主要考查了函数图象,解决本题的关键是根据用的时间长短来判断相应的函数图象.11.C【分析】连接AC,根据正方形的性质得到∠B=90°,根据圆周角定理得到AC为圆的直径,根据正方形面积公式、圆的面积公式计算即可.【详解】连接AC,设正方形的边长为a,∵四边形ABCD是正方形,∴∠B=90°,∴AC为圆的直径,∴,2223(2π=≈,故选C.【点睛】本题考查的是正多边形和圆,掌握圆周角定理、正方形的性质是解题的关键.12.B【解析】【分析】如图,设直线x=-5交x轴于K.由题意KD=12CF=5,推出点D的运动轨迹是以K为圆心,5为半径的圆,推出当直线AD与⊙K相切时,△ABE的面积最小,作EH⊥AB于H.求出EH,AH即可解决问题.如图,设直线x=-5交x 轴于K .由题意KD=12CF=5,∴点D 的运动轨迹是以K 为圆心,5为半径的圆,∴当直线AD 与⊙K 相切时,△ABE 的面积最小,∵AD 是切线,点D 是切点,∴AD ⊥KD ,∵AK=13,DK=5,∴AD=12,∵tan ∠EAO=OE DK OA AD =, ∴5812OE =, ∴OE=103, ∴263=, 作EH ⊥AB 于H .∵S △ABE =12•AB•EH=S △AOB -S △AOE , ∴,∴3AH ==,∴7tan 173EH BAD AH ∠===, 故选B.本题考查解直角三角形,坐标与图形的性质,直线与圆的位置关系,三角形的面积等知识,解题的关键是灵活运用所学知识解决问题.13.60°.【解析】【分析】直接利用平角的定义结合平行线的性质得出答案.【详解】如图,∵∠1=120°,∴∠3=180°-120°=60°,∵AB∥CD,∴∠2=∠3=60°.故答案为:60°.【点睛】此题主要考查了平行线的性质,正确得出∠2=∠3是解题关键.14.90分.【解析】【分析】根据众数的定义求解可得.【详解】众数是指一组数据中出现次数最多的数据,90分的有4人,次数最多;故答案为:90分.【点睛】本题主要考查众数,求一组数据的众数的方法:找出频数最多的那个数据,若几个数据频数都是最多且相同,此时众数就是这多个数据.15.()()2x y x y +-【分析】先提取公因式2,再根据平方差公式进行二次分解即可求得答案.【详解】2x 2-2y 2=2(x 2-y 2)=2(x+y )(x-y ).故答案为2(x+y )(x-y ).【点睛】本题考查了提公因式法,公式法分解因式,提取公因式后利用平方差公式进行二次分解,注意分解要彻底.16.454664x y x y +=⎧⎨-=⎩. 【分析】根据题意可得等量关系:①4个篮球的花费+5个足球的花费=466元,②篮球的单价-足球的单价=4元,根据等量关系列出方程组即可.【详解】设篮球的单价为x 元,足球的单价为y 元,由题意得:454664x y x y +=⎧⎨-=⎩故答案为454664x y x y +=⎧⎨-=⎩. 【点睛】此题主要考查了由实际问题抽象出二元一次方程组,关键是正确理解题意,找出题目中的等量关系.17【分析】由CD ∥AB ,∠D=∠ABE ,∠D=∠CBE ,所以CD=BC=6,再证明△AEB ∽△CED ,根据相似比求出DE 的长.【详解】∵∠ACB=90°,AB=10,BC=6,∴AC=8,∵BD平分∠ABC,∴∠ABE=∠CDE,∵CD∥AB,∴∠D=∠ABE,∴∠D=∠CBE,∴CD=BC=6,∴△AEB∽△CED,∴10563 AE BE ABEC ED CD====,∴338388CE AC==⨯=,BE===,33DE BE55==⨯=【点睛】本题考查了相似三角形,熟练掌握相似三角形的判定与性质以及勾股定理是解题的关键.18.7.【分析】给图中各点标上字母,连接DE,利用等腰三角形的性质及三角形内角和定理可得出∠α=30°,同理,可得出:∠CDE=∠CED=30°=∠α,由∠AEC=60°结合∠AED=∠AEC+∠CED可得出∠AED=90°,设等边三角形的边长为a,则AE=2a,,利用勾股定理可得出AD的长,再结合余弦的定义即可求出cos(α+β)的值.【详解】给图中各点标上字母,连接DE,如图所示.在△ABC 中,∠ABC=120°,BA=BC ,∴∠α=30°.同理,可得出:∠CDE=∠CED=30°=∠α. 又∵∠AEC=60°,∴∠AED=∠AEC+∠CED=90°.设等边三角形的边长为a ,则AE=2a ,,∴AD =,∴cos (α+β)=7DE AD =.故答案为7. 【点睛】 本题考查了解直角三角形、等边三角形的性质以及规律型:图形的变化类,构造出含一个锐角等于∠α+∠β的直角三角形是解题的关键.19.1.【分析】原式第一项利用绝对值的意义化简,第二项利用特殊角的三角函数值计算,第三项化为最简二次根式,第四项利用零指数幂法则计算即可得到结果.【详解】原式 = 3412-⨯+=31-=4.【点睛】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.x=.20.2【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【详解】去分母得:x2-2x+2=x2-x,解得:x=2,检验:当x=2时,方程左右两边相等,所以x=2是原方程的解.【点睛】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.21.(1)见解析;(2)见解析.【分析】(1)由AB=CD知=+=+,据此可得答案;AB CD,即AD AC BC AC(2)由AD BC=知AD=BC,结合∠ADE=∠CBE,∠DAE=∠BCE可证△ADE≌△CBE,从而得出答案.【详解】证明(1)∵AB=CD,∴=+=+,AB CD,即AD AC BC AC∴AD BC=;(2)∵AD BC=,∴AD=BC,又∵∠ADE=∠CBE,∠DAE=∠BCE,∴△ADE≌△CBE(ASA),∴AE=CE.【点睛】本题主要考查圆心角、弧、弦的关系,圆心角、弧、弦三者的关系可理解为:在同圆或等圆中,①圆心角相等,②所对的弧相等,③所对的弦相等,三项“知一推二”,一项相等,其余二项皆相等.22.⑴见图表解析;⑵初一年级360人中,约有120人将获得表彰; ⑶P (恐龙图案)=12【解析】【分析】(1)由已知数据计数即可得;(2)用总人数乘以样本中对应部分人数所占比例即可得;(3)根据题意先画出树状图,得出共有12种等可能的结果数,再利用概率公式求解可得.【详解】(1)补全图表如下:(2)估计该校初一年级360人中,获得表彰的人数约为360×1030=120(人); (3)将印有龚扇、剪纸、彩灯、恐龙图案分别记为A 、B 、C 、D ,画树状图如下:则共有12种等可能的结果数,其中小红送给弟弟的两枚纪念章中,恰好有恐龙图案的结果数为6, 所以小红送给弟弟的两枚纪念章中,恰好有恐龙图案的概率为12, 故答案为:12. 【点睛】本题考查了列表法与树状图法:利用列表法和树状图法展示所有可能的结果求出n ,再从中选出符合事件A 或B 的结果数目m ,求出概率,也考查了条形统计图与样本估计总体.23.⑴15y x =,2y x =+;⑵PB PC -的最大值为()P 0,2 ;⑶5x 0-<<或3x >. 【分析】(1)利用待定系数法,即可得到反比例函数和一次函数的解析式;(2)根据一次函数y 1=x+2,求得与y 轴的交点P ,此交点即为所求;(3)根据AB 两点的横坐标及直线与双曲线的位置关系求x 的取值范围.【详解】⑴.∵()A 3,5在反比例函数()2m y m 0x =≠上 ∴m 3515=⨯=∴反比例函数的解析式为15y x =把()B a,3-代入15y x =可求得()a 1535=÷-=- ∴()B 5,3--.把()()A 3,5,B 5,3--代入y kx b =+为3553k b k b +=⎧⎨-+=-⎩ 解得12k b =⎧⎨=⎩. ∴一次函数的解析式为2y x =+.⑵PB PC -的最大值就是直线AB 与两坐标轴交点间的距离.设直线2y x =+与y 轴的交点为P .令0y =,则20x +=,解得2x =- ,∴()C 2,0-令0x =,则y 022=+=,,∴()P 0,2∴PB ==PB ==∴PB PC -的最大值为= .⑶根据图象的位置和图象交点的坐标可知:当12y y >时x 的取值范围为;5x 0-<<或3x >.【点睛】本题考查了反比例函数与一次函数的交点问题,待定系数法求反比例函数和一次函数的解析式,根据点的坐标求线段长,正确掌握反比例函数的性质是解题的关键.24.(1)1021-; (2) 11312- ; (3)n+1或 n 11a 1S a +--=. 【分析】(1)利用题中的方法设S=1+2+22+…+29,两边乘以2得到2S=2+22+…+29,然后把两式相减计算出S 即可;(2)利用题中的方法设S=1+3+32+33+34+…+310 ,两边乘以3得到3S=3+32+33+34+35+…+311 ,然后把两式相减计算出S 即可;(3)利用(2)的方法计算.【详解】(1)设S=1+2+22+ (29)则2S=2+22+…+210 ②②-①得2S-S=S=210-1∴S=1+2+22+…+29=210-1;故答案为210-1(2)设S=3+3+32+33+34+…+310 ①,则3S=32+33+34+35+…+311 ②,②-①得2S=311-1,所以S=11312-,即3+32+33+34+…+310=11312-; 故答案为11312-; (3)设S=1+a+a 2+a 3+a 4+..+a n ①,则aS=a+a 2+a 3+a 4+..+a n +a n+1②,②-①得:(a-1)S=a n+1-1,a=1时,不能直接除以a-1,此时原式等于n+1;a 不等于1时,a-1才能做分母,所以S=111n a a +--, 即1+a+a 2+a 3+a 4+..+a n =111n a a +--. 【点睛】本题考查了规律型:数字的变化类:认真观察、仔细思考,善用联想,利用类比的方法是解决这类问题的方法.25.⑴①DB DG =; ②BE BF +=;⑵①BE BF +=. 理由见解析,②GM 的长度为193. 理由见解析. 【分析】(1)①根据旋转的性质解答即可;②根据正方形的性质和全等三角形的判定和性质解答即可;(2)①根据菱形的性质和全等三角形的判定和性质解答即可;②作辅助线,计算BD 和BF 的长,根据平行线分线段成比例定理可得BM 的长,根据线段的差可得结论.【详解】(1)①DB=DG ,理由是:∵∠DBE 绕点B 逆时针旋转90°,如图1,由旋转可知,∠BDE=∠FDG,∠BDG=90°,∵四边形ABCD是正方形,∴∠CBD=45°,∴∠G=45°,∴∠G=∠CBD=45°,∴DB=DG;故答案为DB=DG;②,理由如下:由①知:∠FDG=∠EDB,∠G=∠DBE=45°,BD=DG,∴△FDG≌△EDB(ASA),∴BE=FG,∴BF+FG=BF+BE=BC+CG,Rt△DCG中,∵∠G=∠CDG=45°,∴CD=CG=CB,∵,即;(2)①如图2,,理由如下:在菱形ABCD中,∠ADB=∠CDB=12∠ADC=12×60°=30°,由旋转120°得∠EDF=∠BDG=120°,∠EDB=∠FDG,在△DBG中,∠G=180°-120°-30°=30°,∴∠DBG=∠G=30°,∴DB=DG,∴△EDB ≌△FDG (ASA ),∴BE=FG ,∴BF+BE=BF+FG=BG ,过点D 作DM ⊥BG 于点M ,如图2,∵BD=DG ,∴BG=2BM ,在Rt △BMD 中,∠DBM=30°,∴BD=2DM .设DM=a ,则BD=2a ,,∴, ∴BD BG ==,∴,∴;②过点A 作AN ⊥BD 于N ,过D 作DP ⊥BG 于P ,如图3,Rt △ABN 中,∠ABN=30°,AB=2,∴AN=1,∴∵DC ∥BE , ∴21CD CM BE BM ==, ∵CM+BM=2, ∴BM=23,Rt △BDP 中,∠DBP=30°,∴BP=3,由旋转得:BD=BF ,∴BF=2BP=6,∴GM=BG-BM=6+1-23=193. 【点睛】此题是四边形综合题,主要考查了全等三角形的判定和性质,平行线分线段成比例定理,正方形和菱形的性质,直角三角形30度的角性质等知识,本题证明△FDG ≌△BDE 是解本题的关键.26.⑴2y x 2x 3=-++;⑵当12a = ,S □MANB =2S △ABM =274 ,此时115M ,24⎛⎫ ⎪⎝⎭;⑶存在. 当15F 1,4⎛⎫ ⎪⎝⎭时,无论x 取任何实数,均有PG PF =. 理由见解析. 【分析】 (1)利用待定系数法,将A ,B 的坐标代入y=ax 2+2x+c 即可求得二次函数的解析式;(2)过点M 作MH ⊥x 轴于H ,交直线AB 于K ,求出直线AB 的解析式,设点M (a ,-a 2+2a+3),则K (a ,a+1),利用函数思想求出MK 的最大值,再求出△AMB 面积的最大值,可推出此时平行四边形MANB 的面积S 及点M 的坐标;(3)如图2,分别过点B ,C 作直线y=174的垂线,垂足为N ,H ,设抛物线对称轴上存在点F,使抛物线C上任意一点P到点F的距离等于到直线y=174的距离,其中F(1,a),连接BF,CF,则可根据BF=BN,CF=CN两组等量关系列出关于a的方程组,解方程组即可.【详解】(1)由题意把点(-1,0)、(2,3)代入y=ax2+2x+c,得,20 443 a ca c-+=⎧⎨++=⎩,解得a=-1,c=3,∴此抛物线C函数表达式为:y=-x2+2x+3;(2)如图1,过点M作MH⊥x轴于H,交直线AB于K,将点(-1,0)、(2,3)代入y=kx+b中,得,0 23k bk b-+⎧⎨+⎩==,解得,k=1,b=1,∴y AB=x+1,设点M(a,-a2+2a+3),则K(a,a+1),则MK=-a2+2a+3-(a+1)=-(a-12)2+94,根据二次函数的性质可知,当a=12时,MK有最大长度94,∴S△AMB最大=S△AMK+S△BMK=12MK•AH+12MK•(x B-x H)=12MK•(x B-x A)=12×94×3=278,∴以MA、MB为相邻的两边作平行四边形MANB,当平行四边形MANB的面积最大时,S最大=2S△AMB最大=2×278=274,M(12,154);(3)存在点F,∵y=-x2+2x+3=-(x-1)2+4,∴对称轴为直线x=1,当y=0时,x1=-1,x2=3,∴抛物线与x轴正半轴交于点C(3,0),如图2,分别过点B,C作直线y=174的垂线,垂足为N,H,抛物线对称轴上存在点F,使抛物线C上任意一点P到点F的距离等于到直线y=174的距离,设F(1,a),连接BF,CF,则BF=BN=174-3=54,CF=CH=174,由题意可列:2222225 (21)(3)417(31)4aa⎧⎛⎫-+-=⎪ ⎪⎪⎝⎭⎨⎛⎫⎪-+= ⎪⎪⎝⎭⎩,解得,a=154,∴F(1,154).【点睛】此题考查了待定系数法求解析式,还考查了用函数思想求最值等,解题关键是能够判断出当平行四边形MANB的面积最大时,△ABM的面积最大,且此时线段MK的长度也最大.。
2019四川省自贡市中考数学试卷(解析版)
2019年四川省自贡市中考数学试卷一、选择题[共12个小题,每小题4分,共48分,在每题给出的四个选项中,只有一项是符合题目要求的)1.(4分)﹣2019的倒数是()A.﹣2019 B.﹣C.D.20192.(4分)近年来,中国高铁发展迅速,高铁技术不断走出国门,成为展示我国实力的新名片.现在中国高速铁路营运里程将达到23000公里,将23000用科学记数法表示应为()A.2.3×104B.23×103C.2.3×103D.0.23×1053.(4分)下列图案中,既是轴对称图形又是中心对称图形的是()A.B.C.D.4.(4分)在5轮“中国汉字听写大赛”选拔赛中,甲、乙两位同学的平均分都是90分,甲的成绩方差是15,乙的成绩方差是3,下列说法正确的是()A.甲的成绩比乙的成绩稳定B.乙的成绩比甲的成绩稳定C.甲、乙两人的成绩一样稳定D.无法确定甲、乙的成绩谁更稳定5.(4分)如图是一个水平放置的全封闭物体,则它的俯视图是()A.B.C.D.6.(4分)已知三角形的两边长分别为1和4,第三边长为整数,则该三角形的周长为()A.7 B.8 C.9 D.107.(4分)实数m,n在数轴上对应点的位置如图所示,则下列判断正确的是()A.|m|<1 B.1﹣m>1 C.mn>0 D.m+1>08.(4分)关于x的一元二次方程x2﹣2x+m=0无实数根,则实数m的取值范围是()A.m<1 B.m≥1 C.m≤1 D.m>19.(4分)一次函数y=ax+b与反比列函数y=的图象如图所示,则二次函数y=ax2+bx+c的大致图象是()A.B.C.D.10.(4分)均匀的向一个容器内注水,在注满水的过程中,水面的高度h与时间t的函数关系如图所示,则该容器是下列四个中的()A.B.C.D.11.(4分)图中有两张型号完全一样的折叠式饭桌,将正方形桌面边上的四个弓形面板翻折起来后,就能形成一个圆形桌面(可近似看作正方形的外接圆),正方形桌面与翻折成的圆形桌面的面积之比最接近()A.B.C.D.12.(4分)如图,已知A、B两点的坐标分别为(8,0)、(0,8),点C、F分别是直线x=﹣5和x轴上的动点,CF=10,点D是线段CF的中点,连接AD交y轴于点E,当△ABE面积取得最小值时,tan∠BAD的值是()A.B.C.D.二、填空题(共6个小题,每小题4分,共24分)13.(4分)如图,直线AB、CD被直线EF所截,AB∥CD,∠1=120°,则∠2=.14.(4分)在一次有12人参加的数学测试中,得100分、95分、90分、85分、75分的人数分别是1、3、4、2、2,那么这组数据的众数是分.15.(4分)分解因式:2x2﹣2y2=.16.(4分)某活动小组购买了4个篮球和5个足球,一共花费了466元,其中篮球的单价比足球的单价多4元,求篮球的单价和足球的单价.设篮球的单价为x元,足球的单价为y元,依题意,可列方程组为.17.(4分)如图,在Rt△ABC中,∠ACB=90°,AB=10,BC=6,CD∥AB,∠ABC的平分线BD 交AC于点E,DE=.18.(4分)如图,在由10个完全相同的正三角形构成的网格图中,∠α、∠β如图所示,则cos(α+β)=.三、解答題(共8个题,共78分)19.(8分)计算:|﹣3|﹣4sin45°++(π﹣3)020.(8分)解方程:﹣=1.21.(8分)如图,⊙O中,弦AB与CD相交于点E,AB=CD,连接AD、BC.求证:(1)=;(2)AE=CE.22.(8分)某校举行了自贡市创建全国文明城市知识竞赛活动,初一年级全体同学参加了知识竞赛.收集教据:现随机抽取了初一年级30名同学的“创文知识竞赛”成绩,分数如下(单位:分):90 85 68 92 81 84 95 93 87 89 78 99 89 85 9788 81 95 86 98 95 93 89 86 84 87 79 85 89 82整理分析数据:(1)请将图表中空缺的部分补充完整;(2)学校决定表彰“创文知识竞赛”成绩在90分及其以上的同学.根据上面统计结果估计该校初一年级360人中,约有多少人将获得表彰;(3)“创文知识竞赛”中,受到表彰的小红同学得到了印有龚扇、剪纸、彩灯、恐龙图案的四枚纪念章,她从中选取两枚送给弟弟,则小红送给弟弟的两枚纪念章中,恰好有恐龙图案的概率是.23.(10分)如图,在平面直角坐标系中,一次函数y1=kx+b(k≠0)的图象与反比例函数y2=(m ≠0)的图象相交于第一、象限内的A(3,5),B(a,﹣3)两点,与x轴交于点C.(1)求该反比例函数和一次函数的解析式;(2)在y轴上找一点P使PB﹣PC最大,求PB﹣PC的最大值及点P的坐标;(3)直接写出当y1>y2时,x的取值范围.24.(10分)阅读下列材料:小明为了计算1+2+22+…+22017+22018的值,采用以下方法:设S=1+2+22+…+22017+22018①则2S=2+22+…+22018+22019②②﹣①得2S﹣S=S=22019﹣1∴S=1+2+22+…+22017+22018=22019﹣1请仿照小明的方法解决以下问题:(1)1+2+22+…+29=;(2)3+32+…+310=;(3)求1+a+a2+…+a n的和(a>0,n是正整数,请写出计算过程).25.(12分)(1)如图1,E是正方形ABCD边AB上的一点,连接BD、DE,将∠BDE绕点D逆时针旋转90°,旋转后角的两边分别与射线BC交于点F和点G.①线段DB和DG的数量关系是;②写出线段BE,BF和DB之间的数量关系.(2)当四边形ABCD为菱形,∠ADC=60°,点E是菱形ABCD边AB所在直线上的一点,连接BD、DE,将∠BDE绕点D逆时针旋转120°,旋转后角的两边分别与射线BC交于点F和点G.①如图2,点E在线段AB上时,请探究线段BE、BF和BD之间的数量关系,写出结论并给出证明;②如图3,点E在线段AB的延长线上时,DE交射线BC于点M,若BE=1,AB=2,直接写出线段GM的长度.26.(14分)如图,已知直线AB与抛物线C:y=ax2+2x+c相交于点A(﹣1,0)和点B(2,3)两点.(1)求抛物线C函数表达式;(2)若点M是位于直线AB上方抛物线上的一动点,以MA、MB为相邻的两边作平行四边形MANB,当平行四边形MANB的面积最大时,求此时平行四边形MANB的面积S及点M的坐标;(3)在抛物线C的对称轴上是否存在定点F,使抛物线C上任意一点P到点F的距离等于到直线y =的距离?若存在,求出定点F的坐标;若不存在,请说明理由.2019年四川省自贡市中考数学试卷参考答案与试题解析一、选择题[共12个小题,每小题4分,共48分,在每题给出的四个选项中,只有一项是符合题目要求的)1.(4分)﹣2019的倒数是()A.﹣2019 B.﹣C.D.2019【分析】直接利用倒数的定义进而得出答案.【解答】解:﹣2019的倒数是﹣.故选:B.【点评】此题主要考查了倒数,正确把握倒数的定义是解题关键.2.(4分)近年来,中国高铁发展迅速,高铁技术不断走出国门,成为展示我国实力的新名片.现在中国高速铁路营运里程将达到23000公里,将23000用科学记数法表示应为()A.2.3×104B.23×103C.2.3×103D.0.23×105【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:23000=2.3×104,故选:A.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.(4分)下列图案中,既是轴对称图形又是中心对称图形的是()A.B.C.D.【分析】直接利用轴对称图形和中心对称图形的概念求解.【解答】解:A、是轴对称图形,但不是中心对称图形,故此选项错误;B、不是轴对称图形,是中心对称图形,故此选项错误;C、不是轴对称图形,是中心对称图形,故此选项错误;D、既是中心对称图形也是轴对称图形,故此选项正确.故选:D.【点评】此题主要考查了中心对称与轴对称的概念:轴对称的关键是寻找对称轴,两边图象折叠后可重合,中心对称是要寻找对称中心,旋转180°后与原图重合.4.(4分)在5轮“中国汉字听写大赛”选拔赛中,甲、乙两位同学的平均分都是90分,甲的成绩方差是15,乙的成绩方差是3,下列说法正确的是()A.甲的成绩比乙的成绩稳定B.乙的成绩比甲的成绩稳定C.甲、乙两人的成绩一样稳定D.无法确定甲、乙的成绩谁更稳定【分析】根据方差的意义求解可得.【解答】解:∵乙的成绩方差<甲成绩的方差,∴乙的成绩比甲的成绩稳定,故选:B.【点评】本题主要考查方差,方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.5.(4分)如图是一个水平放置的全封闭物体,则它的俯视图是()A.B.C.D.【分析】根据俯视图是从物体上面看,从而得到出物体的形状.【解答】解:从上面观察可得到:.故选:C.【点评】本题考查了三视图的概简单几何体的三视图,本题的关键是要考虑到俯视图中看见的棱用实线表示.6.(4分)已知三角形的两边长分别为1和4,第三边长为整数,则该三角形的周长为()A.7 B.8 C.9 D.10【分析】根据三角形的三边关系“第三边大于两边之差,而小于两边之和”,求得第三边的取值范围;再根据第三边是整数,从而求得周长.【解答】解:设第三边为x,根据三角形的三边关系,得:4﹣1<x<4+1,即3<x<5,∵x为整数,∴x的值为4.三角形的周长为1+4+4=9.故选:C.【点评】此题考查了三角形的三边关系.关键是正确确定第三边的取值范围.7.(4分)实数m,n在数轴上对应点的位置如图所示,则下列判断正确的是()A.|m|<1 B.1﹣m>1 C.mn>0 D.m+1>0 【分析】利用数轴表示数的方法得到m<0<n,然后对各选项进行判断.【解答】解:利用数轴得m<0<1<n,所以﹣m>0,1﹣m>1,mn<0,m+1<0.故选:B.【点评】本题考查了实数与数轴:数轴上的点与实数一一对应;右边的数总比左边的数大.8.(4分)关于x的一元二次方程x2﹣2x+m=0无实数根,则实数m的取值范围是()A.m<1 B.m≥1 C.m≤1 D.m>1【分析】利用判别式的意义得到△=(﹣2)2﹣4m<0,然后解不等式即可.【解答】解:根据题意得△=(﹣2)2﹣4m<0,解得m>1.故选:D.【点评】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:当△>0时,方程有两个不相等的两个实数根;当△=0时,方程有两个相等的两个实数根;当△<0时,方程无实数根.9.(4分)一次函数y=ax+b与反比列函数y=的图象如图所示,则二次函数y=ax2+bx+c的大致图象是()A.B.C.D.【分析】根据一次函数与反比例函数图象找出a、b、c的正负,再根据抛物线的对称轴为x=﹣,找出二次函数对称轴在y轴右侧,比对四个选项的函数图象即可得出结论.【解答】解:∵一次函数y1=ax+c图象过第一、二、四象限,∴a<0,b>0,∴﹣>0,∴二次函数y3=ax2+bx+c开口向下,二次函数y3=ax2+bx+c对称轴在y轴右侧;∵反比例函数y2=的图象在第一、三象限,∴c>0,∴与y轴交点在x轴上方.满足上述条件的函数图象只有选项A.故选:A.【点评】本题考查了一次函数的图象、反比例函数的图象以及二次函数的图象,解题的关键是根据一次函数与反比例函数的图象找出a、b、c的正负.本题属于基础题,难度不大,熟悉函数图象与系数的关系是解题的关键.10.(4分)均匀的向一个容器内注水,在注满水的过程中,水面的高度h与时间t的函数关系如图所示,则该容器是下列四个中的()A.B.C.D.【分析】由函数图象可得容器形状不是均匀物体分析判断,由图象及容积可求解.【解答】解:相比较而言,前一个阶段,用时较少,高度增加较快,那么下面的物体应较细.由图可得上面圆柱的底面半径应大于下面圆柱的底面半径.故选:D.【点评】此题主要考查了函数图象,解决本题的关键是根据用的时间长短来判断相应的函数图象.11.(4分)图中有两张型号完全一样的折叠式饭桌,将正方形桌面边上的四个弓形面板翻折起来后,就能形成一个圆形桌面(可近似看作正方形的外接圆),正方形桌面与翻折成的圆形桌面的面积之比最接近()A.B.C.D.【分析】连接AC,根据正方形的性质得到∠B=90°,根据圆周角定理得到AC为圆的直径,根据正方形面积公式、圆的面积公式计算即可.【解答】解:连接AC,设正方形的边长为a,∵四边形ABCD是正方形,∴∠B=90°,∴AC为圆的直径,∴AC=AB=a,则正方形桌面与翻折成的圆形桌面的面积之比为:=≈,故选:C.【点评】本题考查的是正多边形和圆,掌握圆周角定理、正方形的性质是解题的关键.12.(4分)如图,已知A、B两点的坐标分别为(8,0)、(0,8),点C、F分别是直线x=﹣5和x轴上的动点,CF=10,点D是线段CF的中点,连接AD交y轴于点E,当△ABE面积取得最小值时,tan ∠BAD的值是()A.B.C.D.【分析】如图,设直线x=5交x轴于K.由题意KD=CF=5,推出点D的运动轨迹是以K为圆心,5为半径的圆,推出当直线AD与⊙K相切时,△ABE的面积最小,作EH⊥AB于H.求出EH,AH 即可解决问题.【解答】解:如图,设直线x=5交x轴于K.由题意KD=CF=5,∴点D的运动轨迹是以K为圆心,5为半径的圆,∴当直线AD与⊙K相切时,△ABE的面积最小,∵AD是切线,点D是切点,∴AD⊥KD,∵AK=13,DK=5,∴AD=12,∵tan∠EAO==,∴=,∴OE=,∴AE==,作EH⊥AB于H.∵S△ABE=•AB•EH=S△AOB﹣S△AOE,∴EH=,∴AH==,∴tan∠BAD===,故选:A.【点评】本题考查解直角三角形,坐标与图形的性质,直线与圆的位置关系,三角形的面积等知识,解题的关键是灵活运用所学知识解决问题,属于中考选择题中的压轴题.二、填空题(共6个小题,每小题4分,共24分)13.(4分)如图,直线AB、CD被直线EF所截,AB∥CD,∠1=120°,则∠2=60°.【分析】直接利用平角的定义结合平行线的性质得出答案.【解答】解:∵∠1=120°,∴∠3=180°﹣120°=60°,∵AB∥CD,∴∠2=∠3=60°.故答案为:60°.【点评】此题主要考查了平行线的性质,正确得出∠2=∠3是解题关键.14.(4分)在一次有12人参加的数学测试中,得100分、95分、90分、85分、75分的人数分别是1、3、4、2、2,那么这组数据的众数是90 分.【分析】根据众数的定义求解可得.【解答】解:这组数据的众数是90分,故答案为:90.【点评】本题主要考查众数,求一组数据的众数的方法:找出频数最多的那个数据,若几个数据频数都是最多且相同,此时众数就是这多个数据.15.(4分)分解因式:2x2﹣2y2=2(x+y)(x﹣y).【分析】先提取公因式2,再根据平方差公式进行二次分解即可求得答案.【解答】解:2x2﹣2y2=2(x2﹣y2)=2(x+y)(x﹣y).故答案为:2(x+y)(x﹣y).【点评】本题考查了提公因式法,公式法分解因式,提取公因式后利用平方差公式进行二次分解,注意分解要彻底.16.(4分)某活动小组购买了4个篮球和5个足球,一共花费了466元,其中篮球的单价比足球的单价多4元,求篮球的单价和足球的单价.设篮球的单价为x元,足球的单价为y元,依题意,可列方程组为.【分析】根据题意可得等量关系:①4个篮球的花费+5个足球的花费=466元,②篮球的单价﹣足球的单价=4元,根据等量关系列出方程组即可.【解答】解:设篮球的单价为x元,足球的单价为y元,由题意得:,故答案为:,【点评】此题主要考查了由实际问题抽象出二元一次方程组,关键是正确理解题意,找出题目中的等量关系.17.(4分)如图,在Rt△ABC中,∠ACB=90°,AB=10,BC=6,CD∥AB,∠ABC的平分线BD交AC于点E,DE=.【分析】由CD∥AB,∠D=∠ABE,∠D=∠CBE,所以CD=BC=6,再证明△AEB∽△CED,根据相似比求出DE的长.【解答】解:∵∠ACB=90°,AB=10,BC=6,∴AC=8,∵BD平分∠ABC,∴∠ABE=∠CDE,∵CD∥AB,∴∠D=∠ABE,∴∠D=∠CBE,∴CD=BC=6,∴△AEB∽△CED,∴,∴CE=AC=×8=3,BE =,DE =BE=×=,故答案为.【点评】本题考查了相似三角形,熟练掌握相似三角形的判定与性质以及勾股定理是解题的关键.18.(4分)如图,在由10个完全相同的正三角形构成的网格图中,∠α、∠β如图所示,则cos(α+β)=.【分析】给图中各点标上字母,连接DE,利用等腰三角形的性质及三角形内角和定理可得出∠α=30°,同理,可得出:∠CDE=∠CED=30°=∠α,由∠AEC=60°结合∠AED=∠AEC+∠CED可得出∠AED=90°,设等边三角形的边长为a,则AE=2a,DE=a,利用勾股定理可得出AD的长,再结合余弦的定义即可求出cos(α+β)的值.【解答】解:给图中各点标上字母,连接DE,如图所示.在△ABC中,∠ABC=120°,BA=BC,∴∠α=30°.同理,可得出:∠CDE=∠CED=30°=∠α.又∵∠AEC=60°,∴∠AED=∠AEC+∠CED=90°.设等边三角形的边长为a,则AE=2a,DE=2×sin60°•a=a,∴AD==a,∴cos(α+β)==.故答案为:.【点评】本题考查了解直角三角形、等边三角形的性质以及规律型:图形的变化类,构造出含一个锐角等于∠α+∠β的直角三角形是解题的关键.三、解答題(共8个题,共78分)19.(8分)计算:|﹣3|﹣4sin45°++(π﹣3)0【分析】原式第一项利用绝对值的意义化简,第二项利用特殊角的三角函数值计算,第三项化为最简二次根式,第四项利用零指数幂法则计算即可得到结果.【解答】解:原式=3﹣4×+2+1=3﹣2+2+1=4.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.20.(8分)解方程:﹣=1.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:x2﹣2x+2=x2﹣x,解得:x=2,检验:当x=2时,方程左右两边相等,所以x=2是原方程的解.【点评】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.21.(8分)如图,⊙O中,弦AB与CD相交于点E,AB=CD,连接AD、BC.求证:(1)=;(2)AE=CE.【分析】(1)由AB=CD知=,即+=+,据此可得答案;(2)由=知AD=BC,结合∠ADE=∠CBE,∠DAE=∠BCE可证△ADE≌△CBE,从而得出答案.【解答】证明(1)∵AB=CD,∴=,即+=+,∴=;(2)∵=,∴AD=BC,又∵∠ADE=∠CBE,∠DAE=∠BCE,∴△ADE≌△CBE(ASA),∴AE=CE.【点评】本题主要考查圆心角、弧、弦的关系,圆心角、弧、弦三者的关系可理解为:在同圆或等圆中,①圆心角相等,②所对的弧相等,③所对的弦相等,三项“知一推二”,一项相等,其余二项皆相等.22.(8分)某校举行了自贡市创建全国文明城市知识竞赛活动,初一年级全体同学参加了知识竞赛.收集教据:现随机抽取了初一年级30名同学的“创文知识竞赛”成绩,分数如下(单位:分):90 85 68 92 81 84 95 93 87 89 78 99 89 85 9788 81 95 86 98 95 93 89 86 84 87 79 85 89 82整理分析数据:(1)请将图表中空缺的部分补充完整;(2)学校决定表彰“创文知识竞赛”成绩在90分及其以上的同学.根据上面统计结果估计该校初一年级360人中,约有多少人将获得表彰;(3)“创文知识竞赛”中,受到表彰的小红同学得到了印有龚扇、剪纸、彩灯、恐龙图案的四枚纪念章,她从中选取两枚送给弟弟,则小红送给弟弟的两枚纪念章中,恰好有恐龙图案的概率是.【分析】(1)由已知数据计数即可得;(2)用总人数乘以样本中对应部分人数所占比例即可得;(3)根据题意先画出树状图,得出共有12种等可能的结果数,再利用概率公式求解可得.【解答】解:(1)补全图表如下:(2)估计该校初一年级360人中,获得表彰的人数约为360×=120(人);(3)将印有龚扇、剪纸、彩灯、恐龙图案分别记为A、B、C、D,画树状图如下:则共有12种等可能的结果数,其中小红送给弟弟的两枚纪念章中,恰好有恐龙图案的结果数为6,所以小红送给弟弟的两枚纪念章中,恰好有恐龙图案的概率为,故答案为:.【点评】本题考查了列表法与树状图法:利用列表法和树状图法展示所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,求出概率,也考查了条形统计图与样本估计总体.23.(10分)如图,在平面直角坐标系中,一次函数y1=kx+b(k≠0)的图象与反比例函数y2=(m≠0)的图象相交于第一、象限内的A(3,5),B(a,﹣3)两点,与x轴交于点C.(1)求该反比例函数和一次函数的解析式;(2)在y轴上找一点P使PB﹣PC最大,求PB﹣PC的最大值及点P的坐标;(3)直接写出当y1>y2时,x的取值范围.【分析】(1)利用待定系数法,即可得到反比例函数和一次函数的解析式;(2)根据一次函数y1=x+2,求得与y轴的交点P,此交点即为所求;(3)根据AB两点的横坐标及直线与双曲线的位置关系求x的取值范围.【解答】解:(1)把A(3,5)代入y2=(m≠0),可得m=3×5=15,∴反比例函数的解析式为y2=;把点B(a,﹣3)代入,可得a=﹣5,∴B(﹣5,﹣3).把A(3,5),B(﹣5,﹣3)代入y1=kx+b,可得,解得,∴一次函数的解析式为y1=x+2;(2)一次函数的解析式为y1=x+2,令x=0,则y=2,∴一次函数与y轴的交点为P(0,2),此时,PB﹣PC=BC最大,P即为所求,令y=0,则x=﹣2,∴C(﹣2,0),∴BC==3.(3)当y1>y2时,﹣5<x<0或x>3.【点评】本题考查了反比例函数与一次函数的交点问题,待定系数法求反比例函数和一次函数的解析式,根据点的坐标求线段长,正确掌握反比例函数的性质是解题的关键.24.(10分)阅读下列材料:小明为了计算1+2+22+…+22017+22018的值,采用以下方法:设S=1+2+22+…+22017+22018①则2S=2+22+…+22018+22019②②﹣①得2S﹣S=S=22019﹣1∴S=1+2+22+…+22017+22018=22019﹣1请仿照小明的方法解决以下问题:(1)1+2+22+…+29=210﹣1 ;(2)3+32+…+310=;(3)求1+a+a2+…+a n的和(a>0,n是正整数,请写出计算过程).【分析】(1)利用题中的方法设S=1+2+22+…+29,两边乘以2得到2S=2+22+…+29,然后把两式相减计算出S即可;(2)利用题中的方法设S=1+3+32+33+34+…+310 ,两边乘以3得到3S=3+32+33+34+35+…+311 ,然后把两式相减计算出S即可;(3)利用(2)的方法计算.【解答】解:(1)设S=1+2+22+ (29)则2S=2+22+ (210)②﹣①得2S﹣S=S=210﹣1∴S=1+2+22+…+29=210﹣1;故答案为:210﹣1(2)设S=1+3+32+33+34+…+310 ①,则3S=3+32+33+34+35+…+311 ②,②﹣①得2S=311﹣1,所以S=,即1+3+32+33+34+…+310=;故答案为:;(3)设S=1+a+a2+a3+a4+..+a n①,则aS=a+a2+a3+a4+..+a n+a n+1②,②﹣①得:(a﹣1)S=a n+1﹣1,所以S=,即1+a+a2+a3+a4+..+a n=,【点评】本题考查了规律型:数字的变化类:认真观察、仔细思考,善用联想,利用类比的方法是解决这类问题的方法.25.(12分)(1)如图1,E是正方形ABCD边AB上的一点,连接BD、DE,将∠BDE绕点D逆时针旋转90°,旋转后角的两边分别与射线BC交于点F和点G.①线段DB和DG的数量关系是DB=DG;②写出线段BE,BF和DB之间的数量关系.(2)当四边形ABCD为菱形,∠ADC=60°,点E是菱形ABCD边AB所在直线上的一点,连接BD、DE,将∠BDE绕点D逆时针旋转120°,旋转后角的两边分别与射线BC交于点F和点G.①如图2,点E在线段AB上时,请探究线段BE、BF和BD之间的数量关系,写出结论并给出证明;②如图3,点E在线段AB的延长线上时,DE交射线BC于点M,若BE=1,AB=2,直接写出线段GM的长度.【分析】(1)①根据旋转的性质解答即可;②根据正方形的性质和全等三角形的判定和性质解答即可;(2)①根据菱形的性质和全等三角形的判定和性质解答即可;②先同理得:BG=BD,计算BD的长,从而得BG的长,根据平行线分线段成比例定理可得BM 的长,根据线段的差可得结论.【解答】解:(1)①DB=DG,理由是:∵∠DBE绕点B逆时针旋转90°,如图1,由旋转可知,∠BDE=∠FDG,∠BDG=90°,∵四边形ABCD是正方形,∴∠CBD=45°,∴∠G=45°,∴∠G=∠CBD=45°,∴DB=DG;故答案为:DB=DG;②BF+BE=BD,理由如下:由①知:∠FDG=∠EDB,∠G=∠DBE=45°,BD=DG,∴△FDG≌△EDB(ASA),∴BE=FG,∴BF+FG=BF+BE=BC+CG,Rt△DCG中,∵∠G=∠CDG=45°,∴CD=CG=CB,∵DG=BD=BC,即BF+BE=2BC=BD;(2)①如图2,BF+BE=BD,理由如下:在菱形ABCD中,∠ADB=∠CDB=∠ADC=×60°=30°,由旋转120°得∠EDF=∠BDG=120°,∠EDB=∠FDG,在△DBG中,∠G=180°﹣120°﹣30°=30°,∴∠DBG=∠G=30°,∴DB=DG,∴△EDB≌△FDG(ASA),∴BE=FG,∴BF+BE=BF+FG=BG,过点D作DM⊥BG于点M,如图2,∵BD=DG,∴BG=2BM,在Rt△BMD中,∠DBM=30°,∴BD=2DM.设DM=a,则BD=2a,DM =a,∴BG=2a,∴=,∴BG=BD,∴BF+BE=BG=BD;②过点A作AN⊥BD于N,如图3,Rt△ABN中,∠ABN=30°,AB=2,∴AN=1,BN=,∴BD=2BN=2,∵DC∥BE,∴=,∵CM+BM=2,∴BM=,由①同理得:BE+BF=BG=BD,∴BG=×=6,∴GM=BG﹣BM=6﹣=.【点评】此题是四边形综合题,主要考查了全等三角形的判定和性质,平行线分线段成比例定理,正方形和菱形的性质,直角三角形30度的角性质等知识,本题证明△FDG≌△BDE是解本题的关键.26.(14分)如图,已知直线AB与抛物线C:y=ax2+2x+c相交于点A(﹣1,0)和点B(2,3)两点.(1)求抛物线C函数表达式;(2)若点M是位于直线AB上方抛物线上的一动点,以MA、MB为相邻的两边作平行四边形MANB,当平行四边形MANB的面积最大时,求此时平行四边形MANB的面积S及点M的坐标;(3)在抛物线C的对称轴上是否存在定点F,使抛物线C上任意一点P到点F的距离等于到直线y =的距离?若存在,求出定点F的坐标;若不存在,请说明理由.【分析】(1)利用待定系数法,将A,B的坐标代入y=ax2+2x+c即可求得二次函数的解析式;(2)过点M作MH⊥x轴于H,交直线AB于K,求出直线AB的解析式,设点M(a,﹣a2+2a+3),则K(a,a+1),利用函数思想求出MK的最大值,再求出△AMB面积的最大值,可推出此时平行四边形MANB的面积S及点M的坐标;(3)设抛物线对称轴与直线y=交于点E,抛物线顶点为Q,作点E关于点Q的对称点F,此时抛物线C上任意一点P到点F的距离等于到直线y=的距离,可分别先求出Q,F的坐标,由对称性可求出F的坐标.【解答】解:(1)由题意把点(﹣1,0)、(2,3)代入y=ax2+2x+c,得,,解得a=﹣1,b=2,∴此抛物线C函数表达式为:y=﹣x2+2x+3;(2)如图1,过点M作MH⊥x轴于H,交直线AB于K,将点(﹣1,0)、(2,3)代入y=kx+b中,得,,解得,k=1,b=1,∴y AB=x+1,设点M(a,﹣a2+2a+3),则K(a,a+1),则MK=﹣a2+2a+3﹣(a+1)=﹣(a﹣)2+,根据二次函数的性质可知,当a=时,MK有最大长度,∴S△AMB最大=S△AMK+S△BMK=MK•AH+MK•(x B﹣x H)=MK•(x B﹣x A)=××3=,∴以MA、MB为相邻的两边作平行四边形MANB,当平行四边形MANB的面积最大时,S=2S△AMB最大=2×=,M(,);最大(3)如图2,设抛物线对称轴与直线y=交于点E,抛物线顶点为Q,作点E关于点Q的对称点F,此时抛物线C上任意一点P到点F的距离等于到直线y=的距离,∵y=﹣x2+2x+3=﹣(x﹣1)2+4,∴Q(1,4),E(1,),∵点F与点E关于点Q对称,∴F(1,).【点评】此题考查了待定系数法求解析式,还考查了用函数思想求极值等,解题关键是能够判断出当平行四边形MANB的面积最大时,△ABM的面积最大,且此时线段MK的长度也最大.。
2019年四川省自贡中考数学含答案
绝密★启用前【考试时间:2019年6月12日9:00-11:00】四川省自贡市初2019届毕业生学业考试数 学本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分。
共6页,满分150分. 答卷前,考生务必将自己的姓名,准考证号填写在答题卡上,答卷时必须将答案答在答题卡上,在本试卷,草稿纸上,答题无效,考试结束后,将试题卷和答题卡一并交回.第I 卷选择题 (共48分)注意事项:必须使用2B 铅笔将答案标号填涂在答题卡上对应题目标号的位置上.如需改动,用橡皮擦干净后,再选涂其他答案标号一.选择题(每小题4分,共48分)1.-2019的倒数是( B )A.-2019B.20191-C.20191 D.2019 2.近年来,中国高铁发展迅速,高铁技术不断走出国门成为展示强国实力的新名片,现在中国高速铁路营运里程将达到23000公里,将23000用科学记数法表示为( A )A.4103.2⨯B.31023⨯C.3103.2⨯D.51023.0⨯3.下列图案中,既是轴对称图形,又是中心对称图形的是( D )4.在5轮“中国汉字听写大赛”选拔赛中,甲、乙两位同学的平均数都是90分,甲的方差是15,乙的成绩方差是3,下列说法正确的是( B )A.甲的成绩比乙的成绩稳定B.乙的成绩比甲的成绩稳定C.甲、乙两人成绩一样稳定D.无法确定甲、乙的成绩谁更稳定5.下图是一个水平放置的全封闭物体,则它的俯视图是( C )6.已知三角形的两边长分别为1和4,第三边为整数,则该三角形周长为( C )A.7B.8C.9D.107.实数m ,n 在数轴上对应点的位置如图所示,则下列判断正确的是( B )A.|m |<1B.1-m >1C.mn >0D.m +1>08.关于x 的一元二次方程022=+-m x x ,无实数根,则实数m 的取值范围是( D )A.1<mB.1≥mC.1≤mD.1>m9.一次函数y=ax+b 与反比例函数xc y =的图象如图所示,则二次函数y=ax ²+bx+c 的大致图象是( A )10.均匀的向一个容器内注水,在注满水的过程中,水面的高度h 与时间t 的函数关系如图所示,则该容器是下列四个中的( D )11.图中有两张型号完全一样的折叠式饭桌,将正方形桌面边上的四个弓形面板,翻折起来后,就能形成一个圆形桌面(可近似看作正方形的外接圆),正方形桌面与翻折成的圆形桌面的面积之比最接近( C ) A.54 B.43 C.32 D.2112.如图,已知A 、B 两点的坐标分别为(8,0),(0,8)点C 、F 分别是直线5-=x 和x 轴上的动点,CF =10,点D 是线段CF 的中点,连接AD 交y 轴于点E ,当△ABE 面积取最小值时,tan△BAD 的值是( B ) A.178 B.177 C.94 D.95第II 卷非选择题 (共102分)注意事项:必须使用0.5毫米黑色墨水签字笔在答题卡上题目所指区域内作答,作图题可先用铅笔绘出,确认后再用0.5毫米黑色墨水签字笔描清楚.答在试题卷上无效.二.填空题(每小题4分,共24分)13.如图直线AB ,CD 被直线EF 所截,AB △CD ,△1=120°,则△2= 60°.14.在一次有12人参加的数学测试中,得100分,95分,90分,85分,75分的人数分别是1,3,4,2,2,那么这组数据的众数是 90 分15.分解因式=-2222y x ))((2y x y x -+ .16.某活动小组购买了4个篮球和5个足球,一共花费了466元,其中篮球的单价比足球的单价多4元,求篮球的单价和足球的单价.设篮球的单价为x 元,足球的单价为y 元,依题意,可列方程组为 ⎩⎨⎧=-=+446654y x y x 17.如图,在Rt △ABC 中,△ACB =90°,AB =10,BC =6,CD △AB ,△ABC 的平分线BD 交AC 于点E ,DE = 559 .18.如图,在由10个完全相同的正三角形构成的网格图中,△α,△β如图所示,则cos (α+β)= 721三.解答题(共8个小题,共78分)19.(本题满分8分)计算:0)3(8-4sin45|-3|-++︒π解:原式=4122223=++-20.(本题满分8分)解方程:121=--xx x 解:x x x x -=+-2222,.2=∴x 经检验2=x 是原方程的解.21.(本题满分8分)如图,△O中,弦AB与CD相交于点E,AB=CD,连接AD,BC.求证:(1)»»AD BC=;(2)AE=CE;证明:(1)如图,连接AC.△AB=CD,△»»AB CD=,△»»»»AB AC CD AC-=-,即»»AD BC=(2)△»»AD BC=,△△ACD=△BAC,△AE=CE22.(本题满分8分)某校举行了自贡市创建全国文明城市知识竞赛活动,初一年级全体同学参加了知识竞赛.收集数据:现随机抽取了初一年级30名同学的“创文知识竞赛”成绩分数如下(单位:分):90 85 68 92 81 84 95 93 87 89 78 99 89 85 9788 81 95 86 98 95 93 89 86 84 87 79 85 89 82整理分析数据:(1)将图中空缺的部分补充完整;(2)学校决定表彰“创文知识竞赛”成绩在90分及其以上的同学,根据上面统计结果估计该校初一年级360人中有多少人将获得表彰;答案:1203603010=⨯÷(人),答:约有120人受到表彰(3)“创文知识竞赛”中收到表彰的小红同学得到印有龚扇,剪纸,彩灯,恐龙图案的四枚纪念奖章,她从中选取两枚送给弟弟,则小红送给弟弟的两枚纪念奖章中,恰好有恐龙图案的概率是.答案:21 23. (本题满分10分)如图,在平面直角坐标系中,一次函数b kx y +=1(0≠k )的图象与反比例函数)0(2≠=m xm y 的图象相交于第一、三象限内的A (3,5),B (a ,-3)两点,与x 轴交于点C .(1)求该反比例函数和一次函数的解析式;(2)在y 轴上找一点P 使PB -PC 最大,求PB -PC 的最大值及点P 的坐标;(3)直接写出当21y y >时,x 的取值范围答案:(1)把A (3,5)代入x m y =2得15=m ,∴反比例函数的解析式为xy 15= 把B (a ,-3)代入xy 15=得5)3(15-=-÷=a ;∴B (-5,-3) 把A (3,5),B (-5,-3)代入b kx y +=1得⎩⎨⎧-=+-=+3553b k b k ,解之得⎩⎨⎧==21b k ∴一次函数的解析式为2+=x y(2)依题意得,直线AB 与y 轴交点即为P 点,在y=x+2中,令x=0,则y=2,令y=0,则x=-2,∴点P 的坐标为(0,2),点C 的坐标为(-2,0),此时PB=52,PC=22,∴PB -PC 的最大值为32(3)当21y y >时,x 的取值范围是-5<x <0或x >324.(本题满分10分)阅读下列材料:小明为了计算20182017222221+++++Λ的值,采用以下方法:设=S 20182017222221+++++Λ△则=S 220192018222221+++++Λ△△-△得1222019-==-S S S△12222212019201820172-=+++++=ΛS请仿照小明的方法解决以下问题:(1)+++9221Λ 1210- ;(2)=+++102333Λ 23311- ; (3)求na a a ++++Λ21的和(0>a ,n 是正整数,请写出计算过程). 解:设na a a S ++++=Λ21① 则132+++++=n a a a a aS Λ②②-①得11-=-+n a S aS∴11112--=++++=+a a a a a S n nΛ25.(本题满分12分)(1)如图1,E 是正方形ABCD 边AB 上的一点,连接BD 、DE ,将△BDE 绕点D 逆时针旋转90°,旋转后角的两边分别与射线BC 交于点F 和点G .△线段DB 和DG 之间的数量关系是 DB=DG ;△写出线段BE ,BF 和DB 之间的数量关系.BD BF BE 2=+(2)当四边形ABCD 为菱形,△ADC =60°,点E 是菱形ABCD 边AB 所在直线上的一点,连接BD 、DE ,将△BDE 绕点D 逆时针旋转120°,旋转后角的两边分别与射线BC 交于点F 和点G .△如图2,点E 在线段AB 上时,请探究线段BE 、BF 和BD 之间的数量关系,写出结论并给出证明;△如图3,点E 在线段AB 的延长线上时,DE 交射线BC 于点M ,若BE =1,AB =2,直接写出线段GM 的长度.图1 图2 图3(2)①BD BF BE 3=+理由如下:在菱形ABCD 中,∠ABD=∠CBD=21∠ABC=30°,由旋转120°可得,∠EDF=∠BDG=120°,∴∠EDF -∠BDF=∠BDG -∠BDF ,即∠FDG=∠BDE.在△DBG 中,∠G=180°-∠BDG -∠DBG=30°,∴∠DBG=∠G=30°,∴BD=DG.在△BDE 和△GDF 中⎪⎩⎪⎨⎧∠=∠=∠=∠DGF DBE DG BD BDE GDF ∴△BDE ≌△△GDF (ASA ),∴BE=GF∴BE+BF=BF+GF=BG.过点D 作DM ⊥BG 于点M 如图所示:∵BD=DG ,∴BG=2BM.在Rt △BMD 中,∠DBM=30°,∴BD=2DM ,设DM=a ,则BD=2a ,BM=a 3.∴BG=a 32,∴3232==aa BD BG ∴BF+BE=3BD.②GM 的长度为319.理由:∵1==BE GF ,FC=2DC=4,CM=32BC=34,∴GM=319 26.(本题满分14分)如图,已知直线AB 与抛物线c x ax y C ++=2:2相交于点A (-1,0)和点B (2,3)两点.(1)求抛物线C 函数表达式;(2)若点M 是位于直线AB 上方抛物线上的一动点,以MA 、MB 为相邻的两边作平行四边形MANB ,当平行四边形MANB 的面积最大时,求此时平行四边形MANB 的面积S 及点M 的坐标;(3)在抛物线C 的对称轴上是否存在定点F ,使抛物线C 上任意一点P 到点F 的距离等于到直线417=y 的距离,若存在,求出定点F 的坐标;若不存在,请说明理由.解:(1)把A (-1,0),B (2,3)代入抛物线得⎩⎨⎧=++=+-34402c a c a 解之得⎩⎨⎧=-=31c a ∴抛物线C 的函数表达式为:322++-=x x y(2)∵A (-1,0),B (2,3),∴直线AB 的解析式为:1+=x y ,如图所示,过M 作MN ∥y 轴交AB 于N ,设)32,(2++-m m m M ,则)1,(+m m N ,(-1<m <2) ∴22++-=-=m m y y MN N M ,∴S △ABM =S △AMN +S △BMN =MN x x A B )(21- ∴S △ABM =827)21(233)2(2122+--=⨯++-m m m ,∴当21=m 时,△ABM 的面积有最大值827,而S □MANB =2S △ABM =427,此时)27,21(M (3)存在,点)415,1(F 理由如下:令抛物线顶点为D ,则D (1,4),则顶点D 到直线417=y 的距离为41,设),1(n F 设)32,(2++-x x x P ,设P 到直线417=y 的距离为PG.则 PG=452)32(41722+-=++--x x x x ,∵P 为抛物线上任意一点都有PG=PF ,∴当P 与顶点D 重合时,也有PG=PF.此时PG=41,即顶点D 到直线417=y 的距离为41 ∴PF=DF=41,∴)415,1(F ,∵PG=PF ,∴22PF PG =, ∵2222222)432()1()32415()1(+-+-=--++-=x x x x x x PF 222)452(+-=x x PG∴222222)432()1()32415()1(+-+-=--++-x x x x x x 22)452(+-=x x 整理化简可得00=x ,∴当)415,1(F 时,无论x 取任何实数,均有PG=PF。
2019年四川省自贡市中考数学试题(word版,含解析)
2019年四川省自贡市中考数学试卷一、选择题[共12个小题,每小题4分,共48分,在每题给出的四个选项中,只有一项是符合题目要求的)1.(4分)﹣2019的倒数是()A.﹣2019 B.﹣C.D.20192.(4分)近年来,中国高铁发展迅速,高铁技术不断走出国门,成为展示我国实力的新名片.现在中国高速铁路营运里程将达到23000公里,将23000用科学记数法表示应为()A.2.3×104B.23×103C.2.3×103D.0.23×1053.(4分)下列图案中,既是轴对称图形又是中心对称图形的是()A.B.C.D.4.(4分)在5轮“中国汉字听写大赛”选拔赛中,甲、乙两位同学的平均分都是90分,甲的成绩方差是15,乙的成绩方差是3,下列说法正确的是()A.甲的成绩比乙的成绩稳定B.乙的成绩比甲的成绩稳定C.甲、乙两人的成绩一样稳定D.无法确定甲、乙的成绩谁更稳定5.(4分)如图是一个水平放置的全封闭物体,则它的俯视图是()A.B.C.D.6.(4分)已知三角形的两边长分别为1和4,第三边长为整数,则该三角形的周长为()A.7 B.8 C.9 D.107.(4分)实数m,n在数轴上对应点的位置如图所示,则下列判断正确的是()A.|m|<1 B.1﹣m>1 C.mn>0 D.m+1>08.(4分)关于x的一元二次方程x2﹣2x+m=0无实数根,则实数m的取值范围是()A.m<1 B.m≥1 C.m≤1 D.m>19.(4分)一次函数y=ax+b与反比列函数y=的图象如图所示,则二次函数y=ax2+bx+c的大致图象是()A.B.C.D.10.(4分)均匀的向一个容器内注水,在注满水的过程中,水面的高度h与时间t的函数关系如图所示,则该容器是下列四个中的()A.B.C.D.11.(4分)图中有两张型号完全一样的折叠式饭桌,将正方形桌面边上的四个弓形面板翻折起来后,就能形成一个圆形桌面(可近似看作正方形的外接圆),正方形桌面与翻折成的圆形桌面的面积之比最接近()A.B.C.D.12.(4分)如图,已知A、B两点的坐标分别为(8,0)、(0,8),点C、F分别是直线x=﹣5和x轴上的动点,CF=10,点D是线段CF的中点,连接AD交y轴于点E,当△ABE面积取得最小值时,tan∠BAD的值是()A.B.C.D.二、填空题(共6个小题,每小题4分,共24分)13.(4分)如图,直线AB、CD被直线EF所截,AB∥CD,∠1=120°,则∠2=.14.(4分)在一次有12人参加的数学测试中,得100分、95分、90分、85分、75分的人数分别是1、3、4、2、2,那么这组数据的众数是分.15.(4分)分解因式:2x2﹣2y2=.16.(4分)某活动小组购买了4个篮球和5个足球,一共花费了466元,其中篮球的单价比足球的单价多4元,求篮球的单价和足球的单价.设篮球的单价为x元,足球的单价为y元,依题意,可列方程组为.17.(4分)如图,在Rt△ABC中,∠ACB=90°,AB=10,BC=6,CD∥AB,∠ABC的平分线BD 交AC于点E,DE=.18.(4分)如图,在由10个完全相同的正三角形构成的网格图中,∠α、∠β如图所示,则cos(α+β)=.三、解答題(共8个题,共78分)19.(8分)计算:|﹣3|﹣4sin45°++(π﹣3)020.(8分)解方程:﹣=1.21.(8分)如图,⊙O中,弦AB与CD相交于点E,AB=CD,连接AD、BC.求证:(1)=;(2)AE=CE.22.(8分)某校举行了自贡市创建全国文明城市知识竞赛活动,初一年级全体同学参加了知识竞赛.收集教据:现随机抽取了初一年级30名同学的“创文知识竞赛”成绩,分数如下(单位:分):90 85 68 92 81 84 95 93 87 89 78 99 89 85 9788 81 95 86 98 95 93 89 86 84 87 79 85 89 82整理分析数据:(1)请将图表中空缺的部分补充完整;(2)学校决定表彰“创文知识竞赛”成绩在90分及其以上的同学.根据上面统计结果估计该校初一年级360人中,约有多少人将获得表彰;(3)“创文知识竞赛”中,受到表彰的小红同学得到了印有龚扇、剪纸、彩灯、恐龙图案的四枚纪念章,她从中选取两枚送给弟弟,则小红送给弟弟的两枚纪念章中,恰好有恐龙图案的概率是.23.(10分)如图,在平面直角坐标系中,一次函数y1=kx+b(k≠0)的图象与反比例函数y2=(m ≠0)的图象相交于第一、象限内的A(3,5),B(a,﹣3)两点,与x轴交于点C.(1)求该反比例函数和一次函数的解析式;(2)在y轴上找一点P使PB﹣PC最大,求PB﹣PC的最大值及点P的坐标;(3)直接写出当y1>y2时,x的取值范围.24.(10分)阅读下列材料:小明为了计算1+2+22+…+22017+22018的值,采用以下方法:设S=1+2+22+…+22017+22018①则2S=2+22+…+22018+22019②②﹣①得2S﹣S=S=22019﹣1∴S=1+2+22+…+22017+22018=22019﹣1请仿照小明的方法解决以下问题:(1)1+2+22+…+29=;(2)3+32+…+310=;(3)求1+a+a2+…+a n的和(a>0,n是正整数,请写出计算过程).25.(12分)(1)如图1,E是正方形ABCD边AB上的一点,连接BD、DE,将∠BDE绕点D逆时针旋转90°,旋转后角的两边分别与射线BC交于点F和点G.①线段DB和DG的数量关系是;②写出线段BE,BF和DB之间的数量关系.(2)当四边形ABCD为菱形,∠ADC=60°,点E是菱形ABCD边AB所在直线上的一点,连接BD、DE,将∠BDE绕点D逆时针旋转120°,旋转后角的两边分别与射线BC交于点F和点G.①如图2,点E在线段AB上时,请探究线段BE、BF和BD之间的数量关系,写出结论并给出证明;②如图3,点E在线段AB的延长线上时,DE交射线BC于点M,若BE=1,AB=2,直接写出线段GM的长度.26.(14分)如图,已知直线AB与抛物线C:y=ax2+2x+c相交于点A(﹣1,0)和点B(2,3)两点.(1)求抛物线C函数表达式;(2)若点M是位于直线AB上方抛物线上的一动点,以MA、MB为相邻的两边作平行四边形MANB,当平行四边形MANB的面积最大时,求此时平行四边形MANB的面积S及点M的坐标;(3)在抛物线C的对称轴上是否存在定点F,使抛物线C上任意一点P到点F的距离等于到直线y =的距离?若存在,求出定点F的坐标;若不存在,请说明理由.2019年四川省自贡市中考数学试卷参考答案与试题解析一、选择题[共12个小题,每小题4分,共48分,在每题给出的四个选项中,只有一项是符合题目要求的)1.(4分)﹣2019的倒数是()A.﹣2019 B.﹣C.D.2019【分析】直接利用倒数的定义进而得出答案.【解答】解:﹣2019的倒数是﹣.故选:B.【点评】此题主要考查了倒数,正确把握倒数的定义是解题关键.2.(4分)近年来,中国高铁发展迅速,高铁技术不断走出国门,成为展示我国实力的新名片.现在中国高速铁路营运里程将达到23000公里,将23000用科学记数法表示应为()A.2.3×104B.23×103C.2.3×103D.0.23×105【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:23000=2.3×104,故选:A.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.(4分)下列图案中,既是轴对称图形又是中心对称图形的是()A.B.C.D.【分析】直接利用轴对称图形和中心对称图形的概念求解.【解答】解:A、是轴对称图形,但不是中心对称图形,故此选项错误;B、不是轴对称图形,是中心对称图形,故此选项错误;C、不是轴对称图形,是中心对称图形,故此选项错误;D、既是中心对称图形也是轴对称图形,故此选项正确.故选:D.【点评】此题主要考查了中心对称与轴对称的概念:轴对称的关键是寻找对称轴,两边图象折叠后可重合,中心对称是要寻找对称中心,旋转180°后与原图重合.4.(4分)在5轮“中国汉字听写大赛”选拔赛中,甲、乙两位同学的平均分都是90分,甲的成绩方差是15,乙的成绩方差是3,下列说法正确的是()A.甲的成绩比乙的成绩稳定B.乙的成绩比甲的成绩稳定C.甲、乙两人的成绩一样稳定D.无法确定甲、乙的成绩谁更稳定【分析】根据方差的意义求解可得.【解答】解:∵乙的成绩方差<甲成绩的方差,∴乙的成绩比甲的成绩稳定,故选:B.【点评】本题主要考查方差,方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.5.(4分)如图是一个水平放置的全封闭物体,则它的俯视图是()A.B.C.D.【分析】根据俯视图是从物体上面看,从而得到出物体的形状.【解答】解:从上面观察可得到:.故选:C.【点评】本题考查了三视图的概简单几何体的三视图,本题的关键是要考虑到俯视图中看见的棱用实线表示.6.(4分)已知三角形的两边长分别为1和4,第三边长为整数,则该三角形的周长为()A.7 B.8 C.9 D.10【分析】根据三角形的三边关系“第三边大于两边之差,而小于两边之和”,求得第三边的取值范围;再根据第三边是整数,从而求得周长.【解答】解:设第三边为x,根据三角形的三边关系,得:4﹣1<x<4+1,即3<x<5,∵x为整数,∴x的值为4.三角形的周长为1+4+4=9.故选:C.【点评】此题考查了三角形的三边关系.关键是正确确定第三边的取值范围.7.(4分)实数m,n在数轴上对应点的位置如图所示,则下列判断正确的是()A.|m|<1 B.1﹣m>1 C.mn>0 D.m+1>0 【分析】利用数轴表示数的方法得到m<0<n,然后对各选项进行判断.【解答】解:利用数轴得m<0<1<n,所以﹣m>0,1﹣m>1,mn<0,m+1<0.故选:B.【点评】本题考查了实数与数轴:数轴上的点与实数一一对应;右边的数总比左边的数大.8.(4分)关于x的一元二次方程x2﹣2x+m=0无实数根,则实数m的取值范围是()A.m<1 B.m≥1 C.m≤1 D.m>1【分析】利用判别式的意义得到△=(﹣2)2﹣4m<0,然后解不等式即可.【解答】解:根据题意得△=(﹣2)2﹣4m<0,解得m>1.故选:D.【点评】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:当△>0时,方程有两个不相等的两个实数根;当△=0时,方程有两个相等的两个实数根;当△<0时,方程无实数根.9.(4分)一次函数y=ax+b与反比列函数y=的图象如图所示,则二次函数y=ax2+bx+c的大致图象是()A.B.C.D.【分析】根据一次函数与反比例函数图象找出a、b、c的正负,再根据抛物线的对称轴为x=﹣,找出二次函数对称轴在y轴右侧,比对四个选项的函数图象即可得出结论.【解答】解:∵一次函数y1=ax+c图象过第一、二、四象限,∴a<0,b>0,∴﹣>0,∴二次函数y3=ax2+bx+c开口向下,二次函数y3=ax2+bx+c对称轴在y轴右侧;∵反比例函数y2=的图象在第一、三象限,∴c>0,∴与y轴交点在x轴上方.满足上述条件的函数图象只有选项A.故选:A.【点评】本题考查了一次函数的图象、反比例函数的图象以及二次函数的图象,解题的关键是根据一次函数与反比例函数的图象找出a、b、c的正负.本题属于基础题,难度不大,熟悉函数图象与系数的关系是解题的关键.10.(4分)均匀的向一个容器内注水,在注满水的过程中,水面的高度h与时间t的函数关系如图所示,则该容器是下列四个中的()A.B.C.D.【分析】由函数图象可得容器形状不是均匀物体分析判断,由图象及容积可求解.【解答】解:相比较而言,前一个阶段,用时较少,高度增加较快,那么下面的物体应较细.由图可得上面圆柱的底面半径应大于下面圆柱的底面半径.故选:D.【点评】此题主要考查了函数图象,解决本题的关键是根据用的时间长短来判断相应的函数图象.11.(4分)图中有两张型号完全一样的折叠式饭桌,将正方形桌面边上的四个弓形面板翻折起来后,就能形成一个圆形桌面(可近似看作正方形的外接圆),正方形桌面与翻折成的圆形桌面的面积之比最接近()A.B.C.D.【分析】连接AC,根据正方形的性质得到∠B=90°,根据圆周角定理得到AC为圆的直径,根据正方形面积公式、圆的面积公式计算即可.【解答】解:连接AC,设正方形的边长为a,∵四边形ABCD是正方形,∴∠B=90°,∴AC为圆的直径,∴AC=AB=a,则正方形桌面与翻折成的圆形桌面的面积之比为:=≈,故选:C.【点评】本题考查的是正多边形和圆,掌握圆周角定理、正方形的性质是解题的关键.12.(4分)如图,已知A、B两点的坐标分别为(8,0)、(0,8),点C、F分别是直线x=﹣5和x轴上的动点,CF=10,点D是线段CF的中点,连接AD交y轴于点E,当△ABE面积取得最小值时,tan ∠BAD的值是()A.B.C.D.【分析】如图,设直线x=5交x轴于K.由题意KD=CF=5,推出点D的运动轨迹是以K为圆心,5为半径的圆,推出当直线AD与⊙K相切时,△ABE的面积最小,作EH⊥AB于H.求出EH,AH 即可解决问题.【解答】解:如图,设直线x=5交x轴于K.由题意KD=CF=5,∴点D的运动轨迹是以K为圆心,5为半径的圆,∴当直线AD与⊙K相切时,△ABE的面积最小,∵AD是切线,点D是切点,∴AD⊥KD,∵AK=13,DK=5,∴AD=12,∵tan∠EAO==,∴=,∴OE=,∴AE==,作EH⊥AB于H.∵S△ABE=•AB•EH=S△AOB﹣S△AOE,∴EH=,∴AH==,∴tan∠BAD===,故选:A.【点评】本题考查解直角三角形,坐标与图形的性质,直线与圆的位置关系,三角形的面积等知识,解题的关键是灵活运用所学知识解决问题,属于中考选择题中的压轴题.二、填空题(共6个小题,每小题4分,共24分)13.(4分)如图,直线AB、CD被直线EF所截,AB∥CD,∠1=120°,则∠2=60°.【分析】直接利用平角的定义结合平行线的性质得出答案.【解答】解:∵∠1=120°,∴∠3=180°﹣120°=60°,∵AB∥CD,∴∠2=∠3=60°.故答案为:60°.【点评】此题主要考查了平行线的性质,正确得出∠2=∠3是解题关键.14.(4分)在一次有12人参加的数学测试中,得100分、95分、90分、85分、75分的人数分别是1、3、4、2、2,那么这组数据的众数是90 分.【分析】根据众数的定义求解可得.【解答】解:这组数据的众数是90分,故答案为:90.【点评】本题主要考查众数,求一组数据的众数的方法:找出频数最多的那个数据,若几个数据频数都是最多且相同,此时众数就是这多个数据.15.(4分)分解因式:2x2﹣2y2=2(x+y)(x﹣y).【分析】先提取公因式2,再根据平方差公式进行二次分解即可求得答案.【解答】解:2x2﹣2y2=2(x2﹣y2)=2(x+y)(x﹣y).故答案为:2(x+y)(x﹣y).【点评】本题考查了提公因式法,公式法分解因式,提取公因式后利用平方差公式进行二次分解,注意分解要彻底.16.(4分)某活动小组购买了4个篮球和5个足球,一共花费了466元,其中篮球的单价比足球的单价多4元,求篮球的单价和足球的单价.设篮球的单价为x元,足球的单价为y元,依题意,可列方程组为.【分析】根据题意可得等量关系:①4个篮球的花费+5个足球的花费=466元,②篮球的单价﹣足球的单价=4元,根据等量关系列出方程组即可.【解答】解:设篮球的单价为x元,足球的单价为y元,由题意得:,故答案为:,【点评】此题主要考查了由实际问题抽象出二元一次方程组,关键是正确理解题意,找出题目中的等量关系.17.(4分)如图,在Rt△ABC中,∠ACB=90°,AB=10,BC=6,CD∥AB,∠ABC的平分线BD交AC于点E,DE=.【分析】由CD∥AB,∠D=∠ABE,∠D=∠CBE,所以CD=BC=6,再证明△AEB∽△CED,根据相似比求出DE的长.【解答】解:∵∠ACB=90°,AB=10,BC=6,∴AC=8,∵BD平分∠ABC,∴∠ABE=∠CDE,∵CD∥AB,∴∠D=∠ABE,∴∠D=∠CBE,∴CD=BC=6,∴△AEB∽△CED,∴,∴CE=AC=×8=3,BE =,DE =BE=×=,故答案为.【点评】本题考查了相似三角形,熟练掌握相似三角形的判定与性质以及勾股定理是解题的关键.18.(4分)如图,在由10个完全相同的正三角形构成的网格图中,∠α、∠β如图所示,则cos(α+β)=.【分析】给图中各点标上字母,连接DE,利用等腰三角形的性质及三角形内角和定理可得出∠α=30°,同理,可得出:∠CDE=∠CED=30°=∠α,由∠AEC=60°结合∠AED=∠AEC+∠CED可得出∠AED=90°,设等边三角形的边长为a,则AE=2a,DE=a,利用勾股定理可得出AD的长,再结合余弦的定义即可求出cos(α+β)的值.【解答】解:给图中各点标上字母,连接DE,如图所示.在△ABC中,∠ABC=120°,BA=BC,∴∠α=30°.同理,可得出:∠CDE=∠CED=30°=∠α.又∵∠AEC=60°,∴∠AED=∠AEC+∠CED=90°.设等边三角形的边长为a,则AE=2a,DE=2×sin60°•a=a,∴AD==a,∴cos(α+β)==.故答案为:.【点评】本题考查了解直角三角形、等边三角形的性质以及规律型:图形的变化类,构造出含一个锐角等于∠α+∠β的直角三角形是解题的关键.三、解答題(共8个题,共78分)19.(8分)计算:|﹣3|﹣4sin45°++(π﹣3)0【分析】原式第一项利用绝对值的意义化简,第二项利用特殊角的三角函数值计算,第三项化为最简二次根式,第四项利用零指数幂法则计算即可得到结果.【解答】解:原式=3﹣4×+2+1=3﹣2+2+1=4.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.20.(8分)解方程:﹣=1.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:x2﹣2x+2=x2﹣x,解得:x=2,检验:当x=2时,方程左右两边相等,所以x=2是原方程的解.【点评】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.21.(8分)如图,⊙O中,弦AB与CD相交于点E,AB=CD,连接AD、BC.求证:(1)=;(2)AE=CE.【分析】(1)由AB=CD知=,即+=+,据此可得答案;(2)由=知AD=BC,结合∠ADE=∠CBE,∠DAE=∠BCE可证△ADE≌△CBE,从而得出答案.【解答】证明(1)∵AB=CD,∴=,即+=+,∴=;(2)∵=,∴AD=BC,又∵∠ADE=∠CBE,∠DAE=∠BCE,∴△ADE≌△CBE(ASA),∴AE=CE.【点评】本题主要考查圆心角、弧、弦的关系,圆心角、弧、弦三者的关系可理解为:在同圆或等圆中,①圆心角相等,②所对的弧相等,③所对的弦相等,三项“知一推二”,一项相等,其余二项皆相等.22.(8分)某校举行了自贡市创建全国文明城市知识竞赛活动,初一年级全体同学参加了知识竞赛.收集教据:现随机抽取了初一年级30名同学的“创文知识竞赛”成绩,分数如下(单位:分):90 85 68 92 81 84 95 93 87 89 78 99 89 85 9788 81 95 86 98 95 93 89 86 84 87 79 85 89 82整理分析数据:(1)请将图表中空缺的部分补充完整;(2)学校决定表彰“创文知识竞赛”成绩在90分及其以上的同学.根据上面统计结果估计该校初一年级360人中,约有多少人将获得表彰;(3)“创文知识竞赛”中,受到表彰的小红同学得到了印有龚扇、剪纸、彩灯、恐龙图案的四枚纪念章,她从中选取两枚送给弟弟,则小红送给弟弟的两枚纪念章中,恰好有恐龙图案的概率是.【分析】(1)由已知数据计数即可得;(2)用总人数乘以样本中对应部分人数所占比例即可得;(3)根据题意先画出树状图,得出共有12种等可能的结果数,再利用概率公式求解可得.【解答】解:(1)补全图表如下:(2)估计该校初一年级360人中,获得表彰的人数约为360×=120(人);(3)将印有龚扇、剪纸、彩灯、恐龙图案分别记为A、B、C、D,画树状图如下:则共有12种等可能的结果数,其中小红送给弟弟的两枚纪念章中,恰好有恐龙图案的结果数为6,所以小红送给弟弟的两枚纪念章中,恰好有恐龙图案的概率为,故答案为:.【点评】本题考查了列表法与树状图法:利用列表法和树状图法展示所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,求出概率,也考查了条形统计图与样本估计总体.23.(10分)如图,在平面直角坐标系中,一次函数y1=kx+b(k≠0)的图象与反比例函数y2=(m≠0)的图象相交于第一、象限内的A(3,5),B(a,﹣3)两点,与x轴交于点C.(1)求该反比例函数和一次函数的解析式;(2)在y轴上找一点P使PB﹣PC最大,求PB﹣PC的最大值及点P的坐标;(3)直接写出当y1>y2时,x的取值范围.【分析】(1)利用待定系数法,即可得到反比例函数和一次函数的解析式;(2)根据一次函数y1=x+2,求得与y轴的交点P,此交点即为所求;(3)根据AB两点的横坐标及直线与双曲线的位置关系求x的取值范围.【解答】解:(1)把A(3,5)代入y2=(m≠0),可得m=3×5=15,∴反比例函数的解析式为y2=;把点B(a,﹣3)代入,可得a=﹣5,∴B(﹣5,﹣3).把A(3,5),B(﹣5,﹣3)代入y1=kx+b,可得,解得,∴一次函数的解析式为y1=x+2;(2)一次函数的解析式为y1=x+2,令x=0,则y=2,∴一次函数与y轴的交点为P(0,2),此时,PB﹣PC=BC最大,P即为所求,令y=0,则x=﹣2,∴C(﹣2,0),∴BC==3.(3)当y1>y2时,﹣5<x<0或x>3.【点评】本题考查了反比例函数与一次函数的交点问题,待定系数法求反比例函数和一次函数的解析式,根据点的坐标求线段长,正确掌握反比例函数的性质是解题的关键.24.(10分)阅读下列材料:小明为了计算1+2+22+…+22017+22018的值,采用以下方法:设S=1+2+22+…+22017+22018①则2S=2+22+…+22018+22019②②﹣①得2S﹣S=S=22019﹣1∴S=1+2+22+…+22017+22018=22019﹣1请仿照小明的方法解决以下问题:(1)1+2+22+…+29=210﹣1 ;(2)3+32+…+310=;(3)求1+a+a2+…+a n的和(a>0,n是正整数,请写出计算过程).【分析】(1)利用题中的方法设S=1+2+22+…+29,两边乘以2得到2S=2+22+…+29,然后把两式相减计算出S即可;(2)利用题中的方法设S=1+3+32+33+34+…+310 ,两边乘以3得到3S=3+32+33+34+35+…+311 ,然后把两式相减计算出S即可;(3)利用(2)的方法计算.【解答】解:(1)设S=1+2+22+ (29)则2S=2+22+ (210)②﹣①得2S﹣S=S=210﹣1∴S=1+2+22+…+29=210﹣1;故答案为:210﹣1(2)设S=1+3+32+33+34+…+310 ①,则3S=3+32+33+34+35+…+311 ②,②﹣①得2S=311﹣1,所以S=,即1+3+32+33+34+…+310=;故答案为:;(3)设S=1+a+a2+a3+a4+..+a n①,则aS=a+a2+a3+a4+..+a n+a n+1②,②﹣①得:(a﹣1)S=a n+1﹣1,所以S=,即1+a+a2+a3+a4+..+a n=,【点评】本题考查了规律型:数字的变化类:认真观察、仔细思考,善用联想,利用类比的方法是解决这类问题的方法.25.(12分)(1)如图1,E是正方形ABCD边AB上的一点,连接BD、DE,将∠BDE绕点D逆时针旋转90°,旋转后角的两边分别与射线BC交于点F和点G.①线段DB和DG的数量关系是DB=DG;②写出线段BE,BF和DB之间的数量关系.(2)当四边形ABCD为菱形,∠ADC=60°,点E是菱形ABCD边AB所在直线上的一点,连接BD、DE,将∠BDE绕点D逆时针旋转120°,旋转后角的两边分别与射线BC交于点F和点G.①如图2,点E在线段AB上时,请探究线段BE、BF和BD之间的数量关系,写出结论并给出证明;②如图3,点E在线段AB的延长线上时,DE交射线BC于点M,若BE=1,AB=2,直接写出线段GM的长度.【分析】(1)①根据旋转的性质解答即可;②根据正方形的性质和全等三角形的判定和性质解答即可;(2)①根据菱形的性质和全等三角形的判定和性质解答即可;②先同理得:BG=BD,计算BD的长,从而得BG的长,根据平行线分线段成比例定理可得BM的长,根据线段的差可得结论.【解答】解:(1)①DB=DG,理由是:∵∠DBE绕点B逆时针旋转90°,如图1,由旋转可知,∠BDE=∠FDG,∠BDG=90°,∵四边形ABCD是正方形,∴∠CBD=45°,∴∠G=45°,∴∠G=∠CBD=45°,∴DB=DG;故答案为:DB=DG;②BF+BE=BD,理由如下:由①知:∠FDG=∠EDB,∠G=∠DBE=45°,BD=DG,∴△FDG≌△EDB(ASA),∴BE=FG,∴BF+FG=BF+BE=BC+CG,Rt△DCG中,∵∠G=∠CDG=45°,∴CD=CG=CB,∵DG=BD=BC,即BF+BE=2BC=BD;(2)①如图2,BF+BE=BD,理由如下:在菱形ABCD中,∠ADB=∠CDB=∠ADC=×60°=30°,由旋转120°得∠EDF=∠BDG=120°,∠EDB=∠FDG,在△DBG中,∠G=180°﹣120°﹣30°=30°,∴∠DBG=∠G=30°,∴DB=DG,∴△EDB≌△FDG(ASA),∴BE=FG,∴BF+BE=BF+FG=BG,过点D作DM⊥BG于点M,如图2,∵BD=DG,∴BG=2BM,在Rt△BMD中,∠DBM=30°,∴BD=2DM.设DM=a,则BD=2a,DM =a,∴BG=2a,∴=,∴BG=BD,∴BF+BE=BG=BD;②过点A作AN⊥BD于N,如图3,Rt△ABN中,∠ABN=30°,AB=2,∴AN=1,BN=,∴BD=2BN=2,∵DC∥BE,∴=,∵CM+BM=2,∴BM=,由①同理得:BE+BF=BG=BD,∴BG=×=6,∴GM=BG﹣BM=6﹣=.【点评】此题是四边形综合题,主要考查了全等三角形的判定和性质,平行线分线段成比例定理,正方形和菱形的性质,直角三角形30度的角性质等知识,本题证明△FDG≌△BDE是解本题的关键.26.(14分)如图,已知直线AB与抛物线C:y=ax2+2x+c相交于点A(﹣1,0)和点B(2,3)两点.(1)求抛物线C函数表达式;(2)若点M是位于直线AB上方抛物线上的一动点,以MA、MB为相邻的两边作平行四边形MANB,当平行四边形MANB的面积最大时,求此时平行四边形MANB的面积S及点M的坐标;(3)在抛物线C的对称轴上是否存在定点F,使抛物线C上任意一点P到点F的距离等于到直线y=的距离?若存在,求出定点F的坐标;若不存在,请说明理由.【分析】(1)利用待定系数法,将A,B的坐标代入y=ax2+2x+c即可求得二次函数的解析式;(2)过点M作MH⊥x轴于H,交直线AB于K,求出直线AB的解析式,设点M(a,﹣a2+2a+3),则K(a,a+1),利用函数思想求出MK的最大值,再求出△AMB面积的最大值,可推出此时平行四边形MANB的面积S及点M的坐标;(3)设抛物线对称轴与直线y=交于点E,抛物线顶点为Q,作点E关于点Q的对称点F,此时抛物线C上任意一点P到点F的距离等于到直线y=的距离,可分别先求出Q,F的坐标,由对称性可求出F的坐标.【解答】解:(1)由题意把点(﹣1,0)、(2,3)代入y=ax2+2x+c,得,,解得a=﹣1,b=2,∴此抛物线C函数表达式为:y=﹣x2+2x+3;(2)如图1,过点M作MH⊥x轴于H,交直线AB于K,将点(﹣1,0)、(2,3)代入y=kx+b中,得,,解得,k=1,b=1,∴y AB=x+1,设点M(a,﹣a2+2a+3),则K(a,a+1),则MK=﹣a2+2a+3﹣(a+1)=﹣(a﹣)2+,根据二次函数的性质可知,当a=时,MK有最大长度,∴S△AMB最大=S△AMK+S△BMK=MK•AH+MK•(x B﹣x H)=MK•(x B﹣x A)=××3=,∴以MA、MB为相邻的两边作平行四边形MANB,当平行四边形MANB的面积最大时,S=2S△AMB最大=2×=,M(,);最大(3)如图2,设抛物线对称轴与直线y=交于点E,抛物线顶点为Q,作点E关于点Q的对称点F,此时抛物线C上任意一点P到点F的距离等于到直线y=的距离,∵y=﹣x2+2x+3=﹣(x﹣1)2+4,∴Q(1,4),E(1,),∵点F与点E关于点Q对称,∴F(1,).【点评】此题考查了待定系数法求解析式,还考查了用函数思想求极值等,解题关键是能够判断出当平行四边形MANB的面积最大时,△ABM的面积最大,且此时线段MK的长度也最大.。
2019年自贡市中考数学试卷(解析版)
2019年自贡市中考数学试卷(解析版)一、选择题(每小题4分,共48分)1.(4分)﹣2019的倒数是()A.﹣2019 B.﹣C.D.2019【分析】直接利用倒数的定义进而得出答案.【解答】解:﹣2019的倒数是﹣.故选:B.2.(4分)近年来,中国高铁发展迅速,高铁技术不断走出国门,成为展示我国实力的新名片.现在中国高速铁路营运里程将达到23000公里,将23000用科学记数法表示应为()A.2.3×104B.23×103C.2.3×103D.0.23×105【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n是负数.【解答】解:23000=2.3×104,故选:A.3.(4分)下列图案中,既是轴对称图形又是中心对称图形的是()A.B.C.D.【分析】直接利用轴对称图形和中心对称图形的概念求解.【解答】解:A、是轴对称图形,但不是中心对称图形,故此选项错误;B、不是轴对称图形,是中心对称图形,故此选项错误;C、不是轴对称图形,是中心对称图形,故此选项错误;D、既是中心对称图形也是轴对称图形,故此选项正确.故选:D.4.(4分)在5轮“中国汉字听写大赛”选拔赛中,甲、乙两位同学的平均分都是90分,甲的成绩方差是15,乙的成绩方差是3,下列说法正确的是()A.甲的成绩比乙的成绩稳定B.乙的成绩比甲的成绩稳定C.甲、乙两人的成绩一样稳定D.无法确定甲、乙的成绩谁更稳定【分析】根据方差的意义求解可得.【解答】解:∵乙的成绩方差<甲成绩的方差,∴乙的成绩比甲的成绩稳定,故选:B.5.(4分)如图是一个水平放置的全封闭物体,则它的俯视图是()A.B.C.D.【分析】根据俯视图是从物体上面看,从而得到出物体的形状.【解答】解:从上面观察可得到:.故选:C.6.(4分)已知三角形的两边长分别为1和4,第三边长为整数,则该三角形的周长为()A.7 B.8 C.9 D.10【分析】根据三角形的三边关系“第三边大于两边之差,而小于两边之和”,求得第三边的取值范围;再根据第三边是整数,从而求得周长.【解答】解:设第三边为x,根据三角形的三边关系,得:4﹣1<x<4+1,即3<x<5,∵x为整数,∴x的值为4.三角形的周长为1+4+4=9.故选:C.7.(4分)实数m,n在数轴上对应点的位置如图所示,则下列判断正确的是()A.|m|<1 B.1﹣m>1 C.mn>0 D.m+1>0 【分析】利用数轴表示数的方法得到m<0<n,然后对各选项进行判断.【解答】解:利用数轴得m<0<1<n,所以﹣m>0,1﹣m>1,mn<0,m+1<0.故选:B.8.(4分)关于x的一元二次方程x2﹣2x+m=0无实数根,则实数m的取值范围是()A.m<1 B.m≥1 C.m≤1 D.m>1【分析】利用判别式的意义得到△=(﹣2)2﹣4m<0,然后解不等式即可.【解答】解:根据题意得△=(﹣2)2﹣4m<0,解得m>1.故选:D.9.(4分)一次函数y=ax+b与反比列函数y=的图象如图所示,则二次函数y=ax2+bx+c的大致图象是()A.B.C.D.【分析】根据一次函数与反比例函数图象找出a、b、c的正负,再根据抛物线的对称轴为x=﹣,找出二次函数对称轴在y轴右侧,比对四个选项的函数图象即可得出结论.【解答】解:∵一次函数y1=ax+c图象过第一、二、四象限,∴a<0,b>0,∴﹣>0,∴二次函数y3=ax2+bx+c开口向下,二次函数y3=ax2+bx+c对称轴在y轴右侧;∵反比例函数y2=的图象在第一、三象限,∴c>0,∴与y轴交点在x轴上方.满足上述条件的函数图象只有选项A.故选:A.10.(4分)均匀的向一个容器内注水,在注满水的过程中,水面的高度h与时间t的函数关系如图所示,则该容器是下列四个中的()A.B.C.D.【分析】由函数图象可得容器形状不是均匀物体分析判断,由图象及容积可求解.【解答】解:相比较而言,前一个阶段,用时较少,高度增加较快,那么下面的物体应较细.由图可得上面圆柱的底面半径应大于下面圆柱的底面半径.故选:D.11.(4分)图中有两张型号完全一样的折叠式饭桌,将正方形桌面边上的四个弓形面板翻折起来后,就能形成一个圆形桌面(可近似看作正方形的外接圆),正方形桌面与翻折成的圆形桌面的面积之比最接近()A.B.C.D.【分析】连接AC,根据正方形的性质得到∠B=90°,根据圆周角定理得到AC为圆的直径,根据正方形面积公式、圆的面积公式计算即可.【解答】解:连接AC,设正方形的边长为a,∵四边形ABCD是正方形,∴∠B=90°,∴AC为圆的直径,∴AC=AB=a,则正方形桌面与翻折成的圆形桌面的面积之比为:=≈,故选:C.12.(4分)如图,已知A、B两点的坐标分别为(8,0)、(0,8),点C、F分别是直线x=﹣5和x轴上的动点,CF=10,点D是线段CF的中点,连接AD交y轴于点E,当△ABE面积取得最小值时,tan ∠BAD的值是()A.B.C.D.【分析】如图,设直线x=5交x轴于K.由题意KD=CF=5,推出点D的运动轨迹是以K为圆心,5为半径的圆,推出当直线AD与⊙K相切时,△ABE的面积最小,作EH⊥AB于H.求出EH,AH 即可解决问题.【解答】解:如图,设直线x=5交x轴于K.由题意KD=CF=5,∴点D的运动轨迹是以K为圆心,5为半径的圆,∴当直线AD与⊙K相切时,△ABE的面积最小,∵AD是切线,点D是切点,∴AD⊥KD,∵AK=13,DK=5,∴AD=12,∵tan∠EAO==,∴=,∴OE=,∴AE==,作EH⊥AB于H.∵S△ABE=•AB•EH=S△AOB﹣S△AOE,∴EH=,∴AH==,∴tan∠BAD===,故选:A.二、填空题(每小题4分,共24分)13.(4分)如图,直线AB、CD被直线EF所截,AB∥CD,∠1=120°,则∠2=60°.【分析】直接利用平角的定义结合平行线的性质得出答案.【解答】解:∵∠1=120°,∴∠3=180°﹣120°=60°,∵AB∥CD,∴∠2=∠3=60°.故答案为:60°.【点评】此题主要考查了平行线的性质,正确得出∠2=∠3是解题关键.14.(4分)在一次有12人参加的数学测试中,得100分、95分、90分、85分、75分的人数分别是1、3、4、2、2,那么这组数据的众数是90 分.【分析】根据众数的定义求解可得.【解答】解:这组数据的众数是90分,故答案为:90.【点评】本题主要考查众数,求一组数据的众数的方法:找出频数最多的那个数据,若几个数据频数都是最多且相同,此时众数就是这多个数据.15.(4分)分解因式:2x2﹣2y2=2(x+y)(x﹣y).【分析】先提取公因式2,再根据平方差公式进行二次分解即可求得答案.【解答】解:2x2﹣2y2=2(x2﹣y2)=2(x+y)(x﹣y).故答案为:2(x+y)(x﹣y).【点评】本题考查了提公因式法,公式法分解因式,提取公因式后利用平方差公式进行二次分解,注意分解要彻底.16.(4分)某活动小组购买了4个篮球和5个足球,一共花费了466元,其中篮球的单价比足球的单价多4元,求篮球的单价和足球的单价.设篮球的单价为x元,足球的单价为y元,依题意,可列方程组为.【分析】根据题意可得等量关系:①4个篮球的花费+5个足球的花费=466元,②篮球的单价﹣足球的单价=4元,根据等量关系列出方程组即可.【解答】解:设篮球的单价为x元,足球的单价为y元,由题意得:,故答案为:,【点评】此题主要考查了由实际问题抽象出二元一次方程组,关键是正确理解题意,找出题目中的等量关系.17.(4分)如图,在Rt△ABC中,∠ACB=90°,AB=10,BC=6,CD∥AB,∠ABC的平分线BD 交AC于点E,DE=.【分析】由CD∥AB,∠D=∠ABE,∠D=∠CBE,所以CD=BC=6,再证明△AEB∽△CED,根据相似比求出DE的长.【解答】解:∵∠ACB=90°,AB=10,BC=6,∴AC=8,∵BD平分∠ABC,∴∠ABE=∠CDE,∵CD∥AB,∴∠D=∠ABE,∴∠D=∠CBE,∴CD=BC=6,∴△AEB∽△CED,∴,∴CE=AC=×8=3,BE=,DE=BE=×=,故答案为.【点评】本题考查了相似三角形,熟练掌握相似三角形的判定与性质以及勾股定理是解题的关键.18.(4分)如图,在由10个完全相同的正三角形构成的网格图中,∠α、∠β如图所示,则cos(α+β)=.【分析】给图中各点标上字母,连接DE,利用等腰三角形的性质及三角形内角和定理可得出∠α=30°,同理,可得出:∠CDE=∠CED=30°=∠α,由∠AEC=60°结合∠AED=∠AEC+∠CED可得出∠AED=90°,设等边三角形的边长为a,则AE=2a,DE=a,利用勾股定理可得出AD的长,再结合余弦的定义即可求出cos(α+β)的值.【解答】解:给图中各点标上字母,连接DE,如图所示.在△ABC中,∠ABC=120°,BA=BC,∴∠α=30°.同理,可得出:∠CDE=∠CED=30°=∠α.又∵∠AEC=60°,∴∠AED=∠AEC+∠CED=90°.设等边三角形的边长为a,则AE=2a,DE=2×sin60°•a=a,∴AD==a,∴cos(α+β)==.故答案为:.【点评】本题考查了解直角三角形、等边三角形的性质以及规律型:图形的变化类,构造出含一个锐角等于∠α+∠β的直角三角形是解题的关键.三、解答題(共8个题,共78分)19.(8分)计算:|﹣3|﹣4sin45°++(π﹣3)0【分析】原式第一项利用绝对值的意义化简,第二项利用特殊角的三角函数值计算,第三项化为最简二次根式,第四项利用零指数幂法则计算即可得到结果.【解答】解:原式=3﹣4×+2+1=3﹣2+2+1=4.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.20.(8分)解方程:﹣=1.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:x2﹣2x+2=x2﹣x,解得:x=2,检验:当x=2时,方程左右两边相等,所以x=2是原方程的解.【点评】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.21.(8分)如图,⊙O中,弦AB与CD相交于点E,AB=CD,连接AD、BC.求证:(1)=;(2)AE=CE.【分析】(1)由AB=CD知=,即+=+,据此可得答案;(2)由=知AD=BC,结合∠ADE=∠CBE,∠DAE=∠BCE可证△ADE≌△CBE,从而得出答案.【解答】证明(1)∵AB=CD,∴=,即+=+,∴=;(2)∵=,∴AD=BC,又∵∠ADE=∠CBE,∠DAE=∠BCE,∴△ADE≌△CBE(ASA),∴AE=CE.【点评】本题主要考查圆心角、弧、弦的关系,圆心角、弧、弦三者的关系可理解为:在同圆或等圆中,①圆心角相等,②所对的弧相等,③所对的弦相等,三项“知一推二”,一项相等,其余二项皆相等.22.(8分)某校举行了自贡市创建全国文明城市知识竞赛活动,初一年级全体同学参加了知识竞赛.收集教据:现随机抽取了初一年级30名同学的“创文知识竞赛”成绩,分数如下(单位:分):90 85 68 92 81 84 95 93 87 89 78 99 89 85 9788 81 95 86 98 95 93 89 86 84 87 79 85 89 82整理分析数据:成绩x(单位:分)频数(人数)60≤x<70 170≤x<80 280≤x<90 1790≤x<100 10(1)请将图表中空缺的部分补充完整;(2)学校决定表彰“创文知识竞赛”成绩在90分及其以上的同学.根据上面统计结果估计该校初一年级360人中,约有多少人将获得表彰;(3)“创文知识竞赛”中,受到表彰的小红同学得到了印有龚扇、剪纸、彩灯、恐龙图案的四枚纪念章,她从中选取两枚送给弟弟,则小红送给弟弟的两枚纪念章中,恰好有恐龙图案的概率是.【分析】(1)由已知数据计数即可得;(2)用总人数乘以样本中对应部分人数所占比例即可得;(3)根据题意先画出树状图,得出共有12种等可能的结果数,再利用概率公式求解可得.【解答】解:(1)补全图表如下:(2)估计该校初一年级360人中,获得表彰的人数约为360×=120(人);(3)将印有龚扇、剪纸、彩灯、恐龙图案分别记为A、B、C、D,画树状图如下:则共有12种等可能的结果数,其中小红送给弟弟的两枚纪念章中,恰好有恐龙图案的结果数为6,所以小红送给弟弟的两枚纪念章中,恰好有恐龙图案的概率为,故答案为:.【点评】本题考查了列表法与树状图法:利用列表法和树状图法展示所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,求出概率,也考查了条形统计图与样本估计总体.23.(10分)如图,在平面直角坐标系中,一次函数y1=kx+b(k≠0)的图象与反比例函数y2=(m≠0)的图象相交于第一、象限内的A(3,5),B(a,﹣3)两点,与x轴交于点C.(1)求该反比例函数和一次函数的解析式;(2)在y轴上找一点P使PB﹣PC最大,求PB﹣PC的最大值及点P的坐标;(3)直接写出当y1>y2时,x的取值范围.【分析】(1)利用待定系数法,即可得到反比例函数和一次函数的解析式;(2)根据一次函数y1=x+2,求得与y轴的交点P,此交点即为所求;(3)根据AB两点的横坐标及直线与双曲线的位置关系求x的取值范围.【解答】解:(1)把A(3,5)代入y2=(m≠0),可得m=3×5=15,∴反比例函数的解析式为y2=;把点B(a,﹣3)代入,可得a=﹣5,∴B(﹣5,﹣3).把A(3,5),B(﹣5,﹣3)代入y1=kx+b,可得,解得,∴一次函数的解析式为y1=x+2;(2)一次函数的解析式为y1=x+2,令x=0,则y=2,∴一次函数与y轴的交点为P(0,2),此时,PB﹣PC=BC最大,P即为所求,令y=0,则x=﹣2,∴C(﹣2,0),∴BC==3.(3)当y1>y2时,﹣5<x<0或x>3.【点评】本题考查了反比例函数与一次函数的交点问题,待定系数法求反比例函数和一次函数的解析式,根据点的坐标求线段长,正确掌握反比例函数的性质是解题的关键.24.(10分)阅读下列材料:小明为了计算1+2+22+…+22017+22018的值,采用以下方法:设S=1+2+22+…+22017+22018①则2S=2+22+…+22018+22019②②﹣①得2S﹣S=S=22019﹣1∴S=1+2+22+…+22017+22018=22019﹣1请仿照小明的方法解决以下问题:(1)1+2+22+…+29=210﹣1 ;(2)3+32+…+310=;(3)求1+a+a2+…+a n的和(a>0,n是正整数,请写出计算过程).【分析】(1)利用题中的方法设S=1+2+22+…+29,两边乘以2得到2S=2+22+…+29,然后把两式相减计算出S即可;(2)利用题中的方法设S=1+3+32+33+34+…+310 ,两边乘以3得到3S=3+32+33+34+35+…+311 ,然后把两式相减计算出S即可;(3)利用(2)的方法计算.【解答】解:(1)设S=1+2+22+ (29)则2S=2+22+ (210)②﹣①得2S﹣S=S=210﹣1∴S=1+2+22+…+29=210﹣1;故答案为:210﹣1(2)设S=1+3+32+33+34+…+310 ①,则3S=3+32+33+34+35+…+311 ②,②﹣①得2S=311﹣1,所以S=,即1+3+32+33+34+…+310=;故答案为:;(3)设S=1+a+a2+a3+a4+..+a n①,则aS=a+a2+a3+a4+..+a n+a n+1②,②﹣①得:(a﹣1)S=a n+1﹣1,所以S=,即1+a+a2+a3+a4+..+a n=,【点评】本题考查了规律型:数字的变化类:认真观察、仔细思考,善用联想,利用类比的方法是解决这类问题的方法.25.(12分)(1)如图1,E是正方形ABCD边AB上的一点,连接BD、DE,将∠BDE绕点D逆时针旋转90°,旋转后角的两边分别与射线BC交于点F和点G.①线段DB和DG的数量关系是DB=DG;②写出线段BE,BF和DB之间的数量关系.(2)当四边形ABCD为菱形,∠ADC=60°,点E是菱形ABCD边AB所在直线上的一点,连接BD、DE,将∠BDE绕点D逆时针旋转120°,旋转后角的两边分别与射线BC交于点F和点G.①如图2,点E在线段AB上时,请探究线段BE、BF和BD之间的数量关系,写出结论并给出证明;②如图3,点E在线段AB的延长线上时,DE交射线BC于点M,若BE=1,AB=2,直接写出线段GM的长度.【分析】(1)①根据旋转的性质解答即可;②根据正方形的性质和全等三角形的判定和性质解答即可;(2)①根据菱形的性质和全等三角形的判定和性质解答即可;②先同理得:BG=BD,计算BD的长,从而得BG的长,根据平行线分线段成比例定理可得BM的长,根据线段的差可得结论.【解答】解:(1)①DB=DG,理由是:∵∠DBE绕点B逆时针旋转90°,如图1,由旋转可知,∠BDE=∠FDG,∠BDG=90°,∵四边形ABCD是正方形,∴∠CBD=45°,∴∠G=45°,∴∠G=∠CBD=45°,∴DB=DG;故答案为:DB=DG;②BF+BE=BD,理由如下:由①知:∠FDG=∠EDB,∠G=∠DBE=45°,BD=DG,∴△FDG≌△EDB(ASA),∴BE=FG,∴BF+FG=BF+BE=BC+CG,Rt△DCG中,∵∠G=∠CDG=45°,∴CD=CG=CB,∵DG=BD=BC,即BF+BE=2BC=BD;(2)①如图2,BF+BE=BD,理由如下:在菱形ABCD中,∠ADB=∠CDB=∠ADC=×60°=30°,由旋转120°得∠EDF=∠BDG=120°,∠EDB=∠FDG,在△DBG中,∠G=180°﹣120°﹣30°=30°,∴∠DBG=∠G=30°,∴DB=DG,∴△EDB≌△FDG(ASA),∴BE=FG,∴BF+BE=BF+FG=BG,过点D作DM⊥BG于点M,如图2,∵BD=DG,∴BG=2BM,在Rt△BMD中,∠DBM=30°,∴BD=2DM.设DM=a,则BD=2a,DM=a,∴BG=2a,∴=,∴BG=BD,∴BF+BE=BG=BD;②过点A作AN⊥BD于N,如图3,Rt△ABN中,∠ABN=30°,AB=2,∴AN=1,BN=,∴BD=2BN=2,∵DC∥BE,∴=,∵CM+BM=2,∴BM=,由①同理得:BE+BF=BG=BD,∴BG=×=6,∴GM=BG﹣BM=6﹣=.【点评】此题是四边形综合题,主要考查了全等三角形的判定和性质,平行线分线段成比例定理,正方形和菱形的性质,直角三角形30度的角性质等知识,本题证明△FDG≌△BDE是解本题的关键.26.(14分)如图,已知直线AB与抛物线C:y=ax2+2x+c相交于点A(﹣1,0)和点B(2,3)两点.(1)求抛物线C函数表达式;(2)若点M是位于直线AB上方抛物线上的一动点,以MA、MB为相邻的两边作平行四边形MANB,当平行四边形MANB的面积最大时,求此时平行四边形MANB的面积S及点M的坐标;(3)在抛物线C的对称轴上是否存在定点F,使抛物线C上任意一点P到点F的距离等于到直线y=的距离?若存在,求出定点F的坐标;若不存在,请说明理由.【分析】(1)利用待定系数法,将A,B的坐标代入y=ax2+2x+c即可求得二次函数的解析式;(2)过点M作MH⊥x轴于H,交直线AB于K,求出直线AB的解析式,设点M(a,﹣a2+2a+3),则K(a,a+1),利用函数思想求出MK的最大值,再求出△AMB面积的最大值,可推出此时平行四边形MANB的面积S及点M的坐标;(3)设抛物线对称轴与直线y=交于点E,抛物线顶点为Q,作点E关于点Q的对称点F,此时抛物线C上任意一点P到点F的距离等于到直线y=的距离,可分别先求出Q,F的坐标,由对称性可求出F的坐标.【解答】解:(1)由题意把点(﹣1,0)、(2,3)代入y=ax2+2x+c,得,,解得a=﹣1,b=2,∴此抛物线C函数表达式为:y=﹣x2+2x+3;(2)如图1,过点M作MH⊥x轴于H,交直线AB于K,将点(﹣1,0)、(2,3)代入y=kx+b中,得,,解得,k=1,b=1,∴y AB=x+1,设点M(a,﹣a2+2a+3),则K(a,a+1),则MK=﹣a2+2a+3﹣(a+1)=﹣(a﹣)2+,根据二次函数的性质可知,当a=时,MK有最大长度,∴S△AMB最大=S△AMK+S△BMK=MK•AH+MK•(x B﹣x H)=MK•(x B﹣x A)=××3=,∴以MA、MB为相邻的两边作平行四边形MANB,当平行四边形MANB的面积最大时,S最大=2S△AMB最大=2×=,M(,);(3)如图2,设抛物线对称轴与直线y=交于点E,抛物线顶点为Q,作点E关于点Q的对称点F,此时抛物线C上任意一点P到点F的距离等于到直线y=的距离,∵y=﹣x2+2x+3=﹣(x﹣1)2+4,∴Q(1,4),E(1,),∵点F与点E关于点Q对称,∴F(1,).。
2019年自贡市中考数学试题(可编辑修改word版)
(2)学校决定表彰“创文知识竞赛”成绩在 90 分及 其以上的同学,根据上面统计结果估计该校初一年
级 360 人中,约有多少人将获得表彰;
(3)“创文知识竞赛”中,受到表彰的小红同学得到了印有龚扇、剪纸、彩灯、恐龙图案
的四枚纪念章.她从中选取两枚送给弟弟,则小红送给弟弟的两枚纪念章中,恰好有恐
龙图案的概率是
D
E
的中点,连接 AD 交 y 轴于点 E.当△ABE 面积取得最小值时,
F
O Ax
tan∠BAD 的值是( )
x=5
A. 8 17
B. 7 17
C. 4
D. 5
9
9
第二卷 非选择题(共 102 分)
AC
2、填空题(共 6 个小题,每小题 4 分,共 24 分)
E
2F
13.如图,直线 AB、CD 被直线 EF 所截,AB∥CD,
A.7
B.8
C.9
D.10
7. 实数 m、n 在数轴上对应点的位置如图所示,则下列判断正确的是( )
m
01 n
A.|m|<1
B.1-m>1
C.mn>0
D.m+1>0
8. 关于 x 的一元二次方程 x2-2x+m=0 无实数根,则实数 m 的取值范围是( )
A.m<1
B.m≥1
C.m≤1
D.m>1
9.一次函数 y=ax+b 与反比例函数 y c 的图象如右图所示, x
弓形面板翻折起来后,就能形成一个圆形桌面(可近似看作正方形的
外接圆),正方形桌面与翻折成的圆形桌面的面积之比最接近( )
A. 4
B. 3
C. 2
D. 1
5
2019年四川省自贡市中考数学试题(word版,含解析)
2019年四川省自贡市中考数学试卷
一、选择题[共12个小题,每小题4分,共48分,在每题给出的四个选项中,只有一项是符合题目要求的)1.(4分)﹣2019的倒数是()
A.﹣2019 B.﹣C.D.2019
2.(4分)近年来,中国高铁发展迅速,高铁技术不断走出国门,成为展示我国实力的新名片.现在中国高速铁路营运里程将达到23000公里,将23000用科学记数法表示应为()
A.2.3×104B.23×103C.2.3×103D.0.23×105
3.(4分)下列图案中,既是轴对称图形又是中心对称图形的是()
A.B.C.D.
4.(4分)在5轮“中国汉字听写大赛”选拔赛中,甲、乙两位同学的平均分都是90分,甲的成绩方差是15,乙的成绩方差是3,下列说法正确的是()
A.甲的成绩比乙的成绩稳定
B.乙的成绩比甲的成绩稳定
C.甲、乙两人的成绩一样稳定
D.无法确定甲、乙的成绩谁更稳定
5.(4分)如图是一个水平放置的全封闭物体,则它的俯视图是()
A.B.
C.D.
6.(4分)已知三角形的两边长分别为1和4,第三边长为整数,则该三角形的周长为()A.7 B.8 C.9 D.10
7.(4分)实数m,n在数轴上对应点的位置如图所示,则下列判断正确的是()
A.|m|<1 B.1﹣m>1 C.mn>0 D.m+1>0
8.(4分)关于x的一元二次方程x2﹣2x+m=0无实数根,则实数m的取值范围是()A.m<1 B.m≥1 C.m≤1 D.m>1
9.(4分)一次函数y=ax+b与反比列函数y=的图象如图所示,则二次函数y=ax2+bx+c的大致图象是()。
2019四川省自贡市中考数学试卷(含解析).pdf
2019年四川省自贡市中考数学试卷一、选择题[共12个小题,每小题4分,共48分,在每题给出的四个选项中,只有一项是符合题目要求的)1.(4分)﹣2019的倒数是()A.﹣2019 B.﹣C.D.20192.(4分)近年来,中国高铁发展迅速,高铁技术不断走出国门,成为展示我国实力的新名片.现在中国高速铁路营运里程将达到23000公里,将23000用科学记数法表示应为()A.2.3×104B.23×103C.2.3×103D.0.23×1053.(4分)下列图案中,既是轴对称图形又是中心对称图形的是()A.B.C.D.4.(4分)在5轮“中国汉字听写大赛”选拔赛中,甲、乙两位同学的平均分都是90分,甲的成绩方差是15,乙的成绩方差是3,下列说法正确的是()A.甲的成绩比乙的成绩稳定B.乙的成绩比甲的成绩稳定C.甲、乙两人的成绩一样稳定D.无法确定甲、乙的成绩谁更稳定5.(4分)如图是一个水平放置的全封闭物体,则它的俯视图是()A.B.C.D.6.(4分)已知三角形的两边长分别为1和4,第三边长为整数,则该三角形的周长为()A.7 B.8 C.9 D.107.(4分)实数m,n在数轴上对应点的位置如图所示,则下列判断正确的是()A.|m|<1 B.1﹣m>1 C.mn>0 D.m+1>08.(4分)关于x的一元二次方程x2﹣2x+m=0无实数根,则实数m的取值范围是()A.m<1 B.m≥1 C.m≤1 D.m>19.(4分)一次函数y=ax+b与反比列函数y=的图象如图所示,则二次函数y=ax2+bx+c的大致图象是()A.B.C.D.10.(4分)均匀的向一个容器内注水,在注满水的过程中,水面的高度h与时间t的函数关系如图所示,则该容器是下列四个中的()A.B.C.D.11.(4分)图中有两张型号完全一样的折叠式饭桌,将正方形桌面边上的四个弓形面板翻折起来后,就能形成一个圆形桌面(可近似看作正方形的外接圆),正方形桌面与翻折成的圆形桌面的面积之比最接近()A.B.C.D.12.(4分)如图,已知A、B两点的坐标分别为(8,0)、(0,8),点C、F分别是直线x=﹣5和x轴上的动点,CF=10,点D是线段CF的中点,连接AD交y轴于点E,当△ABE面积取得最小值时,tan∠BAD的值是()A.B.C.D.二、填空题(共6个小题,每小题4分,共24分)13.(4分)如图,直线AB、CD被直线EF所截,AB∥CD,∠1=120°,则∠2=.14.(4分)在一次有12人参加的数学测试中,得100分、95分、90分、85分、75分的人数分别是1、3、4、2、2,那么这组数据的众数是分.15.(4分)分解因式:2x2﹣2y2=.16.(4分)某活动小组购买了4个篮球和5个足球,一共花费了466元,其中篮球的单价比足球的单价多4元,求篮球的单价和足球的单价.设篮球的单价为x元,足球的单价为y元,依题意,可列方程组为.17.(4分)如图,在Rt△ABC中,∠ACB=90°,AB=10,BC=6,CD∥AB,∠ABC的平分线BD 交AC于点E,DE=.18.(4分)如图,在由10个完全相同的正三角形构成的网格图中,∠α、∠β如图所示,则cos(α+β)=.三、解答題(共8个题,共78分)19.(8分)计算:|﹣3|﹣4sin45°++(π﹣3)020.(8分)解方程:﹣=1.21.(8分)如图,⊙O中,弦AB与CD相交于点E,AB=CD,连接AD、BC.求证:(1)=;(2)AE=CE.22.(8分)某校举行了自贡市创建全国文明城市知识竞赛活动,初一年级全体同学参加了知识竞赛.收集教据:现随机抽取了初一年级30名同学的“创文知识竞赛”成绩,分数如下(单位:分):90 85 68 92 81 84 95 93 87 89 78 99 89 85 9788 81 95 86 98 95 93 89 86 84 87 79 85 89 82整理分析数据:(1)请将图表中空缺的部分补充完整;(2)学校决定表彰“创文知识竞赛”成绩在90分及其以上的同学.根据上面统计结果估计该校初一年级360人中,约有多少人将获得表彰;(3)“创文知识竞赛”中,受到表彰的小红同学得到了印有龚扇、剪纸、彩灯、恐龙图案的四枚纪念章,她从中选取两枚送给弟弟,则小红送给弟弟的两枚纪念章中,恰好有恐龙图案的概率是.23.(10分)如图,在平面直角坐标系中,一次函数y1=kx+b(k≠0)的图象与反比例函数y2=(m ≠0)的图象相交于第一、象限内的A(3,5),B(a,﹣3)两点,与x轴交于点C.(1)求该反比例函数和一次函数的解析式;(2)在y轴上找一点P使PB﹣PC最大,求PB﹣PC的最大值及点P的坐标;(3)直接写出当y1>y2时,x的取值范围.24.(10分)阅读下列材料:小明为了计算1+2+22+…+22017+22018的值,采用以下方法:设S=1+2+22+…+22017+22018①则2S=2+22+…+22018+22019②②﹣①得2S﹣S=S=22019﹣1∴S=1+2+22+…+22017+22018=22019﹣1请仿照小明的方法解决以下问题:(1)1+2+22+…+29=;(2)3+32+…+310=;(3)求1+a+a2+…+a n的和(a>0,n是正整数,请写出计算过程).25.(12分)(1)如图1,E是正方形ABCD边AB上的一点,连接BD、DE,将∠BDE绕点D逆时针旋转90°,旋转后角的两边分别与射线BC交于点F和点G.①线段DB和DG的数量关系是;②写出线段BE,BF和DB之间的数量关系.(2)当四边形ABCD为菱形,∠ADC=60°,点E是菱形ABCD边AB所在直线上的一点,连接BD、DE,将∠BDE绕点D逆时针旋转120°,旋转后角的两边分别与射线BC交于点F和点G.①如图2,点E在线段AB上时,请探究线段BE、BF和BD之间的数量关系,写出结论并给出证明;②如图3,点E在线段AB的延长线上时,DE交射线BC于点M,若BE=1,AB=2,直接写出线段GM的长度.26.(14分)如图,已知直线AB与抛物线C:y=ax2+2x+c相交于点A(﹣1,0)和点B(2,3)两点.(1)求抛物线C函数表达式;(2)若点M是位于直线AB上方抛物线上的一动点,以MA、MB为相邻的两边作平行四边形MANB,当平行四边形MANB的面积最大时,求此时平行四边形MANB的面积S及点M的坐标;(3)在抛物线C的对称轴上是否存在定点F,使抛物线C上任意一点P到点F的距离等于到直线y =的距离?若存在,求出定点F的坐标;若不存在,请说明理由.2019年四川省自贡市中考数学试卷参考答案与试题解析一、选择题[共12个小题,每小题4分,共48分,在每题给出的四个选项中,只有一项是符合题目要求的)1.(4分)﹣2019的倒数是()A.﹣2019 B.﹣C.D.2019【分析】直接利用倒数的定义进而得出答案.【解答】解:﹣2019的倒数是﹣.故选:B.【点评】此题主要考查了倒数,正确把握倒数的定义是解题关键.2.(4分)近年来,中国高铁发展迅速,高铁技术不断走出国门,成为展示我国实力的新名片.现在中国高速铁路营运里程将达到23000公里,将23000用科学记数法表示应为()A.2.3×104B.23×103C.2.3×103D.0.23×105【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:23000=2.3×104,故选:A.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.(4分)下列图案中,既是轴对称图形又是中心对称图形的是()A.B.C.D.【分析】直接利用轴对称图形和中心对称图形的概念求解.【解答】解:A、是轴对称图形,但不是中心对称图形,故此选项错误;B、不是轴对称图形,是中心对称图形,故此选项错误;C、不是轴对称图形,是中心对称图形,故此选项错误;D、既是中心对称图形也是轴对称图形,故此选项正确.故选:D.【点评】此题主要考查了中心对称与轴对称的概念:轴对称的关键是寻找对称轴,两边图象折叠后可重合,中心对称是要寻找对称中心,旋转180°后与原图重合.4.(4分)在5轮“中国汉字听写大赛”选拔赛中,甲、乙两位同学的平均分都是90分,甲的成绩方差是15,乙的成绩方差是3,下列说法正确的是()A.甲的成绩比乙的成绩稳定B.乙的成绩比甲的成绩稳定C.甲、乙两人的成绩一样稳定D.无法确定甲、乙的成绩谁更稳定【分析】根据方差的意义求解可得.【解答】解:∵乙的成绩方差<甲成绩的方差,∴乙的成绩比甲的成绩稳定,故选:B.【点评】本题主要考查方差,方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.5.(4分)如图是一个水平放置的全封闭物体,则它的俯视图是()A.B.C.D.【分析】根据俯视图是从物体上面看,从而得到出物体的形状.【解答】解:从上面观察可得到:.故选:C.【点评】本题考查了三视图的概简单几何体的三视图,本题的关键是要考虑到俯视图中看见的棱用实线表示.6.(4分)已知三角形的两边长分别为1和4,第三边长为整数,则该三角形的周长为()A.7 B.8 C.9 D.10【分析】根据三角形的三边关系“第三边大于两边之差,而小于两边之和”,求得第三边的取值范围;再根据第三边是整数,从而求得周长.【解答】解:设第三边为x,根据三角形的三边关系,得:4﹣1<x<4+1,即3<x<5,∵x为整数,∴x的值为4.三角形的周长为1+4+4=9.故选:C.【点评】此题考查了三角形的三边关系.关键是正确确定第三边的取值范围.7.(4分)实数m,n在数轴上对应点的位置如图所示,则下列判断正确的是()A.|m|<1 B.1﹣m>1 C.mn>0 D.m+1>0 【分析】利用数轴表示数的方法得到m<0<n,然后对各选项进行判断.【解答】解:利用数轴得m<0<1<n,所以﹣m>0,1﹣m>1,mn<0,m+1<0.故选:B.【点评】本题考查了实数与数轴:数轴上的点与实数一一对应;右边的数总比左边的数大.8.(4分)关于x的一元二次方程x2﹣2x+m=0无实数根,则实数m的取值范围是()A.m<1 B.m≥1 C.m≤1 D.m>1【分析】利用判别式的意义得到△=(﹣2)2﹣4m<0,然后解不等式即可.【解答】解:根据题意得△=(﹣2)2﹣4m<0,解得m>1.故选:D.【点评】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:当△>0时,方程有两个不相等的两个实数根;当△=0时,方程有两个相等的两个实数根;当△<0时,方程无实数根.9.(4分)一次函数y=ax+b与反比列函数y=的图象如图所示,则二次函数y=ax2+bx+c的大致图象是()A.B.C.D.【分析】根据一次函数与反比例函数图象找出a、b、c的正负,再根据抛物线的对称轴为x=﹣,找出二次函数对称轴在y轴右侧,比对四个选项的函数图象即可得出结论.【解答】解:∵一次函数y1=ax+c图象过第一、二、四象限,∴a<0,b>0,∴﹣>0,∴二次函数y3=ax2+bx+c开口向下,二次函数y3=ax2+bx+c对称轴在y轴右侧;∵反比例函数y2=的图象在第一、三象限,∴c>0,∴与y轴交点在x轴上方.满足上述条件的函数图象只有选项A.故选:A.【点评】本题考查了一次函数的图象、反比例函数的图象以及二次函数的图象,解题的关键是根据一次函数与反比例函数的图象找出a、b、c的正负.本题属于基础题,难度不大,熟悉函数图象与系数的关系是解题的关键.10.(4分)均匀的向一个容器内注水,在注满水的过程中,水面的高度h与时间t的函数关系如图所示,则该容器是下列四个中的()A.B.C.D.【分析】由函数图象可得容器形状不是均匀物体分析判断,由图象及容积可求解.【解答】解:相比较而言,前一个阶段,用时较少,高度增加较快,那么下面的物体应较细.由图可得上面圆柱的底面半径应大于下面圆柱的底面半径.故选:D.【点评】此题主要考查了函数图象,解决本题的关键是根据用的时间长短来判断相应的函数图象.11.(4分)图中有两张型号完全一样的折叠式饭桌,将正方形桌面边上的四个弓形面板翻折起来后,就能形成一个圆形桌面(可近似看作正方形的外接圆),正方形桌面与翻折成的圆形桌面的面积之比最接近()A.B.C.D.【分析】连接AC,根据正方形的性质得到∠B=90°,根据圆周角定理得到AC为圆的直径,根据正方形面积公式、圆的面积公式计算即可.【解答】解:连接AC,设正方形的边长为a,∵四边形ABCD是正方形,∴∠B=90°,∴AC为圆的直径,∴AC=AB=a,则正方形桌面与翻折成的圆形桌面的面积之比为:=≈,故选:C.【点评】本题考查的是正多边形和圆,掌握圆周角定理、正方形的性质是解题的关键.12.(4分)如图,已知A、B两点的坐标分别为(8,0)、(0,8),点C、F分别是直线x=﹣5和x轴上的动点,CF=10,点D是线段CF的中点,连接AD交y轴于点E,当△ABE面积取得最小值时,tan ∠BAD的值是()A.B.C.D.【分析】如图,设直线x=5交x轴于K.由题意KD=CF=5,推出点D的运动轨迹是以K为圆心,5为半径的圆,推出当直线AD与⊙K相切时,△ABE的面积最小,作EH⊥AB于H.求出EH,AH 即可解决问题.【解答】解:如图,设直线x=5交x轴于K.由题意KD=CF=5,∴点D的运动轨迹是以K为圆心,5为半径的圆,∴当直线AD与⊙K相切时,△ABE的面积最小,∵AD是切线,点D是切点,∴AD⊥KD,∵AK=13,DK=5,∴AD=12,∵tan∠EAO==,∴=,∴OE=,∴AE==,作EH⊥AB于H.∵S△ABE=•AB•EH=S△AOB﹣S△AOE,∴EH=,∴AH==,∴tan∠BAD===,故选:A.【点评】本题考查解直角三角形,坐标与图形的性质,直线与圆的位置关系,三角形的面积等知识,解题的关键是灵活运用所学知识解决问题,属于中考选择题中的压轴题.二、填空题(共6个小题,每小题4分,共24分)13.(4分)如图,直线AB、CD被直线EF所截,AB∥CD,∠1=120°,则∠2=60°.【分析】直接利用平角的定义结合平行线的性质得出答案.【解答】解:∵∠1=120°,∴∠3=180°﹣120°=60°,∵AB∥CD,∴∠2=∠3=60°.故答案为:60°.【点评】此题主要考查了平行线的性质,正确得出∠2=∠3是解题关键.14.(4分)在一次有12人参加的数学测试中,得100分、95分、90分、85分、75分的人数分别是1、3、4、2、2,那么这组数据的众数是90 分.【分析】根据众数的定义求解可得.【解答】解:这组数据的众数是90分,故答案为:90.【点评】本题主要考查众数,求一组数据的众数的方法:找出频数最多的那个数据,若几个数据频数都是最多且相同,此时众数就是这多个数据.15.(4分)分解因式:2x2﹣2y2=2(x+y)(x﹣y).【分析】先提取公因式2,再根据平方差公式进行二次分解即可求得答案.【解答】解:2x2﹣2y2=2(x2﹣y2)=2(x+y)(x﹣y).故答案为:2(x+y)(x﹣y).【点评】本题考查了提公因式法,公式法分解因式,提取公因式后利用平方差公式进行二次分解,注意分解要彻底.16.(4分)某活动小组购买了4个篮球和5个足球,一共花费了466元,其中篮球的单价比足球的单价多4元,求篮球的单价和足球的单价.设篮球的单价为x元,足球的单价为y元,依题意,可列方程组为.【分析】根据题意可得等量关系:①4个篮球的花费+5个足球的花费=466元,②篮球的单价﹣足球的单价=4元,根据等量关系列出方程组即可.【解答】解:设篮球的单价为x元,足球的单价为y元,由题意得:,故答案为:,【点评】此题主要考查了由实际问题抽象出二元一次方程组,关键是正确理解题意,找出题目中的等量关系.17.(4分)如图,在Rt△ABC中,∠ACB=90°,AB=10,BC=6,CD∥AB,∠ABC的平分线BD交AC于点E,DE=.【分析】由CD∥AB,∠D=∠ABE,∠D=∠CBE,所以CD=BC=6,再证明△AEB∽△CED,根据相似比求出DE的长.【解答】解:∵∠ACB=90°,AB=10,BC=6,∴AC=8,∵BD平分∠ABC,∴∠ABE=∠CDE,∵CD∥AB,∴∠D=∠ABE,∴∠D=∠CBE,∴CD=BC=6,∴△AEB∽△CED,∴,∴CE=AC=×8=3,BE =,DE =BE=×=,故答案为.【点评】本题考查了相似三角形,熟练掌握相似三角形的判定与性质以及勾股定理是解题的关键.18.(4分)如图,在由10个完全相同的正三角形构成的网格图中,∠α、∠β如图所示,则cos(α+β)=.【分析】给图中各点标上字母,连接DE,利用等腰三角形的性质及三角形内角和定理可得出∠α=30°,同理,可得出:∠CDE=∠CED=30°=∠α,由∠AEC=60°结合∠AED=∠AEC+∠CED可得出∠AED=90°,设等边三角形的边长为a,则AE=2a,DE=a,利用勾股定理可得出AD的长,再结合余弦的定义即可求出cos(α+β)的值.【解答】解:给图中各点标上字母,连接DE,如图所示.在△ABC中,∠ABC=120°,BA=BC,∴∠α=30°.同理,可得出:∠CDE=∠CED=30°=∠α.又∵∠AEC=60°,∴∠AED=∠AEC+∠CED=90°.设等边三角形的边长为a,则AE=2a,DE=2×sin60°•a=a,∴AD==a,∴cos(α+β)==.故答案为:.【点评】本题考查了解直角三角形、等边三角形的性质以及规律型:图形的变化类,构造出含一个锐角等于∠α+∠β的直角三角形是解题的关键.三、解答題(共8个题,共78分)19.(8分)计算:|﹣3|﹣4sin45°++(π﹣3)0【分析】原式第一项利用绝对值的意义化简,第二项利用特殊角的三角函数值计算,第三项化为最简二次根式,第四项利用零指数幂法则计算即可得到结果.【解答】解:原式=3﹣4×+2+1=3﹣2+2+1=4.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.20.(8分)解方程:﹣=1.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:x2﹣2x+2=x2﹣x,解得:x=2,检验:当x=2时,方程左右两边相等,所以x=2是原方程的解.【点评】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.21.(8分)如图,⊙O中,弦AB与CD相交于点E,AB=CD,连接AD、BC.求证:(1)=;(2)AE=CE.【分析】(1)由AB=CD知=,即+=+,据此可得答案;(2)由=知AD=BC,结合∠ADE=∠CBE,∠DAE=∠BCE可证△ADE≌△CBE,从而得出答案.【解答】证明(1)∵AB=CD,∴=,即+=+,∴=;(2)∵=,∴AD=BC,又∵∠ADE=∠CBE,∠DAE=∠BCE,∴△ADE≌△CBE(ASA),∴AE=CE.【点评】本题主要考查圆心角、弧、弦的关系,圆心角、弧、弦三者的关系可理解为:在同圆或等圆中,①圆心角相等,②所对的弧相等,③所对的弦相等,三项“知一推二”,一项相等,其余二项皆相等.22.(8分)某校举行了自贡市创建全国文明城市知识竞赛活动,初一年级全体同学参加了知识竞赛.收集教据:现随机抽取了初一年级30名同学的“创文知识竞赛”成绩,分数如下(单位:分):90 85 68 92 81 84 95 93 87 89 78 99 89 85 9788 81 95 86 98 95 93 89 86 84 87 79 85 89 82整理分析数据:(1)请将图表中空缺的部分补充完整;(2)学校决定表彰“创文知识竞赛”成绩在90分及其以上的同学.根据上面统计结果估计该校初一年级360人中,约有多少人将获得表彰;(3)“创文知识竞赛”中,受到表彰的小红同学得到了印有龚扇、剪纸、彩灯、恐龙图案的四枚纪念章,她从中选取两枚送给弟弟,则小红送给弟弟的两枚纪念章中,恰好有恐龙图案的概率是.【分析】(1)由已知数据计数即可得;(2)用总人数乘以样本中对应部分人数所占比例即可得;(3)根据题意先画出树状图,得出共有12种等可能的结果数,再利用概率公式求解可得.【解答】解:(1)补全图表如下:(2)估计该校初一年级360人中,获得表彰的人数约为360×=120(人);(3)将印有龚扇、剪纸、彩灯、恐龙图案分别记为A、B、C、D,画树状图如下:则共有12种等可能的结果数,其中小红送给弟弟的两枚纪念章中,恰好有恐龙图案的结果数为6,所以小红送给弟弟的两枚纪念章中,恰好有恐龙图案的概率为,故答案为:.【点评】本题考查了列表法与树状图法:利用列表法和树状图法展示所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,求出概率,也考查了条形统计图与样本估计总体.23.(10分)如图,在平面直角坐标系中,一次函数y1=kx+b(k≠0)的图象与反比例函数y2=(m≠0)的图象相交于第一、象限内的A(3,5),B(a,﹣3)两点,与x轴交于点C.(1)求该反比例函数和一次函数的解析式;(2)在y轴上找一点P使PB﹣PC最大,求PB﹣PC的最大值及点P的坐标;(3)直接写出当y1>y2时,x的取值范围.【分析】(1)利用待定系数法,即可得到反比例函数和一次函数的解析式;(2)根据一次函数y1=x+2,求得与y轴的交点P,此交点即为所求;(3)根据AB两点的横坐标及直线与双曲线的位置关系求x的取值范围.【解答】解:(1)把A(3,5)代入y2=(m≠0),可得m=3×5=15,∴反比例函数的解析式为y2=;把点B(a,﹣3)代入,可得a=﹣5,∴B(﹣5,﹣3).把A(3,5),B(﹣5,﹣3)代入y1=kx+b,可得,解得,∴一次函数的解析式为y1=x+2;(2)一次函数的解析式为y1=x+2,令x=0,则y=2,∴一次函数与y轴的交点为P(0,2),此时,PB﹣PC=BC最大,P即为所求,令y=0,则x=﹣2,∴C(﹣2,0),∴BC==3.(3)当y1>y2时,﹣5<x<0或x>3.【点评】本题考查了反比例函数与一次函数的交点问题,待定系数法求反比例函数和一次函数的解析式,根据点的坐标求线段长,正确掌握反比例函数的性质是解题的关键.24.(10分)阅读下列材料:小明为了计算1+2+22+…+22017+22018的值,采用以下方法:设S=1+2+22+…+22017+22018①则2S=2+22+…+22018+22019②②﹣①得2S﹣S=S=22019﹣1∴S=1+2+22+…+22017+22018=22019﹣1请仿照小明的方法解决以下问题:(1)1+2+22+…+29=210﹣1 ;(2)3+32+…+310=;(3)求1+a+a2+…+a n的和(a>0,n是正整数,请写出计算过程).【分析】(1)利用题中的方法设S=1+2+22+…+29,两边乘以2得到2S=2+22+…+29,然后把两式相减计算出S即可;(2)利用题中的方法设S=1+3+32+33+34+…+310 ,两边乘以3得到3S=3+32+33+34+35+…+311 ,然后把两式相减计算出S即可;(3)利用(2)的方法计算.【解答】解:(1)设S=1+2+22+ (29)则2S=2+22+ (210)②﹣①得2S﹣S=S=210﹣1∴S=1+2+22+…+29=210﹣1;故答案为:210﹣1(2)设S=1+3+32+33+34+…+310 ①,则3S=3+32+33+34+35+…+311 ②,②﹣①得2S=311﹣1,所以S=,即1+3+32+33+34+…+310=;故答案为:;(3)设S=1+a+a2+a3+a4+..+a n①,则aS=a+a2+a3+a4+..+a n+a n+1②,②﹣①得:(a﹣1)S=a n+1﹣1,所以S=,即1+a+a2+a3+a4+..+a n=,【点评】本题考查了规律型:数字的变化类:认真观察、仔细思考,善用联想,利用类比的方法是解决这类问题的方法.25.(12分)(1)如图1,E是正方形ABCD边AB上的一点,连接BD、DE,将∠BDE绕点D逆时针旋转90°,旋转后角的两边分别与射线BC交于点F和点G.①线段DB和DG的数量关系是DB=DG;②写出线段BE,BF和DB之间的数量关系.(2)当四边形ABCD为菱形,∠ADC=60°,点E是菱形ABCD边AB所在直线上的一点,连接BD、DE,将∠BDE绕点D逆时针旋转120°,旋转后角的两边分别与射线BC交于点F和点G.①如图2,点E在线段AB上时,请探究线段BE、BF和BD之间的数量关系,写出结论并给出证明;②如图3,点E在线段AB的延长线上时,DE交射线BC于点M,若BE=1,AB=2,直接写出线段GM的长度.【分析】(1)①根据旋转的性质解答即可;②根据正方形的性质和全等三角形的判定和性质解答即可;(2)①根据菱形的性质和全等三角形的判定和性质解答即可;②先同理得:BG=BD,计算BD的长,从而得BG的长,根据平行线分线段成比例定理可得BM的长,根据线段的差可得结论.【解答】解:(1)①DB=DG,理由是:∵∠DBE绕点B逆时针旋转90°,如图1,由旋转可知,∠BDE=∠FDG,∠BDG=90°,∵四边形ABCD是正方形,∴∠CBD=45°,∴∠G=45°,∴∠G=∠CBD=45°,∴DB=DG;故答案为:DB=DG;②BF+BE=BD,理由如下:由①知:∠FDG=∠EDB,∠G=∠DBE=45°,BD=DG,∴△FDG≌△EDB(ASA),∴BE=FG,∴BF+FG=BF+BE=BC+CG,Rt△DCG中,∵∠G=∠CDG=45°,∴CD=CG=CB,∵DG=BD=BC,即BF+BE=2BC=BD;(2)①如图2,BF+BE=BD,理由如下:在菱形ABCD中,∠ADB=∠CDB=∠ADC=×60°=30°,由旋转120°得∠EDF=∠BDG=120°,∠EDB=∠FDG,在△DBG中,∠G=180°﹣120°﹣30°=30°,∴∠DBG=∠G=30°,∴DB=DG,∴△EDB≌△FDG(ASA),∴BE=FG,∴BF+BE=BF+FG=BG,过点D作DM⊥BG于点M,如图2,∵BD=DG,∴BG=2BM,在Rt△BMD中,∠DBM=30°,∴BD=2DM.设DM=a,则BD=2a,DM =a,∴BG=2a,∴=,∴BG=BD,∴BF+BE=BG=BD;②过点A作AN⊥BD于N,如图3,Rt△ABN中,∠ABN=30°,AB=2,∴AN=1,BN=,∴BD=2BN=2,∵DC∥BE,∴=,∵CM+BM=2,∴BM=,由①同理得:BE+BF=BG=BD,∴BG=×=6,∴GM=BG﹣BM=6﹣=.【点评】此题是四边形综合题,主要考查了全等三角形的判定和性质,平行线分线段成比例定理,正方形和菱形的性质,直角三角形30度的角性质等知识,本题证明△FDG≌△BDE是解本题的关键.26.(14分)如图,已知直线AB与抛物线C:y=ax2+2x+c相交于点A(﹣1,0)和点B(2,3)两点.(1)求抛物线C函数表达式;(2)若点M是位于直线AB上方抛物线上的一动点,以MA、MB为相邻的两边作平行四边形MANB,当平行四边形MANB的面积最大时,求此时平行四边形MANB的面积S及点M的坐标;(3)在抛物线C的对称轴上是否存在定点F,使抛物线C上任意一点P到点F的距离等于到直线y =的距离?若存在,求出定点F的坐标;若不存在,请说明理由.【分析】(1)利用待定系数法,将A,B的坐标代入y=ax2+2x+c即可求得二次函数的解析式;(2)过点M作MH⊥x轴于H,交直线AB于K,求出直线AB的解析式,设点M(a,﹣a2+2a+3),则K(a,a+1),利用函数思想求出MK的最大值,再求出△AMB面积的最大值,可推出此时平行四边形MANB的面积S及点M的坐标;(3)设抛物线对称轴与直线y=交于点E,抛物线顶点为Q,作点E关于点Q的对称点F,此时抛物线C上任意一点P到点F的距离等于到直线y=的距离,可分别先求出Q,F的坐标,由对称性可求出F的坐标.【解答】解:(1)由题意把点(﹣1,0)、(2,3)代入y=ax2+2x+c,得,,解得a=﹣1,b=2,∴此抛物线C函数表达式为:y=﹣x2+2x+3;(2)如图1,过点M作MH⊥x轴于H,交直线AB于K,将点(﹣1,0)、(2,3)代入y=kx+b中,得,,解得,k=1,b=1,∴y AB=x+1,设点M(a,﹣a2+2a+3),则K(a,a+1),则MK=﹣a2+2a+3﹣(a+1)=﹣(a﹣)2+,根据二次函数的性质可知,当a=时,MK有最大长度,∴S△AMB最大=S△AMK+S△BMK=MK•AH+MK•(x B﹣x H)=MK•(x B﹣x A)=××3=,∴以MA、MB为相邻的两边作平行四边形MANB,当平行四边形MANB的面积最大时,S=2S△AMB最大=2×=,M(,);最大(3)如图2,设抛物线对称轴与直线y=交于点E,抛物线顶点为Q,作点E关于点Q的对称点F,此时抛物线C上任意一点P到点F的距离等于到直线y=的距离,∵y=﹣x2+2x+3=﹣(x﹣1)2+4,∴Q(1,4),E(1,),∵点F与点E关于点Q对称,∴F(1,).【点评】此题考查了待定系数法求解析式,还考查了用函数思想求极值等,解题关键是能够判断出当平行四边形MANB的面积最大时,△ABM的面积最大,且此时线段MK的长度也最大.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、选择题[共12个小题,每小题4分,共48分,在每题给出的四个选项中,只有一项是符合题目要求的)1.﹣2019的倒数是()A.﹣2019 B.﹣C.D.20192.近年来,中国高铁发展迅速,高铁技术不断走出国门,成为展示我国实力的新名片.现在中国高速铁路营运里程将达到23000公里,将23000用科学记数法表示应为()A.2.3×104B.23×103C.2.3×103D.0.23×105 3.下列图案中,既是轴对称图形又是中心对称图形的是()A.B.C.D.4.在5轮“中国汉字听写大赛”选拔赛中,甲、乙两位同学的平均分都是90分,甲的成绩方差是15,乙的成绩方差是3,下列说法正确的是()A.甲的成绩比乙的成绩稳定B.乙的成绩比甲的成绩稳定C.甲、乙两人的成绩一样稳定D.无法确定甲、乙的成绩谁更稳定5.如图是一个水平放置的全封闭物体,则它的俯视图是()A.B.C.D.6.已知三角形的两边长分别为1和4,第三边长为整数,则该三角形的周长为()A.7 B.8 C.9 D.107.实数m,n在数轴上对应点的位置如图所示,则下列判断正确的是()A.|m|<1 B.1﹣m>1 C.mn>0 D.m+1>0 8.(4分)关于x的一元二次方程x2﹣2x+m=0无实数根,则实数m的取值范围是()A.m<1 B.m≥1 C.m≤1 D.m>19.一次函数y=ax+b与反比列函数y=的图象如图所示,则二次函数y=ax2+bx+c的大致图象是()A.B.C.D.10.均匀的向一个容器内注水,在注满水的过程中,水面的高度h与时间t的函数关系如图所示,则该容器是下列四个中的()A.B.C.D.11.图中有两张型号完全一样的折叠式饭桌,将正方形桌面边上的四个弓形面板翻折起来后,就能形成一个圆形桌面(可近似看作正方形的外接圆),正方形桌面与翻折成的圆形桌面的面积之比最接近()A.B.C.D.12.如图,已知A、B两点的坐标分别为(8,0)、(0,8),点C、F分别是直线x=﹣5和x轴上的动点,CF=10,点D是线段CF的中点,连接AD交y轴于点E,当△ABE面积取得最小值时,tan∠BAD的值是()A.B.C.D.二、填空题(共6个小题,每小题4分,共24分)13.如图,直线AB、CD被直线EF所截,AB∥CD,∠1=120°,则∠2=.14.在一次有12人参加的数学测试中,得100分、95分、90分、85分、75分的人数分别是1、3、4、2、2,那么这组数据的众数是分.15.分解因式:2x2﹣2y2=.16.某活动小组购买了4个篮球和5个足球,一共花费了466元,其中篮球的单价比足球的单价多4元,求篮球的单价和足球的单价.设篮球的单价为x元,足球的单价为y元,依题意,可列方程组为.17.如图,在Rt△ABC中,∠ACB=90°,AB=10,BC=6,CD∥AB,∠ABC的平分线BD 交AC于点E,DE=.18.如图,在由10个完全相同的正三角形构成的网格图中,∠α、∠β如图所示,则cos(α+β)=.三、解答題(共8个题,共78分)19.(8分)计算:|﹣3|﹣4sin45°++(π﹣3)020.(8分)解方程:﹣=1.21.(8分)如图,⊙O中,弦AB与CD相交于点E,AB=CD,连接AD、BC.求证:(1)=;(2)AE=CE.22.(8分)某校举行了自贡市创建全国文明城市知识竞赛活动,初一年级全体同学参加了知识竞赛.收集教据:现随机抽取了初一年级30名同学的“创文知识竞赛”成绩,分数如下(单位:分):90 85 68 92 81 84 95 93 87 89 78 99 89 85 9788 81 95 86 98 95 93 89 86 84 87 79 85 89 82整理分析数据:(1)请将图表中空缺的部分补充完整;(2)学校决定表彰“创文知识竞赛”成绩在90分及其以上的同学.根据上面统计结果估计该校初一年级360人中,约有多少人将获得表彰;(3)“创文知识竞赛”中,受到表彰的小红同学得到了印有龚扇、剪纸、彩灯、恐龙图案的四枚纪念章,她从中选取两枚送给弟弟,则小红送给弟弟的两枚纪念章中,恰好有恐龙图案的概率是.23.(10分)如图,在平面直角坐标系中,一次函数y1=kx+b(k≠0)的图象与反比例函数y2=(m≠0)的图象相交于第一、象限内的A(3,5),B(a,﹣3)两点,与x轴交于点C.(1)求该反比例函数和一次函数的解析式;(2)在y轴上找一点P使PB﹣PC最大,求PB﹣PC的最大值及点P的坐标;(3)直接写出当y1>y2时,x的取值范围.24.(10分)阅读下列材料:小明为了计算1+2+22+…+22017+22018的值,采用以下方法:设S=1+2+22+…+22017+22018①则2S=2+22+…+22018+22019②②﹣①得2S﹣S=S=22019﹣1∴S=1+2+22+…+22017+22018=22019﹣1请仿照小明的方法解决以下问题:(1)1+2+22+…+29=;(2)3+32+…+310=;(3)求1+a+a2+…+a n的和(a>0,n是正整数,请写出计算过程).25.(12分)(1)如图1,E是正方形ABCD边AB上的一点,连接BD、DE,将∠BDE绕点D逆时针旋转90°,旋转后角的两边分别与射线BC交于点F和点G.①线段DB和DG的数量关系是;②写出线段BE,BF和DB之间的数量关系.(2)当四边形ABCD为菱形,∠ADC=60°,点E是菱形ABCD边AB所在直线上的一点,连接BD、DE,将∠BDE绕点D逆时针旋转120°,旋转后角的两边分别与射线BC交于点F 和点G.①如图2,点E在线段AB上时,请探究线段BE、BF和BD之间的数量关系,写出结论并给出证明;②如图3,点E在线段AB的延长线上时,DE交射线BC于点M,若BE=1,AB=2,直接写出线段GM的长度.26.(14分)如图,已知直线AB与抛物线C:y=ax2+2x+c相交于点A(﹣1,0)和点B(2,3)两点.(1)求抛物线C函数表达式;(2)若点M是位于直线AB上方抛物线上的一动点,以MA、MB为相邻的两边作平行四边形MANB,当平行四边形MANB的面积最大时,求此时平行四边形MANB的面积S及点M的坐标;(3)在抛物线C的对称轴上是否存在定点F,使抛物线C上任意一点P到点F的距离等于到直线y=的距离?若存在,求出定点F的坐标;若不存在,请说明理由.详解一、选择题[共12个小题,每小题4分,共48分,在每题给出的四个选项中,只有一项是符合题目要求的)1.(4分)﹣2019的倒数是()A.﹣2019 B.﹣C.D.2019【分析】直接利用倒数的定义进而得出答案.解:﹣2019的倒数是﹣.【点评】此题主要考查了倒数,正确把握倒数的定义是解题关键.2.(4分)近年来,中国高铁发展迅速,高铁技术不断走出国门,成为展示我国实力的新名片.现在中国高速铁路营运里程将达到23000公里,将23000用科学记数法表示应为()A.2.3×104B.23×103C.2.3×103D.0.23×105【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解:23000=2.3×104,故选:A.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.(4分)下列图案中,既是轴对称图形又是中心对称图形的是()A.B.C.D.【分析】直接利用轴对称图形和中心对称图形的概念求解.解:A、是轴对称图形,但不是中心对称图形,故此选项错误;B、不是轴对称图形,是中心对称图形,故此选项错误;C、不是轴对称图形,是中心对称图形,故此选项错误;D、既是中心对称图形也是轴对称图形,故此选项正确.故选:D.【点评】此题主要考查了中心对称与轴对称的概念:轴对称的关键是寻找对称轴,两边图象折叠后可重合,中心对称是要寻找对称中心,旋转180°后与原图重合.4.(4分)在5轮“中国汉字听写大赛”选拔赛中,甲、乙两位同学的平均分都是90分,甲的成绩方差是15,乙的成绩方差是3,下列说法正确的是()A.甲的成绩比乙的成绩稳定B.乙的成绩比甲的成绩稳定C.甲、乙两人的成绩一样稳定D.无法确定甲、乙的成绩谁更稳定【分析】根据方差的意义求解可得.解:∵乙的成绩方差<甲成绩的方差,∴乙的成绩比甲的成绩稳定,【点评】本题主要考查方差,方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.5.(4分)如图是一个水平放置的全封闭物体,则它的俯视图是()A.B.C.D.【分析】根据俯视图是从物体上面看,从而得到出物体的形状.解:从上面观察可得到:.故选:C.【点评】本题考查了三视图的概简单几何体的三视图,本题的关键是要考虑到俯视图中看见的棱用实线表示.6.(4分)已知三角形的两边长分别为1和4,第三边长为整数,则该三角形的周长为()A.7 B.8 C.9 D.10【分析】根据三角形的三边关系“第三边大于两边之差,而小于两边之和”,求得第三边的取值范围;再根据第三边是整数,从而求得周长.解:设第三边为x,根据三角形的三边关系,得:4﹣1<x<4+1,即3<x<5,∵x为整数,∴x的值为4.三角形的周长为1+4+4=9.故选:C.【点评】此题考查了三角形的三边关系.关键是正确确定第三边的取值范围.7.(4分)实数m,n在数轴上对应点的位置如图所示,则下列判断正确的是()A.|m|<1 B.1﹣m>1 C.mn>0 D.m+1>0【分析】利用数轴表示数的方法得到m<0<n,然后对各选项进行判断.解:利用数轴得m<0<1<n,所以﹣m>0,1﹣m>1,mn<0,m+1<0.故选:B.【点评】本题考查了实数与数轴:数轴上的点与实数一一对应;右边的数总比左边的数大.8.(4分)关于x的一元二次方程x2﹣2x+m=0无实数根,则实数m的取值范围是()A.m<1 B.m≥1 C.m≤1 D.m>1【分析】利用判别式的意义得到△=(﹣2)2﹣4m<0,然后解不等式即可.解:根据题意得△=(﹣2)2﹣4m<0,解得m>1.故选:D.【点评】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac 有如下关系:当△>0时,方程有两个不相等的两个实数根;当△=0时,方程有两个相等的两个实数根;当△<0时,方程无实数根.9.(4分)一次函数y=ax+b与反比列函数y=的图象如图所示,则二次函数y=ax2+bx+c 的大致图象是()A.B.C.D.【分析】根据一次函数与反比例函数图象找出a、b、c的正负,再根据抛物线的对称轴为x=﹣,找出二次函数对称轴在y轴右侧,比对四个选项的函数图象即可得出结论.解:∵一次函数y1=ax+c图象过第一、二、四象限,∴a<0,b>0,∴﹣>0,∴二次函数y3=ax2+bx+c开口向下,二次函数y3=ax2+bx+c对称轴在y轴右侧;∵反比例函数y2=的图象在第一、三象限,∴c>0,∴与y轴交点在x轴上方.满足上述条件的函数图象只有选项A.故选:A.【点评】本题考查了一次函数的图象、反比例函数的图象以及二次函数的图象,解题的关键是根据一次函数与反比例函数的图象找出a、b、c的正负.本题属于基础题,难度不大,熟悉函数图象与系数的关系是解题的关键.10.(4分)均匀的向一个容器内注水,在注满水的过程中,水面的高度h与时间t的函数关系如图所示,则该容器是下列四个中的()A.B.C.D.【分析】由函数图象可得容器形状不是均匀物体分析判断,由图象及容积可求解.解:相比较而言,前一个阶段,用时较少,高度增加较快,那么下面的物体应较细.由图可得上面圆柱的底面半径应大于下面圆柱的底面半径.故选:D.【点评】此题主要考查了函数图象,解决本题的关键是根据用的时间长短来判断相应的函数图象.11.(4分)图中有两张型号完全一样的折叠式饭桌,将正方形桌面边上的四个弓形面板翻折起来后,就能形成一个圆形桌面(可近似看作正方形的外接圆),正方形桌面与翻折成的圆形桌面的面积之比最接近()A.B.C.D.【分析】连接AC,根据正方形的性质得到∠B=90°,根据圆周角定理得到AC为圆的直径,根据正方形面积公式、圆的面积公式计算即可.解:连接AC,设正方形的边长为a,∵四边形ABCD是正方形,∴∠B=90°,∴AC为圆的直径,∴AC=AB=a,则正方形桌面与翻折成的圆形桌面的面积之比为:=≈,故选:C.【点评】本题考查的是正多边形和圆,掌握圆周角定理、正方形的性质是解题的关键.12.(4分)如图,已知A、B两点的坐标分别为(8,0)、(0,8),点C、F分别是直线x=﹣5和x轴上的动点,CF=10,点D是线段CF的中点,连接AD交y轴于点E,当△ABE 面积取得最小值时,tan∠BAD的值是()A.B.C.D.【分析】如图,设直线x=﹣5交x轴于K.由题意KD=CF=5,推出点D的运动轨迹是以K为圆心,5为半径的圆,推出当直线AD与⊙K相切时,△ABE的面积最小,作EH⊥AB于H.求出EH,AH即可解决问题.解:如图,设直线x=﹣5交x轴于K.由题意KD=CF=5,∴点D的运动轨迹是以K为圆心,5为半径的圆,∴当直线AD与⊙K相切时,△ABE的面积最小,∵AD是切线,点D是切点,∴AD⊥KD,∵AK=13,DK=5,∴AD=12,∵tan∠EAO==,∴=,∴OE=,∴AE==,作EH⊥AB于H.∵S△ABE=•AB•EH=S△AOB﹣S△AOE,∴EH=,∴AH==,∴tan∠BAD===,故选:B.【点评】本题考查解直角三角形,坐标与图形的性质,直线与圆的位置关系,三角形的面积等知识,解题的关键是灵活运用所学知识解决问题,属于中考选择题中的压轴题.二、填空题(共6个小题,每小题4分,共24分)13.(4分)如图,直线AB、CD被直线EF所截,AB∥CD,∠1=120°,则∠2=60°.【分析】直接利用平角的定义结合平行线的性质得出答案.解:∵∠1=120°,∴∠3=180°﹣120°=60°,∵AB∥CD,∴∠2=∠3=60°.故答案为:60°.【点评】此题主要考查了平行线的性质,正确得出∠2=∠3是解题关键.14.(4分)在一次有12人参加的数学测试中,得100分、95分、90分、85分、75分的人数分别是1、3、4、2、2,那么这组数据的众数是90分.【分析】根据众数的定义求解可得.解:这组数据的众数是90分,故答案为:90.【点评】本题主要考查众数,求一组数据的众数的方法:找出频数最多的那个数据,若几个数据频数都是最多且相同,此时众数就是这多个数据.15.(4分)分解因式:2x2﹣2y2=2(x+y)(x﹣y).【分析】先提取公因式2,再根据平方差公式进行二次分解即可求得答案.解:2x2﹣2y2=2(x2﹣y2)=2(x+y)(x﹣y).故答案为:2(x+y)(x﹣y).【点评】本题考查了提公因式法,公式法分解因式,提取公因式后利用平方差公式进行二次分解,注意分解要彻底.16.(4分)某活动小组购买了4个篮球和5个足球,一共花费了466元,其中篮球的单价比足球的单价多4元,求篮球的单价和足球的单价.设篮球的单价为x元,足球的单价为y元,依题意,可列方程组为.【分析】根据题意可得等量关系:①4个篮球的花费+5个足球的花费=466元,②篮球的单价﹣足球的单价=4元,根据等量关系列出方程组即可.解:设篮球的单价为x元,足球的单价为y元,由题意得:,故答案为:,【点评】此题主要考查了由实际问题抽象出二元一次方程组,关键是正确理解题意,找出题目中的等量关系.17.(4分)如图,在Rt△ABC中,∠ACB=90°,AB=10,BC=6,CD∥AB,∠ABC的平分线BD交AC于点E,DE=.【分析】由CD∥AB,∠D=∠ABE,∠D=∠CBE,所以CD=BC=6,再证明△AEB∽△CED,根据相似比求出DE的长.解:∵∠ACB=90°,AB=10,BC=6,∴AC=8,∵BD平分∠ABC,∴∠ABE=∠CDE,∵CD∥AB,∴∠D=∠ABE,∴∠D=∠CBE,∴CD=BC=6,∴△AEB∽△CED,∴,∴CE=AC=×8=3,BE=,DE=BE=×=,故答案为.【点评】本题考查了相似三角形,熟练掌握相似三角形的判定与性质以及勾股定理是解题的关键.18.(4分)如图,在由10个完全相同的正三角形构成的网格图中,∠α、∠β如图所示,则cos(α+β)=.【分析】给图中各点标上字母,连接DE,利用等腰三角形的性质及三角形内角和定理可得出∠α=30°,同理,可得出:∠CDE=∠CED=30°=∠α,由∠AEC=60°结合∠AED =∠AEC+∠CED可得出∠AED=90°,设等边三角形的边长为a,则AE=2a,DE=a,利用勾股定理可得出AD的长,再结合余弦的定义即可求出cos(α+β)的值.解:给图中各点标上字母,连接DE,如图所示.在△ABC中,∠ABC=120°,BA=BC,∴∠α=30°.同理,可得出:∠CDE=∠CED=30°=∠α.又∵∠AEC=60°,∴∠AED=∠AEC+∠CED=90°.设等边三角形的边长为a,则AE=2a,DE=2×sin60°•a=a,∴AD==a,∴cos(α+β)==.故答案为:.【点评】本题考查了解直角三角形、等边三角形的性质以及规律型:图形的变化类,构造出含一个锐角等于∠α+∠β的直角三角形是解题的关键.三、解答題(共8个题,共78分)19.(8分)计算:|﹣3|﹣4sin45°++(π﹣3)0【分析】原式第一项利用绝对值的意义化简,第二项利用特殊角的三角函数值计算,第三项化为最简二次根式,第四项利用零指数幂法则计算即可得到结果.解:原式=3﹣4×+2+1=3﹣2+2+1=4.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.20.(8分)解方程:﹣=1.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.解:去分母得:x2﹣2x+2=x2﹣x,解得:x=2,检验:当x=2时,方程左右两边相等,所以x=2是原方程的解.【点评】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.21.(8分)如图,⊙O中,弦AB与CD相交于点E,AB=CD,连接AD、BC.求证:(1)=;(2)AE=CE.【分析】(1)由AB=CD知=,即+=+,据此可得答案;(2)由=知AD=BC,结合∠ADE=∠CBE,∠DAE=∠BCE可证△ADE≌△CBE,从而得出答案.证明(1)∵AB=CD,∴=,即+=+,∴=;(2)∵=,∴AD=BC,又∵∠ADE=∠CBE,∠DAE=∠BCE,∴△ADE≌△CBE(ASA),∴AE=CE.【点评】本题主要考查圆心角、弧、弦的关系,圆心角、弧、弦三者的关系可理解为:在同圆或等圆中,①圆心角相等,②所对的弧相等,③所对的弦相等,三项“知一推二”,一项相等,其余二项皆相等.22.(8分)某校举行了自贡市创建全国文明城市知识竞赛活动,初一年级全体同学参加了知识竞赛.收集教据:现随机抽取了初一年级30名同学的“创文知识竞赛”成绩,分数如下(单位:分):90 85 68 92 81 84 95 93 87 89 78 99 89 85 9788 81 95 86 98 95 93 89 86 84 87 79 85 89 82整理分析数据:(1)请将图表中空缺的部分补充完整;(2)学校决定表彰“创文知识竞赛”成绩在90分及其以上的同学.根据上面统计结果估计该校初一年级360人中,约有多少人将获得表彰;(3)“创文知识竞赛”中,受到表彰的小红同学得到了印有龚扇、剪纸、彩灯、恐龙图案的四枚纪念章,她从中选取两枚送给弟弟,则小红送给弟弟的两枚纪念章中,恰好有恐龙图案的概率是.【分析】(1)由已知数据计数即可得;(2)用总人数乘以样本中对应部分人数所占比例即可得;(3)根据题意先画出树状图,得出共有12种等可能的结果数,再利用概率公式求解可得.解:(1)补全图表如下:(2)估计该校初一年级360人中,获得表彰的人数约为360×=120(人);(3)将印有龚扇、剪纸、彩灯、恐龙图案分别记为A、B、C、D,画树状图如下:则共有12种等可能的结果数,其中小红送给弟弟的两枚纪念章中,恰好有恐龙图案的结果数为6,所以小红送给弟弟的两枚纪念章中,恰好有恐龙图案的概率为,故答案为:.【点评】本题考查了列表法与树状图法:利用列表法和树状图法展示所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,求出概率,也考查了条形统计图与样本估计总体.23.(10分)如图,在平面直角坐标系中,一次函数y1=kx+b(k≠0)的图象与反比例函数y2=(m≠0)的图象相交于第一、象限内的A(3,5),B(a,﹣3)两点,与x轴交于点C.(1)求该反比例函数和一次函数的解析式;(2)在y轴上找一点P使PB﹣PC最大,求PB﹣PC的最大值及点P的坐标;(3)直接写出当y1>y2时,x的取值范围.【分析】(1)利用待定系数法,即可得到反比例函数和一次函数的解析式;(2)根据一次函数y1=x+2,求得与y轴的交点P,此交点即为所求;(3)根据AB两点的横坐标及直线与双曲线的位置关系求x的取值范围.解:(1)把A(3,5)代入y2=(m≠0),可得m=3×5=15,∴反比例函数的解析式为y2=;把点B(a,﹣3)代入,可得a=﹣5,∴B(﹣5,﹣3).把A(3,5),B(﹣5,﹣3)代入y1=kx+b,可得,解得,∴一次函数的解析式为y1=x+2;(2)一次函数的解析式为y1=x+2,令x=0,则y=2,∴一次函数与y轴的交点为P(0,2),此时,PB﹣PC=BC最大,P即为所求,令y=0,则x=﹣2,∴C(﹣2,0),∴BC==3.(3)当y1>y2时,﹣5<x<0或x>3.【点评】本题考查了反比例函数与一次函数的交点问题,待定系数法求反比例函数和一次函数的解析式,根据点的坐标求线段长,正确掌握反比例函数的性质是解题的关键.24.(10分)阅读下列材料:小明为了计算1+2+22+…+22017+22018的值,采用以下方法:设S=1+2+22+…+22017+22018①则2S=2+22+…+22018+22019②②﹣①得2S﹣S=S=22019﹣1∴S=1+2+22+…+22017+22018=22019﹣1请仿照小明的方法解决以下问题:(1)1+2+22+…+29=210﹣1;(2)3+32+…+310=;(3)求1+a+a2+…+a n的和(a>0,n是正整数,请写出计算过程).【分析】(1)利用题中的方法设S=1+2+22+...+29,两边乘以2得到2S=2+22+ (29)然后把两式相减计算出S即可;(2)利用题中的方法设S=1+3+32+33+34+…+310 ,两边乘以3得到3S=3+32+33+34+35+…+311 ,然后把两式相减计算出S即可;(3)利用(2)的方法计算.解:(1)设S=1+2+22+ (29)则2S=2+22+ (210)②﹣①得2S﹣S=S=210﹣1∴S=1+2+22+…+29=210﹣1;故答案为:210﹣1(2)设S=3+3+32+33+34+…+310 ①,则3S=32+33+34+35+…+311 ②,②﹣①得2S=311﹣3,所以S=,即3+32+33+34+…+310=;故答案为:;(3)设S=1+a+a2+a3+a4+..+a n①,则aS=a+a2+a3+a4+..+a n+a n+1②,②﹣①得:(a﹣1)S=a n+1﹣1,a=1时,不能直接除以a﹣1,此时原式等于n+1;a不等于1时,a﹣1才能做分母,所以S=,即1+a+a2+a3+a4+..+a n=,【点评】本题考查了规律型:数字的变化类:认真观察、仔细思考,善用联想,利用类比的方法是解决这类问题的方法.25.(12分)(1)如图1,E是正方形ABCD边AB上的一点,连接BD、DE,将∠BDE 绕点D 逆时针旋转90°,旋转后角的两边分别与射线BC交于点F和点G.①线段DB和DG的数量关系是DB=DG;②写出线段BE,BF和DB之间的数量关系.(2)当四边形ABCD为菱形,∠ADC=60°,点E是菱形ABCD边AB所在直线上的一点,连接BD、DE,将∠BDE绕点D逆时针旋转120°,旋转后角的两边分别与射线BC交于点F 和点G.①如图2,点E在线段AB上时,请探究线段BE、BF和BD之间的数量关系,写出结论并给出证明;②如图3,点E在线段AB的延长线上时,DE交射线BC于点M,若BE=1,AB=2,直接写出线段GM的长度.【分析】(1)①根据旋转的性质解答即可;②根据正方形的性质和全等三角形的判定和性质解答即可;(2)①根据菱形的性质和全等三角形的判定和性质解答即可;②作辅助线,计算BD和BF的长,根据平行线分线段成比例定理可得BM的长,根据线段的差可得结论.解:(1)①DB=DG,理由是:∵∠DBE绕点B逆时针旋转90°,如图1,由旋转可知,∠BDE=∠FDG,∠BDG=90°,∵四边形ABCD是正方形,∴∠CBD=45°,∴∠G=45°,∴∠G=∠CBD=45°,∴DB=DG;故答案为:DB=DG;②BF+BE=BD,理由如下:由①知:∠FDG=∠EDB,∠G=∠DBE=45°,BD=DG,∴△FDG≌△EDB(ASA),∴BE=FG,∴BF+FG=BF+BE=BC+CG,Rt△DCG中,∵∠G=∠CDG=45°,∴CD=CG=CB,∵DG=BD=BC,即BF+BE=2BC=BD;(2)①如图2,BF+BE=BD,理由如下:在菱形ABCD中,∠ADB=∠CDB=∠ADC=×60°=30°,由旋转120°得∠EDF=∠BDG=120°,∠EDB=∠FDG,在△DBG中,∠G=180°﹣120°﹣30°=30°,∴∠DBG=∠G=30°,∴DB=DG,∴△EDB≌△FDG(ASA),∴BE=FG,∴BF+BE=BF+FG=BG,过点D作DM⊥BG于点M,如图2,∵BD=DG,∴BG=2BM,在Rt△BMD中,∠DBM=30°,∴BD=2DM.设DM=a,则BD=2a,DM=a,∴BG=2a,∴=,∴BG=BD,∴BF+BE=BG=BD;②过点A作AN⊥BD于N,过D作DP⊥BG于P,如图3,Rt△ABN中,∠ABN=30°,AB=2,∴AN=1,BN=,∴BD=2BN=2,∵DC∥BE,∴=,∵CM+BM=2,∴BM=,Rt△BDP中,∠DBP=30°,BD=2,∴BP=3,由旋转得:BD=BF,∴BF=2BP=6,∴GM=BG﹣BM=6+1﹣=.【点评】此题是四边形综合题,主要考查了全等三角形的判定和性质,平行线分线段成比例定理,正方形和菱形的性质,直角三角形30度的角性质等知识,本题证明△FDG ≌△BDE是解本题的关键.26.(14分)如图,已知直线AB与抛物线C:y=ax2+2x+c相交于点A(﹣1,0)和点B(2,3)两点.(1)求抛物线C函数表达式;(2)若点M是位于直线AB上方抛物线上的一动点,以MA、MB为相邻的两边作平行四边形MANB,当平行四边形MANB的面积最大时,求此时平行四边形MANB的面积S 及点M的坐标;(3)在抛物线C的对称轴上是否存在定点F,使抛物线C上任意一点P到点F的距离等于到直线y=的距离?若存在,求出定点F的坐标;若不存在,请说明理由.【分析】(1)利用待定系数法,将A,B的坐标代入y=ax2+2x+c即可求得二次函数的解析式;(2)过点M作MH⊥x轴于H,交直线AB于K,求出直线AB的解析式,设点M(a,﹣a2+2a+3),则K(a,a+1),利用函数思想求出MK的最大值,再求出△AMB面积的最大值,可推出此时平行四边形MANB的面积S及点M的坐标;(3)如图2,分别过点B,C作直线y=的垂线,垂足为N,H,设抛物线对称轴上存在点F,使抛物线C上任意一点P到点F的距离等于到直线y=的距离,其中F(1,a),连接BF,CF,则可根据BF=BN,CF=CN两组等量关系列出关于a的方程组,解方程组即可.解:(1)由题意把点(﹣1,0)、(2,3)代入y=ax2+2x+c,得,,解得a=﹣1,c=3,∴此抛物线C函数表达式为:y=﹣x2+2x+3;(2)如图1,过点M作MH⊥x轴于H,交直线AB于K,将点(﹣1,0)、(2,3)代入y=kx+b中,得,,解得,k=1,b=1,∴y AB=x+1,设点M(a,﹣a2+2a+3),则K(a,a+1),则MK=﹣a2+2a+3﹣(a+1)=﹣(a﹣)2+,根据二次函数的性质可知,当a=时,MK有最大长度,∴S△AMB最大=S△AMK+S△BMK=MK•AH+MK•(x B﹣x H)=MK•(x B﹣x A)=××3=,∴以MA、MB为相邻的两边作平行四边形MANB,当平行四边形MANB的面积最大时,S 最大=2S△AMB最大=2×=,M(,);(3)y=﹣x2+2x+3=﹣(x﹣1)2+4,∴对称轴为直线x=1,当y=0时,x1=﹣1,x2=3,∴抛物线与点x轴正半轴交于点C(3,0),如图2,分别过点B,C作直线y=的垂线,垂足为N,H,设抛物线对称轴上存在点F,使抛物线C上任意一点P到点F的距离等于到直线y=的距离,其中F(1,a),连接BF,CF,则BF=BN=﹣3=,CF=CH=,由题意可列:,解得,a=,∴F(1,).【点评】此题考查了待定系数法求解析式,还考查了用函数思想求极值等,解题关键是能够判断出当平行四边形MANB的面积最大时,△ABM的面积最大,且此时线段MK的长度也最大.。