初中几何模型与解法--瓜豆原理

合集下载

培养初中几何模型意识的策略——以瓜豆原理为例

培养初中几何模型意识的策略——以瓜豆原理为例

教学视点•136【参考文献】[1]刘小翠.初三学生几何思维水平的调查研究[D].湖南师范大学,2015.[2]王晓红."几何概型"教学设计与反思[J].黑龙江教育(教育与教学),2021,(03):22-23.[3]陈霞.考题探究模型解读,深入赏析教学反思--以"一线三等角"模型为例[J].数学教学通讯,2021,(05):81-8[4]徐春凌.分析模型教学对于初中几何数学教学的意义[J].数理化解题研究,2021,(02):25-26.[5]毛小霞.培养模型意识,开拓数学思想--以一道中考几何压轴综合题的教学为例[J].数学大世界(中旬),2021,(01):88-89.[作者简介:罗长英,贵州省六盘水市第二十中学。

]文/罗长英培养初中几何模型意识的策略——以瓜豆原理为例摘要 在初中阶段几何是培养学生推理能力的良好素材,因此研究学生的几何推理能力具有一定的价值。

本文以瓜豆原理为例,谈谈如何培养初中几何模型意识。

关键词 初中;几何模型意识;瓜豆原理通过分析初中北师大版的数学教材可以发现,七年级学习一些简单的几何概念及图形操作与计算;八年级开始学习图形的性质、定理及其运用,开始步入更难内容的几何学习;九年级内容的综合性更强、几何推理难度更大。

教师在教学中要教会学生能从一些复杂的几何图形中抽象出简单的几何图形,培养学生的几何直观能力。

本文以瓜豆原理为例分享如何培养学生的几何意识。

1 案例分享——瓜豆原理之直线型(第一课时)教学目标:(a).从图形变换角度观察,理解定点、主动点和从动点三者之间的变换关系,感受动点变换规律与路径之间的联系。

(b)运用瓜豆原理解决运动问题中一类与运动路径有关的问题。

(c).体会化归、数形结合、图形的变换等数学思想。

教学重点:运用瓜豆原理解决运动问题中一类与运动路径有关的问题;理解定点主动点和从动点三者之间的变换关系,感受动点变换规律与路径之间的联系。

初中瓜豆原理模型例题

初中瓜豆原理模型例题

初中瓜豆原理模型例题
瓜豆原理模型是一种用于解决实际问题的数学模型,它通过建立两个或多个变量之间的关系来解决问题。

以下是一些初中瓜豆原理模型的例题:
例题1:某农场种植了两种作物,瓜和豆。

瓜的种植面积是豆的2倍,瓜的总产量是豆的3倍。

如果农场总共收获了1000公斤的瓜和豆,那么瓜和豆各有多少公斤?
解:设豆的种植面积为x,那么瓜的种植面积就是2x。

根据题意,我们可以得到以下方程:
3 * 2x = 1000
6x = 1000
x = 1000 / 6
x = 166.67
所以,豆的种植面积为166.67平方米,瓜的种植面积为333.33平方米。

那么瓜的总产量为3 * 333.33 = 999.99公斤,豆的总产量为1 * 166.67 = 166.67公斤。

例题2:某商店有两种商品,A和B。

A商品的售价是B商品的2倍,A商品的销量是B商品的3倍。

如果商店总共卖出了500件商品,那么A和B各有多少件?
解:设B商品的销量为x,那么A商品的销量就是3x。

根据题意,我们可以得到以下方程:
2 * 3x = 500
6x = 500
x = 500 / 6
x = 83.33
所以,B商品的销量为83.33件,A商品的销量为249.99件。

初中数学最值系列之瓜豆原理

初中数学最值系列之瓜豆原理

最值系列之瓜豆原理在辅助圆问题中,我们了解了求关于动点最值问题的方式之一——求出动点轨迹,即可求出关于动点的最值.本文继续讨论另一类动点引发的最值问题,在此类题目中,题目或许先描述的是动点P,但最终问题问的可以是另一点Q,当然P、Q之间存在某种联系,从P点出发探讨Q点运动轨迹并求出最值,为常规思路.一、轨迹之圆篇引例1:如图,P是圆O上一个动点,A为定点,连接AP,Q为AP中点.考虑:当点P在圆O上运动时,Q点轨迹是?【分析】观察动图可知点Q轨迹是个圆,而我们还需确定的是此圆与圆O有什么关系?考虑到Q点始终为AP中点,连接AO,取AO中点M,则M点即为Q点轨迹圆圆心,半径MQ是OP一半,任意时刻,均有△AMQ∽△AOP,QM:PO=AQ:AP=1:2.【小结】确定Q点轨迹圆即确定其圆心与半径,由A、Q、P始终共线可得:A、M、O三点共线,由Q为AP中点可得:AM=1/2AO.Q点轨迹相当于是P点轨迹成比例缩放.根据动点之间的相对位置关系分析圆心的相对位置关系;根据动点之间的数量关系分析轨迹圆半径数量关系.引例2:如图,P是圆O上一个动点,A为定点,连接AP,作AQ⊥AP且AQ=AP.考虑:当点P在圆O上运动时,Q点轨迹是?Q【分析】Q点轨迹是个圆,可理解为将AP绕点A逆时针旋转90°得AQ,故Q点轨迹与P 点轨迹都是圆.接下来确定圆心与半径.考虑AP⊥AQ,可得Q点轨迹圆圆心M满足AM⊥AO;考虑AP=AQ,可得Q点轨迹圆圆心M满足AM=AO,且可得半径MQ=PO.即可确定圆M位置,任意时刻均有△APO≌△AQM.引例3:如图,△APQ是直角三角形,∠P AQ=90°且AP=2AQ,当P在圆O运动时,Q点轨迹是?【分析】考虑AP⊥AQ,可得Q点轨迹圆圆心M满足AM⊥AO;考虑AP:AQ=2:1,可得Q点轨迹圆圆心M满足AO:AM=2:1.即可确定圆M位置,任意时刻均有△APO∽△AQM,且相似比为2.【模型总结】为了便于区分动点P、Q,可称点P为“主动点”,点Q为“从动点”.此类问题的必要条件:两个定量主动点、从动点与定点连线的夹角是定量(∠P AQ是定值);主动点、从动点到定点的距离之比是定量(AP:AQ是定值).Q【结论】(1)主、从动点与定点连线的夹角等于两圆心与定点连线的夹角:∠P AQ=∠OAM;(2)主、从动点与定点的距离之比等于两圆心到定点的距离之比:AP:AQ=AO:AM,也等于两圆半径之比.按以上两点即可确定从动点轨迹圆,Q与P的关系相当于旋转+伸缩.古人云:种瓜得瓜,种豆得豆.“种”圆得圆,“种”线得线,谓之“瓜豆原理”.【思考1】:如图,P是圆O上一个动点,A为定点,连接AP,以AP为一边作等边△APQ.考虑:当点P在圆O上运动时,Q点轨迹是?【分析】Q点满足(1)∠P AQ=60°;(2)AP=AQ,故Q点轨迹是个圆:考虑∠P AQ=60°,可得Q点轨迹圆圆心M满足∠MAO=60°;考虑AP=AQ,可得Q点轨迹圆圆心M满足AM=AO,且可得半径MQ=PO.即可确定圆M位置,任意时刻均有△APO≌△AQM.【小结】可以理解AQ由AP旋转得来,故圆M亦由圆O旋转得来,旋转角度与缩放比例均等于AP与AQ的位置和数量关系.【思考2】如图,P是圆O上一个动点,A为定点,连接AP,以AP为斜边作等腰直角△APQ.考虑:当点P在圆O上运动时,如何作出Q点轨迹?【分析】Q点满足(1)∠P AQ=45°;(2)AP:AQ1,故Q点轨迹是个圆.连接AO,构造∠OAM=45°且AO:AM:1.M点即为Q点轨迹圆圆心,此时任意时刻均有△AOP∽△AMQ.即可确定点Q的轨迹圆.【练习】如图,点P(3,4),圆P半径为2,A(2.8,0),B(5.6,0),点M是圆P上的动点,点C是MB的中点,则AC的最小值是_______.【分析】M点为主动点,C点为从动点,B点为定点.考虑C是BM中点,可知C点轨迹:取BP中点O,以O为圆心,OC为半径作圆,即为点C轨迹.当A、C、O三点共线且点C在线段OA上时,AC取到最小值,根据B、P坐标求O,利用两点间距离公式求得OA,再减去OC即可.【2016武汉中考】如图,在等腰Rt △ABC 中,AC =BC=P 在以斜边AB 为直径的半圆上,M 为PC 的中点,当半圆从点A 运动至点B 时,点M 运动的路径长为________.【分析】考虑C 、M 、P 共线及M 是CP 中点,可确定M 点轨迹:取AB 中点O ,连接CO 取CO 中点D ,以D 为圆心,DM 为半径作圆D 分别交AC 、BC 于E 、F 两点,则弧EF 即为M 点轨迹.当然,若能理解M 点与P 点轨迹关系,可直接得到M点的轨迹长为P 点轨迹长一半,即可解决问题.【2018南通中考】如图,正方形ABCD 中,AB O 是BC 边的中点,点E 是正方形内一动点,OE =2,连接DE ,将线段DE 绕点D 逆时针旋转90°得DF ,连接AE 、CF .求线段OF 长的最小值.OABCDE F【分析】E 是主动点,F 是从动点,D 是定点,E 点满足EO =2,故E 点轨迹是以O 为圆心,2为半径的圆.F考虑DE⊥DF且DE=DF,故作DM⊥DO且DM=DO,F点轨迹是以点M为圆心,2为半径的圆.直接连接OM,与圆M交点即为F点,此时OF最小.可构造三垂直全等求线段长,再利用勾股定理求得OM,减去MF即可得到OF的最小值.【练习】△ABC 中,AB =4,AC =2,以BC 为边在△ABC 外作正方形BCDE ,BD 、CE 交于点O ,则线段AO 的最大值为_____________.AB CDE O【分析】考虑到AB 、AC 均为定值,可以固定其中一个,比如固定AB ,将AC 看成动线段,由此引发正方形BCED 的变化,求得线段AO 的最大值.根据AC =2,可得C 点轨迹是以点A 为圆心,2为半径的圆.OEDCBA接下来题目求AO 的最大值,所以确定O 点轨迹即可,观察△BOC 是等腰直角三角形,锐角顶点C 的轨迹是以点A 为圆心,2为半径的圆,所以O 点轨迹也是圆,以AB 为斜边构造等腰直角三角形,直角顶点M 即为点O 轨迹圆圆心.连接AM 并延长与圆M 交点即为所求的点O ,此时AO 最大,根据AB 先求AM ,再根据BC 与BO 的比值可得圆M 的半径与圆A 半径的比值,得到MO ,相加即得AO .此题方法也不止这一种,比如可以如下构造旋转,当A 、C 、A ’共线时,可得AO最大值.A'或者直接利用托勒密定理可得最大值.二、轨迹之线段篇引例:如图,P是直线BC上一动点,连接AP,取AP中点Q,当点P在BC上运动时,Q点轨迹是?【分析】当P点轨迹是直线时,Q点轨迹也是一条直线.可以这样理解:分别过A、Q向BC作垂线,垂足分别为M、N,在运动过程中,因为AP=2AQ,所以QN始终为AM的一半,即Q点到BC的距离是定值,故Q点轨迹是一条直线.【引例】如图,△APQ是等腰直角三角形,∠P AQ=90°且AP=AQ,当点P在直线BC上运动时,求Q点轨迹?【分析】当AP与AQ夹角固定且AP:AQ为定值的话,P、Q轨迹是同一种图形.当确定轨迹是线段的时候,可以任取两个时刻的Q点的位置,连线即可,比如Q 点的起始位置和终点位置,连接即得Q点轨迹线段.Q2AB CQ1【模型总结】 必要条件:主动点、从动点与定点连线的夹角是定量(∠P AQ 是定值); 主动点、从动点到定点的距离之比是定量(AP :AQ 是定值). 结论:P 、Q 两点轨迹所在直线的夹角等于∠P AQ (当∠P AQ ≤90°时,∠P AQ 等于MN 与BC 夹角)P 、Q 两点轨迹长度之比等于AP :AQ (由△ABC ∽△AMN ,可得AP :AQ =BC :MN )【2017姑苏区二模】如图,在等边△ABC 中,AB =10,BD =4,BE =2,点P 从点E 出发沿EA 方向运动,连结PD ,以PD 为边,在PD 的右侧按如图所示的方式作等边△DPF ,当点P 从点E 运动到点A 时,点F 运动的路径长是________.A【分析】根据△DPF 是等边三角形,所以可知F 点运动路径长与P 点相同,P 从E 点运动到A 点路径长为8,故此题答案为8.【2013湖州中考】如图,已知点A是第一象限内横坐标为AC⊥x轴于点M,交直线y=-x于点N,若点P是线段ON上的一个动点,∠APB=30°,BA⊥P A,则点P在线段ON上运动时,A点不变,B点随之运动.求当点P从点O 运动到点N时,点B运动的路径长是________.【分析】根据∠P AB=90°,∠APB=30°可得:AP:AB,故B点轨迹也是线段,且P点轨迹路径长与B,P点轨迹长ON为B点轨迹长为【练习】如图,在平面直角坐标系中,A(-3,0),点B是y轴正半轴上一动点,点C、D在x正半轴上,以AB为边在AB的下方作等边△ABP,点B在y轴上运动时,求OP的最小值.【分析】求OP是等边三角形且B点在直线上运动,故可知P点轨迹也是直线.取两特殊时刻:(1)当点B与点O重合时,作出P点位置P1;(2)当点B在x轴上方且AB与x轴夹角为60°时,作出P点位置P2.连接P1P2,即为P点轨迹.根据∠ABP =60°可知:12P P 与y 轴夹角为60°,作OP ⊥12P P ,所得OP 长度即为最小值,OP 2=OA =3,所以OP =32.【2019宿迁中考】如图,正方形ABCD 的边长为4,E 为BC 上一点,且BE =1,F 为AB 边上的一个动点,连接EF ,以EF 为边向右侧作等边△EFG ,连接CG ,则CG 的最小值为 .【分析】同样是作等边三角形,区别于上一题求动点路径长,本题是求CG 最小值,可以将F 点看成是由点B 向点A 运动,由此作出G 点轨迹:考虑到F 点轨迹是线段,故G 点轨迹也是线段,取起点和终点即可确定线段位置,初始时刻G 点在1G 位置,最终G 点在2G 位置(2G 不一定在CD 边),12G G 即为G 点运动轨迹.G 2CG 最小值即当CG ⊥12G G 的时候取到,作CH ⊥12G G 于点H ,CH 即为所求的最小值.GABCDEF根据模型可知:12G G 与AB 夹角为60°,故12G G ⊥1EG .过点E 作EF ⊥CH 于点F ,则HF =1G E =1,CF =1322CE =,所以CH =52,因此CG 的最小值为52.G 2三、轨迹之其他图形篇所谓“瓜豆原理”,就是主动点的轨迹与从动点的轨迹是相似性,根据主、从动点与定点连线形成的夹角以及主、从动点到定点的距离之比,可确定从动点的轨迹,而当主动点轨迹是其他图形时,从动点轨迹必然也是.【2016乐山中考】如图,在反比例函数2y x=-的图像上有一个动点A ,连接AO 并延长交图像的另一支于点B ,在第一象限内有一点C ,满足AC =BC ,当点A 运动时,点C 始终在函数ky x=的图像上运动,若tan ∠CAB =2,则k的值为( )A .2B .4C .6D .8【分析】∠AOC=90°且AO:OC=1:2,显然点C的轨迹也是一条双曲线,分别作AM、CN垂直x轴,垂足分别为M、N,连接OC,易证△AMO∽△ONC,∴CN=2OM,ON=2AM,∴ON·CN=4AM·OM,故k=4×2=8.【思考】若将条件“tan∠CAB=2”改为“△ABC是等边三角形”,k会是多少?【练习】如图,A(-1,1),B(-1,4),C(-5,4),点P是△ABC边上一动点,连接OP,以OP为斜边在OP的右上方作等腰直角△OPQ,当点P在△ABC边上运动一周时,点Q的轨迹形成的封闭图形面积为________.【分析】根据△OPQ是等腰直角三角形可得:Q点运动轨迹与P点轨迹形状相同,根据OP:OQ,可得P点轨迹图形与Q,故面积比为2:1,△ABC面积为1/2×3×4=6,故Q点轨迹形成的封闭图形面积为3.【小结】根据瓜豆原理,类似这种求从动点轨迹长或者轨迹图形面积,根据主动点轨迹推导即可,甚至无需作图.【练习】如图所示,AB =4,AC =2,以BC 为底边向上构造等腰直角三角形BCD ,连接AD 并延长至点P ,使AD =PD ,则PB 的取值范围为___________.ABCDP【分析】固定AB 不变,AC =2,则C 点轨迹是以A 为圆心,2为半径的圆,以BC 为斜边作等腰直角三角形BCD ,则D 点轨迹是以点M考虑到AP =2AD ,故P 点轨迹是以N 为圆心,即可求出PB 的取值范围.。

最值问题之瓜豆原理(学生版)

最值问题之瓜豆原理(学生版)

最值问题之瓜豆原理知识解读瓜豆原理是主从动点联动问题,也叫旋转相似,这类问题在解答的时候需要有轨迹思想,就是先要明确主动点的轨迹,然后要搞清楚主动点和从动点的关系,进而确定从动点的轨迹来解决问题.瓜豆原理:一个主动点,一个从动点(根据某种约束条件,跟着主动点动),当主动点运动时,从动点的轨迹相同.(古人云:种瓜得瓜,种豆得豆.“种”圆得圆,“种”线得线,谓之“瓜豆原理”.)满足条件:1.两动一定;2.动点与定点的连线夹角是定角;3.动点到定点的距离比值是定值.方法:第一步:找主动点的轨迹;第二步:找从动点与主动点的关系;第三步:找主动点的起点和终点;第四步:通过相似确定从动点的轨迹;第五步:根据轨迹确定点线、点圆最值.“瓜豆原理”其实质就是构造旋转、相似.涉及的知识和方法:知识:①相似;②三角形的两边之和大于第三边;③点到直线之间的距离垂线段最短;④点到圆上点共线有最值.运动轨迹为圆弧引例1:如图,P是圆O上一个动点,A为定点,连接AP,Q为AP中点.考虑:当点P在圆O上运动时,Q点轨迹是?【分析】观察动图可知点Q轨迹是个圆,而我们还需确定的是此圆与圆O有什么关系?考虑到Q点始终为AP中点,连接AO,取AO中点M,则M点即为Q点轨迹圆圆心,半径MQ是OP一半,任意时刻,均有△AMQ∽△AOP,QM:PO=AQ:AP=1:2.【小结】确定Q点轨迹圆即确定其圆心与半径,由A、Q、P始终共线可得:A、M、O三点共线,由Q为AP中点可得:AM=1/2AO.Q点轨迹相当于是P点轨迹成比例缩放.根据动点之间的相对位置关系分析圆心的相对位置关系;根据动点之间的数量关系分析轨迹圆半径数量关系.引例2:如图,P是圆O上一个动点,A为定点,连接AP,作AQ⊥AP且AQ=AP.考虑:当点P在圆O上运动时,Q点轨迹是?【分析】Q点轨迹是个圆,可理解为将AP绕点A逆时针旋转90°得AQ,故Q点轨迹与P点轨迹都是圆.接下来确定圆心与半径.考虑AP⊥AQ,可得Q点轨迹圆圆心M满足AM⊥AO;考虑AP=AQ,可得Q点轨迹圆圆心M满足AM=AO,且可得半径MQ=PO.即可确定圆M位置,任意时刻均有△APO≌△AQM.引例3:如图,△APQ是直角三角形,∠PAQ=90°且AP=2AQ,当P在圆O运动时,Q点轨迹是?【分析】考虑AP⊥AQ,可得Q点轨迹圆圆心M满足AM⊥AO;考虑AP:AQ=2:1,可得Q点轨迹圆圆心M满足AO: AM=2:1.即可确定圆M位置,任意时刻均有△APO∽△AQM,且相似比为2.【模型总结】为了便于区分动点P、Q,可称点P为“主动点”,点Q为“从动点”.此类问题的必要条件:两个定量;主动点、从动点与定点连线的夹角是定量(∠PAQ是定值);主动点、从动点到定点的距离之比是定量(AP:AQ是定值).【结论】(1)主、从动点与定点连线的夹角等于两圆心与定点连线的夹角:∠PAQ=∠OAM;(2)主、从动点与定点的距离之比等于两圆心到定点的距离之比:AP:AQ=AO:AM,也等于两圆半径之比.按以上两点即可确定从动点轨迹圆,Q与P的关系相当于旋转+伸缩.模型二运动轨迹为线段引例:如图,P是直线BC上一动点,连接AP,取AP中点Q,当点P在BC上运动时,Q点轨迹是?【分析】当P点轨迹是直线时,Q点轨迹也是一条直线.可以这样理解:分别过A、Q向BC作垂线,垂足分别为M、N,在运动过程中,因为AP=2AQ,所以QN始终为AM的一半,即Q点到BC的距离是定值,故Q点轨迹是一条直线.【引例】如图,△APQ是等腰直角三角形,∠PAQ=90°且AP=AQ,当点P在直线BC上运动时,求Q点轨迹?【分析】当AP与AQ夹角固定且AP:AQ为定值的话,P、Q轨迹是同一种图形.当确定轨迹是线段的时候,可以任取两个时刻的Q点的位置,连线即可,比如Q点的起始位置和终点位置,连接即得Q 点轨迹线段.【模型总结】必要条件:主动点、从动点与定点连线的夹角是定量(∠PAQ是定值);主动点、从动点到定点的距离之比是定量(AP:AQ是定值).结论:P、Q两点轨迹所在直线的夹角等于∠PAQ(当∠PAQ≤90°时,∠PAQ等于MN与BC夹角)P、Q两点轨迹长度之比等于AP:AQ(由△ABC∽△AMN,可得AP:AQ=BC:MN)1针对训练一、单选题1如图,A是⊙B上任意一点,点C在⊙B外,已知AB=2,BC=4,△ACD是等边三角形,则△BCD的面积的最大值为()A.43+4B.4C.43+8D.62如图,在矩形纸片ABCD中,AB=2,AD=3,点E是AB的中点,点F是AD边上的一个动点,将△AEF沿EF 所在直线翻折,得到△A'EF,则A'C的长的最小值是()A.132B.3C.13-1D.10-13如图,在Rt△ABC中,∠ABC=90°,∠ACB=30°,BC=23,△ADC与△ABC关于AC对称,点E、F分别是边DC、BC上的任意一点,且DE=CF,BE、DF相交于点P,则CP的最小值为()A.1B.3C.32D.24如图,等腰Rt△ABC中,斜边AB的长为2,O为AB的中点,P为AC边上的动点,OQ⊥OP交BC于点Q,M 为PQ的中点,当点P从点A运动到点C时,点M所经过的路线长为()A.24π B.22π C.1 D.25如图,在平面直角坐标系中,Q是直线y=-12x+2上的一个动点,将Q绕点P(1,0)顺时针旋转90°,得到点Q ,连接OQ ,则OQ 的最小值为()A.455B.5 C.523D.655二、填空题6如图,等边三角形ABC中,AB=4,高线AH=23,D是线段AH上一动点,以BD为边向下作等边三角形BDE,当点D从点A运动到点H的过程中,点E所经过的路径为线段CM,则线段CM的长为,当点D运动到点H,此时线段BE的长为.7如图,在平面内,线段AB=6,P为线段AB上的动点,三角形纸片CDE的边CD所在的直线与线段AB垂直相交于点P,且满足PC=PA.若点P沿AB方向从点A运动到点B,则点E运动的路径长为.8如图,正方形ABCD的边长为4,E为BC上一点,且BE=1,F为AB边上的一个动点,连接EF,以EF为边向右侧作等边ΔEFG,连接CG,则CG的最小值为.9如图,在Rt△ABC中,∠ACB=90°,∠BAC=30°,BC=2,线段BC绕点B旋转到BD,连AD,E为AD的中点,连接CE,则CE的最大值是.10如图,在矩形ABCD中,对角线AC,BD相交于点O,AB=4,∠DAC=60°,点F沿线段AO从点A至点O运动,连接DF,以DF为边作等边三角形DFE,点E和点A分别位于DF两侧,连接OE.现给出以下结论:①∠BDE=∠EFC;②ED=EC;③直线OE⊥CD;④点E运动的路程是23.其中正确的结论是.(写出所有正确结论的序号)11如图,已知AC =2AO =8,平面内点P 到点O 的距离为2,连接AP ,若∠APB =60°且BP =12AP ,连接AB ,BC ,则线段BC 的最小值为.12如图,线段AB 为⊙O 的直径,点C 在AB 的延长线上,AB =4,BC =2,点P 是⊙O 上一动点,连接CP ,以CP 为斜边在PC 的上方作Rt △PCD ,且使∠DCP =60°,连接OD ,则OD 长的最大值为.三、解答题13如图,过抛物线y =14x 2-2x 上一点A 作轴的平行线,交抛物线于另一点B ,交轴于点C ,已知点A 的横坐标为.(1)求抛物线的对称轴和点B 的坐标;(2)在AB 上任取一点P ,连结OP ,作点C 关于直线OP 的对称点D ;①连接BD ,求BD 的最小值;②当点D 落在抛物线的对称轴上,且在轴上方时,求直线PD 的函数表达式.14如图①,在ΔABC中,AB=AC=3,∠BAC=100°,D是BC的中点.小明对图①进行了如下探究:在线段AD上任取一点P,连接PB,将线段PB绕点P按逆时针方向旋转80°,点B的对应点是点E,连接BE,得到ΔBPE.小明发现,随着点P在线段AD上位置的变化,点E的位置也在变化,点E可能在直线AD的左侧,也可能在直线AD上,还可能在直线AD的右侧.请你帮助小明继续探究,并解答下列问题:(1)当点E在直线AD上时,如图②所示.①∠BEP=;②连接CE,直线CE与直线AB的位置关系是.(2)请在图③中画出ΔBPE,使点E在直线AD的右侧,连接CE,试判断直线CE与直线AB的位置关系,并说明理由.(3)当点P在线段AD上运动时,求AE的最小值.15如图,等边三角形ABC的边长为4,点D是直线AB上一点.将线段CD绕点D顺时针旋转60°得到线段DE,连结BE.(1)若点D在AB边上(不与A,B重合)请依题意补全图并证明AD=BE;(2)连接AE,当AE的长最小时,求CD的长.16如图所示,在Rt△ABC中,AB=BC=2,点D是AC上一点,以BD为一边向右下方作等边△BDE,当D由点A运动到点C时,求点E运动的路径长.17在平面直角坐标系中,A(a,0)、B(b,0),且a,b满足a2-6a+9+b+3=0,C、D两点分别是y轴正半轴、x轴负半轴上的两个动点;(1)如图1,若C(0,4),求△ABC的面积;(2)如图1,若C(0,4),BC=5,BD=AE,且∠CBA=∠CDE,求D点的坐标;(3)如图2,若∠CBA=60°,以CD为边,在CD的右侧作等边△CDE,连接OE,当OE最短时,求A,E两点之间的距离.18如图,在矩形ABCD中,AB=3,AD=4,连接BD,将△ABD绕点D顺时针旋转,记旋转后的三角形为△A′B′D,旋转角为α(0°<α<360°且α≠180°).(1)在旋转过程中,当A′落在线段BC上时,求A′B的长;(2)连接A′A、A′B,当∠BA′B'=90°时,求tan∠A′AD;(3)在旋转过程中,若△DAA′的重心为G,则CG的最小值=.19如图所示,在矩形ABCD中,AB=4,AD=2,E为AB的中点,F为EC上一动点,P为DF的中点,连接PB,求PB的最小值.20如图所示,在扇形AOB 中,OA =3,∠AOB =120°,点C 是AB上的动点,以BC 为边作正方形BCDE ,当点C 从点A 移动至点B 时,求点D 经过的路径长.21如图1,在△ABC 中,∠ACB =90°,AC =2,BC =23,以点B 为圆心,3为半径作圆.点P 为⊙B 上的动点,连接PC ,作P C ⊥PC ,使点P 落在直线BC 的上方,且满足P C :PC =1:3,连接BP ,AP .(1)求∠BAC 的度数,并证明△AP C ∽△BPC ;(2)如图2,若点P 在AB 上时,连接BP ,求BP 的长;(3)点P 在运动过程中,BP 是否有最大值或最小值?若有,请求出当BP 取得最大值或最小值时,∠PBC 的度数;若没有,请说明理由.22如图所示,△ABO为等腰直角三角形,A-4,0,直角顶点B在第二象限,点C在y轴上移动,以BC为斜边向上作等腰直角△BCD,我们发现直角顶点D点随着C点的移动也在一条直线上移动,求这条直线的函数解析式.23如图所示,点P3,4,⊙P的半径为2,A2.8,0,点M是⊙P上的动点,点C是MB的中点,求AC的,B5.6,0最小值.24如图所示,在等腰Rt△ABC中,AC=BC=22,点P在以斜边AB为直径的半圆上,M为PC的中点,当点P 沿半圆从点A运动至点B时,求点M运动的路径长.25如图1,已知在平面直角坐标系xOy中,四边形OABC是矩形点A,C分别在x轴和y轴的正半轴上,连结AC,OA=3,tan∠OAC=33,D是BC的中点.(1)求OC的长和点D的坐标;OC,点P是线段OM上的一个动点,经过P,D,B三点的抛物线交x轴的正半(2)如图2,M是线段OC上的点,OM=23轴于点E,连结DE交AB于点F①将ΔDBF沿DE所在的直线翻折,若点B恰好落在AC上,求此时BF的长和点E的坐标;②以线段DF为边,在DF所在直线的右上方作等边ΔDFG,当动点P从点O运动到点M时,点G也随之运动,请直接写出点G运动路径的长.26在等边三角形ABC中,点D为AC上一点,连接BD,将BD绕D逆时针旋转角度α得到DE,连接BE,已知AB =4,BG⊥AC;(1)如图1,若α=60°,tan∠DBG=2-3,连接CE,求CE的长;(2)如图2,若α=120°,分别取CD的中点H,BE的中点F,连接HF,DF,求证:HG=HF;,连接GP ,(3)如图3,若AD=32,P为AE上一点,且满足AP=2PE,连接BP,将BP沿着BG所在直线翻折得到BP当GP 最大时,直接写出△BPE的面积.27在菱形ABCD中,∠BAD=120°,E是对角线BD上的一点,连接AE.(1)当E在AB的中垂线上时,把射线EA绕点E顺时针旋转90°后交CD于F,连接BF.如图①,若AB=4,求EF的长.(2)在(1)的条件下,连接BF,把△BEF绕点B顺时针旋转得到△BHK如图②,连接CH,点N为CH的中点,连接AN,求AN的最大值.28在△ABC中,D为直线AC上一动点,连接BD,将BD绕点B逆时针旋转90°,得到BE,连接DE与AB相交于点F.(1)如图1,若D为AC的中点,∠BAC=90°,AC=4,BD=29,连接AE,求线段AE的长;(2)如图2,G是线段BA延长线上一点,D在线段AC上,连接DG,EC,若∠BAC<90°,EC⊥BG,∠ADE=∠DBC,∠DBC+∠G=∠EBF,证明2BC=2AD+DC;(3)如图3,若△ABC为等边三角形,AB=62,点M为线段AC上一点,且2CM=AM,点P是直线BC上的动点,连接EP,MP,EM,请直接写出当EP+MP最小时△EPM的面积.。

初中数学几何模型与最值问题08专题-瓜豆原理中动点轨迹不确定型最值问题(含答案)

初中数学几何模型与最值问题08专题-瓜豆原理中动点轨迹不确定型最值问题(含答案)

初中数学几何模型与最值问题专题8瓜豆原理中动点轨迹不确定型最值问题【专题说明】动点轨迹非圆或直线时,基本上将此线段转化为一个三角形中,(1)利用三角形两边之和大于第三边,两边之差小于第三边求最值。

(2)在转化较难进行时,可借助直角三角形斜边上的中线及中位线或构建全等图形进一步转化求最值。

【知识精讲】所谓“瓜豆原理”,就是主动点的轨迹与从动点的轨迹是相似性,根据主、从动点与定点连线形成的夹角以及主、从动点到定点的距离之比,可确定从动点的轨迹,而当主动点轨迹是其他图形时,从动点轨迹必然也是.【例题】如图,在反比例函数的图像上有一个动点A,连接AO并延长交图像的另一支于点B,在第一象限内有一点C,满足AC=BC,当点A运动时,点C始终在函数的图像上运动,若tan∠CAB=2,则k的值为()A.2B.4C.6D.8【模型】一、借助直角三角形斜边上的中线1、如图,在△ABC中,∠C=90°,AC=4,BC=2,点A、C分别在x轴、y轴上,当点A在x轴上运动时,点C随之在y轴上运动,在运动过程中,点B到原点的最大距离是()A.6B.C.D.【模型】二、借助三角形两边之和大于第三边,两边之差小于第三边1、如图,已知等边三角形ABC边长为A、B分别在平面直角坐标系的x轴负半轴、轴的正半轴上滑动,点C在第四象限,连接OC,则线段OC长的最小值是()A-1B.3C.3D.2、如图,∠MON=90°,矩形ABCD的顶点A、B分别在边OM、ON上,当B在边ON上运动时,A随之在OM上运动,矩形ABCD的形状保持不变,其中AB=4,BC=2.运动过程中点D到点O的最大距离是______.3、如图,在ABC △中,90ACB ∠=︒,30CAB ∠=︒,6AB =,以线段AB 为边向外作等边ABD △,点E 是线段AB 的中点,连结CE 并延长交线段AD 于点F .(1)求证:四边形BCFD 为平行四边形;(2)求平行四边形BCFD 的面积;(3)如图,分别作射线CM ,CN ,如图中ABD △的两个顶点A ,B 分别在射线CN ,CM 上滑动,在这个变化的过程中,求出线段CD 的最大长度.4、如图,在Rt ABC ∆中,90ACB ∠=,将ABC ∆绕顶点C 逆时针旋转得到'',A B C M ∆是BC 的中点,N 是''A B 的中点,连接MN ,若4,60BC ABC =∠=︒,则线段MN 的最大值为()A .4B .8C .D .6【模型】三、借助构建全等图形1、如图,在△ABC中,∠ACB=90°,∠A=30°,AB=5,点P是AC上的动点,连接B P,以B P为边作等边△B P Q,连接CQ,则点P在运动过程中,线段CQ长度的最小值是______.2、如图,边长为12的等边三角形ABC中,M是高CH所在直线上的一个动点,连结MB,将线段BM绕点B逆时针旋转60°得到BN,连结HN.则在点M运动过程中,线段HN长度的最小值是()A.6B.3C.2D.1.5【模型】四、借助中位线1、如图,在等腰直角∆ABC中,斜边AB的长度为8,以AC为直径作圆,点P为半圆上的动点,连接B P,取B P的中点M,则CM的最小值为()A.B.C-D.2、如图,抛物线2119y x =-与x 轴交于A B ,两点,D 是以点()0,4C 为圆心,1为半径的圆上的动点,E 是线段AD 的中点,连接,OE BD ,则线段OE 的最小值是()A .2B .322C .52D .3专题8瓜豆原理中动点轨迹不确定型最值问题答案【专题说明】动点轨迹非圆或直线时,基本上将此线段转化为一个三角形中,(1)利用三角形两边之和大于第三边,两边之差小于第三边求最值。

初三数学瓜豆原理

初三数学瓜豆原理

初三数学瓜豆原理
瓜豆原理是数学里的一个经典问题,它的具体形式是这样的:如
果有m个瓜和n个豆,它们总共有多少种选择方式呢?根据瓜豆原理,可以得出这个选择方式的总数为m+n。

那么,为什么可以使用瓜豆原理呢?实际上,瓜和豆是两个相互
独立的选择,也就是说,选择瓜的决策不会影响到选择豆的决策,反
之亦然。

因此,我们可以将选择瓜和选择豆的决策看成是两个独立的事件,它们各自有m和n种选择。

按照乘法原理,两个事件的选择方式总数
为m×n。

然而,我们还需要考虑的是,选择瓜和选择豆这两个事件是“或”的关系,也就是说,我们需要求的是两个事件的选择方式总数之和。

根据加法原理,我们可以得到两个事件的选择方式总数为m+n,
这就是瓜豆原理的内容。

总之,瓜豆原理是一种十分常见而且有用的数学方法,可以用来
解决各种复杂的计数问题。

专题22 瓜豆原理

专题22 瓜豆原理

瓜豆原理【模型专题】瓜豆原理——主从动点问题初中数学有一类动态问题叫做主从联动,有的老师叫他瓜豆原理,也有的老师叫他旋转相似这类问题在解答的时候需要有轨迹思想,就是先要明确主动点的轨迹,然后要搞清楚主动点和从动点的关系,进而确定从动点的轨迹来解决问题.瓜豆原理:一个主动点,一个从动点(根据某种约束条件,跟着主动点动),当主动点运动时,从动点的轨迹相同.(古人云:种瓜得瓜,种豆得豆.“种”圆得圆,“种”线得线,谓之“瓜豆原理”.)满足条件:1.两动一定;2.动点与定点的连线夹角是定角;3.动点到定点的距离比值是定值.为定值k,则点Q与点P的运动路径相同.结论:若点O为定点,∠POQ为定角α,OQOP方法:第一步:找主动点的轨迹;第二步:找从动点与主动点的关系;第三步:找主动点的起点和终点;第四步:通过相似确定从动点的轨迹,第五步:根据轨迹确定点线、点圆最值.“瓜豆原理”其实质就是构造旋转、相似.涉及的知识和方法:知识:①相似;②三角形的两边之和大于第三边;③点到直线之间的距离垂线段最短;④点到圆上点共线有最值.位似型(主从一线)①点O为定点,点P在定直线l上运动,点Q为线段OP的中点,点Q的运动轨迹②点A为定点,点P在定圆⊙O上运动,点Q为线段AP的中点,点Q的运动轨迹旋转型(OQ在OP绕点Q顺时针旋转α的方向)OP,点P在定直线l(定圆⊙M)上运动,则点Q的运动轨迹③点O为定点,∠POQ=α且OQ=12模型一:位似型例1:1.如图,∠BAD=90°,AB=AD=4,点C为平面内一动点,且BC=2,点M为线段CD中点,则线段AM的取值范围为______.变式1-1:2.如图,在平面直角坐标系中,C(0,4),A(3,0),⊙A半径为2,P为⊙A上任意一点,E是PC的中点,则OE 的最小值是()A.1B.32C.2D.2变式1-2:3.如图,在Rt△ABC中,∠ACB=90°,AC=8,BC=6,D是以点A为圆心,4为半径的圆上一点,连接BD,M为BD的中点,则线段CM长度的最大值()A.14B.7C.9D.6变式1-3:4.如图,正方形ABCD的边长为4cm,点E、F分别从点D和点C出发,沿着射线DA、射线CD运动,且DE =CF,直线AF、直线BE交于H点.(1)当点E从点D向点A运动的过程中:①求证:AF⊥BE;②在图中画出点H运动路径并求出点H运动的路径长;(2)在整个运动过程中:①线段DH长度的最小值为______.②线段DH长度的最大值为_________.变式1-4:5.如图,在直角坐标系中,⊙A的半径为2,圆心坐标为(4,0),y轴上有点B(0,3),点C是⊙A上的动点,点P是BC的中点,则OP的范围是_____.变式1-5:6.如图,点P(3,4),⊙P半径为2,A(2.8,0),B(5.6,0),点M是⊙P上的动点,点C是MB的中点,则AC的最小值是________.变式1-6:7.如图,在等腰Rt△ABC中,AC=BC=22,点P在以斜边AB为直径的半圆上,M为PC的中点,当点P沿半圆从点A运动至点B时,点M运动的路径长为________.变式1-7:8.如图,AB为⊙O的直径,C为⊙O上一点,其中AB=8,∠AOC=120°,P为⊙O上的动点,连AP,取AP中点Q,连CQ,则线段CQ的最大值为_______.模型二:全等旋转型例2:9.如图,在直角坐标系中,已知A(4,0),点B为y轴正半轴上一动点,连接AB,以AB为一边向下做等边△ABC,连接OC,则OC的最小值为_______.变式2-1:10.如图,正方形ABCD中,AB=25,O是BC边的中点,点E是正方形内一动点,OE=2,连接DE,将线段DE绕点D逆时针旋转90°得DF,连接AE、CF.则线段OF长的最小值为_____.变式2-2:11.如图,⊙O的半径为1,点P是⊙O上的一点,将点P绕点A(-4,0)逆时针旋转60°得到点Q,则点P 在⊙O上运动时,点Q也随之运动,连接OQ.求当点P在⊙O上运动时,求OQ的最小值.变式2-3:12.如图,A是⊙B上任意一点,点C在⊙B外,已知AB=2,BC=4,△ACD是等边三角形,则△BCD的面积的最大值为()A.43+4B.4C.43+8D.6变式2-4:13.如图,正方形ABCD中,AB=3cm,以B为圆心,1cm长为半径画⊙B,点P在⊙B上移动,连接AP,并将AP绕点A逆时针旋转90°至AP′,连接BP′.在点P移动的过程中,BP′长度的最小值为_____cm.变式2-5:14.如图,正方形ABCD中,AB=25,O是BC边的中点,点E是正方形内一动点,OE=2,连接DE,将线段DE绕点D逆时针旋转90°得DF,连接AE、CF.则线段OF长的最小值为_____.模型三:相似型旋转例315.在平面直角坐标系中,A(1,0),B(0,3),过点B作直线BC∥x轴,点P是直线BC上的一个动点以AP为边在AP右侧作Rt△APQ,使∠APQ=90°,且AP:PQ=1:3,连结AB、BQ,则△ABQ周长的最小值为___________.变式3-1:16.如图,矩形ABCD中,AB=4,BC=3,E为AB边上一动点,以DE为边向右作正方形DEFG,连接CF,则CF的最小值为______.变式3-2:17.如图,在△ABC中,AB=AC=5,BC=45,D为边AB上一动点(B点除外),以CD为一边作正方形CDEF,连接BE,则线段BE的取值范围为___________变式3-3:18.正方形ABCD的边长为1,E为边BC上动点,将AE绕点E顺时针旋转90°得到线段EF,M为DE的中点,连接MF,则MF的最小值为________。

瓜豆原理(最经典讲义)

瓜豆原理(最经典讲义)

瓜豆原理(最经典讲义)模型一:运动轨迹为线段必要条件:主动点、从动点与定点连线的夹角是定量(∠PAQ 是定值); 主动点、从动点到定点的距离之比是定量(AP :AQ 是定值). 结论:1、P 、Q 两点轨迹所在直线的夹角等于∠PAQ (当∠PAQ ≤90°时,∠PAQ 等于MN 与BC 夹角)(即两个轨迹之间的夹角(锐角)和定角∠PAQ 相等)2、P 、Q 两点轨迹长度之比等于AP :AQ (由△ABC ∽△AMN (利用两边对应成比比例及其夹角相等来证),可得AP :AQ =BC :MN )(即两个定边之比AQ AP 等于对应的轨迹之比MNBC(BC 是P 的轨迹,MN 是Q 的轨迹,找轨迹的方法是看主动点P 是从哪一点开始的,哪一点结束。

主动点P 是线段,那么从动点Q 也是线段)例1、如图所示,在Rt ABC △中,2AB BC ==,点D 是AC 上一点,以BD 为一边向右下方作等边BDE △,当D 由点A 运动到点C 时,求BE 的最小值及点E 运动的路径长.2.(贵阳期末)在Rt△ABC中,∠BAC=90°,AB=AC,AD⊥BC于点D,P是线段AD 上的一个动点,以点P为直角的顶点,向上作等腰直角三角形PBE,连接DE,若在点P 的运动过程中,DE的最小值为3,则AD的长为.思考:点E的路径长挑战.(2019•贵阳)如图,在矩形ABCD中,AB=4,∠DCA=30°,点F是对角线AC上的一个动点,连接DF,以DF为斜边作∠DFE=30°的直角三角形DEF,使点E和点A位于DF两侧,点F从点A到点C的运动过程中,点E的运动路径长是.模型二:运动轨迹为圆为了便于区分动点P、Q,可称点P为“主动点”,点Q为“从动点”.问题一:一种就是一个线段上有两个动点,一个动点轨迹是圆,另外一个动点也是圆问题二:此类问题的必要条件:两个定量;主动点、从动点与定点连线的夹角是定量(∠PAQ 是定值);主动点、从动点到定点的距离之比是定量(AP :AQ 是定值).【结论】(1)主、从动点与定点连线的夹角等于两圆心与定点连线的夹角:∠PAQ =∠OAM ; (2)主、从动点与定点的距离之比等于两圆心到定点的距离之比:AP :AQ =AO :AM ,也等于两圆半径之比.按以上两点即可确定从动点轨迹圆,Q 与P 的关系相当于旋转+伸缩.例1.(贵阳期末 )在矩形ABCD 中,AB =3,BC =4,点M 是平面内一动点,且满足BM =2,N 为MD 的中点,点M 运动过程中线段CN 长度的取值范围是 .2.如图,已知正方形ABCD 的边长为4,以点C 为圆心,2为半径作圆,P 是⊙C 上的任意一点,将点P 绕点D 按逆时针方向旋转90°,得到点Q ,连接BQ ,则BQ 的最大值是( )A .6B .C .D .练习1.如图,等边三角形ABC中,AB=4,高线AH D是线段AH上一动点,以BD为边向下作等边三角形BDE,当点D从点A运动到点H的过程中,点E所经过的路径为线段CM,则线段CM的长为_______,当点D运动到点H,此时线段BE的长为__________.2.(2015•桂林)如图,在等边△ABC中,AB=10,BD=4,BE=2,点P从点E出发沿EA 方向运动,连接PD,以PD为边,在PD右侧按如图方式作等边△DPF,当点P从点E 运动到点A时,点F运动的路径长是()A.8B.10C.3πD.5π3.如图,在边长为2的菱形ABCD中,∠A=60°,点M是AD边的中点,点N是AB边上一动点,将△AMN沿MN所在的直线翻折得到△A'MN,连接A'C,则A'C长度的最小值是()A.B.﹣1C.D.﹣14.(2020•西藏)如图,在矩形ABCD中,E为AB的中点,P为BC边上的任意一点,把△PBE沿PE折叠,得到△PFE,连接CF.若AB=10,BC=12,则CF的最小值为.5.如图,正方形ABCD的边长为4,E为BC上一点,且1BE=,F为AB边上的一个动点,∆,连接CG,G的运动路径长为则CG的最小连接EF,以EF为边向右侧作等边EFG值为_______.6.(2020•清镇市校级模拟)如图,在平面直角坐标系中,A(﹣3,0),点B是y轴正半轴上一动点,以AB为边在AB的下方作等边△ABP,点B在y轴上运动时,连接OP,求OP的最小值.7.如图,AB为⊙O的直径,AB=4,点C为半圆AB上动点,以BC为边在⊙O外作正方形BCDE(点D在直线AB的上方),连接OD.当点C运动时,则线段OD的长最大值为.8.四边形ABCD是边长为4的正方形,点P是平面内一点.且满足BP⊥PC,现将点P绕点D顺时针旋转90度,则CQ的最大值=.。

初二瓜豆原理模型归纳总结

初二瓜豆原理模型归纳总结

初二瓜豆原理模型归纳总结
瓜豆原理是初二数学中的一个重要概念,也被称为“反比例关系”或“反比关系”。

它描述的是两个变量之间的关系,其中一个变量增加时,另一个变量会减少,反之亦然。

这种关系可以用一个反比例函数来表示。

瓜豆原理模型可以归纳总结如下:
1. 定义:瓜豆原理描述的是两个变量x和y之间的关系,满足条件xy = k,其中k是常数。

当k > 0时,x和y是反比关系;当k < 0时,x和y是正
比关系。

2. 性质:在反比例关系中,当一个变量增加时,另一个变量会减少,反之亦然。

这是由于它们的乘积是常数,所以当一个变量增大时,另一个变量必须减小才能保持乘积不变。

3. 图像:瓜豆原理可以用双曲线来表示。

当k > 0时,双曲线位于第一和第三象限;当k < 0时,双曲线位于第二和第四象限。

4. 应用:瓜豆原理在现实生活中有很多应用,如物体的自由落体运动、万有引力定律、速度与加速度的关系等。

它也用于解决一些实际问题,如人口增长问题、资源分配问题等。

5. 注意事项:在使用瓜豆原理时,需要注意以下几点。

首先,要确定两个变量之间是否存在瓜豆原理关系。

其次,要确定它们的乘积是否为常数。

最后,
要注意瓜豆原理的适用范围,它只适用于描述两个变量之间的关系,不能用于描述多个变量之间的关系。

总之,初二瓜豆原理模型是一个重要的数学概念,它描述了两个变量之间的反比关系,可以用于解决一些实际问题。

初中数学模型瓜豆原理

初中数学模型瓜豆原理

初中数学模型瓜豆原理数学模型是数学在实际问题中的应用,是通过抽象、建模和求解数学问题来解决实际问题的方法。

模型是对实际问题的简化和抽象,通过建立合适的数学关系、规则和方程式来描述实际问题的特征和规律。

数学模型具有普遍性、抽象性和规律性,可以帮助人们认识和理解实际问题,为实际问题提供解决方案。

数学模型的应用非常广泛,可以用于解决生物学、物理学、地理学、经济学等各种领域的问题。

其中,初中数学模型是指适用于初中学生的数学问题和实际应用的模型。

使用数学模型可以帮助学生理解和掌握数学知识,培养学生的创造性思维和解决问题的能力。

在初中数学中,有一种常见的模型叫做瓜豆原理。

瓜豆原理是指瓜与豆问题,在生活中常见。

例如:甲乙两个人一起干活,他们得到1000件商品,如果按瓜豆原理,甲乙两人分得的物品数量是不同的,甲比乙多得300件。

那么问题就是,甲和乙两人实际分得多少。

首先,我们可以假设甲和乙都分得了x件商品,那么按照瓜豆原理,我们可以列出方程:甲的商品数量=乙的商品数量+300。

即x=x+300。

然后,我们可以解这个方程,得到甲分得的商品数量是600,乙分得的商品数量是300。

瓜豆原理还可应用于其他问题,例如:一个瓜和三颗豆的质量是7千克,两个瓜和四颗豆的质量是12千克,那么一个瓜的质量是多少,一颗豆的质量是多少。

我们可以设一个瓜的质量为x,一颗豆的质量为y,按照瓜豆原理列方程:x+3y=7,2x+4y=12、然后我们可以解这个方程组,得到一个瓜的质量是2千克,一颗豆的质量是1千克。

通过瓜豆原理可以解决一些实际问题,帮助学生理解数学知识的应用和建立数学模型的过程。

同时,也可以培养学生的逻辑思维、分析问题和解决问题的能力。

总之,初中数学模型瓜豆原理是数学在实际问题中的应用,它可以帮助学生理解和掌握数学知识,培养学生的创造性思维和解决问题的能力。

通过研究和应用数学模型,学生可以不仅提高数学水平,还可以更好地理解和应用数学在实际生活中的作用。

初中数学的瓜豆原理

初中数学的瓜豆原理

初中数学的瓜豆原理小伙伴们!今天咱们来唠唠初中数学里超有趣的瓜豆原理。

你想啊,就像种瓜得瓜,种豆得豆一样。

在数学的奇妙世界里,也有这么个类似的情况呢。

比如说,有一个点A,它就像一颗小种子,按照一定的规则开始运动。

这个规则就像是土壤、阳光和水分对种子的影响。

然后呢,还有另外一个点B,这个点B 就像是点A的小跟班,点A怎么动,点B就跟着怎么动,而且它们的运动关系那是相当有规律的。

咱们来举个简单的例子哈。

假如点A在一条直线上匀速运动,就像一个小蚂蚁沿着一根小树枝稳稳地向前爬。

那这个时候点B呢,它可能和点A有着某种特殊的联系。

比如说点B始终是点A按照某个比例的缩放,或者是点B相对于点A有一个固定的角度和距离的变化。

这就好比点A是大蚂蚁,点B是小蚂蚁,大蚂蚁往哪走,小蚂蚁就跟着往相似的方向走,但是步伐大小或者走路的姿势有点小小的不同。

再想象一下,点A如果在一个圆上运动呢。

那这个点B可就更有趣啦。

它可能会在另外一个和这个圆相关的图形上运动。

比如说,如果点A在一个大圆上匀速转圈,点B可能就在一个小圆上以一种对应的方式转圈。

就好像是大圆是一个大舞台,小圆是一个小舞台,点A在大舞台上表演转圈舞,点B就在小舞台上跟着跳类似的舞蹈。

这瓜豆原理啊,有时候就像玩一个模仿游戏。

点A是被模仿的对象,点B是模仿者。

不过这个模仿可不是瞎模仿,而是有着精确的数学规则的。

我们要是能找到这个规则,那就像是找到了打开宝藏的钥匙。

我记得我刚学这个瓜豆原理的时候,那真是感觉像进入了一个神秘的数学迷宫。

看着那些点动来动去,就像一群调皮的小精灵。

有时候觉得点B的运动轨迹怎么这么难以捉摸呢?但是当你静下心来,仔细分析点A的运动方式,再找到它们之间的联系,就会突然有一种恍然大悟的感觉,就像在迷宫里突然找到了出口,那种感觉真的是超级棒!而且啊,瓜豆原理在解决一些几何问题的时候特别有用。

比如说要证明两个图形之间的关系,或者是求某个点的运动轨迹。

如果我们能发现这是瓜豆原理在作祟,那就能轻松地把复杂的问题简单化。

初中几何模型与解法--瓜豆原理

初中几何模型与解法--瓜豆原理

初中几何模型与解法——瓜豆原理例1、如图,P是圆O上一个动点,A为定点,连接AP,Q为AP中点.当点P在圆O 上运动时,Q点轨迹是什么?点Q轨迹是个圆,而我们还需确定的是此圆与圆O有什么关系?【分析】考虑到Q点始终为AP中点,连接AO,取AO中点M,则M点即为Q点轨迹圆圆心,根据三角形的中位线性质,半径MQ是OP一半,任意时刻,均有△AMQ∽△AOP,QM:PO=AQ:AP=1:2.【小结】确定Q点轨迹圆即确定其圆心与半径,由A、Q、P共线可得:A、M、O三点共线,由Q 为AP中点可得:AM=1/2AO.Q点轨迹相当于是P点轨迹成比例缩放.例2、如图,P是圆O上一个动点,A为定点,连接AP,作AQ⊥AP且AQ=AP.当点P 在圆O上运动时,Q点轨迹是?Q点轨迹是个圆,可理解为将AP绕点A逆时针旋转90°得AQ,故Q点轨迹与P点轨迹都是圆.接下来确定圆心与半径.【分析】考虑AP⊥AQ,可得Q点轨迹圆圆心M满足AM⊥AO;考虑AP=AQ,可得Q点轨迹圆圆心M满足AM=AO,且可得半径MQ=PO.即可确定圆M位置,任意时刻均有△APO≌△AQM.例3、如图,△APQ是直角三角形,∠PAQ=90°且AP=2AQ,当P在圆O运动时,Q点轨迹是?【分析】考虑AP⊥AQ,可得Q点轨迹圆圆心M满足AM⊥AO;考虑AP:AQ=2:1,可得Q点轨迹圆圆心M满足AO:AM=2:1.即可确定圆M位置,任意时刻均有△APO∽△AQM,且相似比为2.【模型要素】为了便于区分动点P、Q,可称点P为“主动点”,点Q为“从动点”.【条件】两个定量主动点、从动点与定点连线的夹角是定量(∠PAQ是定值);主动点、从动点到定点的距离之比是定量(AP:AQ是定值).【结论】(1)主、从动点与定点连线的夹角等于两圆心与定点连线的夹角:∠PAQ=∠OAM;(2)主、从动点与定点的距离之比等于两圆心到定点的距离之比:AP:AQ=AO:AM,也等于两圆半径之比.按以上两点即可确定从动点轨迹圆,Q与P的关系相当于旋转+伸缩.古人云:种瓜得瓜,种豆得豆.“种”圆得圆,“种”线得线,谓之“瓜豆原理”.思考1如图,P是圆O上一个动点,A为定点,连接AP,以AP为一边作等边△APQ.考虑:当点P在圆O上运动时,Q点轨迹是?【分析】Q点满足(1)∠PAQ=60°;(2)AP=AQ,故Q点轨迹是个圆:考虑∠PAQ=60°,可得Q点轨迹圆圆心M满足∠MAO=60°;考虑AP=AQ,可得Q点轨迹圆圆心M满足AM=AO,且可得半径MQ=PO.即可确定圆M位置,任意时刻均有△APO≌△AQM.【小结】可以理解AQ由AP旋转得来,故圆M亦由圆O旋转得来,旋转角度与缩放比例均等于AP与AQ的位置和数量关系.思考2如图,P是圆O上一个动点,A为定点,连接AP,以AP为斜边作等腰直角△APQ.考虑:当点P在圆O上运动时,如何作出Q点轨迹?【分析】Q点满足(1)∠PAQ=45°;(2)AP:AQ=根号2:1,故Q点轨迹是个圆.连接AO,构造∠OAM=45°且AO:AM=根号2:1.M点即为Q点轨迹圆圆心,此时任意时刻均有△AOP∽△AMQ.即可确定点Q的轨迹圆.真题战场1.如图,点P(3,4),圆P半径为2,A(2.8,0),B(5.6,0),点M是圆P上的动点,点C是MB的中点,则AC的最小值是_______.2.如图,在等腰Rt△ABC中,AC=BC=2倍根号2,点P在以斜边AB为直径的半圆上,M为PC的中点,当半圆从点A运动至点B时,点M运动的路径长为________.3.如图,正方形ABCD中,AB=2倍根号5,O是BC边的中点,点E是正方形内一动点,OE=2,连接DE,将线段DE绕点D逆时针旋转90°得DF,连接AE、CF.求线段OF长的最小值.4.△ABC中,AB=4,AC=2,以BC为边在△ABC外作正方形BCDE,BD、CE交于点O,则线段AO的最大值为______.【真题解析】1.【分析】M点为主动点,C点为从动点,B点为定点.考虑C是BM中点,可知C点轨迹:取BP中点O,以O为圆心,OC为半径作圆,即为点C轨迹.当A、C、O三点共线且点C在线段OA上时,AC取到最小值,根据B、P坐标求O,利用两点间距离公式求得OA,再减去OC即可.2.【分析】考虑C、M、P共线及M是CP中点,可确定M点轨迹:取AB中点O,连接CO取CO中点D,以D为圆心,DM为半径作圆D分别交AC、BC于E、F两点,则弧EF即为M点轨迹.当然,若能理解M点与P点轨迹关系,可直接得到M点的轨迹长为P点轨迹长一半,即可解决问题.3.【分析】E是主动点,F是从动点,D是定点,E点满足EO=2,故E点轨迹是以O为圆心,2为半径的圆.考虑DE⊥DF且DE=DF,故作DM⊥DO且DM=DO,F点轨迹是以点M为圆心,2为半径的圆.直接连接OM,与圆M交点即为F点,此时OF最小.可构造三垂直全等求线段长,再利用勾股定理求得OM,减去MF即可得到OF的最小值.4.【分析】考虑到AB、AC均为定值,可以固定其中一个,比如固定AB,将AC看成动线段,由此引发正方形BCED的变化,求得线段AO的最大值.根据AC=2,可得C点轨迹是以点A为圆心,2为半径的圆.接下来题目求AO的最大值,所以确定O点轨迹即可,观察△BOC是等腰直角三角形,锐角顶点C的轨迹是以点A为圆心,2为半径的圆,所以O点轨迹也是圆,以AB为斜边构造等腰直角三角形,直角顶点M即为点O轨迹圆圆心.连接AM并延长与圆M交点即为所求的点O,此时AO最大,根据AB先求AM,再根据BC与BO的比值可得圆M的半径与圆A半径的比值,得到MO,相加即得AO.此题方法也不止这一种,比如可以根据——等边共顶点,构造旋转型全等,如下构造旋转,当A、C、A’共线时,可得AO最大值.。

初中数学最值系列之瓜豆原理

初中数学最值系列之瓜豆原理

最值系列之瓜豆原理在辅助圆问题中,我们了解了求关于动点最值问题的方式之一——求出动点轨迹,即可求出关于动点的最值.本文继续讨论另一类动点引发的最值问题,在此类题目中,题目或许先描述的是动点P,但最终问题问的可以是另一点Q,当然P、Q之间存在某种联系,从P点出发探讨Q点运动轨迹并求出最值,为常规思路.一、轨迹之圆篇引例1:如图,P是圆O上一个动点,A为定点,连接AP,Q为AP中点.考虑:当点P在圆O上运动时,Q点轨迹是?【分析】观察动图可知点Q轨迹是个圆,而我们还需确定的是此圆与圆O有什么关系?考虑到Q点始终为AP中点,连接AO,取AO中点M,则M点即为Q点轨迹圆圆心,半径MQ是OP一半,任意时刻,均有△AMQ∽△AOP,QM:PO=AQ:AP=1:2.【小结】确定Q点轨迹圆即确定其圆心与半径,由A、Q、P始终共线可得:A、M、O三点共线,由Q为AP中点可得:AM=1/2AO.Q点轨迹相当于是P点轨迹成比例缩放.根据动点之间的相对位置关系分析圆心的相对位置关系;根据动点之间的数量关系分析轨迹圆半径数量关系.引例2:如图,P是圆O上一个动点,A为定点,连接AP,作AQ⊥AP且AQ=AP.考虑:当点P在圆O上运动时,Q点轨迹是?Q【分析】Q点轨迹是个圆,可理解为将AP绕点A逆时针旋转90°得AQ,故Q点轨迹与P 点轨迹都是圆.接下来确定圆心与半径.考虑AP⊥AQ,可得Q点轨迹圆圆心M满足AM⊥AO;考虑AP=AQ,可得Q点轨迹圆圆心M满足AM=AO,且可得半径MQ=PO.即可确定圆M位置,任意时刻均有△APO≌△AQM.引例3:如图,△APQ是直角三角形,∠P AQ=90°且AP=2AQ,当P在圆O运动时,Q点轨迹是?【分析】考虑AP⊥AQ,可得Q点轨迹圆圆心M满足AM⊥AO;考虑AP:AQ=2:1,可得Q点轨迹圆圆心M满足AO:AM=2:1.即可确定圆M位置,任意时刻均有△APO∽△AQM,且相似比为2.【模型总结】为了便于区分动点P、Q,可称点P为“主动点”,点Q为“从动点”.此类问题的必要条件:两个定量主动点、从动点与定点连线的夹角是定量(∠P AQ是定值);主动点、从动点到定点的距离之比是定量(AP:AQ是定值).Q【结论】(1)主、从动点与定点连线的夹角等于两圆心与定点连线的夹角:∠P AQ=∠OAM;(2)主、从动点与定点的距离之比等于两圆心到定点的距离之比:AP:AQ=AO:AM,也等于两圆半径之比.按以上两点即可确定从动点轨迹圆,Q与P的关系相当于旋转+伸缩.古人云:种瓜得瓜,种豆得豆.“种”圆得圆,“种”线得线,谓之“瓜豆原理”.【思考1】:如图,P是圆O上一个动点,A为定点,连接AP,以AP为一边作等边△APQ.考虑:当点P在圆O上运动时,Q点轨迹是?【分析】Q点满足(1)∠P AQ=60°;(2)AP=AQ,故Q点轨迹是个圆:考虑∠P AQ=60°,可得Q点轨迹圆圆心M满足∠MAO=60°;考虑AP=AQ,可得Q点轨迹圆圆心M满足AM=AO,且可得半径MQ=PO.即可确定圆M位置,任意时刻均有△APO≌△AQM.【小结】可以理解AQ由AP旋转得来,故圆M亦由圆O旋转得来,旋转角度与缩放比例均等于AP与AQ的位置和数量关系.【思考2】如图,P是圆O上一个动点,A为定点,连接AP,以AP为斜边作等腰直角△APQ.考虑:当点P在圆O上运动时,如何作出Q点轨迹?【分析】Q点满足(1)∠P AQ=45°;(2)AP:AQ1,故Q点轨迹是个圆.连接AO,构造∠OAM=45°且AO:AM:1.M点即为Q点轨迹圆圆心,此时任意时刻均有△AOP∽△AMQ.即可确定点Q的轨迹圆.【练习】如图,点P(3,4),圆P半径为2,A(2.8,0),B(5.6,0),点M是圆P上的动点,点C是MB的中点,则AC的最小值是_______.【分析】M点为主动点,C点为从动点,B点为定点.考虑C是BM中点,可知C点轨迹:取BP中点O,以O为圆心,OC为半径作圆,即为点C轨迹.当A、C、O三点共线且点C在线段OA上时,AC取到最小值,根据B、P坐标求O,利用两点间距离公式求得OA,再减去OC即可.【2016武汉中考】如图,在等腰Rt △ABC 中,AC =BC=P 在以斜边AB 为直径的半圆上,M 为PC 的中点,当半圆从点A 运动至点B 时,点M 运动的路径长为________.【分析】考虑C 、M 、P 共线及M 是CP 中点,可确定M 点轨迹:取AB 中点O ,连接CO 取CO 中点D ,以D 为圆心,DM 为半径作圆D 分别交AC 、BC 于E 、F 两点,则弧EF 即为M 点轨迹.当然,若能理解M 点与P 点轨迹关系,可直接得到M点的轨迹长为P 点轨迹长一半,即可解决问题.【2018南通中考】如图,正方形ABCD 中,AB O 是BC 边的中点,点E 是正方形内一动点,OE =2,连接DE ,将线段DE 绕点D 逆时针旋转90°得DF ,连接AE 、CF .求线段OF 长的最小值.OABCDE F【分析】E 是主动点,F 是从动点,D 是定点,E 点满足EO =2,故E 点轨迹是以O 为圆心,2为半径的圆.F考虑DE⊥DF且DE=DF,故作DM⊥DO且DM=DO,F点轨迹是以点M为圆心,2为半径的圆.直接连接OM,与圆M交点即为F点,此时OF最小.可构造三垂直全等求线段长,再利用勾股定理求得OM,减去MF即可得到OF的最小值.【练习】△ABC 中,AB =4,AC =2,以BC 为边在△ABC 外作正方形BCDE ,BD 、CE 交于点O ,则线段AO 的最大值为_____________.AB CDE O【分析】考虑到AB 、AC 均为定值,可以固定其中一个,比如固定AB ,将AC 看成动线段,由此引发正方形BCED 的变化,求得线段AO 的最大值.根据AC =2,可得C 点轨迹是以点A 为圆心,2为半径的圆.OEDCBA接下来题目求AO 的最大值,所以确定O 点轨迹即可,观察△BOC 是等腰直角三角形,锐角顶点C 的轨迹是以点A 为圆心,2为半径的圆,所以O 点轨迹也是圆,以AB 为斜边构造等腰直角三角形,直角顶点M 即为点O 轨迹圆圆心.连接AM 并延长与圆M 交点即为所求的点O ,此时AO 最大,根据AB 先求AM ,再根据BC 与BO 的比值可得圆M 的半径与圆A 半径的比值,得到MO ,相加即得AO .此题方法也不止这一种,比如可以如下构造旋转,当A 、C 、A ’共线时,可得AO最大值.A'或者直接利用托勒密定理可得最大值.二、轨迹之线段篇引例:如图,P是直线BC上一动点,连接AP,取AP中点Q,当点P在BC上运动时,Q点轨迹是?【分析】当P点轨迹是直线时,Q点轨迹也是一条直线.可以这样理解:分别过A、Q向BC作垂线,垂足分别为M、N,在运动过程中,因为AP=2AQ,所以QN始终为AM的一半,即Q点到BC的距离是定值,故Q点轨迹是一条直线.【引例】如图,△APQ是等腰直角三角形,∠P AQ=90°且AP=AQ,当点P在直线BC上运动时,求Q点轨迹?【分析】当AP与AQ夹角固定且AP:AQ为定值的话,P、Q轨迹是同一种图形.当确定轨迹是线段的时候,可以任取两个时刻的Q点的位置,连线即可,比如Q 点的起始位置和终点位置,连接即得Q点轨迹线段.Q2AB CQ1【模型总结】 必要条件:主动点、从动点与定点连线的夹角是定量(∠P AQ 是定值); 主动点、从动点到定点的距离之比是定量(AP :AQ 是定值). 结论:P 、Q 两点轨迹所在直线的夹角等于∠P AQ (当∠P AQ ≤90°时,∠P AQ 等于MN 与BC 夹角)P 、Q 两点轨迹长度之比等于AP :AQ (由△ABC ∽△AMN ,可得AP :AQ =BC :MN )【2017姑苏区二模】如图,在等边△ABC 中,AB =10,BD =4,BE =2,点P 从点E 出发沿EA 方向运动,连结PD ,以PD 为边,在PD 的右侧按如图所示的方式作等边△DPF ,当点P 从点E 运动到点A 时,点F 运动的路径长是________.A【分析】根据△DPF 是等边三角形,所以可知F 点运动路径长与P 点相同,P 从E 点运动到A 点路径长为8,故此题答案为8.【2013湖州中考】如图,已知点A是第一象限内横坐标为AC⊥x轴于点M,交直线y=-x于点N,若点P是线段ON上的一个动点,∠APB=30°,BA⊥P A,则点P在线段ON上运动时,A点不变,B点随之运动.求当点P从点O 运动到点N时,点B运动的路径长是________.【分析】根据∠P AB=90°,∠APB=30°可得:AP:AB,故B点轨迹也是线段,且P点轨迹路径长与B,P点轨迹长ON为B点轨迹长为【练习】如图,在平面直角坐标系中,A(-3,0),点B是y轴正半轴上一动点,点C、D在x正半轴上,以AB为边在AB的下方作等边△ABP,点B在y轴上运动时,求OP的最小值.【分析】求OP是等边三角形且B点在直线上运动,故可知P点轨迹也是直线.取两特殊时刻:(1)当点B与点O重合时,作出P点位置P1;(2)当点B在x轴上方且AB与x轴夹角为60°时,作出P点位置P2.连接P1P2,即为P点轨迹.根据∠ABP =60°可知:12P P 与y 轴夹角为60°,作OP ⊥12P P ,所得OP 长度即为最小值,OP 2=OA =3,所以OP =32.【2019宿迁中考】如图,正方形ABCD 的边长为4,E 为BC 上一点,且BE =1,F 为AB 边上的一个动点,连接EF ,以EF 为边向右侧作等边△EFG ,连接CG ,则CG 的最小值为 .【分析】同样是作等边三角形,区别于上一题求动点路径长,本题是求CG 最小值,可以将F 点看成是由点B 向点A 运动,由此作出G 点轨迹:考虑到F 点轨迹是线段,故G 点轨迹也是线段,取起点和终点即可确定线段位置,初始时刻G 点在1G 位置,最终G 点在2G 位置(2G 不一定在CD 边),12G G 即为G 点运动轨迹.G 2CG 最小值即当CG ⊥12G G 的时候取到,作CH ⊥12G G 于点H ,CH 即为所求的最小值.GABCDEF根据模型可知:12G G 与AB 夹角为60°,故12G G ⊥1EG .过点E 作EF ⊥CH 于点F ,则HF =1G E =1,CF =1322CE =,所以CH =52,因此CG 的最小值为52.G 2三、轨迹之其他图形篇所谓“瓜豆原理”,就是主动点的轨迹与从动点的轨迹是相似性,根据主、从动点与定点连线形成的夹角以及主、从动点到定点的距离之比,可确定从动点的轨迹,而当主动点轨迹是其他图形时,从动点轨迹必然也是.【2016乐山中考】如图,在反比例函数2y x=-的图像上有一个动点A ,连接AO 并延长交图像的另一支于点B ,在第一象限内有一点C ,满足AC =BC ,当点A 运动时,点C 始终在函数ky x=的图像上运动,若tan ∠CAB =2,则k的值为( )A .2B .4C .6D .8【分析】∠AOC=90°且AO:OC=1:2,显然点C的轨迹也是一条双曲线,分别作AM、CN垂直x轴,垂足分别为M、N,连接OC,易证△AMO∽△ONC,∴CN=2OM,ON=2AM,∴ON·CN=4AM·OM,故k=4×2=8.【思考】若将条件“tan∠CAB=2”改为“△ABC是等边三角形”,k会是多少?【练习】如图,A(-1,1),B(-1,4),C(-5,4),点P是△ABC边上一动点,连接OP,以OP为斜边在OP的右上方作等腰直角△OPQ,当点P在△ABC边上运动一周时,点Q的轨迹形成的封闭图形面积为________.【分析】根据△OPQ是等腰直角三角形可得:Q点运动轨迹与P点轨迹形状相同,根据OP:OQ,可得P点轨迹图形与Q,故面积比为2:1,△ABC面积为1/2×3×4=6,故Q点轨迹形成的封闭图形面积为3.【小结】根据瓜豆原理,类似这种求从动点轨迹长或者轨迹图形面积,根据主动点轨迹推导即可,甚至无需作图.【练习】如图所示,AB =4,AC =2,以BC 为底边向上构造等腰直角三角形BCD ,连接AD 并延长至点P ,使AD =PD ,则PB 的取值范围为___________.ABCDP【分析】固定AB 不变,AC =2,则C 点轨迹是以A 为圆心,2为半径的圆,以BC 为斜边作等腰直角三角形BCD ,则D 点轨迹是以点M考虑到AP =2AD ,故P 点轨迹是以N 为圆心,即可求出PB 的取值范围.。

初中数学最值系列之瓜豆原理

初中数学最值系列之瓜豆原理

最值系列之瓜豆原理在辅助圆问题中,我们了解了求关于动点最值问题的方式之一——求出动点轨迹,即可求出关于动点的最值.本文继续讨论另一类动点引发的最值问题,在此类题目中,题目或许先描述的是动点P,但最终问题问的可以是另一点Q,当然P、Q之间存在某种联系,从P点出发探讨Q点运动轨迹并求出最值,为常规思路.一、轨迹之圆篇引例1:如图,P是圆O上一个动点,A为定点,连接AP,Q为AP中点.考虑:当点P在圆O上运动时,Q 点轨迹是?A OQP【分析】观察动图可知点Q轨迹是个圆,而我们还需确定的是此圆与圆O有什么关系?考虑到Q点始终为AP中点,连接AO,取AO中点M,则M点即为Q点轨迹圆圆心,半径MQ是OP一半,任意时刻,均有△AMQ∽△AOP,QM:PO=AQ:AP=1:2.PQA MO【小结】确定Q点轨迹圆即确定其圆心与半径,由A、Q、P始终共线可得:A、M、O三点共线,由Q为AP中点可得:AM=1/2AO.Q点轨迹相当于是P点轨迹成比例缩放.根据动点之间的相对位置关系分析圆心的相对位置关系;根据动点之间的数量关系分析轨迹圆半径数量关系.1引例2:如图,P 是圆O 上一个动点,A 为定点,连接AP ,作AQ ⊥AP 且AQ =AP . 考虑:当点P 在圆O 上运动时,Q 点轨迹是?点轨迹是?OP QA【分析】Q 点轨迹是个圆,可理解为将AP 绕点A 逆时针旋转90°得AQ ,故Q 点轨迹与P点轨迹都是圆.接下来确定圆心与半径.点轨迹都是圆.接下来确定圆心与半径.考虑AP ⊥AQ ,可得Q 点轨迹圆圆心M 满足AM ⊥AO ;考虑AP =AQ ,可得Q 点轨迹圆圆心M 满足AM =AO ,且可得半径MQ =PO . 即可确定圆M 位置,任意时刻均有△APO ≌△AQM .MA QPO引例3:如图,△APQ 是直角三角形,∠P AQ =90°且AP =2AQ ,当P 在圆O 运动时,Q 点轨迹是?迹是?OPQA【分析】考虑AP ⊥AQ ,可得Q 点轨迹圆圆心M 满足AM ⊥AO ;考虑AP :AQ =2:1,可得Q 点轨迹圆圆心M 满足AO :AM =2:1. 即可确定圆M 位置,任意时刻均有△APO ∽△AQM ,且相似比为2.OPQM A【模型总结】【模型总结】为了便于区分动点P 、Q ,可称点P 为“主动点”,点Q 为“从动点”.此类问题的必要条件:两个定量此类问题的必要条件:两个定量主动点、从动点与定点连线的夹角是定量(∠P AQ 是定值); 主动点、从动点到定点的距离之比是定量(AP :AQ 是定值).αA QPOααOPQMA【结论】(1)主、从动点与定点连线的夹角等于两圆心与定点连线的夹角:)主、从动点与定点连线的夹角等于两圆心与定点连线的夹角: ∠P AQ =∠OAM ;(2)主、从动点与定点的距离之比等于两圆心到定点的距离之比:)主、从动点与定点的距离之比等于两圆心到定点的距离之比: AP :AQ =AO :AM ,也等于两圆半径之比.,也等于两圆半径之比.按以上两点即可确定从动点轨迹圆,Q 与P 的关系相当于旋转+伸缩.伸缩.古人云:种瓜得瓜,种豆得豆.“种”圆得圆,“种”线得线,谓之“瓜豆原理”.【思考1】:如图,P 是圆O 上一个动点,A 为定点,连接AP ,以AP 为一边作等边△APQ . 考虑:当点P 在圆O 上运动时,Q 点轨迹是?点轨迹是?OPA Q【分析】【分析】Q 点满足(1)∠P AQ =60°;(2)AP =AQ ,故Q 点轨迹是个圆:点轨迹是个圆: 考虑∠P AQ =60°,可得Q 点轨迹圆圆心M 满足∠MAO =60°;考虑AP =AQ ,可得Q 点轨迹圆圆心M 满足AM =AO ,且可得半径MQ =PO . 即可确定圆M 位置,任意时刻均有△APO ≌△AQM .60°MQAPO【小结】可以理解AQ 由AP 旋转得来,故圆M 亦由圆O 旋转得来,旋转角度与缩放比例均等于AP 与AQ 的位置和数量关系.的位置和数量关系.【思考2】如图,P 是圆O 上一个动点,A 为定点,连接AP ,以AP 为斜边作等腰直角△APQ . 考虑:当点P 在圆O 上运动时,如何作出Q 点轨迹?点轨迹?OPQA【分析】Q 点满足(1)∠P AQ =45°;(2)AP :AQ =2:1,故Q 点轨迹是个圆.点轨迹是个圆.连接AO ,构造∠OAM =45°且AO :AM =2:1.M 点即为Q 点轨迹圆圆心,点轨迹圆圆心,此时任意时刻均此时任意时刻均有△AOP ∽△AMQ .即可确定点Q 的轨迹圆.的轨迹圆.MOPQA【练习】如图,点P (3,4),圆P 半径为2,A (2.8,0),B (5.6,0),点M 是圆P 上的动点,点C 是MB 的中点,则AC 的最小值是_______.OyxA B CM P【分析】M 点为主动点,C 点为从动点,B 点为定点.考虑C 是BM 中点,可知C 点轨迹:取BP 中点O ,以O 为圆心,OC 为半径作圆,即为点C 轨迹.轨迹.OOyxABC M P当A 、C 、O 三点共线且点C 在线段OA 上时,AC 取到最小值,根据B 、P 坐标求O ,利用两点间距离公式求得OA ,再减去OC 即可.即可.OPMCBAxyO【2016武汉中考】如图,在等腰Rt △ABC 中,AC =BC =22,点P 在以斜边AB 为直径的半圆上,M 为PC 的中点,当半圆从点A 运动至点B 时,点M 运动的路径长为________.A BC MP【分析】考虑C 、M 、P 共线及M 是CP 中点,可确定M 点轨迹:点轨迹:取AB 中点O ,连接CO 取CO 中点D ,以D 为圆心,DM 为半径作圆D 分别交AC 、BC 于E 、F 两点,则弧EF 即为M 点轨迹.点轨迹.DEFOABCM P当然,若能理解M 点与P 点轨迹关系,可直接得到M点的轨迹长为P 点轨迹长一半,即可解决问题.半,即可解决问题.【2018南通中考】如图,正方形ABCD 中,25AB ,O 是BC 边的中点,点E 是正方形内一动点,OE =2,连接DE ,将线段DE 绕点D 逆时针旋转90°得DF ,连接AE 、CF .求线段OF 长的最小值.长的最小值.OABCDE F【分析】E 是主动点,F 是从动点,D 是定点,E 点满足EO =2,故E 点轨迹是以O 为圆心,2为半径的圆.为半径的圆.FEDCBAO考虑DE ⊥DF 且DE =DF ,故作DM ⊥DO 且DM =DO ,F 点轨迹是以点M 为圆心,2为半径的圆.为半径的圆.OABCDEFM直接连接OM ,与圆M 交点即为F 点,此时OF 最小.可构造三垂直全等求线段长,再利用勾股定理求得OM ,减去MF 即可得到OF 的最小值.的最小值.OABCDE FM【练习】△ABC 中,AB =4,AC =2,以BC 为边在△ABC 外作正方形BCDE ,BD 、CE 交于点O ,则线段AO 的最大值为_____________.AB CDE O【分析】考虑到AB 、AC 均为定值,可以固定其中一个,比如固定AB ,将AC 看成动线段,由此引发正方形BCED 的变化,求得线段AO 的最大值.的最大值.根据AC =2,可得C 点轨迹是以点A 为圆心,2为半径的圆.为半径的圆.OE DCBA接下来题目求AO 的最大值,所以确定O 点轨迹即可,观察△BOC 是等腰直角三角形,锐角顶点C 的轨迹是以点A 为圆心,2为半径的圆,所以O 点轨迹也是圆,以AB 为斜边构造等腰直角三角形,直角顶点M 即为点O 轨迹圆圆心.轨迹圆圆心.E DM ABCO连接AM 并延长与圆M 交点即为所求的点O ,此时AO 最大,根据AB 先求AM ,再根据BC 与BO 的比值可得圆M 的半径与圆A 半径的比值,得到MO ,相加即得AO .OCBAM DE此题方法也不止这一种,比如可以如下构造旋转,当A 、C 、A ’共线时,可得AO 最大值.最大值.AB CDEOA'或者直接利用托勒密定理可得最大值.或者直接利用托勒密定理可得最大值.二、轨迹之线段篇二、轨迹之线段篇引例:如图,P 是直线BC 上一动点,连接AP ,取AP 中点Q ,当点P 在BC 上运动时,Q 点轨迹是?点轨迹是?PQABC【分析】当P 点轨迹是直线时,Q 点轨迹也是一条直线.点轨迹也是一条直线.可以这样理解:分别过A 、Q 向BC 作垂线,垂足分别为M 、N ,在运动过程中,因为AP =2AQ ,所以QN 始终为AM 的一半,的一半,即即Q 点到BC 的距离是定值,的距离是定值,故故Q 点轨迹是一条直线.轨迹是一条直线.N CBAQP M【引例】如图,△APQ 是等腰直角三角形,∠P AQ =90°且AP =AQ ,当点P 在直线BC 上运动时,求Q 点轨迹?点轨迹?CB AQ P【分析】【分析】当当AP 与AQ 夹角固定且AP :AQ 为定值的话,P 、Q 轨迹是同一种图形.当确定轨迹是线段的时候,可以任取两个时刻的Q 点的位置,连线即可,比如Q 点的起始位置和终点位置,连接即得Q 点轨迹线段.点轨迹线段.Q 2Q 1ABC【模型总结】【模型总结】 必要条件:必要条件:主动点、从动点与定点连线的夹角是定量(∠P AQ 是定值); 主动点、从动点到定点的距离之比是定量(AP :AQ 是定值). 结论:结论:P 、Q 两点轨迹所在直线的夹角等于∠P AQ (当∠P AQ ≤90°时,∠P AQ 等于MN 与BC 夹角)夹角)MNααPQ A BCP 、Q 两点轨迹长度之比等于AP :AQ (由△ABC ∽△AMN ,可得AP :AQ =BC :MN )M NααA BC【2017姑苏区二模】如图,在等边△ABC 中,AB =10,BD =4,BE =2,点P 从点E 出发沿EA 方向运动,连结PD ,以PD 为边,在PD 的右侧按如图所示的方式作等边△DPF ,当点P 从点E 运动到点A 时,点F 运动的路径长是________.ABCDE FP【分析】根据△DPF 是等边三角形,所以可知F 点运动路径长与P 点相同,P 从E 点运动到A 点路径长为8,故此题答案为8.【2013湖州中考】如图,已知点A 是第一象限内横坐标为23的一个定点,AC ⊥x 轴于点M ,交直线y =-x 于点N ,若点P 是线段ON 上的一个动点,∠APB =30°,BA ⊥P A ,则点P 在线段ON 上运动时,A 点不变,B 点随之运动.求当点P 从点O 运动到点N 时,点B 运动的路径长是________.yxN MPACBO【分析】根据∠P AB =90°,∠APB =30°可得:AP :AB =3:1,故B 点轨迹也是线段,且P 点轨迹路径长与B 点轨迹路径长之比也为3:1,P 点轨迹长ON 为26,故B 点轨迹长为22.【练习】如图,在平面直角坐标系中,A (-3,0),点B 是y 轴正半轴上一动点,点C 、D 在x 正半轴上,以AB 为边在AB 的下方作等边△ABP ,点B 在y 轴上运动时,求OP 的最小值.的最小值.POABxy【分析】求OP 最小值需先作出P 点轨迹,根据△ABP 是等边三角形且B 点在直线上运动,故可知P 点轨迹也是直线.点轨迹也是直线.取两特殊时刻:(1)当点B 与点O 重合时,作出P 点位置P 1;(2)当点B 在x 轴上方且AB 与x 轴夹角为60°时,作出P 点位置P 2.连接P 1P 2,即为P 点轨迹.点轨迹.P 2P 1y xBAO根据∠ABP =60°可知:12P P 与y 轴夹角为60°,作OP ⊥12PP ,所得OP 长度即为最小值,OP 2=OA =3,所以OP =32.PP 2P 1y xBAO【2019宿迁中考】如图,正方形ABCD 的边长为4,E 为BC 上一点,且BE =1,F 为AB 边上的一个动点,连接EF ,以EF 为边向右侧作等边△EFG ,连接CG ,则CG 的最小值为的最小值为 .【分析】同样是作等边三角形,区别于上一题求动点路径长,本题是求CG 最小值,可以将F 点看成是由点B 向点A 运动,由此作出G 点轨迹:点轨迹:考虑到F 点轨迹是线段,点轨迹是线段,故故G 点轨迹也是线段,点轨迹也是线段,取起点和终点即可确定线段位置,取起点和终点即可确定线段位置,初始时刻G 点在1G 位置,最终G 点在2G 位置(2G 不一定在CD 边),12G G 即为G 点运动轨迹.点运动轨迹.G 2G 1ED CBACG 最小值即当CG ⊥12G G 的时候取到,作CH ⊥12G G 于点H ,CH 即为所求的最小值.小值.GA BCDEF根据模型可知:12G G 与AB 夹角为60°,故12G G ⊥1EG . 过点E 作EF ⊥CH 于点F ,则HF =1G E =1,CF =1322CE =,所以CH =52,因此CG 的最小值为52.F HG 2G 1ED CBA三、轨迹之其他图形篇三、轨迹之其他图形篇所谓“瓜豆原理”,就是主动点的轨迹与从动点的轨迹是相似性,根据主、,就是主动点的轨迹与从动点的轨迹是相似性,根据主、从动点与从动点与定点连线形成的夹角以及主、定点连线形成的夹角以及主、从动点到定点的距离之比,从动点到定点的距离之比,从动点到定点的距离之比,可确定从动点的轨迹,可确定从动点的轨迹,而当主动点轨迹是其他图形时,从动点轨迹必然也是.当主动点轨迹是其他图形时,从动点轨迹必然也是.【2016乐山中考】如图,在反比例函数2y x =-的图像上有一个动点A ,连接AO并延长交图像的另一支于点B ,在第一象限内有一点C ,满足AC =BC ,当点A 运动时,点C 始终在函数k y x=的图像上运动,若tan ∠CAB =2,则k 的值为(的值为( ) CBAOyxA .2B .4C .6D .8【分析】∠AOC =90°且AO :OC =1:2,显然点C 的轨迹也是一条双曲线,分别作AM 、CN 垂直x 轴,垂足分别为M 、N ,连接OC ,易证△AMO ∽△ONC ,∴CN =2OM ,ON =2AM ,∴ON ·CN =4AM ·OM ,故k =4×=4×2=82=8.NM xyOABC【思考】若将条件“tan ∠CAB =2”改为“△ABC 是等边三角形”,k 会是多少?会是多少?【练习】如图,A (-1,1),B (-1,4),C (-5,4),点P 是△ABC 边上一动点,连接OP ,以OP 为斜边在OP 的右上方作等腰直角△OPQ ,当点P 在△ABC 边上运动一周时,点Q 的轨迹形成的封闭图形面积为________.QCxyOA B P【分析】根据△OPQ 是等腰直角三角形可得:Q 点运动轨迹与P 点轨迹形状相同,根据OP :OQ =2:1,可得P 点轨迹图形与Q 点轨迹图形相似比为2:1,故面积比为2:1,△ABC 面积为1/2×1/2×3×3×3×4=64=6,故Q 点轨迹形成的封闭图形面积为3.【小结】根据瓜豆原理,类似这种求从动点轨迹长或者轨迹图形面积,类似这种求从动点轨迹长或者轨迹图形面积,根据主动点根据主动点轨迹推导即可,甚至无需作图.轨迹推导即可,甚至无需作图.【练习】如图所示,AB =4,AC =2,以BC 为底边向上构造等腰直角三角形BCD ,连接AD 并延长至点P ,使AD =PD ,则PB 的取值范围为___________.A BCDP【分析】固定AB 不变,AC =2,则C 点轨迹是以A 为圆心,2为半径的圆,以BC 为斜边作等腰直角三角形BCD ,则D 点轨迹是以点M 为圆心、2为半径的圆为半径的圆E MPD CBA考虑到AP =2AD ,故P 点轨迹是以N 为圆心,22为半径的圆,为半径的圆,即可求出即可求出PB 的取值范围.值范围.NEABCD PM。

中考专题模型线段最值问题瓜豆原理讲义和练习题(经典)

中考专题模型线段最值问题瓜豆原理讲义和练习题(经典)

教师姓名杨老师学生姓名年级初三上课时间学科数学课题名称轨迹问题解决方法之瓜豆原理教学目标1、掌握圆形轨迹最值问题2、掌握直线型轨迹最值问题3、掌握瓜豆原理勾画轨迹的问题轨迹问题解决方法之瓜豆原理【知识要点】在辅助圆问题中,我们了解了求关于动点最值问题的方式之一——求出动点轨迹,即可求出关于动点的最值.所以寻找到动点的轨迹,然后在计算,是一种不错的解决最值问题的方法。

本文讨论另一类动点引发的最值问题,在此类题目中,题目或许先描述的是动点P,但最终问题问的可以是另一点Q,当然P、Q之间存在某种联系,从P点出发探讨Q点运动轨迹并求出最值,为常规思路【例题精讲】知识点一、轨迹是圆1、如图,P是圆O上一个动点,A为定点,连接AP,Q为AP中点.当点P在圆O上运动时,Q点轨迹是?点Q轨迹是个圆,而我们还需确定的是此圆与圆O有什么关系?考虑到Q点始终为AP中点,连接AO,取AO中点M,则M点即为Q点轨迹圆圆心,半径MQ 是OP一半,任意时刻,均有△AMQ∽△AOP,QM:PO=AQ:AP=1:2.【小结】确定Q点轨迹圆即确定其圆心与半径,由A、Q、P共线可得:A、M、O三点共线,由Q为AP中点可得:AM=1/2AO.Q点轨迹相当于是P点轨迹成比例缩放2、如图,P是圆O上一个动点,A为定点,连接AP,作AQ⊥AP且AQ=AP.当点P在圆O上运动时,Q点轨迹是?Q点轨迹是个圆,可理解为将AP绕点A逆时针旋转90°得AQ,故Q点轨迹与P点轨迹都是圆.接下来确定圆心与半径.考虑AP⊥AQ,可得Q点轨迹圆圆心M满足AM⊥AO;考虑AP=AQ,可得Q点轨迹圆圆心M满足AM=AO,且可得半径MQ=PO.即可确定圆M位置,任意时刻均有△APO≌△AQM.2、如图,△APQ是直角三角形,∠PAQ=90°且AP=2AQ,当P在圆O运动时,Q点轨迹是?考虑AP⊥AQ,可得Q点轨迹圆圆心M满足AM⊥AO;考虑AP:AQ=2:1,可得Q点轨迹圆圆心M满足AO:AM=2:1.即可确定圆M位置,任意时刻均有△APO∽△AQM,且相似比为2.模型总结为了便于区分动点P、Q,可称点P为“主动点”,点Q为“从动点”.【条件】两个定量主动点、从动点与定点连线的夹角是定量(∠PAQ是定值);主动点、从动点到定点的距离之比是定量(AP:AQ是定值).(1)主、从动点与定点连线的夹角等于两圆心与定点连线的夹角:∠PAQ=∠OAM;(2)主、从动点与定点的距离之比等于两圆心到定点的距离之比:AP:AQ=AO:AM,也等于两圆半径之比.按以上两点即可确定从动点轨迹圆,Q与P的关系相当于旋转+伸缩.思考1如图,P是圆O上一个动点,A为定点,连接AP,以AP为一边作等边△APQ.考虑:当点P在圆O上运动时,Q点轨迹是?如图,P是圆O上一个动点,A为定点,连接AP,以AP为斜边作等腰直角△APQ.考虑:当点P在圆O上运动时,如何作出Q点轨迹?真题战场2016余姚模拟1.如图,点P(3,4),圆P半径为2,A(2.8,0),B(5.6,0),点M是圆P上的动点,点C是MB 的中点,则AC的最小值是_______.2.如图,点A、B的坐标分别是A(2,0),B(0,2)点C为坐标平面内一点,BC=1,点M为线段AC的中点,链接OM,则OM的最大值是多少()4.如图,在等腰Rt△ABC中,AC=BC=2倍根号2,点P在以斜边AB为直径的半圆上,M为PC 的中点,当半圆从点A运动至点B时,点M运动的路径长为________.2018南通中考如图,正方形ABCD中,AB=2倍根号5,O是BC边的中点,点E是正方形内一动点,OE=2,连接DE,将线段DE绕点D逆时针旋转90°得DF,连接AE、CF.求线段OF长的最小值.【课堂总结】1.2.3.4.【课后练习】一条隐藏的瓜豆△ABC中,AB=4,AC=2,以BC为边在△ABC外作正方形BCDE,BD、CE交于点O,则线段AO的最大值为______.。

瓜豆原理模型

瓜豆原理模型

瓜豆原理模型
若两动点到某定点的距离比是定值,夹角是定角,则两动点的运动路径相同。

瓜豆原理是主从联动轨迹问题。

主动点叫做瓜,从动点叫做豆,瓜在直线上运动,豆的运动轨迹也是直线。

瓜在圆周上运动,豆的运动轨迹也是圆。

关键是作出从动点的运动轨迹,根据主动点的特殊位置点,作出从动点的特殊点,从而连成轨迹。

在辅助圆问题中,我们了解了求关于动点最值问题的方式之一——求出动点轨迹,即可求出关于动点的最值.
本文继续讨论另一类动点引发的最值问题,在此类题目中,题目或许先描述的是动点P,但最终问题问的可以是另一点Q,当然P、Q之间存在某种联系,从P点出发探讨Q点运动轨迹并求出最值,为常规思路.
一、轨迹之圆篇
引例1:如图,P是圆O上一个动点,A为定点,连接AP,Q为AP中点.
考虑:当点P在圆O上运动时,Q点轨迹是?
分析】观察动图可知点Q轨迹是个圆,而我们还需确定的是此圆与圆O有什么关系?
考虑到Q点始终为AP中点,连接AO,取AO中点M,则M 点即为Q点轨迹圆圆心,半径MQ是OP一半,任意时刻,均有△AMQ∽△AOP,QM:PO=AQ:AP=1:2.
【小结】确定Q点轨迹圆即确定其圆心与半径,
由A、Q、P始终共线可得:A、M、O三点共线,
由Q为AP中点可得:AM=1/2AO.
Q点轨迹相当于是P点轨迹成比例缩放.
根据动点之间的相对位置关系分析圆心的相对位置关系;
根据动点之间的数量关系
分析轨迹圆半径数量关系.
此题方法也不止这一种,比如可以如下构造旋转,当A、C、A’共线时,可得AO最大值.。

直角三角形里的瓜豆原理

直角三角形里的瓜豆原理

直角三角形里的瓜豆原理瓜豆原理,是指在直角三角形中,斜边的平方等于两直角边平方和。

这个简单而又重要的原理在几何学中起到了至关重要的作用,它不仅仅是一条数学定理,更是我们生活中的一个隐喻。

让我们一起来探索这个原理背后的故事吧。

小时候,我曾听过一个关于瓜豆原理的故事,讲的是一个叫小明的男孩。

小明从小就对数学很感兴趣,每当他看到直角三角形,就会想到瓜豆原理。

他总是充满好奇地观察着周围的事物,试图找到直角三角形的身影。

有一天,小明在家里的菜园里发现了一个瓜藤。

他看着那个藤蔓盘旋着生长,心中不禁想起了瓜豆原理。

他想要证明这个原理是否适用于瓜藤的生长过程。

小明开始仔细观察瓜藤的生长情况。

他发现,瓜藤的主茎向上生长,依靠着旁边的支架扶持着。

而这个主茎与地面之间形成了一个直角三角形。

小明心中一亮,他决定测量一下这个直角三角形的三边长度。

小明拿出了一个卷尺,开始测量。

他发现,瓜藤的主茎的长度是3米,而与地面呈直角的支架的长度是4米。

他立刻意识到,这是一个符合瓜豆原理的直角三角形。

根据瓜豆原理,斜边的平方等于两直角边平方和,那么这个直角三角形的斜边的长度应该是5米。

小明兴奋地将结果告诉了父母。

父母听后,也对他的发现感到惊讶和鼓励。

他们告诉小明,瓜豆原理不仅仅适用于数学,它还蕴含着生活的智慧。

父母告诉小明,人生就像瓜藤一样,需要借助外力才能茁壮成长。

而我们的努力和奋斗,就是支撑我们成长的支架。

正如瓜豆原理所示,只有当我们把两个直角边的力量相加,才能达到斜边的强大力量。

小明深以为然,他决心在以后的日子里,好好利用瓜豆原理这个道理,努力学习,不断进步。

从此以后,小明在他的学习和生活中都始终牢记瓜豆原理。

他明白,只有不断提升自己的能力,才能迎接生活中的挑战。

正如瓜藤需要借助支架才能向上生长,我们也需要借助知识和技能才能不断前进。

通过这个故事,我们可以看到瓜豆原理的意义远不止于数学定理,它是我们生活的一部分。

它提醒我们,只有凭借努力和智慧,我们才能在人生的道路上走得更远。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初中几何模型与解法——瓜豆原理
例1、如图,P是圆O上一个动点,A为定点,连接AP,Q为AP中点.当点P在圆O 上运动时,Q点轨迹是什么?
点Q轨迹是个圆,而我们还需确定的是此圆与圆O有什么关系?
【分析】
考虑到Q点始终为AP中点,连接AO,取AO中点M,则M点即为Q点轨迹圆圆心,根据三角形的中位线性质,半径MQ是OP一半,任意时刻,均有△AMQ∽△AOP,
QM:PO=AQ:AP=1:2.
【小结】
确定Q点轨迹圆即确定其圆心与半径,由A、Q、P共线可得:A、M、O三点共线,由Q 为AP中点可得:AM=1/2AO.Q点轨迹相当于是P点轨迹成比例缩放.
例2、如图,P是圆O上一个动点,A为定点,连接AP,作AQ⊥AP且AQ=AP.当点P 在圆O上运动时,Q点轨迹是?
Q点轨迹是个圆,可理解为将AP绕点A逆时针旋转90°得AQ,故Q点轨迹与P点轨迹都是圆.接下来确定圆心与半径.
【分析】
考虑AP⊥AQ,可得Q点轨迹圆圆心M满足AM⊥AO;
考虑AP=AQ,可得Q点轨迹圆圆心M满足AM=AO,且可得半径MQ=PO.
即可确定圆M位置,任意时刻均有△APO≌△AQM.
例3、如图,△APQ是直角三角形,∠PAQ=90°且AP=2AQ,当P在圆O运动时,Q点轨迹是?
【分析】
考虑AP⊥AQ,可得Q点轨迹圆圆心M满足AM⊥AO;
考虑AP:AQ=2:1,可得Q点轨迹圆圆心M满足AO:AM=2:1.
即可确定圆M位置,任意时刻均有△APO∽△AQM,且相似比为2.
【模型要素】
为了便于区分动点P、Q,可称点P为“主动点”,点Q为“从动点”.
【条件】两个定量
主动点、从动点与定点连线的夹角是定量(∠PAQ是定值);
主动点、从动点到定点的距离之比是定量(AP:AQ是定值).
【结论】
(1)主、从动点与定点连线的夹角等于两圆心与定点连线的夹角:∠PAQ=∠OAM;(2)主、从动点与定点的距离之比等于两圆心到定点的距离之比:AP:AQ=AO:AM,也等于两圆半径之比.
按以上两点即可确定从动点轨迹圆,Q与P的关系相当于旋转+伸缩.
古人云:种瓜得瓜,种豆得豆.“种”圆得圆,“种”线得线,谓之“瓜豆原理”.
思考1
如图,P是圆O上一个动点,A为定点,连接AP,以AP为一边作等边△APQ.
考虑:当点P在圆O上运动时,Q点轨迹是?
【分析】
Q点满足(1)∠PAQ=60°;(2)AP=AQ,故Q点轨迹是个圆:
考虑∠PAQ=60°,可得Q点轨迹圆圆心M满足∠MAO=60°;
考虑AP=AQ,可得Q点轨迹圆圆心M满足AM=AO,且可得半径MQ=PO.
即可确定圆M位置,任意时刻均有△APO≌△AQM.
【小结】
可以理解AQ由AP旋转得来,故圆M亦由圆O旋转得来,旋转角度与缩放比例均等于AP与AQ的位置和数量关系.
思考2
如图,P是圆O上一个动点,A为定点,连接AP,以AP为斜边作等腰直角△APQ.
考虑:当点P在圆O上运动时,如何作出Q点轨迹?
【分析】
Q点满足(1)∠PAQ=45°;(2)AP:AQ=根号2:1,故Q点轨迹是个圆.
连接AO,构造∠OAM=45°且AO:AM=根号2:1.M点即为Q点轨迹圆圆心,此时任意时刻均有
△AOP∽△AMQ.即可确定点Q的轨迹圆.
真题战场
1.如图,点P(3,4),圆P半径为2,A(2.8,0),B(5.6,0),点M是圆P上的动点,点C是MB的中点,则AC的最小值是_______.
2.如图,在等腰Rt△ABC中,AC=BC=2倍根号2,点P在以斜边AB为直径的半圆上,M为PC的中点,当半圆从点A运动至点B时,点M运动的路径长为________.
3.如图,正方形ABCD中,AB=2倍根号5,O是BC边的中点,点E是正方形内一动点,OE=2,连接DE,将线段DE绕点D逆时针旋转90°得DF,连接AE、CF.求线段OF长的最小值.
4.△ABC中,AB=4,AC=2,以BC为边在△ABC外作正方形BCDE,BD、CE交于点O,则线段AO的最大值为______.
【真题解析】
1.【分析】M点为主动点,C点为从动点,B点为定点.考虑C是BM中点,可知C点轨迹:取BP中点O,以O为圆心,OC为半径作圆,即为点C轨迹.
当A、C、O三点共线且点C在线段OA上时,AC取到最小值,根据B、P坐标求O,利用两点间距离公式求得OA,再减去OC即可.
2.【分析】考虑C、M、P共线及M是CP中点,可确定M点轨迹:
取AB中点O,连接CO取CO中点D,以D为圆心,DM为半径作圆D分别交AC、BC于E、F两点,则弧EF即为M点轨迹.
当然,若能理解M点与P点轨迹关系,可直接得到M点的轨迹长为P点轨迹长一半,即可解决问题.
3.【分析】E是主动点,F是从动点,D是定点,E点满足EO=2,故E点轨迹是以O为圆心,2为半径的圆.
考虑DE⊥DF且DE=DF,故作DM⊥DO且DM=DO,F点轨迹是以点M为圆心,2为半径的圆.
直接连接OM,与圆M交点即为F点,此时OF最小.可构造三垂直全等求线段长,再利用勾股定理求得OM,减去MF即可得到OF的最小值.
4.【分析】考虑到AB、AC均为定值,可以固定其中一个,比如固定AB,将AC看成动线段,由此引发正方形BCED的变化,求得线段AO的最大值.
根据AC=2,可得C点轨迹是以点A为圆心,2为半径的圆.
接下来题目求AO的最大值,所以确定O点轨迹即可,观察△BOC是等腰直角三角形,锐角顶点C的轨迹是以点A为圆心,2为半径的圆,所以O点轨迹也是圆,以AB为斜边构造等腰直角三角形,直角顶点M即为点O轨迹圆圆心.
连接AM并延长与圆M交点即为所求的点O,此时AO最大,根据AB先求AM,再根据BC与BO的比值可得圆M的半径与圆A半径的比值,得到MO,相加即得AO.
此题方法也不止这一种,比如可以根据——等边共顶点,构造旋转型全等,如下构造旋转,当A、C、A’共线时,可得AO最大值.。

相关文档
最新文档