核酸的提取经验及原理总结

合集下载

核酸提取磁珠法原理

核酸提取磁珠法原理

核酸提取磁珠法原理
核酸提取磁珠法是一种利用磁珠上的亲和基团与核酸靶分子特异性结合的原理来纯化和提取核酸的方法。

该方法基于磁珠具有磁性的特性,使其能够通过磁力吸附和分离。

核酸提取磁珠法的原理如下:
1. 表面修饰:磁珠表面通常会修饰上与核酸分子相互吸附的功能性基团,如亲和基团、融合蛋白或短链引物。

这些亲和基团具有特异性和高亲和力,可以与目标核酸的特定序列或结构相结合。

2. 样品处理:将待提取的核酸样品加入到磁珠悬浮液中,样品中的核酸分子会与磁珠表面的亲和基团发生特异性结合。

同时,通过调节条件(如pH、盐浓度和温度),可以优化核酸与磁
珠之间的结合效果。

3. 磁性分离:使用外部磁场或磁力装置,将磁珠定位于管壁或底部,使其与其余液相分离。

磁珠的磁性能够快速地在磁力作用下聚集,使得磁珠能够被方便地沉淀在容器的底部,而上清液相中残余的杂质则会被分离。

4. 洗脱和回收:通过改变溶液条件,如改变pH或盐浓度,可
以解离核酸与磁珠的结合。

这样,纯化的核酸分子可以从磁珠上洗脱下来,从而得到目标核酸的纯度较高的样品。

核酸提取磁珠法具有高度的选择性和特异性,能够有效去除样
品中的杂质,并获取较高纯度的核酸样本。

此外,磁珠法还具有操作简单、高通量和自动化的优点,因此在分子生物学、遗传学和临床诊断等领域广泛应用。

核酸提取原理及方法

核酸提取原理及方法

核酸提取原理及方法核酸提取是分子生物学实验中的重要步骤,它是从细胞或组织中分离出核酸并净化的过程。

核酸提取的成功与否直接影响到后续的实验结果,因此掌握核酸提取的原理和方法对于科研工作者来说至关重要。

一、核酸提取原理。

核酸提取的原理主要包括细胞破碎、核酸溶解和净化三个步骤。

首先,细胞膜和细胞壁需要被破坏,以释放细胞内的核酸。

其次,核酸需要被有效地溶解,使其能够被提取出来。

最后,通过净化步骤去除蛋白质、多糖和其他杂质,从而得到纯净的核酸样品。

二、核酸提取方法。

1. 酚氯仿法。

酚氯仿法是最常用的核酸提取方法之一。

其原理是利用酚和氯仿两种有机溶剂与水相不相溶的特性,将细胞裂解液中的蛋白质等杂质分离出去,从而得到纯净的核酸。

这种方法操作简单,适用于提取大量样品。

2. 硅胶柱法。

硅胶柱法利用硅胶膜对核酸的亲和力进行提取和分离。

通过将样品加入硅胶柱后,核酸能够与硅胶膜结合,而其他杂质则被洗脱掉。

这种方法提取的核酸纯度高,适用于对纯度要求较高的实验。

3. 磁珠法。

磁珠法是近年来发展起来的一种核酸提取新方法。

通过在磁珠表面修饰亲核酸的功能基团,使得核酸能够与磁珠结合。

利用磁场的作用,可以将核酸与磁珠分离出来,从而实现核酸的提取和纯化。

这种方法操作简便,且适用于高通量提取。

三、注意事项。

在进行核酸提取时,需要注意以下几点:1. 样品的质量和保存对提取结果有重要影响,因此在提取前需要确保样品的完整性和纯度;2. 根据不同的实验目的和样品特点选择合适的提取方法,以确保提取效果;3. 在操作过程中要注意无菌操作,避免外源性核酸的污染;4. 核酸提取后,应根据实验需求储存或立即进行下一步实验。

总结,核酸提取是分子生物学实验中的重要步骤,掌握核酸提取的原理和方法对于科研工作者来说至关重要。

不同的提取方法有着各自的特点和适用范围,选择合适的提取方法能够提高实验效率和结果的准确性。

在实验操作中要严格按照操作规程进行,确保提取的核酸样品质量和纯度。

核酸提取的原理

核酸提取的原理

核酸提取的原理
核酸提取是一种用来从生物样本中分离和纯化核酸(DNA或RNA)的技术。

其原理基于核酸在细胞中的特定性质和化学
特性。

下面是核酸提取的原理步骤:
1. 细胞破碎:首先,将生物样本(如细胞、组织或血液)收集到离心管中,并使用生理盐水或缓冲液洗涤样本以去除杂质。

然后,采用机械、化学或热能等方法,破碎细胞膜和细胞核,使细胞内的核酸释放到溶液中。

2. 蛋白质去除:为了去除细胞破碎后溶液中的蛋白质和其他杂质,可以使用蛋白酶、蛋白质沉淀剂或有机溶剂等方法进行蛋白质的沉淀或显色反应。

这一步骤可以有效地除去干扰物,使核酸纯化更加纯粹。

3. DNA和RNA分离:如果需要纯化DNA和RNA,则可以使用亲水性柱、酸性沉淀剂或硅胶膜等吸附剂。

这些吸附剂可以特异性地结合DNA或RNA,并将其与其他杂质分离开来。

根据吸附剂的不同,可以选择适当的提取方法。

4. 封闭或洗脱:提取后的核酸通常需要保存或进一步分析。

可以将其封闭在储存液中,以避免降解。

此外,还可以使用适当的缓冲液来洗脱核酸,以备后续实验使用。

总的来说,核酸提取的原理是通过破碎细胞、去除蛋白质、分离DNA或RNA,并最终纯化核酸。

这一过程涉及到细胞破碎、蛋白质去除、核酸分离和后续处理等多个步骤,可以根据具体
实验需求进行调整和优化。

这些步骤中的关键是选择合适的试剂和技术,以获得高质量和高纯度的核酸提取产物。

一步法提取核酸的原理

一步法提取核酸的原理

一步法提取核酸的原理
一步法提取核酸是指将样本中的核酸分子直接提取出来,而无需经过多个化学处理步骤。

其原理主要包括以下几个步骤:
1. 细胞破碎:首先将待提取核酸的样本进行细胞破碎,常用的方法包括机械破碎、化学破碎或热破碎等。

细胞破碎可以释放出胞内的核酸分子。

2. 去除蛋白质和其他污染物:提取核酸时,常伴随有蛋白质、RNA、DNA酶、有机储存物等污染物的存在,这些污染物会影响后续的核酸分析。

因此,需要添加蛋白酶等消化酶来去除蛋白质,以及使用适当的缓冲液来去除其他污染物。

3. 核酸还原:核酸通常以DNA或RNA的形式存在,需根据需要选择还原为DNA或RNA。

如需提取DNA,则可添加去除RNA酶的缓冲液;如需提取RNA,则可添加去除DNA酶的缓冲液。

4. 核酸离心和洗涤:添加盐酸等离心溶液后,进行高速离心,将核酸沉淀下来。

然后使用乙醇等溶液进行洗涤,进一步除去残余的污染物。

5. 重溶:将核酸沉淀物重溶于合适的溶液中,一般使用无菌纯水或缓冲液溶解。

以上步骤即是一步法提取核酸的主要原理,通过这些步骤可以从样本中直接提取出核酸分子。

核酸提取经验及原理总结

核酸提取经验及原理总结

核酸提取经验及原理总结核酸提取是分子生物学研究中的一项重要技术,它可以从生物样品中分离和纯化出目标的核酸分子,为后续的实验操作提供基础。

本文将对核酸提取的经验和原理进行总结,以帮助读者更好地理解和应用该技术。

核酸提取的经验总结:2.样品的预处理:在核酸提取前,需要对样品进行一些预处理,如细胞裂解、组织破碎等。

这些步骤有助于释放和保护核酸分子,促进提取效果。

3.溶解和裂解:核酸提取的第一步是将样品溶解和裂解,以释放核酸分子。

溶解缓冲液常用于裂解样品,并加入蛋白酶进行蛋白质降解。

此时需要考虑样品的特性和实验要求,选择合适的裂解缓冲液和裂解方法。

4.核酸分离:核酸分离是核酸提取的关键步骤,常用的分离方法有酚-氯仿法、硅胶柱法和磁珠法等。

在选择分离方法时需考虑样品的类型和实验要求,以及各种方法的特点和优势。

5.纯化和浓缩:提取的核酸分子中常含有杂质,需要进行纯化和浓缩。

常用的纯化方法有酚-氯仿法、琼脂糖凝胶电泳法和商用纯化试剂盒等。

纯化后的核酸可以进行浓缩,以提高其浓度和纯度。

6.质量检测:核酸提取后,需要对提取的核酸分子进行质量检测。

常用的检测方法有琼脂糖凝胶电泳、比色法和荧光分析等。

通过检测可以了解核酸的浓度、纯度和完整性,为后续实验提供准确的数据。

核酸提取的原理总结:1.细胞裂解和溶解:细胞裂解是将细胞壁和细胞膜破坏,使细胞内容物暴露在溶液中。

细胞溶解液中常含有裂解缓冲液和蛋白酶等物质,以促进细胞的裂解和蛋白质的降解。

2.核酸分离和纯化:核酸在细胞溶解液中可以与其他细胞成分分离,常用的方法有酚-氯仿法。

酚可溶于水,而氯仿可溶于有机溶剂,通过两相溶剂的分层,可以将核酸沉淀到有机相中,从而实现核酸的分离。

3.杂质去除和浓缩:通过纯化方法,可以将核酸与其他杂质分离。

如硅胶柱和磁珠法通过静电吸附和洗脱来除去杂质,商用纯化试剂盒则通过离心柱等固相材料来实现。

纯化后的核酸可以进行浓缩,以提高其浓度和纯度。

4.质量检测:核酸提取后,需要对提取的核酸进行质量检测。

核酸提取的基本步骤及原理

核酸提取的基本步骤及原理

核酸提取的基本步骤及原理
核酸提取的基本步骤包括以下几个步骤:
1. 细胞或组织的损毁与裂解:将样品中的细胞或组织破坏并裂解,使内部的核酸暴露在溶液中。

常用方法包括机械破碎、化学裂解或酶裂解等。

2. 蛋白质去除:通过加入蛋白酶等蛋白质分解酶,将样品中的蛋白质降解,以便之后纯化核酸。

3. 核酸纯化:通过溶液的调节和加入适当的试剂,使核酸与其他杂质分离。

常用的方法有酚-氯仿萃取、硅胶柱层析、磁珠吸附等。

4. 洗涤:通过洗涤溶液的加入和溶液对样品的冲洗,去除残留的杂质,提高核酸的纯度。

5. 脱盐:通过洗涤和纯化步骤,使核酸处于含有适量盐浓度的溶液中。

6. 浓缩:通过溶液的挥发、沉淀和离心等方法,将核酸溶液浓缩到适当的体积。

7. 质量检测:使用紫外吸收光谱、凝胶电泳等方法进行核酸的质量和纯度检测。

8. 储存:将提取得到的核酸转移到适当的储存条件下,保存以备进一步应用。

核酸提取的原理是利用细胞或组织中核酸与其他成分的生化性质的差异,通过物理或化学方法分离和纯化核酸。

核酸提取的关键步骤是细胞裂解和蛋白酶处理。

在细胞裂解过程中,细胞壁和膜被破坏,同时蛋白质酶降解细胞中的蛋白质。

随后通过柱层析或吸附等方法,分离纯化核酸。

最后,通过洗涤、脱盐和浓缩等步骤去除杂质,获得纯净的核酸溶液。

核酸制备的一般方法和原理

核酸制备的一般方法和原理

核酸制备的一般方法和原理
核酸制备的一般方法和原理包括DNA和RNA的提取和纯化。

DNA提取的一般方法和原理:
1. 细胞破碎:细胞膜和细胞壁被破坏,使得细胞内的DNA暴露出来。

常用的方法有物理破碎(如超声波、高压、研磨等)和化学破碎(如细胞裂解液、裂解酶等)。

2. DNA溶解:使用缓冲液将DNA从其他细胞组分中分离出来。

3. DNA纯化:通过去除杂质和其他有机物质,纯化DNA。

通常通过加入醇类(如异丙醇或乙醇)来沉淀DNA,然后用洗涤缓冲液清洗。

4. DNA溶解和保存:通过溶解buffer将DNA溶解在溶液中以便后续使用,并存储在低温下。

RNA提取的一般方法和原理:
1. 细胞破碎:细胞膜和细胞壁被破坏,使得细胞内的RNA暴露出来。

常用的方法有物理破碎(如超声波、高压、研磨等)和化学破碎(如细胞裂解液、裂解酶等)。

2. RNA溶解:使用缓冲液来分离RNA。

3. RNA纯化:通过去除杂质和DNA、蛋白质等有机物质,纯化RNA。

通常通过加入醇类沉淀RNA,然后用洗涤缓冲液清洗。

4. RNA溶解和保存:将RNA溶解在溶液中以便后续使用,并存储在低温下。

DNA和RNA的提取和纯化方法基本相似,主要的区别在于RNA的提取需要加入RNase来去除DNA的污染。

核酸提取技术的原理和应用

核酸提取技术的原理和应用

核酸提取技术的原理和应用介绍核酸提取技术是生物学研究和临床实验中常用的一种实验方法。

它被广泛应用于基因组学、遗传学、病理学等领域,为研究人类疾病的发生机制以及改进治疗方法提供了重要的方法支持。

本文将介绍核酸提取技术的原理以及在不同领域的应用。

核酸提取技术的原理核酸提取技术旨在从生物样本中提取纯净的核酸(包括DNA和RNA),以便进行后续的实验操作。

其基本原理如下:1.细胞破裂:首先需要将生物样本中的细胞破裂,以释放细胞内的核酸。

这可以通过物理、化学或者生物学方法实现。

常用的方法包括冻融法、酶切法、声波破碎法等。

2.蛋白质去除:提取到的核酸常常伴随有大量的蛋白质、碳水化合物、脂质等杂质。

因此,为了得到纯净的核酸,需要使用蛋白酶或化学试剂去除这些杂质。

常用的方法有酚-氯仿法、硅胶柱法等。

3.核酸沉淀:通过适当的条件,如加入盐、有机溶剂或乙醇,可以使核酸从溶液中沉淀出来。

核酸沉淀的条件可根据所用的核酸类型(DNA还是RNA)进行调整。

4.质量检测:在提取核酸后,为了确认提取到的核酸质量和纯度,通常需要进行质量检测。

这可以通过比色法、吸光度测定、凝胶电泳等方法实现。

核酸提取技术的应用核酸提取技术在不同领域都有广泛的应用,以下是一些常见的应用领域:基因组学研究•DNA测序:核酸提取是进行DNA测序的前提,测序结果可以帮助研究人员深入了解生物的基因组结构和功能。

•基因表达研究:通过提取RNA并转录为cDNA,可以分析基因的表达水平,进而了解不同细胞状态或组织中基因的表达差异。

遗传学研究•遗传疾病研究:核酸提取技术可以帮助研究人员分析与遗传疾病有关的基因变异,揭示疾病的发生机制。

•个体鉴定:通过核酸提取和DNA指纹技术的结合,可以进行个体鉴定,如刑事侦查中的DNA比对。

病理学研究•癌症诊断:通过提取癌细胞中的核酸,可以进行基因突变的检测,从而帮助癌症的早期诊断和治疗方法选择。

•感染病原体检测:核酸提取技术可以用于检测病原体的核酸,如病毒、细菌等,有助于早期发现和诊断传染病。

核酸的提取经验和原理总结.doc

核酸的提取经验和原理总结.doc

核酸的提取经验和原理总结一、核酸核苷酸单体聚合而成的生物大分子,是生物细胞最基本和最重要的成分。

一般认为,生物进化即始于核酸,因为在所有生命物质中只有核酸能够自我复制。

今天已知核酸是生物遗传信息的贮藏所和传递者。

一种生物的蓝图就编码在其核酸分子中。

核酸是1869年米歇尔F.Miescher在脓液的白细胞中发现的。

他当时称之为核素。

阿尔特曼R.Altmann于1889年认识其酸性后,定名为核酸。

二、核酸的分类和功能核酸分为核糖核酸RNA和脱氧核糖核酸DNA两大类。

这两类核酸有某些共同的结构特点,但生物功能不同。

DNA贮存遗传信息,在细胞分裂过程中复制,使每个子细胞接受与母细胞结构和信息含量相同的DNA;RNA主要在蛋白质合成中起作用,负责将DNA的遗传信息转变成特定蛋白质的氨基酸序列。

核酸的基本结构单元是核苷酸,核苷酸含有含氮碱基、戊糖和磷酸3种组分。

碱基与戊糖构成核苷,核苷的磷酸酯为核苷酸。

DNA和RNA中的戊糖不同,RNA中的戊糖是D-核糖;DNA不含核糖而含D-2-脱氧核糖核糖中2位碳原子上的羟基为氢所取代。

核酸就是根据其中戊糖种类来分类的,DNA和RNA的碱基也有所不同。

三、核酸的理化性质RNA和核苷酸的纯品都呈白色粉末或结晶,DNA则为白色类似石棉样的纤维状物。

除肌苷酸、鸟苷酸具有鲜味外,核酸和核苷酸大都呈酸味。

DNA、RNA和核苷酸都是极性化合物,一般都溶于水,不溶于乙醇、氯仿等有机溶剂,它们的钠盐比游离核酸易溶于水,RNA钠盐在水中溶解度可达40g/L,DNA钠盐在水中为10g/L,呈黏性胶体溶液。

在酸性溶液中,DNA、RNA易水解,在中性或弱碱性溶液中较稳定。

天然状态的DNA 是以脱氧核糖核蛋白DNP形式存在于细胞核中。

要从细胞中提取DNA 时,先把DNP抽提出来,再把P 除去,再除去细胞中的糖,RNA 及无机离子等,从中分离DNA 。

四、细胞裂解(一)裂解原理在核酸提取过程中,细胞裂解是非常重要的。

核酸提取原理及的方法

核酸提取原理及的方法

核酸提取原理及的方法核酸提取是生物学研究中常用的一项操作技术,用于从生物样本中提取出纯度较高的核酸物质,以供进一步的分析和实验使用。

核酸提取的原理是将细胞膜破裂,使得核酸释放到溶液中,然后通过几种方法去除蛋白质、其他杂质和溶液中的酶,最后将纯的核酸物质从溶液中沉淀出来。

核酸提取的方法有很多种,下面将介绍常用的几种方法。

1. 酚/氯仿法(Phenol/Chloroform Extraction):这是最常用的核酸提取方法之一、首先将细胞样本加入到含有酚和氯仿的溶液中,酚能溶解脂质,破坏细胞膜;然后离心使其分为两相,上层为水相,下层为有机相。

水相中含有核酸和水溶性杂质,有机相中含有脂质和非水溶性杂质。

将上层水相取出,通过分子筛或盐的作用去除水相中的酚、蛋白质等杂质,最后通过异丙醇沉淀法将核酸沉淀下来。

2. 硅胶柱层析法(Silica Column Chromatography):这是一种常用的纯化核酸的方法。

首先将细胞样本经过裂解步骤释放核酸,然后将裂解液加入硅胶柱中,硅胶能够吸附核酸。

通过洗涤和洗脱的步骤去除杂质,最后将纯度较高的核酸溶液从硅胶柱中洗脱出来。

3. 盐沉淀法(Salt Precipitation):这是一种简单快速的核酸提取方法。

首先将细胞样本经过裂解步骤释放核酸,然后加入盐溶液(如氯化钠),通过高盐浓度的作用沉淀核酸。

通过离心将核酸沉淀下来,去除杂质。

最后通过加入适当的溶剂将核酸溶解出来。

4. 柱层析法(Column Chromatography):这是一种基于分子大小差异的核酸提取方法。

首先将细胞样本经过裂解步骤释放核酸,然后将裂解液加入到一个具有分子层次的柱中。

根据核酸的大小和形状差异,通过洗涤和洗脱的步骤将目标核酸从其他杂质中分离出来。

除了以上介绍的几种方法,还有磁珠萃取法、酵素消化法等核酸提取方法。

这些方法各有优缺点,可以根据实验的需要选择适合的方法。

需要注意的是,在进行核酸提取过程中,应当避免核酸样本的污染,一些常见的措施包括使用丙酮等剂去除有机物和酶,使用无菌工具和试剂,以及进行负控实验等。

核酸提取的基本步骤和原理

核酸提取的基本步骤和原理

核酸提取的基本步骤和原理
核酸提取是从生物样本中分离和纯化核酸的过程,常用于分子生物学研究和诊断。

它的基本步骤和原理如下:
1. 样本收集:从植物、动物或微生物等样本中收集细胞,如血液、组织、细胞培养物等。

2. 细胞破碎:使用适当的缓冲溶液将细胞膜破碎,释放细胞核和细胞质中的核酸。

破碎方法可以是机械碾磨、超声波处理或酶切等。

3. 蛋白质去除:加入蛋白酶或蛋白质沉淀剂,使蛋白质凝聚成团或被酶降解,然后通过离心沉淀去除。

4. 染色体沉淀:加入沉淀剂(如高浓度盐溶液或醇),使DNA或RNA沉淀形成白色颗粒。

这一步是用于分离和富集核酸。

5. 洗涤:重悬沉淀后的核酸在洗涤缓冲溶液中,通过离心去除杂质如盐、蛋白质等。

6. 纯化:经过洗涤后,核酸溶液通过旋转膜或硅胶填充柱等纯化方法,去除残留的污染物和杂质。

7. 进一步处理:获得纯化的核酸后,可以根据实验需要进行浓缩、检测含量和质量、保存等处理。

核酸提取的原理主要基于核酸和其他细胞成分之间的物理性质和化学性质的差异。

通过破碎细胞膜释放核酸,然后利用核酸的特性和其他成分的物理性质差异,如溶解度、电荷、亲疏水性等,进行分离和纯化。

其中,核酸具有亲水性,可以通过加入沉淀剂来使其沉淀。

核酸提取原理及方法

核酸提取原理及方法

核酸提取原理及方法核酸提取是指从细胞、组织或病毒中分离纯化出来的DNA或RNA分子。

核酸提取的过程包括以下几个步骤。

1. 细胞破碎:首先需要将目标细胞破碎,破碎细胞的方法可以选择机械破碎、化学破碎或酶解等。

机械破碎可以通过高速离心、超声波处理等方法实现,化学破碎则可以使用表面活性剂或蛋白酶K等物质,酶解则是利用特定酶降解细胞壁。

2. 蛋白质消化:细胞内的蛋白质需要消化在提取核酸的过程中,可以使用蛋白酶、高盐离心等方法使蛋白质失活和沉淀。

高盐离心可通过加入高盐溶液,使蛋白质和核酸形成络合物,然后离心,使蛋白质沉淀,核酸在上清液中。

3. 去除杂质:在提取的过程中,会存在一些杂质如RNA、酶和多肽,这些物质会影响纯化核酸的质量和浓度。

可以通过酶切、RNA去除试剂等方法去除这些杂质。

酶切是利用特定的核酸酶对RNA进行消化,RNA去除试剂则是通过特定试剂与RNA结合形成沉淀,然后进行离心分离。

4. 纯化:纯化的目的是除去核酸提取过程中的其他杂质,获得纯净的核酸分子。

常用的纯化方法有酚/氯仿法、琼脂糖凝胶电泳法、硅胶纯化法和离心柱纯化法等。

酚/氯仿法是利用酚和氯仿疏水性差异的原理,将核酸分子转移到酚相中,然后进行重溶解和沉淀分离。

琼脂糖凝胶电泳法则是利用琼脂糖凝胶孔径大小的差异,通过电场的作用将核酸分子从琼脂糖凝胶中分离出来。

硅胶纯化法是利用硅胶对DNA和RNA分子的亲和性,将核酸与硅胶结合,然后通过洗脱和浓缩得到纯化的核酸。

离心柱纯化法则是利用柱体内特定的亲和基质,选择性地结合核酸分子,然后洗脱和收集纯化的核酸。

5. 检测:最后核酸提取的纯度和浓度可以通过吸光度测量或荧光染料法进行检测。

吸光度测量通过核酸溶液吸收紫外光的特性来计算核酸的浓度和纯度。

荧光染料法则是利用特定荧光染料与核酸结合形成荧光复合物,通过荧光信号的强度来计算核酸的浓度和纯度。

综上所述,核酸提取的方法和原理主要包括细胞破碎、蛋白质消化、去除杂质、纯化和检测等步骤。

核酸提取原理及方法

核酸提取原理及方法

核酸提取原理及方法核酸提取是从生物样品中分离纯化核酸的一种常用技术。

核酸提取的目的是获得高质量的DNA或RNA样品,这对于进行分子生物学实验、遗传分析和基因工程等研究都具有重要意义。

本文将介绍核酸提取的原理和常用的方法。

1.核酸提取的原理核酸提取的主要原理是利用核酸的生化性质和细胞膜结构的特点。

通常情况下,核酸存在于细胞核和线粒体中的DNA和细胞核和线粒体中的RNA两种形式。

核酸提取的基本步骤包括样品裂解、蛋白质沉淀、核酸溶解和纯化。

(1)样品裂解:样品裂解的目的是破坏细胞膜和胞壁,释放核酸。

裂解方法包括物理方法(如冻融、超声波等)和化学方法(如酶解、有机溶剂的应用等),具体选择方法应根据不同样品的特点而定。

(2)蛋白质沉淀:裂解样品中存在大量的蛋白质,在提取核酸前需要将蛋白质沉淀。

常用的方法有酚酸法和酚氯仿法。

酚酸法通过将样品加入等体积的酚酸混合液中,形成两相体系,蛋白质会沉淀到有机相中,然后通过旋转分离出蛋白质相。

酚氯仿法则是在酚酸法的基础上,加入氯仿与酚酸相分离,从而得到较纯的核酸。

(3)核酸溶解:蛋白质沉淀之后,需要将核酸从蛋白质中溶解出来。

一般可使用三氯化锂、氢氧化钠或磷酸缓冲液等。

(4)核酸纯化:核酸溶解之后,需要将其中的杂质(如酶、盐、聚合酶等)去除,获得纯化的核酸。

常用的方法有酒精沉淀法、硅胶柱法和磁珠法。

酒精沉淀法通过在核酸溶液中加入酒精,使核酸沉淀到底部。

硅胶柱法是利用硅胶的亲合性,将核酸吸附在硅胶柱上,然后经过一系列的洗脱步骤得到纯化的核酸。

磁珠法是利用磁性珠子的特性,在核酸样品中加入磁珠,通过磁力将磁珠聚集在一起,然后用洗涤缓冲液去除杂质,再用洗涤缓冲液洗脱核酸。

2.核酸提取的方法核酸提取的方法有很多种,以下介绍常用的几种方法。

(1)酚酸法:酚酸法是核酸提取的经典方法之一、该方法将样品裂解后,加入等体积的酚酸混合液,通过旋转离心沉淀蛋白质。

然后将上清液取出,加入异丙醇沉淀DNA或RNA,离心沉淀出核酸。

核酸的提取经验及原理总结

核酸的提取经验及原理总结

核酸的提取经验及原理总结提取核酸是分子生物学中的基础实验技术,广泛应用于基因克隆、PCR、DNA测序、基因表达分析等领域。

核酸的提取过程需要克服细胞破裂、蛋白质降解、核酸损伤等多个难题。

在实际操作中,我们通常采用溶解细胞壁、降解蛋白、去除杂质等步骤来提取核酸。

以下是核酸提取的经验及其原理的总结。

1.细胞壁的破裂细胞壁是植物和真菌细胞中的特殊结构,需要特殊方法破裂。

常用的方法有机械破碎、酶解、离心破缺等。

机械破碎常用玻璃珠、球磨器等进行细胞破裂,并在低温条件下进行,以避免核酸的降解。

酶解方法利用细胞壁酶或丝裂霉素等酶来破裂细胞壁。

离心破缺则是通过高速离心来破裂细胞,适用于单细胞或细菌等。

2.蛋白质的降解细胞中富含蛋白质,必须去除蛋白质才能提取纯净的核酸。

常用的方法有蛋白酶处理、热处理和有机溶剂沉淀。

蛋白酶处理是利用蛋白酶来降解细胞中的蛋白质,常用的蛋白酶有蛋白酶K、胰蛋白酶等。

热处理方法是通过加热来使蛋白质变性和沉淀,其后可用离心去除蛋白。

有机溶剂沉淀法是利用有机溶剂如醋酸等与蛋白质结合形成络合物,沉淀后去除沉淀物。

3.核酸的损伤核酸在提取过程中容易受到降解和损伤。

为了防止核酸的降解和损伤,常采用以下方法:(1)使用缓冲液,保持pH值的稳定,因为pH的变化会导致核酸断裂。

(2)将细胞裂解液置于低温条件,减缓核酸的降解。

(3)加入螯合剂如EDTA,以去除金属离子对核酸的损伤。

(4)添加蛋白酶抑制剂,防止核酸被附着的蛋白酶降解。

4.去除杂质提取核酸过程中,常伴随有细胞膜、RNA、酶、金属离子等带入到提取液中。

为了得到纯净的核酸样品,需要去除这些杂质。

常用的方法有去膜、酶降解、沉淀和离心等。

去膜方法是通过洗涤或离心的方式去除细胞膜或细胞碎片。

酶降解是将RNase等降解核酸酶加入提取液中,去除RNA。

沉淀和离心是利用沉淀物的不溶性或离心分离的原理,去除蛋白质和其他杂质。

综上所述,核酸的提取是一项关键的实验步骤,合理选择提取方法和条件对成败至关重要。

核酸提取的原理及方法

核酸提取的原理及方法

核酸提取的常见方法及原理核酸提取作为分子实验中最基础的实验之一,几乎是所有实验的基本,无论后续的克隆、PCR、qPCR、建库测序等等都需要核酸才能顺利进行。

今天我们就来简单了解核酸提取的基本原理和方法。

1、什么是核酸核酸是由许多核苷酸聚合成的生物大分子化合物,为生命的最基本物质之一,分为脱氧核糖核酸(DNA)和核糖核酸(RNA),其中RNA又可以根据功能的不同分为核糖体RNA(r RNA),信使RNA(m RNA)和转移RNA(t RNA)。

核酸广泛存在于所有动植物细胞、微生物内、生物体内的核酸常与蛋白质结合形成核蛋白。

不同的核酸,其化学组成、核苷酸排列顺序等不同。

DNA主要集中在细胞核内,线粒体和叶绿体中,而RNA主要分布在细胞质当中。

2、核酸提取类型1、总RNA提取总RNA中,75-85%为rRNA(主要是28S-26S/23S和18S/16S rRNA),其余的由分子量大小和核苷酸序列各不相同的mRNA和小分子RNA如tRNA、5S rRNA、5.8S rRNA、miRNA、siRNA、小核RNA(small nuclear RNA,snRNA)及核仁小分子RNA(small nuceolar RNA,snoRNA)等组成。

2、miRNA提取MicroRNAs (miRNAs)是小型的、高度保守的RNA分子,如小干扰RNAs (siRNAs),通过与他们的碱基配对调节其同源mRNA的分子表达,以预防通过各种机制的表达。

他们已成为进行发育、细胞增殖、分化和细胞周期的重点监管机构。

3、基因组DNA提取进行基因结构和功能研究以及基因诊断,通常要求得到的片段长度不小于100~200kb。

在DNA提取过程中应尽量避免使DNA断裂和降解的各种因素,以保证DNA的完整性,为后续的实验打下基础。

4、质粒抽提质粒抽提方法即去除RNA,将质粒与细菌基因组DNA分开,去除蛋白质及其它杂质,以得到相对纯净的质粒。

提取核酸的基本步骤和原理

提取核酸的基本步骤和原理

提取核酸的基本步骤和原理提取核酸是生物学和分子生物学研究中的重要步骤之一,它可以被用于许多实验和研究,比如PCR(聚合酶链反应)、蛋白质分析、基因克隆等。

核酸的提取步骤和原理如下。

核酸提取的基本步骤如下:1. 选择样本:根据研究目的选择合适的样品,可以是细胞、组织、培养物、血液、植物材料等。

2. 细胞裂解:使用适当的缓冲液裂解细胞。

如细胞溶解液(Cell lysis buffer)、裂解缓冲液等。

这是为了破坏细胞膜和核膜,释放核酸。

3. 去除蛋白质:通过蛋白酶处理方法去除细胞裂解液中的蛋白质。

常用的方法有蛋白酶K处理和蛋白酶分析等。

4. 沉淀核酸:通过添加盐、乙酸钠或乙醇等方式沉淀DNA或RNA。

5. 洗涤沉淀物:用酒精或乙酸乙酯洗涤沉淀物,以去除残留的污染物和盐。

6. 重溶核酸:用适当的缓冲液(如TE缓冲液)重溶核酸。

核酸提取的原理主要涉及以下几个方面:1. 细胞裂解:细胞膜和核膜是细胞内核酸的主要障碍,因此,先通过细胞裂解溶解细胞,释放核酸。

细胞裂解液通常包含盐和表面活性剂,以帮助破坏细胞膜和核膜。

2. 去除蛋白质:核酸提取过程中,蛋白质会干扰核酸的测量和下游实验,因此需要去除蛋白质。

这通常通过蛋白酶分解法或钠盐沉淀法实现。

蛋白酶会切断蛋白质,降解它们的功能,从而分离核酸和蛋白质。

3. 核酸沉淀:通过加入盐、乙酸钠或乙醇等物质,可以使核酸从溶液中沉淀。

这是因为核酸在高盐浓度下形成疏水结构,从而从溶液中析出。

4. 洗涤沉淀物:在核酸提取过程中,有时会有杂质残留在核酸沉淀物中,这些杂质可能干扰后续实验。

因此,需要用酒精或乙酸乙酯进行洗涤,去除这些杂质。

5. 重溶核酸:核酸通常以高浓度保存,便于存储和下游实验。

因此,通过加入适当的缓冲液重溶核酸,使其浓度适合后续实验。

总之,核酸提取是一系列的步骤和原理组成的过程,它能够从样品中有效地提取出核酸,为后续实验提供重要的基础。

这个过程中的每个步骤都需要使用适当的试剂和设备,并遵循严格的实验操作规范,以获得高质量的核酸样品。

核酸提取原理

核酸提取原理

核酸提取原理核酸提取(NucleicAcidExtraction)是一种通过机械、物理或者化学方法将核酸从样本中分离出来的技术。

它主要用于将样本中的核酸,如DNA和RNA分离出来,以便进行后续实验分析。

二、原理核酸提取技术的目的是从复杂的样本中提取出所需的DNA或者RNA,将其从其他杂质和非特定性结合物中分离出来。

核酸提取技术可以分为机械法、物理法和化学法。

1.机械法机械法的核酸提取技术是利用机械的作用,使样品中微小的核酸粒子分离出样品中的其他杂质。

一般情况下,在机械法提取核酸的过程中,样品需要经过多次混匀、离心、洗涤等步骤。

2.物理法物理法核酸提取是一种利用物理方法(如冷冻和融化)来分离核酸。

一般情况下,在物理法提取核酸的过程中,样品需要经过冷冻、混匀、离心等步骤,以达到有效分离出核酸的目的。

3.化学法化学法核酸提取是利用化学药剂来分离样品中的DNA或RNA。

一般情况下,在化学法提取核酸的过程中,样品需要经过混匀、离心、洗涤等步骤,以达到有效分离出核酸的目的。

三、应用核酸提取技术具有广泛的应用前景,它可用于分子生物学、病毒学、药物研究、植物分子生物学、医学诊断和环境学等多领域。

在现代分子生物学实验中,核酸提取技术已经成为无可替代的重要技术。

例如,在遗传学研究中,可以采用核酸提取技术提取出DNA片段来进行遗传分析;在微生物学研究中,可以利用核酸提取技术提取出细菌的DNA来进行细菌分类研究;在病毒学研究中,可以利用核酸提取技术提取出病毒核酸,以便进行病毒的分类检测。

四、技术要点1.选择合适的核酸提取方法样品中不同种类的核酸(DNA和RNA)有不同的抗性,需要根据样品本身的特性选择合适的核酸提取方法,以便提取出最纯度的核酸。

2.使用干净的工具为了将样品中的核酸成功的分离出来,在核酸提取过程中要使用高纯度、洁净的仪器、器具和容器,以免核酸受到污染而造成提取效率低。

3.控制温度在样品中进行核酸提取时,要尽量控制温度,以防止样品中的核酸片段被破坏而造成提取效率降低。

提取核酸的方法及原理

提取核酸的方法及原理

提取核酸的方法及原理
提取核酸的方法有以下几种:
1. 碱裂解法:将细胞或组织样本加入含有氢氧化钠或EDTA的缓冲液中,使细胞或组织中的蛋白质、脂质等被丧失活性,然后用氯仿酚提取法将核酸从碱裂解液中分离出来。

2. 酚/氯仿法:将细胞或组织样本加入含有酚和氯仿的缓冲液中,酚在高pH条件下能溶解蛋白质,氯仿用于分离酚的上清液和有机相,进而分离出核酸。

3. 乙醇沉淀法:将核酸溶液中加入适量的醋酸钠和乙醇,使核酸从溶液中析出,然后通过离心沉淀收集纯化的核酸。

4. 硅基法:利用硅基质具有与核酸亲和性的特点,将核酸结合到硅基上,然后通过洗脱等步骤来分离纯化核酸。

这些方法的原理是基于核酸与其他有机物质(如蛋白质、脂质)的不同性质,在不同环境条件下发生反应,从而达到分离和纯化核酸的目的。

其中,碱裂解法和酚/氯仿法通过改变样本的pH值和溶剂的成分,使核酸与其他物质发生相互作用,然后通过沉淀或上清液的分离来分离核酸。

乙醇沉淀法则是利用核酸与乙醇相互作用,形成可沉淀的复合物,然后通过离心沉淀收集纯化的核酸。

硅基法利
用硅基质与核酸的亲和性,将核酸定向结合到硅基上,然后通过洗脱等步骤分离纯化核酸。

核酸提取原理

核酸提取原理

核酸提取原理
核酸提取是生物学实验中的一项基础技术,主要通过分离和纯化样品中的核酸,以获取高质量的核酸样品用于后续实验。

核酸提取原理涉及细胞破裂、核酸与其他分子的分离和纯化等过程。

首先,核酸提取的第一步是细胞破裂。

细胞破裂可以通过物理方法(如低温冲击、超声波破碎等)或化学方法(如溶解细胞膜等)来实现。

破裂细胞后,细胞内的核酸便会被释放到溶液中。

其次,经过破裂的细胞溶液经过一系列处理,以分离和纯化核酸。

一种常用的方法是加入蛋白酶,用来降解细胞内的蛋白质,并与其形成复合物。

接着,加入溶剂(如酚-氯仿),产生两
相体系。

在这个过程中,蛋白质、核酸和其他细胞成分会分布在不同的相中。

然后,通过离心等方法,可以将两相体系分离。

在这个过程中,蛋白质会被分配到有机相中,而核酸则会富集在水相中。

随后,去除有机相,留下含有纯化的核酸的水相。

最后,核酸可以通过加入盐和冷乙醇来沉淀。

加入足量的盐可以中和DNA或RNA上带有的负电荷,使其变为中性状态,
从而使核酸分子相互吸引形成沉淀。

加入冷乙醇则可以提供合适的溶剂环境,使核酸能够充分沉淀下来。

经过离心后,可以得到纯化的核酸沉淀物。

综上所述,核酸提取主要通过细胞破裂、核酸与其他分子的分离和纯化等步骤,以获得高质量的核酸样品。

这些核酸样品可以用于分子生物学研究、遗传学分析、基因工程和医学诊断等领域。

核酸的提取经验及原理总结

核酸的提取经验及原理总结

核酸的提取经验及原理总结一、常用的核酸提取方法目前常用的核酸提取方法主要包括酚/氯仿法、柱式法、磁珠法和自动提取仪法等,下面对这几种方法进行一一介绍。

1.酚/氯仿法酚/氯仿法是最早用于核酸提取的方法之一、它的基本原理是利用酚的亲脂性和氯仿的亲水性来分离DNA和RNA。

这种方法适用于大规模批量提取核酸的情况。

2.柱式法柱式法是近年来广泛应用于核酸提取的一种方法。

它以硅胶柱或玻璃纤维柱为基质,通过离心等方法将核酸吸附到柱子上,然后通过洗脱步骤将核酸从柱子上洗脱下来。

这种方法操作简便,提取纯度高,适用于少量样品的提取。

3.磁珠法磁珠法是一种基于磁性珠子的核酸提取方法。

磁性珠子上包裹有石墨烯或其他亲核酸物质,可以通过磁场将其中的核酸吸附到珠子表面,然后洗脱并收集核酸。

这种方法操作简便,提取效果好,适用于不同规模的样品。

4.自动提取仪法自动提取仪是一种基于电力或机械力的核酸提取设备。

它具有自动化、高通量、操作简单等优点。

通常采用矽基杂化技术或磁珠法来提取核酸。

这种方法适用于大量样品的高通量提取。

二、核酸提取的基本步骤不管采用哪种提取方法,核酸提取的基本步骤大致相同,包括样品处理、细胞破碎、核酸与蛋白质分离、纯化和沉淀等环节。

1.样品处理:将样品收集并进行初步处理,包括洗涤、离心、冻存等。

根据样品的不同,处理方法也会有所差异。

2.细胞破碎:将细胞或组织中的细胞膜破碎,释放核酸。

常用的破碎方法有冻融、酶解、研磨等。

3.核酸与蛋白质分离:利用酚类或其他化学物质使蛋白质发生沉淀,将净化后的上清液中的核酸收集起来。

这个步骤是核酸提取中最关键的步骤之一4.核酸纯化:通过离心、柱子或其他方法去除杂质,纯化核酸。

5.核酸沉淀:将纯化后的核酸沉淀出来,去除纯化液。

三、核酸提取中的注意事项在进行核酸提取时,有几个方面需要特别注意。

1.质量控制:核酸提取的质量会直接影响到后续实验的结果。

因此,在进行提取之前要确保提取试剂的质量、样品的保存条件等达到要求。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、核酸核苷酸单体聚合而成的生物大分子,是生物细胞最基本和最重要的成分。

一般认为,生物进化即始于核酸,因为在所有生命物质中只有核酸能够自我复制。

今天已知核酸是生物遗传信息的贮藏所和传递者。

一种生物的蓝图就编码在其核酸分子中。

核酸是1869年米歇尔(F.Miescher)在脓液的白细胞中发现的。

他当时称之为核素。

阿尔特曼(R.Altmann)于1889年认识其酸性后,定名为核酸。

二、核酸的分类和功能核酸分为核糖核酸(RNA)和脱氧核糖核酸(DNA)两大类。

这两类核酸有某些共同的结构特点,但生物功能不同。

DNA贮存遗传信息,在细胞分裂过程中复制,使每个子细胞接受与母细胞结构和信息含量相同的DNA;RNA主要在蛋白质合成中起作用,负责将DNA的遗传信息转变成特定蛋白质的氨基酸序列。

核酸的基本结构单元是核苷酸,核苷酸含有含氮碱基、戊糖和磷酸3种组分。

碱基与戊糖构成核苷,核苷的磷酸酯为核苷酸。

DNA和RNA中的戊糖不同,RNA中的戊糖是D-核糖;DNA不含核糖而含D-2-脱氧核糖(核糖中2位碳原子上的羟基为氢所取代)。

核酸就是根据其中戊糖种类来分类的,DNA和RNA的碱基也有所不同。

三、核酸的理化性质RNA和核苷酸的纯品都呈白色粉末或结晶,DNA则为白色类似石棉样的纤维状物。

除肌苷酸、鸟苷酸具有鲜味外,核酸和核苷酸大都呈酸味。

DNA、RNA和核苷酸都是极性化合物,一般都溶于水,不溶于乙醇、氯仿等有机溶剂,它们的钠盐比游离核酸易溶于水,RNA钠盐在水中溶解度可达40g/L,DNA钠盐在水中为10g/L,呈黏性胶体溶液。

在酸性溶液中,DNA、RNA易水解,在中性或弱碱性溶液中较稳定。

天然状态的DNA 是以脱氧核糖核蛋白(DNP)形式存在于细胞核中。

要从细胞中提取DNA 时,先把DNP抽提出来,再把P除去,再除去细胞中的糖,RNA 及无机离子等,从中分离DNA 。

四、细胞裂解:(一)裂解原理在核酸提取过程中,细胞裂解是非常重要的。

经典的裂解液几乎都含有去污剂(如SDS、Triton X-100、NP-40、Tween 20 等) 和盐(如Tris、EDTA、NaCl 等)。

盐的作用,除了提供一个合适的裂解环境(如Tris),还包括抑制样品中的核酸酶在裂解过程中对核酸的破坏(如EDTA)、维持核酸结构的稳定(如NaCl) 等。

去污剂则是通过使蛋白质变性,破坏膜结构及解开与核酸相连接的蛋白质,从而实现核酸游离在裂解体系中。

裂解体系中还可能加入蛋白酶,利用蛋白酶将蛋白质消化成小的片段,促进核酸与蛋白质的分开,同时,也便于后面的纯化操作以及获得更纯的核酸。

也有直接使用高浓度的蛋白质变性剂(如GIT、GuHCl 等) 裂解的,该方法已经成为了RNA 抽提的主流,却不是基因组DNA 抽提的主流。

(二)细胞的裂解方法细菌细胞破碎方法有以下几种:1)机械方法:超声波处理法、研磨法、匀浆法。

关于超声波处理法,要设定好超声时间和间隙时间,一般超声时间不超过5秒,间隙时间最好大于超声时间。

2)化学试剂法:用含SDS或CTAB的溶液处理细胞,在一定的p H 环境和变性条件下,细胞破裂,蛋白质变性沉淀,核酸被释放到水相,p H 环境则由加入的强碱(NaOH) 或缓冲液( TE、STE 等) 提供,表面活性剂或强离子剂可使细胞裂解、蛋白质和多糖沉淀,缓冲液中的一些金属离子螯合剂( EDTA 等) 可螯合对核酸酶活性所必须的金属离子Mg2+ 、Ca2+ ,从而抑制核酸酶的活性,保护核酸不被降解。

3)反复冻融法:将细胞在-20度以下冰冻,室温融解,反复几次,由于细胞内冰粒形成和剩余细胞液的盐浓度增高引起溶胀,使细胞结构破碎。

个人经验一般情况,37℃,3min,液氮3min,反复三次即可以。

4)酶解法:加入溶菌酶或蜗牛酶、蛋白酶K等,都可使细胞壁破碎,核酸释放。

蛋白酶还能降解与核酸结合的蛋白质,促进核酸的分离。

其中溶菌酶能催化细菌细胞壁的蛋白多糖N-乙酰葡糖胺和N-乙酰胞壁酸残基间的β-(1 ,4) 键水解。

蛋白酶K能催化水解多种多肽键,其在65 ℃及有EDTA、尿素(1~4mol/ L) 和去污剂(0. 5 %SDS 或1 %Triton X-100) 存在时仍保留酶活性,这有利于提高对高分子量核酸的提取效率。

在实际工作中,酶作用、机械作用、化学作用经常联合使用。

具体选择哪种或哪几种方法可根据细胞类型、待分离的核酸类型及后续实验目的来确定。

(三)裂解方法的评价含蛋白酶的裂解方法,可以认为是抽提基因组DNA 的首选。

裂解包括膜蛋白的游离和与基因组DNA 相连接的蛋白质的游离。

蛋白酶的作用是使蛋白质变小,故而对蛋白质的游离有巨大的促进作用;同时,巨大的基因组DNA 是很容易“缠”住大分子的东西的,蛋白质被蛋白酶消化变小后,则不容易被基因组DNA “缠”住,有利于蛋白质在纯化操作中的去除,使最终获得的基因组DNA 的纯度更高。

另外一个思路是,如果基因组DNA 与蛋白质“缠”在一起,在纯化的过程中有两种可能:如果基因组DNA 的特性占优势,则纯化时以DNA 的形式被保留下来,导致蛋白质的残留;如果蛋白质的特性占优势,则纯化时以蛋白质的形式被去除,导致DNA 的损失。

当然去污剂裂解方法,仍然在细胞基因组DNA 抽提方面有优势,尤其是当得率和纯度要求不是最高,而经济性及操作简单很重要时。

控制好裂解液/样品的比例是该方法成功的关键。

该方法结合高盐沉淀,可以实现最简单的操作,但纯度及得率的稳定性可能会比用PC 抽提的差一些。

高浓度蛋白质变性剂(如GIT、GuHCl 等) 的裂解方法,是抽提RNA 的首选。

总RNA 的抽提,最重要的是快速裂解细胞膜,至于与基因组DNA 相连接的蛋白质的裂解以及基因组与蛋白质“缠”住的问题,因为都不会对以后的纯化产生大的影响,可以不考虑。

高浓度蛋白质变性剂能快速破坏细胞膜,进而迅速抑制住细胞内的RNA 酶,从而确保了RNA 的完整性。

除了极少量不适用该方法的样品–主要是植物,其它绝大部分样品的RNA 的抽提,都可以以高浓度的蛋白质变性剂为基础的。

当然有些样品,如肌肉,即使是RNA 抽提,也强烈建议使用含蛋白酶的裂解液(或者在操作中的某个时候使用蛋白酶消化蛋白质) ,原因在于这些样品中的蛋白质,是非常难以去除的。

(即,蛋白质含量过高的样品抽提RNA 也要用蛋白酶)该方法是获得最大得率和最高纯度的基础。

含CTAB 的裂解液,几乎成为富含多糖的样品,如细菌、植物的基因组DNA 抽提的首选裂解方法。

该方法成功与否与两个因素有关:一是CTAB 的质量,二是洗涤的彻底程度。

CTAB 的质量对裂解效率有很大的影响,而且,似乎还说不清楚原因,因为即使是同一公司生产的纯度一样的CTAB,批号不同,效果就可能差别很大。

洗涤去除CTAB 要比其它的盐难一些,同时,CTAB 的少量残留也会对酶活性有巨大影响,所以洗涤是否彻底也是该方法成功与否的关键。

裂解时的温度,多使用65C;但如果发现降解严重或者得率太低,可以试一下37C – 45C 这个相对低温的区域。

SDS 碱裂解法是质粒抽提的首选裂解方法,具有快速、得率高、几乎无基因组DNA 污染的特点。

控制好裂解液/菌体的比例和操作的温和是该方法成功的关键。

蛋白质的沉淀效率在4C 会更好一些,所以,加入溶液III 后在4℃静置一段时间以及采用4℃离心去蛋白质,都可以提高质量。

该方法不一定要使用PC 纯化,但结合PC 纯化,可以获得纯度很高的质粒。

RNA 的去除可以靠在溶液I 中加入RNase A (100ug/ml) 或者在最后的溶解液中加入RNase A (25 ug/ml) 来实现。

总的感觉是,在溶液I 中使用RNase A,RNA 的残留少一些。

不过,经典沉淀几乎没有办法彻底去除RNA 残留。

另外,对大质粒(50 kb 以上),该方法可能会有问题。

PCR 模板的简易裂解方法,也是使用面很广的一类方法。

该方法的特点是无须纯化,样品被裂解后即可直接取裂解液用于PCR,非常快速。

也正因为不纯化,所以,假阴性(即没有扩增出来的阳性) 比例也比较高。

该方法最简单的就是反复冻融法,简便快捷,不需任何化学试剂,冻融离心,PCR检测就可以了。

如果使用裂解法,哪么最简单的裂解液就是水,复杂一点的就会含有一些不会抑制后续的PCR 反应,而且能提高裂解效率,甚至还可能部分消除样品内抑制PCR 反应杂质的东西,如Triton X-100、甲酰胺等。

再复杂一点的就会含有诸如Chelex 100 之类的能吸附部分杂质的介质。

操作也非常简单,多使用温度的变化来实现样品的裂解,如煮沸、或者高温-低温的多次循环等。

该方法最适合从一大堆样品中找出阳性样品,但却不适合用于判断某一个样品是阳性还是阴性。

降低样品使用量可以提高阳性率,因为样品量的降低,同时意味着PCR 的抑制物量的降低。

裂解液的用量原则是:确保能彻底裂解样品,同时使裂解体系中核酸的浓度适中。

浓度过低,将导致沉淀效率低,影响得率;浓度过高,去除杂质的过程复杂且不彻底,导致纯度下降。

另外,裂解液的用量是以样品中蛋白质的含量为基准的,而不是以核酸含量为基准,这一点务必牢记。

五、核酸纯化就个人所知,目前在科研领域广泛使用的核酸纯化技术主要可以分为两大类:使用介质的和不使用介质的,使用介质的,一次就将核酸与其它所有杂质分开;不使用介质的,一定是首先将核酸和盐与大分子杂质分开,再通过沉淀核酸使核酸与盐分开(PEG 沉淀和LiCl 沉淀除外)。

1)经典的使用苯酚/氯仿抽提的纯化技术:细胞裂解后离心分离含核酸的水相,加入等体积的酚∶氯仿∶异戊醇(25 ∶24 ∶1 体积) 混合液。

依据应用目的,两相经漩涡振荡混匀(适用于分离小分子量核酸) 或简单颠倒混匀(适用于分离高分子量核酸) 后离心分离。

疏水性的蛋白质被分配至有机相,核酸则被留于上层水相。

酚是一种有机溶剂,预先要用STE 缓冲液饱和,因未饱和的酚会吸收水相而带走一部分核酸。

酚也易氧化发黄,而氧化的酚可引起核酸链中磷酸二酯键断裂或使核酸链交联;故在制备酚饱和液时要加入一特殊物质,以防止酚氧化。

氯仿可去除脂肪,使更多蛋白质变性,从而提高提取效率。

异戊醇则可减少操作过程中产生的气泡。

核酸盐可被一些有机溶剂沉淀,通过沉淀可浓缩核酸,改变核酸溶解缓冲液的种类以及去除某些杂质分子。

典型的例子是在酚、氯仿抽提后用乙醇沉淀,在含核酸的水相中加入p H5. 0~5.5 ,终浓度为0.3M的NaAc 或KAc 后,钠离子会中和核酸磷酸骨架上的负电荷,在酸性环境中促进核酸的疏水复性。

然后加入2~2. 5 倍体积的乙醇,经一定时间的孵育,可使核酸有效地沉淀。

其他的一些有机溶剂(异丙醇、聚乙二醇( PEG) 等)和盐类(10. 0mol/ L 醋酸铵、8. 0mol/ L 的氯化锂、氯化镁和低浓度的氯化锌等) 也用于核酸的沉淀。

相关文档
最新文档