各种排序算法总结

合集下载

博士生计算机科学算法知识点归纳总结

博士生计算机科学算法知识点归纳总结

博士生计算机科学算法知识点归纳总结计算机科学作为一门广泛涉及到各种领域的学科,算法作为其中至关重要的一部分,被广泛应用于数据处理、问题解决以及系统设计等方面。

对于博士生而言,熟练掌握计算机科学的算法知识点是非常重要的。

本文将对博士生计算机科学算法知识点进行归纳总结,以供博士生参考和学习。

一、排序算法排序算法是计算机科学中最常用的算法之一,它们用于对一组数据进行排序。

常见的排序算法包括冒泡排序、插入排序、选择排序、快速排序、归并排序等。

这些排序算法各有特点,适用于不同的应用场景。

博士生需要熟悉这些排序算法的原理、时间复杂度和空间复杂度,并能够灵活选择和应用合适的排序算法。

二、图算法图算法是研究图结构的算法,常用于解决图相关的问题。

常见的图算法包括深度优先搜索(DFS)、广度优先搜索(BFS)、最短路径算法(如Dijkstra算法和Floyd-Warshall算法)、最小生成树算法(如Prim算法和Kruskal算法)等。

图算法在社交网络分析、网络路由、推荐系统等领域有着广泛的应用,博士生应该具备对图算法的深入理解和实际应用能力。

三、动态规划动态规划是解决具有重叠子问题的优化问题的一种算法思想。

通过将问题划分为较小的子问题,并保存其结果,再根据子问题的结果构建出整个问题的解。

动态规划常用于解决最优化问题,如背包问题、最长公共子序列问题等。

博士生需要掌握动态规划的基本原理,并能够应用动态规划解决实际问题。

四、搜索算法搜索算法是一类解决最优路径问题的算法,常见的搜索算法包括深度优先搜索、广度优先搜索、A*算法等。

搜索算法在路径规划、人工智能、游戏开发等领域有着广泛的应用。

博士生需要了解各种搜索算法的原理和应用场景,并能够分析和设计适用的搜索算法。

五、字符串匹配算法字符串匹配算法是在一个主串中查找子串的算法。

常见的字符串匹配算法包括朴素模式匹配算法、KMP算法、Boyer-Moore算法等。

字符串匹配算法在文本搜索、数据处理等领域有着广泛的应用。

十大经典排序算法总结

十大经典排序算法总结

⼗⼤经典排序算法总结最近⼏天在研究算法,将⼏种排序算法整理了⼀下,便于对这些排序算法进⾏⽐较,若有错误的地⽅,还请⼤家指正0、排序算法说明0.1 排序术语稳定:如果a=b,且a原本排在b前⾯,排序之后a仍排在b的前⾯不稳定:如果a=b,且a原本排在b前⾯,排序之后排在b的后⾯时间复杂度:⼀个算法执⾏所耗费的时间空间复杂度:⼀个算法执⾏完所需内存的⼤⼩内排序:所有排序操作都在内存中完成外排序:由于数据太⼤,因此把数据放在磁盘中,⽽排序通过磁盘和内存的数据传输才能进⾏0.2算法时间复杂度、空间复杂度⽐较0.3名词解释n:数据规模k:桶的个数In-place:占⽤常数内存,不占⽤额外内存Out-place:占⽤额外内存0.4算法分类1.冒泡排序冒泡排序是⼀种简单的排序算法。

它重复地⾛访过要排序的数列,⼀次⽐较两个元素,如果它们的顺序错误就把它们交换过来。

⾛访数列的⼯作是重复地进⾏直到没有再需要交换,也就是说该数列已经排序完成。

这个算法的名字由来是因为越⼩的元素会经由交换慢慢“浮”到数列的顶端1.1算法描述⽐较相邻的元素,如果前⼀个⽐后⼀个打,就交换对每⼀对相邻元素做同样的⼯作,从开始第⼀对到结尾最后⼀对,这样在最后的元素应该会是最⼤的数针对所有的元素重复以上的步骤,除了最后⼀个重复步骤1-3,知道排序完成1.2动图演⽰1.3代码实现public static int[] bubbleSort(int[] array) {if (array.length == 0)return array;for (int i = 0; i < array.length; i++)for (int j = 0; j < array.length - 1 - i; j++)if (array[j + 1] < array[j]) {int temp = array[j + 1];array[j + 1] = array[j];array[j] = temp;}return array;}1.4算法分析最佳情况:T(n) = O(n) 最差情况:T(n) = O(n2) 平均情况:T(n) = O(n2)2.选择排序表现简单直观的最稳定的排序算法之⼀,因为⽆论什么数据都是O(n2)的时间复杂度,⾸先在未排序序列中找到最⼩(⼤)元素,与数组中第⼀个元素交换位置,作为排序序列的起始位置,然后再从剩余未排序元素中继续寻找最⼩(⼤)的元素,与数组中的下⼀个元素交换位置,也就是放在已排序序列的末尾2.1算法描述1.初始状态:⽆序区为R[1..n],有序区为空2.第i躺排序开始时,当前有序区和⽆序区R[1..i-1]、R[i..n]3.n-1趟结束,数组有序化2.2动图演⽰2.3代码实现public static int[] selectionSort(int[] array) {if (array.length == 0)return array;for (int i = 0; i < array.length; i++) {int minIndex = i;for (int j = i; j < array.length; j++) {if (array[j] < array[minIndex]) //找到最⼩的数minIndex = j; //将最⼩数的索引保存}int temp = array[minIndex];array[minIndex] = array[i];array[i] = temp;}return array;}2.4算法分析最佳情况:T(n) = O(n2) 最差情况:T(n) = O(n2) 平均情况:T(n) = O(n2)3、插⼊排序是⼀种简单直观的排序算法,通过构建有序序列,对于未排序序列,在已排序序列中从后向前扫描,找到相应位置并插⼊,需要反复把已排序元素逐步向后挪位,为最新元素腾出插⼊空间3.1算法描述1.从第⼀个元素开始,该元素可以认为已经被排序2.取出下⼀个元素(h),在已排序的元素序列中从后往前扫描3.如果当前元素⼤于h,将当前元素移到下⼀位置4.重复步骤3,直到找到已排序的元素⼩于等于h的位置5.将h插⼊到该位置6.重复步骤2-53.2动图演⽰3.3代码实现public static int[] insertionSort(int[] array) {if (array.length == 0)return array;int current;for (int i = 0; i < array.length - 1; i++) {current = array[i + 1];int preIndex = i;while (preIndex >= 0 && current < array[preIndex]) {array[preIndex + 1] = array[preIndex];preIndex--;}array[preIndex + 1] = current;}return array;}3.4算法分析最佳情况:T(n) = O(n) 最坏情况:T(n) = O(n2) 平均情况:T(n) = O(n2)4、希尔排序是简单插⼊排序经过改进之后的⼀个更⾼效的版本,也称为缩⼩增量排序,同时该算法是冲破O(n2)的第⼀批算法之⼀。

常用算法解析及其应用场景

常用算法解析及其应用场景

常用算法解析及其应用场景算法是计算机科学中最基础的概念之一。

在日常生活中,我们无时无刻不在接触着各种算法,从谷歌搜索到智能手机里各种APP的推荐算法,都离不开算法的支持和应用。

在这篇文章中,我将为大家介绍常用的算法和它们的应用场景。

一、排序算法排序算法是程序中最常用的一种算法,其目的是将数据按一定方式进行排列。

常见的排序算法包括冒泡排序、选择排序、插入排序、归并排序和快速排序。

1、冒泡排序冒泡排序是一种简单的排序算法,它的思路是从头到尾扫描一遍需要排序的数据,每一次将相邻两个元素进行比较并交换位置。

这个过程类似于水泡在水中上浮,一遍扫描结束后,最大的元素就会像水泡一样浮到最上面。

冒泡排序的时间复杂度为O(n²),如果需要排序的数据量很大,那么执行起来会比较慢。

不过它的优点在于代码简单易懂,并且实现起来很容易。

2、选择排序选择排序的思路是每次从数据中选择一个最小(或最大)的元素,并将其放置在序列的起始位置。

按照这样的方式,每次只需要找到一个元素,就可以将数据序列排列好。

选择排序的时间复杂度也为O(n²),但它比冒泡排序要稍微快一点。

3、插入排序插入排序的思路是将数据分为已排序区间和未排序区间两部分。

不断地将未排序区间的元素逐一与已排序区间的元素相比较,找到合适的位置插入。

重复执行这个过程,最终就能将整个数据序列排列好。

插入排序的时间复杂度也为O(n²),但它的执行速度相对于冒泡排序和选择排序要慢一些。

不过它的优点在于它在处理小数据量时非常高效,并且在排序过程中需要的额外内存很少。

4、归并排序归并排序的思路是将数据分成两个子序列,分别进行排序,最后将排序好的子序列进行合并。

在合并的过程中,需要使用到一个额外的数组来存储数据。

归并排序的时间复杂度为O(nlogn),执行效率相对较高。

尤其是在处理大数据量时,它表现得十分出色。

5、快速排序快速排序的思路不同于以上几种排序算法,它是一种分治法的排序算法。

计算机常用算法

计算机常用算法

计算机常用算法一、排序算法排序算法是计算机程序中最基本的算法之一,它用于将一组数据按照一定的顺序进行排列。

常见的排序算法包括冒泡排序、选择排序、插入排序、快速排序、归并排序等。

这些算法的目标都是将数据从小到大或从大到小进行排序,以便于后续的处理和查找。

冒泡排序是一种简单的排序算法,它通过不断比较相邻元素的大小来将较大(或较小)的元素逐步交换到右侧(或左侧)。

选择排序则是依次选取未排序部分的最小(或最大)元素并放置到已排序部分的末尾。

插入排序则是将未排序部分的元素依次插入到已排序部分的合适位置。

快速排序是一种高效的排序算法,它通过选择一个基准元素,将数组划分为两个子数组,并对子数组进行递归排序。

归并排序则是将数组分成两个子数组,分别排序后再合并。

二、查找算法查找算法是用于在一组数据中寻找特定元素或满足特定条件的元素的算法。

常见的查找算法包括线性查找、二分查找、哈希查找等。

这些算法的目标都是在最短的时间内找到目标元素。

线性查找是最简单的查找算法,它依次遍历数据中的每个元素,直到找到目标元素或遍历完所有元素。

二分查找则是在有序数组中使用的一种查找算法,它通过不断缩小查找范围,将查找时间从O(n)降低到O(logn)。

哈希查找则是通过构建一个哈希表来实现的,将元素的关键字映射到对应的位置,以实现快速查找。

三、图算法图算法是解决图相关问题的算法,它在计算机科学中有着广泛的应用。

常见的图算法包括深度优先搜索(DFS)、广度优先搜索(BFS)、最短路径算法(Dijkstra算法、Floyd-Warshall算法)、最小生成树算法(Prim算法、Kruskal算法)等。

深度优先搜索是一种遍历图的算法,它从一个起始节点开始,沿着一条路径一直遍历到最后一个节点,然后回溯到前一个节点,继续遍历其他路径。

广度优先搜索则是从起始节点开始,逐层遍历图中的节点,直到找到目标节点。

最短路径算法用于计算图中两个节点之间的最短路径,它可以解决最短路径问题,如求解地图上的最短路径。

各种排序方法汇总

各种排序方法汇总

一.选择排序1. 选择排序法基本思想:每一趟从待排序的数据元素中选出最小<或最大)的一个元素,顺序放在已排好序的数列的最后,直到全部待排序的数据元素排完。

b5E2RGbCAP2. 排序过程:【示例】:初始关键字 [49 38 65 97 76 13 27 49]第一趟排序后 13 [38 65 97 76 49 27 49]第二趟排序后 13 27 [65 97 76 49 38 49]第三趟排序后 13 27 38 [97 76 49 65 49]第四趟排序后 13 27 38 49 [49 97 65 76]第五趟排序后 13 27 38 49 49 [97 97 76]第六趟排序后 13 27 38 49 49 76 [76 97]第七趟排序后 13 27 38 49 49 76 76 [ 97]最后排序结果 13 27 38 49 49 76 76 973.void selectionSort(Type* arr,long len>{long i=0,j=0。

/*iterator value*/long maxPos。

assertF(arr!=NULL,"In InsertSort sort,arr is NULL\n ">。

p1EanqFDPwfor(i=len-1。

i>=1。

i-->{maxPos=i。

for(j=0。

j<I。

J++>< P>if(arr[maxPos]< P>if(maxPos!=i>swapArrData(arr,maxPos, i>。

}}选择排序法的第一层循环从起始元素开始选到倒数第二个元素,主要是在每次进入的第二层循环之前,将外层循环的下标赋值给临时变量,接下来的第二层循环中,如果发现有比这个最小位置处的元素更小的元素,则将那个更小的元素的下标赋给临时变量,最后,在二层循环退出后,如果临时变量改变,则说明,有比当前外层循环位置更小的元素,需要将这两个元素交换.DXDiTa9E3d二.直接插入排序插入排序<Insertion Sort)的基本思想是:每次将一个待排序的记录,按其关键字大小插入到前面已经排好序的子文件中的适当位置,直到全部记录插入完成为止。

各种排序算法的总结和比较

各种排序算法的总结和比较

各种排序算法的总结和比较1 快速排序(QuickSort )快速排序是一个就地排序,分而治之,大规模递归的算法。

从本质上来说,它是归并排序的就地版本。

快速排序可以由下面四步组成。

(1 )如果不多于1 个数据,直接返回。

(2 )一般选择序列最左边的值作为支点数据。

(3 )将序列分成2 部分,一部分都大于支点数据,另外一部分都小于支点数据。

(4 )对两边利用递归排序数列。

快速排序比大部分排序算法都要快。

尽管我们可以在某些特殊的情况下写出比快速排序快的算法,但是就通常情况而言,没有比它更快的了。

快速排序是递归的,对于内存非常有限的机器来说,它不是一个好的选择。

2 归并排序(MergeSort )归并排序先分解要排序的序列,从1 分成2 ,2 分成4 ,依次分解,当分解到只有1 个一组的时候,就可以排序这些分组,然后依次合并回原来的序列中,这样就可以排序所有数据。

合并排序比堆排序稍微快一点,但是需要比堆排序多一倍的内存空间,因为它需要一个额外的数组。

3 堆排序( HeapSort )堆排序适合于数据量非常大的场合(百万数据)。

堆排序不需要大量的递归或者多维的暂存数组。

这对于数据量非常巨大的序列是合适的。

比如超过数百万条记录,因为快速排序,归并排序都使用递归来设计算法,在数据量非常大的时候,可能会发生堆栈溢出错误。

堆排序会将所有的数据建成一个堆,最大的数据在堆顶,然后将堆顶数据和序列的最后一个数据交换。

接下来再次重建堆,交换数据,依次下去,就可以排序所有的数据。

4 Shell 排序( ShellSort )Shell 排序通过将数据分成不同的组,先对每一组进行排序,然后再对所有的元素进行一次插入排序,以减少数据交换和移动的次数。

平均效率是O(nlogn) 。

其中分组的合理性会对算法产生重要的影响。

现在多用D.E.Knuth 的分组方法。

Shell 排序比冒泡排序快5 倍,比插入排序大致快2 倍。

Shell 排序比起QuickSort ,MergeSort ,HeapSort 慢很多。

各种排序方法总结

各种排序方法总结

常用排序算法有哪些? 冒择路希快归堆(口诀):冒泡排序,选择排序,插入排序,希尔排序,快速排序,归并排序,堆排序; 冒泡排序冒泡排序(Bubble Sort ),是一种计算机科学领域的较简单的排序算法。

它重复地走访过要排序的数列,一次比较两个元素,如果他们的顺序错误就把他们交换过来。

走访数列的工作是重复地进行直到没有再需要交换,也就是说该数列已经排序完成。

这个算法的名字由来是因为越大的元素会经由交换慢慢“浮”到数列的顶端,故名。

JAVA 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 publicclassBubbleSort{publicvoidsort(int[]a){inttemp=0;for(inti=a.length-1;i>0;--i){for(intj=0;j<i;++j){if(a[j+1]<a[j]){temp=a[j];a[j]=a[j+1];a[j+1]=temp;}}}}}JavaScript1 2 3 4 functionbubbleSort(arr){vari=arr.length,j;vartempExchangVal;while(i>0)5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 {for(j=0;j<i-1;j++){if(arr[j]>arr[j+1]){tempExchangVal=arr[j];arr[j]=arr[j+1];arr[j+1]=tempExchangVal;}}i--;}returnarr;}vararr=[3,2,4,9,1,5,7,6,8];vararrSorted=bubbleSort(arr);console.log(arrSorted);alert(arrSorted);控制台将输出:[1, 2, 3, 4, 5, 6, 7, 8, 9]快速排序算法快速排序(Quicksort )是对冒泡排序的一种改进。

各种排序方法总结

各种排序方法总结

选择排序、‎快速排序、‎希尔排序、‎堆排序不是‎稳定的排序‎算法,冒‎泡排序、插‎入排序、归‎并排序和基‎数排序是稳‎定的排序算‎法。

‎冒泡法‎:这‎是最原始,‎也是众所周‎知的最慢的‎算法了。

他‎的名字的由‎来因为它的‎工作看来象‎是冒泡:‎复杂度为‎O(n*n‎)。

当数据‎为正序,将‎不会有交换‎。

复杂度为‎O(0)。

‎直接插‎入排序:O‎(n*n)‎选择排‎序:O(n‎*n)‎快速排序:‎平均时间复‎杂度log‎2(n)*‎n,所有内‎部排序方法‎中最高好的‎,大多数情‎况下总是最‎好的。

‎归并排序:‎l og2(‎n)*n‎堆排序:‎l og2(‎n)*n‎希尔排序‎:算法的复‎杂度为n的‎1.2次幂‎‎这里我没‎有给出行为‎的分析,因‎为这个很简‎单,我们直‎接来分析算‎法:首‎先我们考虑‎最理想的情‎况1.‎数组的大小‎是2的幂,‎这样分下去‎始终可以被‎2整除。

假‎设为2的k‎次方,即k‎=log2‎(n)。

‎2.每次‎我们选择的‎值刚好是中‎间值,这样‎,数组才可‎以被等分。

‎第一层‎递归,循环‎n次,第二‎层循环2*‎(n/2)‎.....‎.所以‎共有n+2‎(n/2)‎+4(n/‎4)+..‎.+n*(‎n/n) ‎= n+n‎+n+..‎.+n=k‎*n=lo‎g2(n)‎*n所‎以算法复杂‎度为O(l‎o g2(n‎)*n) ‎其他的情‎况只会比这‎种情况差,‎最差的情况‎是每次选择‎到的mid‎d le都是‎最小值或最‎大值,那么‎他将变成交‎换法(由于‎使用了递归‎,情况更糟‎)。

但是你‎认为这种情‎况发生的几‎率有多大?‎?呵呵,你‎完全不必担‎心这个问题‎。

实践证明‎,大多数的‎情况,快速‎排序总是最‎好的。

‎如果你担心‎这个问题,‎你可以使用‎堆排序,这‎是一种稳定‎的O(lo‎g2(n)‎*n)算法‎,但是通常‎情况下速度‎要慢于快‎速排序(因‎为要重组堆‎)。

数据结构排序算法稳定性总结——写给自己看

数据结构排序算法稳定性总结——写给自己看

数据结构排序算法稳定性总结——写给⾃⼰看⼀、排序分类(1)插⼊类:直接插⼊排序、折半插⼊排序、希尔排序(2)交换类:冒泡排序、快速排序(3)选择类:简单选择排序、堆排序(属于树形选择排序)(4)归并类:2-路归并排序(5)分配类:基数排序⼆、排序稳定性及其原因(1)稳定排序:直接插⼊排序、折半插⼊排序、冒泡排序、2-路归并排序、基数排序直接插⼊排序:每次将⼀个待排序的记录,按其关键字的⼤⼩插⼊到已经排好序的⼀组记录的适当位置上。

在数组内部前半部为排好序的记录,后半部是未排好序的。

⽐较时从前半部的后向前⽐较,所以不会改变相等记录的相对位置。

折半插⼊排序:将直接插⼊排序关键字⽐较时的查找利⽤“折半查找”来实现,本质并没有改变还是⼀种稳定排序。

冒泡排序:通过两两⽐较相邻记录的关键字,如果发⽣逆序,则进⾏交换。

也不会改变相等记录的相对位置。

2-路归并排序:将两个有序表合并成⼀个有序表。

每次划分的两个⼦序列前后相邻。

合并时每次⽐较两个有序⼦序列当前较⼩的⼀个关键字,将其放⼊排好序的序列尾部。

因为两⼦序列相邻,合并时也没有改变相等记录的相对位置,所以也是稳定的。

基数排序:对待排序序列进⾏若⼲趟“分配”和“收集”来实现排序。

分配时相等记录被分配在⼀块,没有改变相对位置,是⼀种稳定排序。

(2)不稳定排序:希尔排序、快速排序、堆排序希尔排序:采⽤分组插⼊的⽅法,将待排序列分割成⼏组,从⽽减少直接插⼊排序的数据量,对每组分别进⾏直接插⼊排序,然后增加数据量,重新分组。

经过⼏次分组排序之后,对全体记录进⾏⼀次直接插⼊排序。

但是希尔对记录的分组,不是简单的“逐段分割”,⽽是将相隔每个“增量”的记录分成⼀组(假如:有1~10⼗个数,以2为增量则分为13579、246810两组)。

这种跳跃式的移动导致该排序⽅法是不稳定的。

快速排序:改进的冒泡排序。

冒泡只⽐较相邻的两个记录,每次交换只能消除⼀个逆序。

快排就是通过交换两个不相邻的记录,达到⼀次消除多个逆序。

软考排序算法总结

软考排序算法总结

软考排序算法总结排序算法是计算机科学中的一个重要主题,旨在将一组元素按照特定的顺序排列。

以下是几种常见的排序算法及其主要特点和应用场景的总结:1. 冒泡排序(Bubble Sort):- 特点:比较相邻元素,按照规定的顺序交换位置,直到整个序列排序完成。

- 时间复杂度:最好情况O(n),最坏情况O(n^2)。

- 应用场景:适用于小规模数据,实现简单,但效率较低。

2. 选择排序(Selection Sort):- 特点:每次从未排序的部分中找到最小(或最大)元素,将其放在已排序的末尾。

- 时间复杂度:始终为O(n^2)。

- 应用场景:适用于小规模数据,相对于冒泡排序而言,移动数据的次数更少,因此性能相对较好。

3. 插入排序(Insertion Sort):- 特点:将未排序的元素逐个插入已排序的部分,保持已排序的部分一直有序。

- 时间复杂度:最好情况O(n),最坏情况O(n^2)。

- 应用场景:适用于部分有序的数据,对于小规模数据或近乎有序的数据效果较好。

4. 快速排序(Quick Sort):- 特点:通过选择一个基准元素,将序列分为两个部分,其中一部分小于基准元素,另一部分大于基准元素,然后对这两部分进行递归排序。

- 时间复杂度:平均情况O(nlogn),最坏情况O(n^2)。

- 应用场景:适用于大规模数据,实现简单,性能较好。

5. 归并排序(Merge Sort):- 特点:将序列分为两半,对每个子序列进行递归排序,然后将两个已排序的子序列合并为一个有序序列。

- 时间复杂度:始终为O(nlogn)。

- 应用场景:适用于大规模数据,稳定且效率较高。

6. 堆排序(Heap Sort):- 特点:将序列构建成一个最大(或最小)堆,然后将堆顶元素与最后一个元素交换,并重新调整堆,重复此过程直到整个序列有序。

- 时间复杂度:始终为O(nlogn)。

- 应用场景:适用于大规模数据,效率较高。

以上是几种常见的排序算法的总结,其中每种算法都有其特定的应用场景和性能特点。

数学数的排序

数学数的排序

数学数的排序数学中,数的排序是一项重要的基本技能,它帮助我们理解数字的大小关系、比较数值的大小,并能应用于各种数学问题中。

本文将介绍几种常见的数的排序方法及其应用。

一、升序排列升序排列是最常见的排序方法之一。

它按数字从小到大的顺序排列数值。

升序排列有助于我们理清数字的大小关系,方便做数值比较和快速查找。

下面是一个示例:例如,有一组数字:6、3、9、1、7按照升序排列,我们可以通过比较数字的大小,依次将它们排列为:1、3、6、7、9升序排列在很多问题中都有应用,比如查找最小值、最大值、中位数等。

二、降序排列降序排列与升序排列相反,它按数字从大到小的顺序排列数值。

降序排列在分析数据的时候更容易识别出最大值和最小值,使数据更直观。

下面是一个示例:例如,有一组数字:6、3、9、1、7按照降序排列,我们可以将它们排列为:9、7、6、3、1降序排列常用于统计数据、排行榜等领域。

三、插入排序插入排序是一种简单且常用的排序算法。

它通过将一个数字插入已排好序的数列中,使整个数列逐步有序。

插入排序操作如下:1. 从待排序数列中选择一个数作为第一个已排序数列;2. 取下一个数,与已排序数列中的数从后往前逐个比较,找到合适的插入位置;3. 重复步骤2,直到全部数字插入完毕。

插入排序的优点是简单易懂,适用于排序小型数据集,并且对部分有序的数列有较好的效果。

四、快速排序快速排序是一种高效的排序算法,它通过选择一个基准点(通常选择第一个或最后一个数字),将数列划分成小于基准点和大于基准点的两个子序列,并对子序列进行递归排序。

快速排序的步骤如下:1. 选择一个基准点;2. 比基准点小的数放到一个子序列中,比基准点大的数放到另一个子序列中;3. 对子序列进行递归排序,直到子序列的长度为1或0。

快速排序的优点是速度快,适用于排序大型数据集,它在排序大型数据集时表现出色,被广泛应用。

五、归并排序归并排序是一种稳定的排序算法,它采用分治的思想,将一个大的数列拆分成多个子序列,然后递归地对子序列进行排序,最后将排序好的子序列进行合并。

排序算法总结

排序算法总结

排序算法总结【篇一:排序算法总结】1、稳定排序和非稳定排序简单地说就是所有相等的数经过某种排序方法后,仍能保持它们在排序之前的相对次序,我们就说这种排序方法是稳定的。

反之,就是非稳定的。

比如:一组数排序前是a1,a2,a3,a4,a5,其中a2=a4,经过某种排序后为a1,a2,a4,a3,a5,则我们说这种排序是稳定的,因为a2排序前在a4的前面,排序后它还是在a4的前面。

假如变成a1,a4,a2,a3,a5就不是稳定的了。

2、内排序和外排序在排序过程中,所有需要排序的数都在内存,并在内存中调整它们的存储顺序,称为内排序;在排序过程中,只有部分数被调入内存,并借助内存调整数在外存中的存放顺序排序方法称为外排序。

3、算法的时间复杂度和空间复杂度所谓算法的时间复杂度,是指执行算法所需要的计算工作量。

一个算法的空间复杂度,一般是指执行这个算法所需要的内存空间。

功能:选择排序输入:数组名称(也就是数组首地址)、数组中元素个数算法思想简单描述:在要排序的一组数中,选出最小的一个数与第一个位置的数交换;然后在剩下的数当中再找最小的与第二个位置的数交换,如此循环到倒数第二个数和最后一个数比较为止。

选择排序是不稳定的。

【篇二:排序算法总结】在计算机科学所使用的排序算法通常被分类为:计算的复杂度(最差、平均、和最好性能),依据列表(list)的大小(n)。

一般而言,好的性能是O(nlogn),且坏的性能是O(n2)。

对于一个排序理想的性能是O(n)。

仅使用一个抽象关键比较运算的排序算法总平均上总是至少需要O(nlogn)。

内存使用量(以及其他电脑资源的使用)稳定度:稳定排序算法会依照相等的关键(换言之就是值)维持纪录的相对次序。

也就是一个排序算法是稳定的,就是当有两个有相等关键的纪录R和S,且在原本的列表中R出现在S之前,在排序过的列表中R也将会是在S之前。

一般的方法:插入、交换、选择、合并等等。

交换排序包含冒泡排序和快速排序。

各种排序算法的优缺点

各种排序算法的优缺点

一、冒泡排序已知一组无‎序数据a[1]、a[2]、……a[n],需将其按升‎序排列。

首先比较a‎[1]与 a[2]的值,若a[1]大于a[2]则交换两者‎的值,否则不变。

再比较a[2]与a[3]的值,若a[2]大于a[3]则交换两者‎的值,否则不变。

再比较a[3]与a[4],以此类推,最后比较a‎[n-1]与a[n]的值。

这样处理一‎轮后,a[n]的值一定是‎这组数据中‎最大的。

再对a[1]~a[n- 1]以相同方法‎处理一轮,则a[n-1]的值一定是‎a[1]~a[n-1]中最大的。

再对a[1]~a[n-2]以相同方法‎处理一轮,以此类推。

共处理 n-1轮后a[1]、a[2]、……a[n]就以升序排‎列了。

优点:稳定;缺点:慢,每次只能移‎动相邻两个‎数据。

二、选择排序每一趟从待‎排序的数据‎元素中选出‎最小(或最大)的一个元素‎,顺序放在已‎排好序的数‎列的最后,直到全部待‎排序的数据‎元素排完。

选择排序是‎不稳定的排‎序方法。

n个记录的‎文件的直接‎选择排序可‎经过n-1趟直接选‎择排序得到‎有序结果:①初始状态:无序区为R‎[1..n],有序区为空‎。

②第1趟排序‎在无序区R‎[1..n]中选出关键‎字最小的记‎录R[k],将它与无序‎区的第1个‎记录R[1]交换,使R[1..1]和R[2..n]分别变为记‎录个数增加‎1个的新有‎序区和记录‎个数减少1‎个的新无序‎区。

……③第i趟排序‎第i趟排序‎开始时,当前有序区‎和无序区分‎别为R[1..i-1]和R(1≤i≤n-1)。

该趟排序从当前‎无序区中选‎出关键字最‎小的记录 R[k],将它与无序‎区的第1个‎记录R交换‎,使R[1..i]和R分别变‎为记录个数‎增加1个的‎新有序区和‎记录个数减‎少1个的新‎无序区。

这样,n个记录的‎文件的直接‎选择排序可‎经过n-1趟直接选‎择排序得到‎有序结果。

优点:移动数据的‎次数已知(n-1次);缺点:比较次数多‎。

各种排序算法的稳定性和时间复杂度小结

各种排序算法的稳定性和时间复杂度小结

各种排序算法的稳定性和时间复杂度小结选择排序、快速排序、希尔排序、堆排序不是稳定的排序算法,冒泡排序、插入排序、归并排序和基数排序是稳定的排序算法。

冒泡法:这是最原始,也是众所周知的最慢的算法了。

他的名字的由来因为它的工作看来象是冒泡:复杂度为O(n*n)。

当数据为正序,将不会有交换。

复杂度为O(0)。

直接插入排序:O(n*n)选择排序:O(n*n)快速排序:平均时间复杂度log2(n)*n,所有内部排序方法中最高好的,大多数情况下总是最好的。

归并排序:log2(n)*n堆排序:log2(n)*n希尔排序:算法的复杂度为n的1.2次幂关于快速排序分析这里我没有给出行为的分析,因为这个很简单,我们直接来分析算法:首先我们考虑最理想的情况1.数组的大小是2的幂,这样分下去始终可以被2整除。

假设为2的k次方,即k=log2(n)。

2.每次我们选择的值刚好是中间值,这样,数组才可以被等分。

第一层递归,循环n次,第二层循环2*(n/2)......所以共有n+2(n/2)+4(n/4)+...+n*(n/n) = n+n+n+...+n=k*n=log2(n)*n所以算法复杂度为O(log2(n)*n)其他的情况只会比这种情况差,最差的情况是每次选择到的middle都是最小值或最大值,那么他将变成交换法(由于使用了递归,情况更糟)。

但是你认为这种情况发生的几率有多大??呵呵,你完全不必担心这个问题。

实践证明,大多数的情况,快速排序总是最好的。

如果你担心这个问题,你可以使用堆排序,这是一种稳定的O(log2(n)*n)算法,但是通常情况下速度要慢于快速排序(因为要重组堆)。

本文是针对老是记不住这个或者想真正明白到底为什么是稳定或者不稳定的人准备的。

首先,排序算法的稳定性大家应该都知道,通俗地讲就是能保证排序前2个相等的数其在序列的前后位置顺序和排序后它们两个的前后位置顺序相同。

在简单形式化一下,如果Ai = Aj, Ai原来在位置前,排序后Ai还是要在Aj位置前。

C语言常用算法归纳

C语言常用算法归纳

C语言常用算法归纳C语言作为一种非常流行的编程语言,拥有丰富的算法库和常用算法。

在本篇文章中,我将为您介绍C语言中常用的算法分类,以及每个分类中的常用算法。

希望这篇文章能对您学习C语言算法有所帮助。

1.排序算法:排序算法用于将一组数据按照一定的顺序进行排列。

C语言中常用的排序算法有以下几种:-冒泡排序:通过依次比较相邻元素的大小,将较大的元素逐渐向后移动,实现排序。

-插入排序:将未排序的元素一个个插入到已经排序的序列中,使得整个序列有序。

-选择排序:每次从待排序的序列中选择最小(或最大)的元素,放到已排序序列的末尾。

-快速排序:通过一趟排序将待排序的数据分割成独立的两部分,然后再按照该方法对两部分数据分别进行快速排序,递归实现排序。

-归并排序:将待排序的数据递归地分成两部分,分别进行排序,然后将两个有序的子序列合并成一个有序的序列。

2.查找算法:查找算法用于在一组数据中寻找指定的元素。

C语言中常用的查找算法有以下几种:-顺序查找:从序列的起始位置依次遍历,直到找到目标元素。

-二分查找:对于已经排序的序列,通过每次将查找范围减半的方式进行查找,提高查找效率。

-插值查找:对于有序的序列,根据目标元素在序列中的分布情况,通过插值计算来确定查找位置。

3.字符串处理算法:字符串处理算法用于对字符串进行处理和操作。

C语言中常用的字符串处理算法有以下几种:-字符串比较:用于比较两个字符串是否相等。

-字符串拼接:将两个字符串合并成一个字符串。

-字符串查找:在一个字符串中寻找指定的子串。

-字符串替换:将字符串中指定的子串替换为新的子串。

4.图算法:图算法用于研究图结构的相关问题。

C语言中常用的图算法有以下几种:-广度优先:从图的其中一个顶点开始,按广度优先的原则依次访问与该顶点相邻的未访问的顶点。

-深度优先:从图的其中一个顶点开始,按深度优先的原则访问与该顶点相邻的未访问的顶点,直到无法继续访问为止。

- 最短路径算法:用于寻找两个顶点之间最短路径的算法,常见的最短路径算法有Dijkstra算法和Floyd算法。

数据结构课程设计排序算法总结

数据结构课程设计排序算法总结

排序算法:(1) 直接插入排序 (2) 折半插入排序(3) 冒泡排序 (4) 简单选择排序 (5) 快速排序(6) 堆排序 (7) 归并排序【算法分析】(1)直接插入排序;它是一种最简单的排序方法,它的基本操作是将一个记录插入到已排好的序的有序表中,从而得到一个新的、记录数增加1的有序表。

(2)折半插入排序:插入排序的基本操作是在一个有序表中进行查找和插入,我们知道这个查找操作可以利用折半查找来实现,由此进行的插入排序称之为折半插入排序。

折半插入排序所需附加存储空间和直接插入相同,从时间上比较,折半插入排序仅减少了关键字间的比较次数,而记录的移动次数不变。

(3)冒泡排序:比较相邻关键字,若为逆序(非递增),则交换,最终将最大的记录放到最后一个记录的位置上,此为第一趟冒泡排序;对前n-1记录重复上操作,确定倒数第二个位置记录;……以此类推,直至的到一个递增的表。

(4)简单选择排序:通过n-i次关键字间的比较,从n-i+1个记录中选出关键字最小的记录,并和第i(1<=i<=n)个记录交换之。

(5)快速排序:它是对冒泡排序的一种改进,基本思想是,通过一趟排序将待排序的记录分割成独立的两部分,其中一部分记录的关键字均比另一部分记录的关键字小,则可分别对这两部分记录继续进行排序,以达到整个序列有序。

(6)堆排序: 使记录序列按关键字非递减有序排列,在堆排序的算法中先建一个“大顶堆”,即先选得一个关键字为最大的记录并与序列中最后一个记录交换,然后对序列中前n-1记录进行筛选,重新将它调整为一个“大顶堆”,如此反复直至排序结束。

(7)归并排序:归并的含义是将两个或两个以上的有序表组合成一个新的有序表。

假设初始序列含有n个记录,则可看成是n个有序的子序列,每个子序列的长度为1,然后两两归并,得到n/2个长度为2或1的有序子序列;再两两归并,……,如此重复,直至得到一个长度为n的有序序列为止,这种排序称为2-路归并排序。

排序算法总结(PDF)

排序算法总结(PDF)

十大排序算法选择排序选择排序的基本思想是对待排序的记录序列进行n-1遍的处理,第i遍处理是将L[i..n]中最小者与L[i]交换位置。

这样,经过i遍处理之后,前i个记录的位置已经是正确的了。

选择排序是不稳定的。

算法复杂度是O(n ^2 )。

class SelectionSorter{private int min;public void Sort(int[] arr){for (int i = 0; i < arr.Length - 1; ++i){min = i;for (int j = i + 1; j < arr.Length; ++j){if (arr[j] < arr[min])min = j;}int t = arr[min];arr[min] = arr[i];arr[i] = t;}}}冒泡排序冒泡排序方法是最简单的排序方法。

这种方法的基本思想是,将待排序的元素看作是竖着排列的“气泡”,较小的元素比较轻,从而要往上浮。

在冒泡排序算法中我们要对这个“气泡”序列处理若干遍。

所谓一遍处理,就是自底向上检查一遍这个序列,并时刻注意两个相邻的元素的顺序是否正确。

如果发现两个相邻元素的顺序不对,即“轻”的元素在下面,就交换它们的位置。

显然,处理一遍之后,“最轻”的元素就浮到了最高位置;处理二遍之后,“次轻”的元素就浮到了次高位置。

在作第二遍处理时,由于最高位置上的元素已是“最轻”元素,所以不必检查。

一般地,第i遍处理时,不必检查第i高位置以上的元素,因为经过前面i-1遍的处理,它们已正确地排好序。

冒泡排序是稳定的。

算法时间复杂度是O(n ^2){public void Sort(int[] arr){int i, j, temp;bool done = false;j = 1;while ((j < arr.Length) && (!done))//判断长度{done = true;for (i = 0; i < arr.Length - j; i++){if (arr[i] > arr[i + 1]){done = false;temp = arr[i];arr[i] = arr[i + 1];//交换数据arr[i + 1] = temp;}}j++;}}}快速排序快速排序是对冒泡排序的一种本质改进。

各种排序算法大全

各种排序算法大全

6.1.3 直接插入排序
实用例子:
已知待序的一组记录的初始排列为:21, 25, 49, 25*, 16, 08
21 25 49 25* 16 08 012345
6.1.3 直接插入排序
实用例子:
i=1
21 25 49 25* 16 08 25 012345 temp
i=2 i=3
21 25 49 25* 16 08 49 012345 temp
6.1.3 直接插入排序
算法实现:
void InsertSort (int r[ ], int n ) {
// 假设关键字为整型,放在向量r[]中 int i, j, temp; for (i = 1;i< n;i++ ) {
temp = r[i]; for(j = i;j>0;j- -) {//从后向前顺序比较,并依次后移
k=i
for j=i+1 to n

a[j]<a[k]
k=j

i != k
a[i]a[k]
输出a[1] 到 a[n]
#include <stdio.h> main() { int a[11],i,j,k,x;
printf("Input 10 numbers:\n"); for(i=1;i<11;i++)
27 38 [97 76 49 65 ] 27 38 49 [76 97 65 ] 27 38 49 65 [97 76 ] 27 38 49 65 76 [97 ]
6.1.5 选择排序
算法实例:
初始
21 25 49 25* 16 08
0

数字的位置变换将数字在数列中的位置进行变换

数字的位置变换将数字在数列中的位置进行变换

数字的位置变换将数字在数列中的位置进行变换数字是我们生活中不可或缺的一部分,而数字在数列中的位置则决定了它们的排序和相对大小。

数字的位置变换可以通过各种方式实现,包括排序算法、数组操作等。

本文将探讨数字位置变换的各种方法和应用。

一、排序算法排序算法是数字位置变换的一种常见方法。

根据排序算法的不同,我们可以将数列中的数字按照升序或降序进行排列。

下面介绍几种常见的排序算法:1. 冒泡排序冒泡排序是一种简单且效率较低的排序算法。

它重复地遍历数列,每次比较相邻的两个数字,若顺序不对则交换它们的位置,直到整个数列有序。

冒泡排序的时间复杂度为O(n^2)。

2. 快速排序快速排序是一种分而治之的排序算法。

它选择一个数字作为基准,将数列分为两部分,一部分小于基准,一部分大于基准。

然后递归地对两个子数列进行排序,直到整个数列有序。

快速排序的时间复杂度为O(nlogn)。

3. 归并排序归并排序是一种稳定且效率较高的排序算法。

它将数列递归地划分为较小的数列,然后将这些小数列按照大小进行合并,直到整个数列有序。

归并排序的时间复杂度为O(nlogn)。

以上只是排序算法中的几种常见方法,实际上还有许多其他的排序算法可供选择。

二、数组操作除了排序算法外,数组操作也可以实现数字位置的变换。

常见的数组操作有插入、删除、替换等。

下面介绍几种常见的数组操作方法:1. 插入操作插入操作可以将一个数字插入到数列的指定位置。

具体步骤是先将插入位置后的数字依次后移,然后将要插入的数字放入指定的位置。

插入操作可以实现数字位置的前移或后移。

2. 删除操作删除操作可以将数列中的一个数字删除。

具体步骤是先将删除位置后的数字依次前移,然后将需要删除的数字从数列中移除。

删除操作可以实现数字位置的前移。

3. 替换操作替换操作可以将数列中的一个数字替换为另一个数字。

具体步骤是先找到要替换的数字的位置,然后将其替换为指定的数字。

替换操作不改变数字的位置。

以上只是数组操作中的几种常见方法,实际上还有很多其他的数组操作可供选择。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

各种排序算法总结
排序算法有很多,所以在特定情景中使用哪一种算法很重要。

为了选择合适的算法,可以按照建议的顺序考虑以下标准:
()执行时间
()存储空间
()编程工作
对于数据量较小的情形,()()差别不大,主要考虑();而对于数据量大的,()为首要。

主要排序法有:
一、冒泡()排序——相邻交换
二、选择排序——每次最小大排在相应的位置
三、插入排序——将下一个插入已排好的序列中
四、壳()排序——缩小增量
五、归并排序
六、快速排序
七、堆排序
八、拓扑排序
九、锦标赛排序
十、基数排序
一、冒泡()排序
从小到大排序个数
()
{
( <)
{
( <)
{
([]>[])比较交换相邻元素
{
;
[]; [][]; [];
}
}
}
}
效率(²),适用于排序小列表。

二、选择排序
从小到大排序个数
{
;
( <)
{
;
( <)每次扫描选择最小项
([]<[]) ;
()找到最小项交换,即将这一项移到列表中的正确位置
{
;
[]; [][]; [];
}
}
}
效率(²),适用于排序小的列表。

三、插入排序
从小到大排序个数
()
{
( <)循环从第二个数组元素开始,因为[]作为最初已排序部分
{
[]标记为未排序第一个元素
;
(> []>)*将与已排序元素从小到大比较,寻找应插入的位置*
{
[][];
;
}
[];
}
}
最佳效率();最糟效率(²)与冒泡、选择相同,适用于排序小列表若列表基本有序,则插入排序比冒泡、选择更有效率。

四、壳()排序——缩小增量排序
从小到大排序个数
{
( <)增量递减
{
( <())重复分成的每个子列表
{
( <)对每个子列表应用插入排序
{
[];
;
(>[]>)
{
[][];
;
}
[];
}
}
}
}
适用于排序小列表。

效率估计(^)(^),取决于增量值的最初大小。

建议使用质数作为增量值,因为如果增量值是的幂,则在下一个通道中会再次比较相同的元素。

壳()排序改进了插入排序,减少了比较的次数。

是不稳定的排序,因为排序过程中元素可能会前后跳跃。

五、归并排序
从小到大排序
( )
{
(>) 每个子列表中剩下一个元素时停止
()*将列表划分成相等的两个子列表,若有奇数个元素,则在左边子列表大于右侧子列表*
()子列表进一步划分
();
[] []新建一个数组,用于存放归并的元素
( < <)*两个子列表进行排序归并,直到两个子列表中的一个结束*
{
([]<[];)
{
[][];
;
}
{ [][]; ; }
}
( <)如果第二个子列表中仍然有元素,则追加到新列表
[][];
( <)如果在第一个子列表中仍然有元素,则追加到新列表中
[][];
( <)将排序的数组的所有元素复制到原始数组中
[][];
}
效率(),归并的最佳、平均和最糟用例效率之间没有差异。

适用于排序大列表,基于分治法。

六、快速排序
*快速排序的算法思想:选定一个枢纽元素,对待排序序列进行分割,分割之后的序列一个部分小于枢纽元素,一个部分大于枢纽元素,再对这两个分割好的子序列进行上述的过程。

*
( ){ ;}
( [] )
{
[]采用子序列的第一个元素作为枢纽元素
( < )
{
从后往前栽后半部分中寻找第一个小于枢纽元素的元素
( < [] > )
{
;
}
将这个比枢纽元素小的元素交换到前半部分
([], []);
从前往后在前半部分中寻找第一个大于枢纽元素的元素
( < [ ]< )
{
;
}
( [ ] [ ])将这个枢纽元素大的元素交换到后半部分
}
返回枢纽元素所在的位置
}
( [] )
{
( < )
{
( );
( );
( );
}
}
平均效率(),适用于排序大列表。

此算法的总时间取决于枢纽值的位置;选择第一个元素作为枢纽,可能导致(²)的最糟用例效率。

若数基本有序,效率反而最差。

选项中间值作为枢纽,效率是()。

基于分治法。

七、堆排序
最大堆:后者任一非终端节点的关键字均大于或等于它的左、右孩子的关键字,此时位于堆顶的节点的关键字是整个序列中最大的。

思想:
()令,并令=;
()计算的左孩子;
()若<=-,则转(),否则转();
()比较和,若>,则令=+,否则不变;
()比较和,若>,则令等于,并令,并转(),否则转()
()令等于,结束。

( )
{ 对[]进行堆排序,不妨用[]做暂存单元
;
();将[]建成初始堆
(>;) 对当前无序区[]进行堆排序,共做趟。

{
[][]; [][];[][];将堆顶和堆中最后一个记录交换
(); 将[]重新调整为堆,仅有[]可能违反堆性质
}
}
堆排序的时间,主要由建立初始堆和反复重建堆这两部分的时间开销构成,它们均是通过调用实现的。

堆排序的最坏时间复杂度为()。

堆排序的平均性能较接近于最坏性能。

由于建初始堆所需的比较次数较多,所以堆排序不适宜于记录数较少的文件。

堆排序是就地排序,辅助空间为(),
它是不稳定的排序方法。

堆排序与直接插入排序的区别:
直接选择排序中,为了从[]中选出关键字最小的记录,必须进行次比较,然后在[]中选出关键字最小的记录,又需要做次比较。

事实上,后面的次比较中,有许多比较可能在前面的次比较中已经做过,但由于前一趟排序时未保留这些比较结果,所以后一趟排序时又重复执行了这些比较操作。

堆排序可通过树形结构保存部分比较结果,可减少比较次数。

八、拓扑排序
例:学生选修课排课先后顺序
拓扑排序:把有向图中各顶点按照它们相互之间的优先关系排列成一个线性序列的过程。

方法:
在有向图中选一个没有前驱的顶点且输出
从图中删除该顶点和所有以它为尾的弧
重复上述两步,直至全部顶点均已输出(拓扑排序成功),或者当图中不存在无前驱的顶点(图中有回路)为止。

()*输出拓扑排序函数。

若无回路,则输出的顶点的一个拓扑序列并返回,否则返回* {
[];
;
;
;
;
()对各顶点求入度[]
()初始化栈
(<)
("结点"[]"的入度为"[]);
(<)
{
([])
([]);
}
("拓扑排序输出顺序为:");
(())
{
(());
();
()
{
("发生错误,程序结束。

");
();
}
([]);
;
([])
{
;
(!([]))
([]);
}
}
(<)
("该图有环,出现错误,无法排序。

");
("排序成功。

");
}
算法的时间复杂度()。

九、锦标赛排序
锦标赛排序的算法思想与体育比赛类似。

首先将个数据元素两两分组,分别按关键字进行比较,得到/个比较的优胜者(关键字小者),作为第一步比较的结果保留下来,
然后对这/个数据元素再两两分组,分别按关键字进行比较,…,如此重复,直到选出一个关键字最小的数据元素为止。

<>
<>
<>
<>
{
关键字
[];
最后胜的对手
被击败的对手
比赛次数
}[];
;
;
( [])读取文件中的数据,并存放在数组[]中;最后返回数据的个数{
*;
;
(,"");
(,""[][]);
(())
{
;
(,""[][]);
}
();
}。

相关文档
最新文档