21.2.2--公式法

合集下载

21.2.2用公式法求解一元二次方程(教案)

21.2.2用公式法求解一元二次方程(教案)
举例1:在推导公式法的过程中,学生需要理解为何要有“±”号,以及如何根据判别式来确定是两个实数根、一个重根还是无实数根。例如,判别式大于0时,方程有两个不相等的实数根;判别式等于0时,方程有一个重根;判别式小于0时,方程无实数根。
举例2:对于判别式的计算,学生可能会忘记在计算过程中先计算b^2,再减去4ac,或者在计算过程中符号出错。
2.教学难点
-公式法的推导过程理解:学生对公式法的推导过程可能感到难以理解,特别是对根号下的判别式的物理意义。
-判别式的计算与应用:学生在计算判别式时可能会出现错误,以及在根据判别式的值判断解的情况时可能会混淆。
-公式法的适用范围:学生可能不清楚何时应该使用公式法求解一元二次方程,以及何时该方法不适用。
21.2.2用公式法求解一元二次方程(教案)
一、教学内容
本节课选自八年级数学下册第21章第2节“用公式法求解一元二次方程”。教学内容主要包括以下两个方面:
1.公式法求解一元二次方程的基本概念:介绍一元二次方程的标准形式ax^2 + bx + c = 0,以及求解该方程的公式:x = (-b ± √(b^2 - 4ac)) / (2a)。
实践活动和小组讨论环节,学生们积极参与,但我也观察到一些小组在讨论时可能会偏离主题。这提醒我在引导讨论时,要更加明确主题,确保讨论的方向和深度。同时,我也发现有些学生在操作实验时,对公式的运用还不够熟练,这说明我们在操作练习上还需要加强。
在学生小组讨论时,我尽量以引导者的身份参与,鼓励学生们发表自己的观点,这有助于培养他们的独立思考能力。但我也发现,部分学生在分享成果时表达不够清晰,这提醒我在今后的教学中,要注重培养学生的表达和交流能力。
五、教学反思
今天的教学中,我发现学生们对一元二次方程的公式法求解表现出很大的兴趣,但也存在一些理解和操作上的难点。在导入新课的时候,通过日常生活中的问题引导学生思考,他们很快就进入了学习状态。但在理论介绍环节,我发现有些学生对标准形式的理解还不够深入,需要通过更多的例子来加强他们的理解。

数学人教版九年级上册《21.2.2 公式法》教学设计.2.2 公式法》教学设计

数学人教版九年级上册《21.2.2    公式法》教学设计.2.2    公式法》教学设计

21.2.2 公式法版本:人民教育出版社 执教:甘肃省陇南市武都区两水中学 唐小平教学目标知识与技能1. 理解一元二次方程求根公式的推导过程.2. 会利用求根公式解简单数字系数的一元二次方程.过程与方法1. 经历探索求根公式的过程,激发学生的探究欲望和探究热情,培养学生的推理能力.2. 培养学生的运算能力,并让学生养成良好的运算习惯.情感态度与价值观1. 通过运用公式法解一元二次方程,提高学生的运算能力.2. 培养学生积极探索、勇于创新的精神.3. 让学生学会和他人合作,分享合作学习的乐趣、体会发现知识后的成就感,建立学好数学的自信心.重点难点重点 求根公式的推导和公式法的运用.难点 一元二次方程求根公式的推导.教学方法 启发式、探究式、讲练结合式.教具学具教具:彩笔、多媒体教学平台.学具:笔、学生学案.教材分析本节课选自2013年教育部审定通过的义务教育教科书《数学》编著开发中心中学数学课程教材研究材研究所人民教育出版社课程教的九年级上册“第二十一章 一元二次方程”第二节“21.2 解一元二次方程”第二课时“21.2.2 公式法”的内容.一元二次方程的解法在初中数学教学中占有重要的位置,也是每年中考的热点考题之一,研究它很有现实意义和探索价值,讨论它是增进学生对数学知识理解并应用的很好素材.学情分析本节课的内容继 “21.2.1 配方法”后,又在“21.2.3 因式分解法”之前,根据维果斯基的“最近发展区理论”,学生已经掌握了用配方法解具体的数字系数的一元二次方程,对于一般形式的一元二次方程,02=++c bx ax 学生可以根据用配方法解具体数字系数的一元二次方程的经验可能化成22244)2(aac b a b x -=+的形式(即学生可能的发展水平),至于要用到分类讨论的数学思想,这要通过教师引导、启发学生才能获得这方面的能力.所以本节课估计学生在学习过程中感到困难之处是:讨论当,042>-ac b ,042=-ac b042<-ac b 时,一元二次方程02=++c bx ax 的实数根的情况.教学环节一、创设情境 导入新课1.用配方法解方程.08922=+-x x2.能否也可以用配方法解一般形式的一元二次方程02=++c bx ax 呢?(设计意图:通过复习引入,让学生先回忆配方法的解题思路,并通过练习题巩固所学知识,同时为本节课的学习做好铺垫.)二、探究新知 进行新课根据用配方法解具体数字系数的一元二次方程的经验解一般形式的一元二次方程 .02=++c bx ax二次项系数化为1,得.02=++ac x a b x 移项,得.2ac x a b x -=+ 配方,得,)2()2(222a b a c a b x a b x +-=++即 .44)2(222aac b a b x -=+ ① 因为,0≠a 所以.042>a 式子ac b 42-的值有以下三种情况:(1)当042>-ac b 时,,04422>-a ac b 由①得 .2422aac b a b x -±=+ 方程有两个不相等的实数根.24,242221aac b b x a ac b b x ---=-+-=(2) 当042=-ac b 时,,04422=-a ac b 由①可知方程有两个相等的实数根 .221ab x x -== (3)当042<-ac b 时,,04422<-a ac b 由①可知,0)2(2<+a b x 而x 取任何实数都不能使,0)2(2<+ab x 因此方程无实数根. 一般地,对于一元二次方程02=++c bx ax ,当042≥-ac b 时,它的实数根是aac b b x 242-±-= 这个式子叫做一元二次方程02=++c bx ax 的求根公式.利用求根公式解一元二次方程的方法叫做公式法.用公式法解一元二次方程时需要注意两点:①必须是一般形式的一元二次方程;02=++c bx ax ② .042≥-ac b(设计意图:让学生亲自动手实验,探究结论,激发兴趣.培养学生爱动脑思考的好习惯.)三、运用新知 巩固新课例1 用公式法解方程.12452=-x x (2016·中考)例2 用公式法解方程.8110442x x x -=++例 3 用公式法解方程.01252=+-x x(设计意图:加深对一元二次方程02=++c bx ax 求根公式的理解.)思考:以上三个例题中方程的根有什么规律?一元二次方程02=++c bx ax 的根有三种情况:当042>-ac b 时,方程)0(02≠=++a c bx ax 有两个不相等的实数根;当042=-ac b 时,方程)0(02≠=++a c bx ax 有两个相等的实数根;当042<-ac b 时,方程)0(02≠=++a c bx ax 无实数根.一般地,式子ac b 42-叫做一元二次方程02=++c bx ax 根的判别式,通常用希腊字母”“∆表示它,即.42ac b -=∆四、回顾内容 小结新课师:通过这节课的学习,同学们都有哪些收获?生1:……生2:………………………………………………………………………………………………………………师:……用公式法解一元二次方程的一般步骤:①把方程化成一般形式,并写出 c b a ,,的值;②求出ac b 42-的值(特别注意:当042<-ac b 时无实数解);③代入求根公式;a ac b b x 242-±-= ④写出方程的解.21x x ,(设计意图:梳理学习内容、方法、思路,养成系统整理知识的习惯,形成知识体系.)五、布置作业 结束新课1. 预习教材第12----14页;2. 课外作业教材第17页习题21.2第4,5题.3. m 取什么值时,方程04)12(22=-+++m x m x 有两个实数根.4. 关于x 的一元二次方程,02=++c bx ax 当c b a ,,满足什么条件时,方程的两个实数根互为相反数?(设计意图:教师分层要求,学生课下完成,巩固所学知识.)六、教后反思本节课的教学采取了以学生为主体、教师为主导的方式,让学生尽可能地参与到教学的全过程中.通过学生的观察、发现、学生与学生的讨论交流、教师与学生的密切合作,有意识地培养了学生的一些能力(如口头表达能力、运算能力、归纳总结能力等);通过多媒体辅助教学,教学内容与中考题挂钩,启发、引导学生勤于思考问题,激发了学生的探究欲望、探究热情和求知欲望,另外,教师给学生逐步设疑,组织学生积极回答、学习,然后肯定其成绩,这样,学生既有成就感,也能加深其印象,更能增强他们学习数学的信心,学习效果比教师硬塞给学生现成的结论要好得多.七、板书设计。

21.2.2_一元二次方程的解法_公式法

21.2.2_一元二次方程的解法_公式法

总结提高
判别式逆定理 若方程有两个 不相等的实数根,则b2-4ac>0 若方程有两个 相等的实数根,则b2-4ac=0 若方程没有实数根,则b2-4ac<0 若方程有两个 实数根,则b2-4ac≥0
即一元二次方程:ax 当 当 当
2
bx c 0 a 0
0 时,方程有两个不相等的实数根; 0 时,方程有两个相等的实数根; 0 时,方程没有实数根。 0;
用公式法解一元二次方 求根公式 : X=
(a≠0, b2-4ac≥0) 例1.用公式法解方程2x2+5x-3=0 解: a=2, b=5, c= -3, ① ② ③ (a≠0, b2-4ac≥0) = 4、写出方程的解: x1=?, x2=? 程的一般步骤:
1、把方程化成一般形式。
并写出a,b,c的值。 2、求出b2-4ac的值。 3、代入求根公式 : X=
解: a 4, b 3, c 2 b 2 4ac 9 32 23 0
方程没有实数根.
当 b2-4ac<0 时,一元 二次方程没有实数根。
2 x1 x2 . 2
x
b
例4 解方程: x 21 3 x 6
解:去括号,化简为一般式:
b2 4ac 2a
3x 7x 8 0
2
这里
a 3、 b= - 7、 c= 8
49 96 - 47 0
2 b2 4ac ( 7 ) 4 3 8
方程没有实数解。
用公式法解一元二次方程的一般步骤:
b c 的值。 1、把方程化成一般形式,并写出 a、、
=4m+1
若方程有两个不等实根,则△ > 0

21.2.2解一元二次方程——公式法

21.2.2解一元二次方程——公式法

21.2.2 解一元二次方程——公式法学习目标:1.理解一元二次方程求根公式的推导过程;2.会利用求根公式解简单数字系数的一元二次方程;3.经历探索求根公式的过程,发展学生合情合理的推理能力;学习重点:求根公式的推导和公式法的应用难点:一元二次方程求根公式的推导一、复习导学1.配方法解一元二次方程的步骤是_______________________________;2.一元二次方程26710xx -+=中a=_____,b=_____,c=_______; 3.在方程2x a =中,当0a >时,1x =2x =;当0a =时,1x =2x =;当0a <时,方程实数根。

二、自主学习问题1:能否用配方法把一般形式的一元二次方程转化为吗? 因为,方程两边都除以,得移项,得配方,得即三、合作探究问题2:根据配方的结果讨论方程跟的情况: 小结:一般地,式子b 2-4ac 叫做一元二次方程ax 2+bx +c =0(a ≠0),通常用希腊字母“⊿”表示,即⊿=一元二次方程20(0)axbx c a ++= ≠根的情况: ⑴当⊿=b 2-4ac >0时,一元二次方程ax 2+bx +c =0(a ≠0)•有两个不相等实数根即x 1=,x 2=。

⑵当⊿= b 2-4ac =0时,一元二次方程ax 2+bx +c =0(a ≠0)有两个相等实数根即x 1=x 2=。

⑶当⊿=b 2-4ac <0时,一元二次方程ax 2+bx +c =0(a ≠0)•没有实数根。

⑴⑵又合称有实数根;反过来也成立。

由上可知,一元二次方程20(0)ax bx c a ++= ≠的根由方程的系数a,b,c 而定,因此: (1) 解一元二次方程时,可以先将方程化为一般形20(0)ax bx c a ++= ≠,当240b ac -≥时,将a,b,c 代入式子x=_____________,就得到方程的根; 20(0)ax bx c a ++=≠2224()4b b ac x a a -+=0a ≠a 2224()4b b ac x a a-+=(2) 这个式子叫做一元二次方程的求根公式;(3) 利用求根公式解一元二次方程的方法叫公式法;(4) 由求根公式可知,一元二次方程最多有___个实数根。

《21.2.2公式法》学历案-初中数学人教版12九年级上册

《21.2.2公式法》学历案-初中数学人教版12九年级上册

《公式法》学历案(第一课时)一、学习主题本课学习主题为“初中数学课程《公式法》”,主要围绕公式法的基本概念、应用场景及其实践操作展开,旨在让学生掌握公式法的运用,提高数学运算能力和问题解决能力。

二、学习目标1. 理解公式法的基本概念和原理,了解其在数学运算中的重要性。

2. 掌握常见数学公式的记忆方法和应用技巧。

3. 学会运用公式法解决简单的数学问题,提高数学运算的准确性和速度。

4. 培养学生的逻辑思维能力和问题解决能力,提高学生的数学学习兴趣。

三、评价任务1. 评价学生对公式法基本概念和原理的理解程度,通过课堂提问和小组讨论的方式进行。

2. 评价学生对常见数学公式的记忆和应用能力,通过课堂小测验和课后作业的方式进行。

3. 评价学生运用公式法解决实际问题的能力,通过期中和期末考试的方式进行。

四、学习过程1. 导入新课:通过实际问题引出公式法的概念,激发学生的学习兴趣。

2. 新课讲解:讲解公式法的基本概念和原理,介绍常见数学公式的记忆方法和应用技巧。

3. 实例演示:通过具体例题演示公式法的应用,让学生直观了解公式法的实际操作。

4. 学生练习:学生自主完成相关练习题,巩固所学知识。

5. 小组讨论:学生分组进行讨论,分享解题经验和技巧,加深对公式法的理解。

6. 课堂小结:总结本课所学内容,强调公式法的重要性和应用价值。

五、检测与作业1. 课堂检测:通过课堂小测验检查学生对所学公式的掌握情况,及时发现和纠正学生的错误。

2. 课后作业:布置相关练习题,让学生巩固所学知识,提高运用能力。

3. 期中和期末考试:通过期中和期末考试的方式,评价学生运用公式法解决实际问题的能力。

六、学后反思1. 教师反思:教师应对本课教学进行反思,总结教学经验和不足之处,为今后的教学提供借鉴。

2. 学生反思:学生应反思自己在学习过程中的表现,总结学习方法和技巧,提高学习效率。

3. 改进措施:针对教学中出现的问题,提出改进措施,如调整教学进度、加强公式法的实际应用等,以提高教学效果。

2024年人教版九年级数学上册教案及教学反思第21章21.2.2 公式法

2024年人教版九年级数学上册教案及教学反思第21章21.2.2 公式法

21.2 解一元二次方程21.2.2 公式法一、教学目标【知识与技能】1.理解并掌握求根公式的推导过程;2.能熟练应用公式法求一元二次方程的解.【过程与方法】经历探索求根公式的过程,加强推理技能,进一步发展逻辑思维能力.【情感态度与价值观】用公式法求解一元二次方程的过程中,锻炼学生的运算能力,养成良好的运算习惯,培养严谨认真的科学态度.二、课型新授课三、课时1课时四、教学重难点【教学重点】用公式法解一元二次方程.【教学难点】推导一元二次方程求根公式的过程.五、课前准备课件六、教学过程 (一)导入新课1.利用配方法解一元二次方程2704x x --=.(出示课件2)学生板演如下:解:移项,得274x x -=,配方222171242xx ⎛⎫⎛⎫-+=+ ⎪⎪⎝⎭⎝⎭, 2122x ⎛⎫-= ⎪⎝⎭由此可得12x -=,112x =+212x =-2. 用配方法解一元二次方程的步骤?(出示课件3) 学生口答:化:把原方程化成 x 2+px +q = 0 的形式. 移项:把常数项移到方程的右边,如x 2+px =-q. 配方:方程两边都加上一次项系数一半的平方. x 2+px +(2p )2=-q +(2p)2 开方:根据平方根的意义,方程两边开平方. (x+2p )2=-q +(2p )2 求解:解一元一次方程. 定解:写出原方程的解.我们知道,对于任意给定的一个一元二次方程,只要方程有解,都可以利用配方法求出它的两个实数根.事实上,任何一个一元二次方程都可以写成ax 2+bx+c=0的形式,我们是否也能用配方法求出它的解呢?想想看,该怎样做?(二)探索新知 探究一 公式法的概念教师问:一元二次方程的一般形式是什么?(出示课件5) 学生答:ax 2+bx +c=0(a ≠0).教师问:如果使用配方法解出一元二次方程一般形式的根,那么这个根是不是可以普遍适用呢?师生共同探究:用配方法解一般形式的一元二次方程20ax bx c ++=)0(≠a (出示课件6)解:移项,得ax 2+bx=-c. 二次项系数化为1,得x 2+b a x=-ca. 配方,得x 2+b a x+2()2b a =-ca+2()2b a ,即2224(42)b a a a b x c-+=.教师问:(1)两边能直接开平方吗?为什么? (2)你认为下一步该怎么办?谈谈你的看法. 师生共同完善认知:(出示课件7)20,40,≠>a a当240,-b ac ≥.2b x a +=±x 1=-b+√b 2-4ac 2a , x 2=-b -√b 2-4ac 2a.出示课件8:由上可知,一元二次方程ax 2+bx+c=0(a ≠0)的根由方程的系数a ,b ,c 确定.因此,解一元二次方程时,可以先将方程化为一般形式ax 2+bx+c=0(a≠0).当b 2-4ac ≥0时,将a ,b ,c 代入式子x=2b a-±,就得到方程的根,这个式子叫做一元二次方程的求根公式,利用它解一元二次方程的方法叫做公式法,由求根公式可知,一元二次方程最多有两个实数根.例1用公式法解方程:(1)x 2-4x-7=0; (出示课件9) 学生思考后,共同解答如下: 解:∵a=1,b=-4,c=-7, ∴b 2-4ac=(-4)2-4×1×(-7)=44>0.=x∴12=+x 22=-x(2)2x 2x+1=0;(出示课件10) 教师问:这里的a 、b 、c 的值分别是什么?解:2, 1.==-=a b c224(4210.△=-=--⨯⨯=b ac则方程有两个相等的实数根:122==-=-=b x x a(3)5x 2-3x=x+1;(出示课件11)解:原方程可化为25410x x --= 1,4,5-=-==c b a ,224(4)45(1)36>0△b =-=--⨯⨯-=ac则方程有两个不相等的实数根46.10±===x12464611,.10105+-====-x x(4)x 2+17=8x.(出示课件12)解:原方程可化为28170x x -+=,17c 8,1,=-==b a ,,0<41714)8(422-=⨯⨯--=-=ac b △方程无实数根.教师归纳:(出示课件13)⑴当∆=b 2-4ac >0时,一元二次方程有两个不相等的实数根; ⑵当∆=b 2-4ac=0时,一元二次方程有两个相等的实数根; ⑶当∆=b 2-4ac <0时,一元二次方程没有的实数根. 教师问:用公式法解一元二次方程的步骤是什么? 学生思考后,共同总结如下:(出示课件14) 用公式法解一元二次方程的一般步骤: 1.将方程化成一般形式,并写出a ,b ,c 的值. 2.求出 ∆ 的值.3. (1)当 ∆ >0时,代入求根公式:2b x a-±=,写出一元二次方程的根.(2)当∆=0时,代入求根公式:2b x a-±=,写出一元二次方程的根.(3)当∆<0时,方程无实数根.出示课件15:用公式法解方程:23620x x --= 学生自主思考并解答. 解:a=3, b=-6, c=-2,∆=b 2-4ac=(-6)2-4×3×(-2)=60.=x1=x 2=x探究二 一元二次方程的根的情况 出示课件16:用公式法解下列方程:(1)x 2+x -1=0;(2)x 2-+3=0;(3)2x 2-2x +1=0.学生板演后,教师问:观察上面解一元二次方程的过程,一元二次方程的根的情况与一元二次方程中二次项系数、一次项系数及常数项有关吗?能否根据这个关系不解方程得出方程的解的情况呢?教师进一步问:(出示课件17)不解方程,你能判断下列方程根的情况吗? ⑴x 2+2x -8=0; ⑵x 2=4x -4; ⑶x 2-3x=-3.学生思考后回答:(1)有两个不相等的实数根; (2)有两个相等的实数根; (3)没有实数根. 教师问:你有什么发现?学生答:b 2-4ac 的符号决定着方程的解. 师生共同总结如下:(出示课件18) 一元二次方程)(0 02≠=++a c bx ax的根的情况⑴当b 2-4ac >0 时,有两个不等的实数根:12,;x x ==(2)当b 2-4ac=0时,有两个相等的实数根:12;2bx x a -== (3)当b 2-4ac<0时,没有实数根.一般的,式子 b 2-4ac 叫做一元二次方程根的判别式,通常用希腊字母“∆”来表示,即∆=b 2-4ac.出示课件20,21:例1 不解方程,判断下列方程根的情况: (1) 06622=-+-x x ;(2)x 2+4x=2.(3)4x 2+1=-3x;(4)x ²-2mx+4(m-1)=0. 师生共同讨论解答如下: 解:⑴a =﹣1,b=,c =﹣6, ∵△= b 2-4ac=24-4×(﹣1)×(-6)=0. ∴该方程有两个相等的实数根.⑵移项,得x2+4x-2=0,a=1,b=4 ,c=﹣2,∵△=b2-4ac=16-4×1×(-2)=24>0.∴该方程有两个不相等的实数根.⑶移项,得4x2+3x+1=0,a=4,b=3 ,c=1,∵△= b2-4ac=9-4×4×1=-7<0.∴该方程没有实数根.⑷a=1,b=-2m ,c=4(m-1),∵△= b2-4ac=(-2m)²-4×1×4(m-1)=4m2-16(m-1)=4m2-16m+16=(2m-4)2≥0.∴该方程有两个实数根.选一选:(出示课件22)(1)下列方程中,没有实数根的方程是()A.x²=9B.4x²=3(4x-1)C.x(x+1)=1D.2y²+6y+7=0(2)方程ax2+bx+c=0(a≠0)有实数根,那么总成立的式子是()A.b²-4ac>0B.b²-4ac<0C.b²-4ac≤0D.b²-4ac≥0学生口答:⑴D ⑵D出示课件23:例2 m 为何值时,关于x 的一元二次方程 2x 2-(4m+1)x+2m 2-1=0:(1)有两个不相等的实数根? (2)有两个相等的实数根? (3)没有实数根?学生思考后,教师板演解题过程: 解:a=2,b=-(4m+1),c=2m 2-1,b 2-4ac=〔-(4m+1)〕2-4×2(2m 2-1)=8m+9.(1)若方程有两个不相等的实数根,则b 2-4ac >0,即8m+9>0,∴m >98-;(2)若方程有两个相等的实数根,则b2-4ac=0即8m+9=0,∴m=98-;(3)若方程没有实数根,则b2-4ac <0即8m+9<0, ∴m <98-.∴当m >98-时,方程有两个不相等的实数根;当m=98-时,方程有两个相等的实数根;当m <98-时,方程没有实数根.出示课件24:m 为任意实数,试说明关于x 的方程x 2-(m-1)x-3(m+3)=0恒有两个不相等的实数根.学生自主思考并解答.解:b 2−4ac=[−(m −1)]2−4[−3(m+3)] =m 2+10m+37 =m 2+10m+52−52+37 =(m+5)2+12.∵不论m 取任何实数,总有(m+5)2≥0, ∴b 2-4ac=(m+5)2+12≥12>0,∴不论m 取任何实数,上述方程总有两个不相等的实数根. (三)课堂练习(出示课件25-29)1.若一元二次方程x 2﹣2x+m=0有两个不相同的实数根,则实数m 的取值范围是( )A .m ≥1B .m ≤1C .m >1D .m <12.解方程x 2﹣2x ﹣1=0.3.方程x 2-4x +4=0的根的情况是( )A.有两个不相等的实数根B.有两个相等的实数根C.有一个实数根D.没有实数根4.关于x 的一元二次方程kx2-2x-1=0有两个不等 的实根,则k 的取值范围是( )A.k>-1B.k>-1且k ≠ 0C.k<1D.k<1且k ≠05.已知x 2+2x =m -1没有实数根,求证:x 2+mx =1-2m 必有两个不相等的实数根.参考答案: 1.D2.解:a=1,b=﹣2,c=﹣1, △=b 2﹣4ac=4+4=8>0, 所以方程有两个不相等的实数根,2x 12±===±1211x x ==-3.B4.B5.证明:∵没有实数根,∴ 4-4(1-m)<0, ∴m<0.对于方程 x 2+mx =1-2m ,即. ,∵,∴△>0.∴x 2+mx =1-2m 必有两个不相等的实数根.(四)课堂小结通过这节课的学习,你有哪些收获和体会?说说看.(五)课前预习预习下节课(21.2.3)的相关内容。

《21.2解一元二次方程——21.2.2公式法》教学设计【初中数学人教版九年级上册】

《21.2解一元二次方程——21.2.2公式法》教学设计【初中数学人教版九年级上册】

第二十一章一元二次方程21.2解一元二次方程公式法教学设计一、教学目标1.探索利用公式法解一元二次方程的一般步骤.2.能够利用公式法解一元二次方程.二、教学重点及难点重点:用公式法解一元二次方程.难点:用公式法解一元二次方程三、教学用具多媒体课件。

四、相关资源《复习配方法解一元二次方程》动画。

五、教学过程【温故知新,提出问题】XE燃解方程s h+2s+c=0此图片是动画绪略图,此处插入交互动画《【数学探完】一元二次方程的儿何解法》,可以通过几何的方法展现一元二次方程的解法。

问题1你能用配方法解卜列方程吗?(1)m+ll=O;(2)9/=12x+14.解:<1)移项,得x2 -7入=一11.配方,得x2-7a-+^|J=-11+r2>7即七2=5 3开方,得x—;=±g.7-757+必所以X]=—-—•^2=—5-(2)移项,得9F-12x=14・,414系数化为1,得『一二工二方.配方,得广一§+仲卜?+停).即厂:<--2=2.开方,得x-|=±>/2,所以“甲®夸问题2用配方法解一元二次方程的步骤?化:把原方程化成r+p.x+q=O的形式.移项:把常数项移到方程的右边,如F+px=迫.配方:方程两边都加上一次项系数一半的平方,如/+px+(W)2=-g+(S(x+S=F+(9求解:解一元一次方程.定解:写出原方程的解.师生活动:学生独立完成,复习归纳。

(X潞瘢配方法任何一个一元二次方程都可以写成一般形式十取-c-m z=0),能否用配方法俾出能否用配方法街出or2me=O(aMO)的观]一元二次方程M+既13(/0)的二次坎系救u,—次敏卒致b以及常敏项c.<1>移项;将方程中含有耒知数的氐移对方程的左边.巧常数璜玛勤方程的右边.ar2—fez=—cQ)二次项系散化为卜若二次项的系敢不为1.划在方程两边同时序以二次项的系敷.将二次项的系敖化为I.X2+-Z=—-a aU>配方,方程的两边鄙加上一次咬系?I一半的平方鸟方程靛左遮配成一个完全平方式・/十打十(粉2=弋十(粉2flHk整电饵(工+y=静因为a*0.4a2>0,代数式62-iac来决定一元二次方程+hx+c=Oia^O)根的唁况.此图片是动画垸略图,此处插入交互动画《【教学探究】配方法》,可以逐步展现配方法的步曜.设计意图:通过复习,巩固旧知,钠垫新知,设置问题,引出新课.【合作探究,形成知识】问题2—元二次方程的一般形式是什么?你能否也用配方法解出方程的根呢?杯+皈+^=0(醇0)己知a『+M+c=0(再0),请用配方法推导出它的两个根.解:移项,得ar2+fer=-c.K c二次项系数化为1,得《?+-X=——.a a配方,得+-X+(A)2=-£+(A)2…gp(X+=)2=\二"(JI).a la a2a2。

21.2.2_公式法

21.2.2_公式法

x b
b2
4ac
. b2
4ac
;
0.
7.定解:写出原方程的解
2a
.
用配方法解一般形式的一元二次方程
ax2 bx c 0 (a 0) ∵a 0,4a2 0 当 b2 4ac 0

b
b2 4ac
x
2a
2a
特别提醒
b b2 4ac x
b b2 4ac b b2 4ac
2a
2a
b b 2a 2a
b 0
五、师生互动,课堂小结
通过本节课的学习,你有哪些收获和体会?
课后作业
1.布置作业:从教材“习题21.2”中选取。 2.完成状元导练中本课时练习的“课后作业”部分。
解:将x=0代入方程, 得m²+2m-3=0, 解得m1=1,m2=-3, 又∵m-1≠0,即m≠1. 故m的值为-3.
5.解下列方程:
(1)x²+x-6=0; (2)x2 3x 1 0 ;
4
(3)3x²-6x-2=0; (4)4x²-6x=0; (5)x²+4x+8=4x+11; (6)x(2x-4)=5-8x.
3.方程 2x2 4 3x 6 2 0 的根是( D )
A. x1 2, x2 3 B. x1 6, x2 2 C.x1 2 2, x2 2 D. x1 x2 6
4.关于x的一元二次方程(m-1)x²+x+m²+2m-3=0有 一个根为0,试求m的值.
2a
一元二次方程 的求根公式
x1 b
b2 2a

《21.2.2 公式法》作业设计方案-初中数学人教版12九年级上册

《21.2.2 公式法》作业设计方案-初中数学人教版12九年级上册

《公式法》作业设计方案(第一课时)一、作业目标本节课的作业旨在帮助学生巩固公式法的基本概念和应用,加深对公式法公式的理解和记忆,提高运用公式解决实际问题的能力。

二、作业内容1. 书面作业(1)完成教材上的公式法练习题,检验学生对公式的掌握情况。

(2)运用公式法解决一些实际问题,提高解决问题的能力。

(3)对于作业中遇到的问题,做好记录,以便课后向老师请教。

2. 课堂互动(1)小组讨论:分享自己在运用公式法过程中的经验和技巧,共同探讨遇到的问题和解决方法。

(2)教师提问:针对学生在作业中出现的典型错误,进行针对性的讲解和纠正。

三、作业要求1. 独立完成作业,不得抄袭。

2. 认真对待课堂互动,积极参与讨论。

3. 对于作业中遇到的问题,及时向老师请教,寻求帮助。

四、作业评价1. 作业完成情况:根据学生完成作业的正确率、书写规范等方面进行评价。

2. 课堂表现:根据学生在课堂互动中的表现,如参与度、问题回答正确率等方面进行评价。

3. 综合评价:结合以上两个方面,给出学生本次作业的整体评价,以便及时调整教学策略,帮助学生更好地掌握公式法。

五、作业反馈请学生根据自身实际情况,对本次作业进行反馈,包括作业难度、完成情况、存在的问题等方面,以便更好地了解学生的学习情况,为今后的教学提供参考。

同时,也请学生对教师的教学进行评价,提出宝贵意见和建议,共同提高教学质量。

三、作业内容(续)在完成书面作业的过程中,学生需要熟练掌握公式法的基本概念和公式,并能灵活运用公式解决实际问题。

通过解决实际问题,学生可以加深对公式法的理解和记忆,提高运用公式解决实际问题的能力。

在课堂互动环节,小组讨论可以帮助学生分享经验、共同进步,同时教师针对典型错误进行讲解和纠正,可以有效地提高学生的学习效果。

以上就是初中数学课程《公式法》作业设计方案(第一课时)的全部内容。

希望这个方案能够帮助学生更好地掌握公式法,提高数学成绩。

如有任何建议或疑问,请随时向老师咨询,我们将竭诚为你服务。

21.2.2_一元二次方程的解法-公式法

21.2.2_一元二次方程的解法-公式法
用配方法解一元二次方程的步骤: 1、移项:把常数项移到方程的右边; 2、化二次项系数为1; 3、配方:方程两边都加上一次项系数一半的 平方,将方程左边配成完全平方式 4、开方 :根据平方根意义,方程两边开平 方; 5、求解。
怎样用配方法解形如一般形式 ax2+bx+c=0(a≠0)的一元二次方程:
一般的,式子 b 2 4ac 叫做一元二次方程 2 ax bx c 0(a 0) 根的判别式,通常用希 腊字母 △ 表示,

b 4ac
2
归纳:
由上可知, 当△>0时,方程 ax2+bx+c=0 (a≠0)有两个不相等 的实数根; 当△=0时,方程 ax2 +bx+c=0 (a≠0)有两个相等的 实数根;
1、(09成都)若关于
的一元二次方程
有两个不相等的实数根,则 的取值范围是 ( B A. C. B. D. ) 且 且
2、关于x的一元二次方程 只有一解(相同解算一解),则a的值为( ) A. B. C. D. 或
已知一元二次方程证明根的情况
已知关于x 的一元二次方程
x kx k 2 0
作业:
1、 关于x的方程
有两个不相等的实数根.求k的取值范围。 2.m取何值时,方程 x2+(2m+1)x+m2-4=0有两 个相等的实数根?
当△<0时,方程 ax2 +bx+c=0 (a≠0)无实数根。
1.练习:不解方程,判断下列一元二次方程的根 的情况
2x 6x 3
2
3x( x 2) 7
x 4x 4 0
2
已知方程及其根的情况,求字母的取值范围

21.2.2公式法(同步教学设计)2024-2025学年九年级数学上册同步精品课堂(人教版)

21.2.2公式法(同步教学设计)2024-2025学年九年级数学上册同步精品课堂(人教版)
教学方法/手段/资源:
- 自主学习法:引导学生自主完成作业和拓展学习。
- 反思总结法:引导学生对自己的学习过程和成果进行反思和总结。
作用与目的:
- 巩固学生在课堂上学到的公式法知识点和技能。
- 通过拓展学习,拓宽学生的知识视野和思维方式。
- 通过反思总结,帮助学生发现自己的不足并提出改进建议,促进自我提升。
5. 练习题库:准备一些与本节课内容相关的练习题,包括不同类型的一元二次方程求解题目,以及一些实际问题的解决题目。这样可以帮助学生巩固所学知识,并进行实际应用。
6. 教学工具:准备黑板、粉笔、多媒体投影仪等教学工具,以便进行讲解和展示。
7. 教学课件:制作与本节课内容相关的教学课件,包括教学目标、教学内容、实例讲解、练习题等,以便进行多媒体教学。
- 帮助学生提前了解本节课的课题,为课堂学习做好准备。
- 培养学生的自主学习能力和独立思考能力。
2. 课中强化技能
教师活动:
- 导入新课:通过一个实际问题案例,引出公式法的重要性,激发学生的学习兴趣。
- 讲解知识点:详细讲解公式法的推导过程和应用步骤,结合实例帮助学生理解。
- 组织课堂活动:设计小组讨论,让学生共同探讨如何应用公式法解决实际问题。
- 鼓励学生进行自我评估和反思,总结自己的学习成果和不足,制定改进计划,不断提高自己的学习效果。
- 鼓励学生参加数学竞赛或挑战赛,如数学奥林匹克、数学挑战赛等,以提高自己的数学水平和竞争力。
2. 拓展要求:鼓励学生利用课后时间进行自主学习和拓展。教师可提供必要的指导和帮助,如推荐阅读材料、解答疑问等。
- 要求学生阅读《数学之美》一书中关于一元二次方程的章节,并回答相关问题,以加深对一元二次方程和公式法的理解。

人教版九年级数学上册:21.2.2 公式法 教学设计

人教版九年级数学上册:21.2.2 公式法  教学设计

人教版九年级数学上册:21.2.2 公式法教学设计一. 教材分析人教版九年级数学上册第21.2.2节“公式法”是二次函数求解的一部分,主要介绍了公式法在解决二次方程中的应用。

本节内容是在学生已经掌握了二次函数的基本性质和图像的基础上进行讲解的,目的是让学生能够熟练运用公式法求解二次方程,并理解其背后的数学原理。

二. 学情分析九年级的学生已经具备了一定的数学基础,对于二次函数的概念和图像已经有了一定的了解。

但是,对于公式法在解决二次方程中的应用,学生可能还存在一些困惑,需要通过实例讲解和练习来加深理解。

三. 教学目标1.了解公式法在解决二次方程中的应用。

2.能够熟练运用公式法求解二次方程。

3.理解公式法背后的数学原理。

四. 教学重难点1.重点:公式法在解决二次方程中的应用。

2.难点:理解公式法背后的数学原理。

五. 教学方法采用讲解法、实例分析法、练习法、提问法等,通过引导学生自主探究、合作交流,提高学生对公式法的理解和应用能力。

六. 教学准备1.PPT课件。

2.相关练习题。

七. 教学过程1.导入(5分钟)通过提问方式回顾二次函数的基本性质和图像,引导学生思考如何解决二次方程。

进而引入本节课的主题——公式法。

2.呈现(15分钟)讲解公式法的原理,通过PPT展示公式法的步骤和应用实例。

让学生跟随老师一起动手操作,加深对公式法的理解。

3.操练(15分钟)让学生独立完成一些运用公式法求解二次方程的练习题。

老师巡回指导,解答学生的疑问。

4.巩固(10分钟)通过小组讨论,让学生互相交流解题心得,总结公式法的应用技巧。

5.拓展(10分钟)引导学生思考:公式法在解决二次方程中的局限性是什么?是否存在其他解决方法?如何比较各种方法的优劣?6.小结(5分钟)让学生总结本节课所学的内容,回答问题:什么是公式法?如何运用公式法求解二次方程?公式法背后的数学原理是什么?7.家庭作业(5分钟)布置一些运用公式法求解二次方程的练习题,让学生课后巩固所学知识。

21.2.2 一元二次方程的解法——公式法课件 2024-2025学年人教版数学九年级上册

21.2.2 一元二次方程的解法——公式法课件  2024-2025学年人教版数学九年级上册
第二十一章 一元二次方程
第2课时
一元二次方程的解法
——公式公式法解一元二次方程,知道使用公式前先将方
程化为一般形式.
❸ (2022新课标)能用公式法解数字系数的一元二次方程.
复习引入
1.如何用配方法解方程 2x2 4x 10?
解:方程整理得

小结:注意一元二次方程的二次项系数不能为0.

2
2
★10.若a +5ab-b =0(ab≠0),求 的值.




2
2
解:∵a +5ab-b =0,∴ + -1=0,



令t= ,∴方程可化为t2+5t-1=0,

∴52-4×1×(-1)=29>0,
根据公式法得t=
-±
×


-±

±


×

即x1=2 ,x2= .
3.【例1】用公式法解方程:x2+3x+1=0.
解:a=1,b=3,c=1,b2-4ac=5>0,
x=
-±
所以x1=

-± -±




×

-+

--
,x2=



小结:用公式法解方程时,先确定出a,b,c和b2-4ac的值.
x=

x- =0.

±

8.用公式法解方程:2x2+3x=3.
x=
-±


9.用公式法解方程:x2-5=2(x+1).
x=1±2


6.某数学小组对关于x的方程(m+1)
+(m-2)x-1=0提出了问题:

《21.2.2 公式法》教学设计教学反思-2023-2024学年初中数学人教版12九年级上册

《21.2.2 公式法》教学设计教学反思-2023-2024学年初中数学人教版12九年级上册

《公式法》教学设计方案(第一课时)一、教学目标1. 掌握公式法概念及基本步骤。

2. 能够运用公式法计算公式涉及的数学问题。

3. 培养学生对公式法的理解和应用能力。

二、教学重难点1. 教学重点:理解公式法概念,掌握公式法基本步骤。

2. 教学难点:运用公式法解决实际问题,理解公式的适用范围和条件。

三、教学准备1. 准备教学用具:黑板、白板、笔、几何图形工具等。

2. 准备教学资料:相关例题、练习题及拓展资料。

3. 设计教学流程:导入、讲解、示范、练习、反馈等环节。

4. 确定教学方法:采用互动式、案例式等教学方法,注重学生参与和实践。

四、教学过程:本节课的教学对象是八年级学生,他们已经掌握了一定的基础知识,有了一定的逻辑推理能力。

为了提高他们的学习兴趣和自信心,本节课将采用讲授、演示、探究、练习等多种教学方法,以引导学生自主探究,动手实践,合作交流。

1. 导入新课:通过回顾上一节课的内容,引入本节课的主题——公式法。

让学生明确学习目标,即掌握公式的概念、公式的形式、公式的适用范围等。

2. 讲授新课:通过演示和讲解,让学生逐步理解公式的概念和形式。

可以通过一些简单的例子,让学生自己总结公式的适用范围,并加以巩固。

3. 探究活动:将学生分成若干小组,进行探究活动。

可以设置一些实际问题,让学生运用所学知识解决,以加深对公式的理解和应用。

4. 课堂练习:通过练习题,让学生巩固所学知识,并发现自己的不足之处。

教师及时给予指导,帮助学生解决问题。

5. 课堂小结:引导学生回顾本节课的主要内容,总结公式的概念、形式、适用范围等。

同时,鼓励学生交流学习心得,分享学习经验。

6. 布置作业:针对本节课的内容,布置一些相关练习题,让学生在家中继续巩固和深化所学知识。

在整个教学过程中,要注重学生的主体地位,发挥学生的主动性,培养他们的探究精神和合作意识。

同时,教师也要发挥主导作用,适时引导和启发学生,关注学生的表现和反应,及时调整教学策略,确保教学效果。

21.2.2一元二次方程解法-公式法

21.2.2一元二次方程解法-公式法

课题:21.2.2解一元二次方程----公式法课时:执笔:审核:九年级数学组授课:授课时间:学案编号:21-4学习目标:教后反思1.理解一元二次方程求根公式的推导过程.2.掌握公式结构,知道使用公式前先将方程化为一般形式,通过判别式判断根的情况.3.学会利用求根公式解简单数字系数的一元二次方程教学重难点预测:求根公式的推导,公式的正确使用学习流程:1、复习回顾:用配方法解下列方程(1)6x2-7x+1=0 (2)4x2-3x=522、如果这个一元二次方程是一般形式ax2+bx+c=0(a≠0),你能否用上面配方法的步骤求出它们的两根?分析:因为前面具体数字已做得很多,我们现在不妨把a、b、c•也当成一个具体数字,根据上面的解题步骤就可以一直推下去.解:移项,得:,二次项系数化为1,得配方,得:即∵a≠0,∴4a2>0,式子b2-4ac的值有以下三种情况:(1)b2-4ac>0,则2244b aca->0直接开平方,得:即x=242b b aca-±-∴x1= ,x2=(2)b2-4ac=0,则2244b aca-=0此时方程的跟为即一元二次程ax2+bx+c=0(a≠0)有两个的实根。

(3) b 2-4ac <0,则2244b ac a -<0,此时(x+2b a )2 <0,而x 取任何实数都不能使 (x+2b a)2 <0,因此方程 实数根。

3总结: 我们知道,一元二次方程ax 2+bx+c=0(a ≠0)的根由方程的系数a 、b 、c 而定,(1)解一元二次方程时,可以先将方程化为一般形式ax 2+bx+c=0,当b 2-4ac ≥0时,将a 、b 、c 代入式子x=242b b ac a -±-就得到方程的根,当b 2-4ac <0,方程没有实数根。

(2)x=242b b ac a-±-叫做一元二次方程ax 2+bx+c=0(a ≠0)的求根公式. (3)利用求根公式解一元二次方程的方法叫公式法.(4)由求根公式可知,一元二次方程最多有 实数根。

21.2.2 一元二次方程的解——公式法(优秀经典公开课比赛课件)

21.2.2 一元二次方程的解——公式法(优秀经典公开课比赛课件)

不相等的实数根,则实数 m 的取值范围为( )
A.m>9 B.m<9 C.m=9 D.m<-9
4
4
4
4
2.若关于 x 的一元二次方程 kx2-2x-1=0 有实
数根,则实数 k 的取值范围是( )
A.k>-1 B.k<1 且 k≠0
B.C .k≥-1 且 k≠0 D.k>-1 且 k≠0
1.已知关于 x 的一元二次方程 x2+bx+b-1=有
三、知识点归纳
1.一元二次方程 ax2+bx+c=0(a≠0),
当__
___时,x=-b± b2-4ac, 2a
这个式子叫做一元二次方程
ax2+bx+c=0 的__
___.
1.式子__ ___叫做一元二次方程
ax2+bx+c=0 根的判别式,常用Δ表示,
Δ>0⇔ax2+bx+c=0(a≠0)有__
____,b2-4ac=_____.
5.一元二次方程 x2-x-6=0 中,b2-4ac=_____,
可得 x1=_____,x2=_____.
7.用公式法解下列方程:
(1)x2-3x-2=0;
(2)8x2-8x+1=0;
(3)2x2-2x=5.
五、课堂检测
1.关于 x 的一元二次方程 kx2-3x+m=0 有两个
21.2.2 一元二次方程的 解 ——公式法
一、预习检测 1.用配方法解下列方程:
⑴6x2-7x+1=0
⑵4x2-3x=52
2.配方法解一元二次方程的步骤:
二、探究案
阅读教材 9–12,结合教材完成下面问题 : 如果一元二次方程是一般形式 ax2+bx+c=0(a≠0), 请你试用配方法的步骤求出它们的两根?

21.2.2 公式法

21.2.2 公式法

6.无论p取何值,方程(x-3)(x-2)-p2=0总有两个不等
的实数根吗?给出你的答案并说明理由. 解:方程化简为x2-5x+6-p2=0
∴b2-4ac=(-5)2-4×1×(6-p2)=4p2+1≥1,
∴Δ>0
∴无论p取何值,方程(x-3)(x-2)-p2=0总有两
个不等的实数根.
课堂小结
公 式 法 ห้องสมุดไป่ตู้求根公式 解一元二次 方程的方法 求根公式
(b2-4ac≥0)
b b2 4ac x 2a
当b2-4ac>0时,方程有两个不等的实数根; 一元二次方程根的 判别式Δ= b2-4ac 当b2-4ac=0时,方程有两个相等的实数根; 当b2-4ac<0时,方程无实数根.
课后作业 1.从课后习题中选取;
2.完成练习册本课时的习题。
教学反思
推进新课
知识点1 一元二次方程根的判别式
任何一个一元二次方程都可以写成一般形式 ax2+bx+c=0(a≠0) 能否也用配方法得出它的解呢?
ax2+bx+c=0(a≠0)
b c 二次项系数化为1,得 x x a a
2
b b 2 c b 2 配方,得 x x ( ) ( ) a 2a a 2a
( 4) 36 4 6 2 5 10 1 x1 1, x2 5
思考:说说运用公式法解一元二次方程的一般步骤, 有哪些易错点? 步骤:先将方程化一般形式,确定a,b,c的值; 计算判别式,Δ=b2-4ac的值,判断方程是否有解; 若Δ≥0,利用求根公式计算方程的根, 若Δ<0,方程无实数根. 易错点:计算Δ时,注意a,b,c符号的问题.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

21.2.2 公式法
【知识与技能】
1.理解并掌握求根公式的推导过程;
2.能利用公式法求一元二次方程的解.
【过程与方法】
经历探索求根公式的过程,加强推理技能,进一步发展逻辑思维能力.
【情感态度】
用公式法求解一元二次方程的过程中,锻炼学生的运算能力,养成良好的运算习惯,培养严谨认真的科学态度.
【教学重点】
用公式法解一元二次方程.
【教学难点】
推导一元二次方程求根公式的过程.
一、情境导入,初步认识
我们知道,对于任意给定的一个一元二次方程,只要方程有解,都可以利用配方法求出它的两个实数根.事实上,任何一个一元二次方程都可以写成
ax2+bx+c=0的形式,我们是否也能用配方法求出它的解呢?想想看,该怎样做?
【教学说明】让学生回顾用配方法解一元二次方程的一般过程,从而尝试着求ax2+bx+c=0(a≠0)的方程的解,导入新课,教学时,应给予足够的思考时间,让学生自主探究.
二、思考探究,获取新知
通过问题情境思考后,师生共同探讨方程ax2+bx+c=0(a≠0)的解.
由ax2+bx+c=0(a≠0),移项,ax2+bx=-c.二次项系数化为1,得x2+b
a
x=-
c
a
.配
方,得x2+b
a
x+2
()
2
b
a
=-
c
a
+2
()
2
b
a
,即
2
2
2
4
(
4
2
)
b a
a a
b
x
c
-
+=.
至此,教师应作适当停顿,提出如下问题,引导学生分析、探究:
(1)两边能直接开平方吗?为什么?
(2)你认为下一步该怎么办?谈谈你的看法.
【教学说明】设置停顿并提出两个问题的目的在于纠正学生的盲目行为,引导学生正确认识代数式b2-4ac的取值与此方程的解之间的关系,加深认知.教学时,应让学生积极主动思考,畅所欲言,在相互交流中促进理解.
师生共同完善认知:
一般地,式子b2-4ac叫做一元二次方程ax2+bx+c=0(a≠0)根的判别式,通常用Δ表示,即Δ=b2-4ac.从而有:
①当Δ=b2-4ac>0时,方程ax2+bx+c=0(a≠0)有两个不相等的实数根;当Δ=b2-4ac=0时,方程ax2+bx+c=0(a≠0)有两个相等实数根;当Δ=b2-4ac<0时,方程ax2+bx+c=0(a≠0)没有实数解;
②当Δ≥0时,方程ax2+bx+c=0(a≠0)的两个实数根可写成
,这个式子叫做一元二次方程ax2+bx+c=0(a≠0)的求根公式.
三、典例精析,掌握新知
例1不解方程,判别下列各方程的根的情况.
(1)x2+x+1=0; (2)x2-3x+2=0; (3)3x2x=2.
分析:找出方程中二次项系数、一次项系数和常数项,利用b2-4ac与0的大小关系可得结论.注意:在确定方程中a、b、c的值时,一定要先把方程化为一
般式后才能确定,否则会出现失误.
解:(1)∵a=1,b=1,c=1,∴Δ=b2-4ac=12-4×1×1=-3<0,∴原方程无实数解;
(2)∵a=1,b=-3,c=2,∴Δ=b2-4ac=(-3)2-4×1×2=1>0,∴原方程有两个不相等实数根;
(3)原方程可化为3x2x-2=0,∴,c=-2,∴Δ=b2)2-4×3×(-2)=2+24=26>0.∴原方程有两个不相等的实数根.
例2用公式法解下列方程:
(1)x2-4x-7=0; (2)2x2x+1=0; (3)5x2-3x=x+1; (4)x2+17=8x
分析:将方程化为一般形式后,找出a、b、c的值并计算b2-4ac后,可利用公式求出方程的解.
【教学说明】以上两例均可让学生自主完成,同时选派同学上黑板演算.教师巡视,针对学生的困惑及时予以指导,最后共同评析黑板上作业,一方面引导
学生关注其解答是否正确,同时还应注意其解答格式是否规范,查漏补缺,深化理解.教师接着引导学生阅读第12页有关引言中问题的解答,向学生提问:(1)什么情况下根的取值为正数?(2)列方程解决实际问题在取值时应注意什么?
四、运用新知,深化理解
1.关于x的方程x2-2x+m=0有两个实数根,则m的取值范围是.
2.如果关于x的一元二次方程k2x2-(2k+1)x+1=0有两个不相等实数根,那么k的取值范围是()
A.k>-1 4
B.k>-1
4
且k≠0
C.k<-1 4
D.k≥-1
4
且k≠0
3.2=0的根是()
A.x1,x2
B.x1=6, x2
C.x1, x2
D.x1=x2
4.关于x的一元二次方程(m-1)x2+x+m2+2m-3=0有一个根为0,试求m的值.
(注:5~6题为教材第12页练习)
5.解下列方程:
(1)x2+x-6=0; (2)x2(3)3x2-6x-2=0;
(4)4x2-6x=0; (5)x2+4x+8=4x+11; (6)x(2x-4)=5-8x.
6.求第21.1节中问题1的答案.
【教学说明】通过练习可进一步理解和掌握本节知识,在学中练、练中学的活动中得到巩固和提高.
【答案】1.m≤1
2.B
3.D
4.把x=0代入方程,得m2+2m-3=0,解得m1=1,m2=-3,又∵m-1≠0,即m≠1,故m的值为-3.
5~6略
五、师生互动,课堂小结
通过这节课的学习,你有哪些收获和体会?说说看.
【教学说明】在学生回顾与反思本节课的学习过程中,进一步完善认知,师生共同归纳总结.
1.布置作业:从教材“习题21.2”中选取.
2.完成创优作业中本课时练习的“课时作业”部分.
1.本课容量较大,难度较大,计算的要求较高,因此在教学设计各环节均围绕着利用公式法解一元二次方程这一重点内容展开,问题设计,课堂学习有利于学生强化运算能力,掌握基本技能,也有利于教师发现教学中存在的问题.
2.在教学设计中,引导学生自主探索一元二次方程的求根公式,在师生讨论中发现求根公式,并学会利用公式解一元二次方程.
3.整个课堂都以学生动手训练为主,让学生积极介入探索活动,体验到成功的喜悦.
4.公式法是在配方法的基础上推出的一种解一元二次方程的基本方法,它使解一元二次方程更加简便,在公式的运用中,涉及到根的判别式,使公式法解一元二次方程得到延续和深化.。

相关文档
最新文档