函数问题的题型与方法
函数常见题型及其解答

函数常见题型及其解答函数是高中数学的重要内容之一,也是高考的重点和难点。
在学习函数的过程中,同学们可能会遇到各种类型的题目,本文将介绍一些常见的题型及其解答方法。
一、求函数的定义域定义域是函数的基础,求函数的定义域是常见的问题之一。
常见的方法有:1. 观察法:根据函数解析式,直接观察出其定义域。
2. 分式法:对于分式函数,需要保证分母不为0。
3. 偶次根式法:对于偶次根式函数,需要保证被开方数非负。
4. 对数法:对于对数函数,需要保证对数的真数大于0。
5. 复合法:对于含有多个函数的式子,需要保证每个函数都有意义。
例题:求函数f(x) = 的定义域。
解答:由已知可得,要使函数有意义,需满足:3x - 4 > 0,解得x > 4/3。
所以函数的定义域为{x︱x > 4/3}。
二、求函数的解析式求函数的解析式是另一个常见的问题。
常见的方法有:1. 直接法:根据已知的函数表达式,直接求出未给出的函数表达式。
2. 换元法:对于某些复杂的表达式,可以通过换元法简化表达式。
3. 待定系数法:通过设出函数表达式中的系数,再根据已知条件求出这些系数。
例题:已知函数f(x)满足f(x) + f(2 - x) = 2,求f(x)的解析式。
解答:设f(x) = kx + b,则f(2 + x) = k(x + 2) + b + k = kx + 2k + b + b = 2,解得k = - 1,b = 0,所以f(x)的解析式为f(x) = - x。
三、函数的性质与图像函数的性质和图像是函数的重要内容之一。
常见的题型有:1. 求函数的单调区间、极值和最值。
2. 根据函数的性质和图像,分析函数的特征和变化规律。
3. 根据已知条件,画出函数的图像。
例题:已知函数f(x)在定义域内为减函数,且f(x - 1) >f(1),求函数的单调区间。
解答:由题意可知,函数f(x)在定义域内为减函数,且f(x - 1) > f(1),所以x - 1 < 1 < x,即- 1 < x < 2,函数的单调递减区间为( - 1,2)。
高中函数题型及解题方法

高中函数题型及解题方法高中数学中,函数是一个非常重要的概念,也是学生们比较头疼的一个知识点。
函数题型的考察也是比较灵活多样的,下面我们就来系统地总结一下高中函数题型及解题方法。
一、基本函数题型。
1.函数的定义和性质题型。
这类题型主要考察对函数定义和性质的理解,学生需要掌握函数的定义、定义域、值域、奇偶性、周期性等基本性质。
解题方法是根据函数的具体性质,进行逻辑推理和数学运算,得出题目要求的结论。
2.函数的图像和性质题型。
这类题型主要考察对函数图像和性质的理解,学生需要掌握函数图像的基本特征、对称性、单调性、极值点、拐点等性质。
解题方法是根据函数图像的特点,进行分析和推理,得出题目要求的结论。
3.函数的运算题型。
这类题型主要考察对函数的运算和复合的理解,学生需要掌握函数的加减乘除、复合函数、反函数等运算规则。
解题方法是根据函数运算的性质,进行逻辑推理和数学运算,得出题目要求的结果。
二、综合函数题型。
1.函数的应用题型。
这类题型主要考察对函数的实际应用的理解,学生需要掌握函数在各个领域的具体应用,如经济学、物理学、生物学等。
解题方法是根据具体问题,建立函数模型,进行分析和推理,得出问题的解决方案。
2.函数方程题型。
这类题型主要考察对函数方程的解法和应用的理解,学生需要掌握函数方程的求解方法和应用技巧。
解题方法是根据函数方程的具体形式,进行分析和推理,得出方程的解或满足条件的函数形式。
三、解题方法。
1.理清思路,明确目标。
在解函数题型时,首先要理清思路,明确题目要求的目标,分析题目中给出的条件和限制,明确解题的方向和方法。
2.运用函数的基本性质。
在解题过程中,要灵活运用函数的基本性质,如定义、图像、运算规则等,根据题目的具体要求,进行逻辑推理和数学运算。
3.建立函数模型,进行分析。
对于应用题型,要善于建立函数模型,将实际问题转化为数学问题,进行逻辑分析和推理,得出问题的解决方案。
4.多做练习,掌握技巧。
高中函数题型及解题方法

高中函数题型及解题方法在高中数学学习中,函数是一个非常重要的内容,也是学生们比较头疼的一个知识点。
函数题型涉及到了很多不同的情况和解题方法,下面我们就来系统地总结一下高中函数题型及解题方法。
一、基本函数题型及解题方法。
1. 一次函数。
一次函数是最基本的函数之一,其一般式为y=kx+b。
在解题时,可以根据函数的斜率和截距来确定函数的性质,例如斜率为正表示函数单调递增,斜率为负表示函数单调递减,截距表示函数与y轴的交点等。
2. 二次函数。
二次函数的一般式为y=ax^2+bx+c。
解二次函数题型时,可以利用函数的开口方向、顶点坐标、对称轴、判别式等性质来进行分析,从而解决问题。
3. 指数函数和对数函数。
指数函数和对数函数是一对互逆函数,其性质和解题方法有很多特点,包括增减性、奇偶性、周期性等,需要根据具体问题来进行分析和解答。
二、函数图像与函数性质题型及解题方法。
1. 函数图像的性质。
在解题过程中,可以通过函数的导数、极值、拐点等性质来确定函数的图像特点,例如凹凸性、单调性、零点、极值点等。
2. 函数性质的应用。
在实际问题中,函数的性质经常被用来解决各种实际问题,例如最值问题、最优化问题、变化率问题等,需要根据函数的性质来建立方程并求解。
三、函数的综合运用题型及解题方法。
1. 函数的综合运用。
在综合题型中,通常会涉及到多个函数的综合运用,需要根据题目所给条件来建立方程并求解,同时要注意函数之间的关系和相互影响。
2. 函数的应用拓展。
除了基本的函数题型外,还会有一些应用拓展的函数题型,例如函数的复合、函数的逆、函数的复合逆等,需要根据具体情况来进行分析和解答。
总结,高中函数题型及解题方法涉及到了很多不同的情况和解题方法,需要学生们掌握函数的基本性质和解题技巧,同时要注重实际问题的应用和拓展,通过练习和思考来提高自己的解题能力。
希望本文的总结能够帮助学生们更好地掌握高中函数的知识,提高数学学习的效果。
函数性质的八大题型综合应用(解析版)-高中数学

函数性质的八大题型综合应用题型梳理【题型1函数的单调性的综合应用】【题型2函数的最值问题】【题型3函数的奇偶性的综合应用】【题型4函数的对称性的应用】【题型5对称性与周期性的综合应用】【题型6类周期函数】【题型7抽象函数的性质】【题型8函数性质的综合应用】命题规律从近几年的高考情况来看,本节是高考的一个热点内容,函数的单调性、奇偶性、对称性与周期性是高考的必考内容,重点关注单调性、奇偶性结合在一起,与函数图象、函数零点和不等式相结合进行考查,解题时要充分运用转化思想和数形结合思想,灵活求解.对于选择题和填空题部分,重点考查基本初等函数的单调性、奇偶性,主要考察方向是:判断函数单调性及求最值、解不等式、求参数范围等,难度较小;对于解答题部分,一般与导数相结合,考查难度较大.知识梳理【知识点1函数的单调性与最值的求解方法】1.求函数的单调区间求函数的单调区间,应先求定义域,在定义域内求单调区间.2.函数单调性的判断(1)函数单调性的判断方法:①定义法;②图象法;③利用已知函数的单调性;④导数法.(2)函数y=f(g(x))的单调性应根据外层函数y=f(t)和内层函数t=g(x)的单调性判断,遵循“同增异减”的原则.(3)函数单调性的几条常用结论:①若f(x)是增函数,则-f(x)为减函数;若f(x)是减函数,则-f(x)为增函数;②若f(x)和g(x)均为增(或减)函数,则在f(x)和g(x)的公共定义域上f(x)+g(x)为增(或减)函数;③若f(x)>0且f(x)为增函数,则函数f(x)为增函数,1f(x)为减函数;④若f(x)>0且f(x)为减函数,则函数f(x)为减函数,1f(x)为增函数.3.求函数最值的三种基本方法:(1)单调性法:先确定函数的单调性,再由单调性求最值.(2)图象法:先作出函数的图象,再观察其最高点、最低点,求出最值.(3)基本不等式法:先对解析式变形,使之具备“一正二定三相等”的条件后用基本不等式求出最值.4.复杂函数求最值:对于较复杂函数,可运用导数,求出在给定区间上的极值,最后结合端点值,求出最值.【知识点2函数的奇偶性及其应用】1.函数奇偶性的判断判断函数的奇偶性,其中包括两个必备条件:(1)定义域关于原点对称,这是函数具有奇偶性的必要不充分条件,所以首先考虑定义域;(2)判断f(x)与f(-x)是否具有等量关系,在判断奇偶性的运算中,可以转化为判断奇偶性的等价等量关系式(f(x)+f(-x)=0(奇函数)或f(x)-f(-x)=0(偶函数))是否成立.(3)运算函数的奇偶性规律:运算函数是指两个(或多个)函数式通过加、减、乘、除四则运算所得的函数,如f(x)+g(x),f(x)-g(x),f(x)×g(x),f(x)÷g(x).对于运算函数有如下结论:奇±奇=奇;偶±偶=偶;奇±偶=非奇非偶;奇×(÷)奇=偶;奇×(÷)偶=奇;偶×(÷)偶=偶.(4)复合函数y=f[g(x)]的奇偶性原则:内偶则偶,两奇为奇.(5)常见奇偶性函数模型奇函数:①函数f(x)=ma x+1a x-1(x≠0)或函数f(x)=m a x-1a x+1.②函数f(x)=±(a x-a-x).③函数f(x)=log a x+mx-m=log a1+2mx-m或函数f(x)=log a x-mx+m=log a1-2mx+m④函数f(x)=log a(x2+1+x)或函数f(x)=log a(x2+1-x).2.函数奇偶性的应用(1)利用函数的奇偶性可求函数值或求参数的取值,求解的关键在于借助奇偶性转化为求已知区间上的函数或得到参数的恒等式,利用方程思想求参数的值.(2)画函数图象:利用函数的奇偶性可画出函数在其对称区间上的图象,结合几何直观求解相关问题.【知识点3函数的周期性与对称性常用结论】1.函数的周期性常用结论(a是不为0的常数)(1)若f(x+a)=f(x),则T=a;(2)若f(x+a)=f(x-a),则T=2a;(3)若f(x+a)=-f(x),则T=2a;(4)若f(x+a)=f(1x),则T=2a;(5)若f(x+a)=f(1x),则T=2a;(6)若f(x+a)=f(x+b),则T=|a-b|(a≠b);2.对称性的三个常用结论(1)若函数f(x)满足f(a+x)=f(b-x),则y=f(x)的图象关于直线x=a+b2对称.(2)若函数f(x)满足f(a+x)=-f(b-x),则y=f(x)的图象关于点a+b2,0对称.(3)若函数f(x)满足f(a+x)+f(b-x)=c,则y=f(x)的图象关于点a+b2,c 2对称.3.函数的的对称性与周期性的关系(1)若函数y=f(x)有两条对称轴x=a,x=b(a<b),则函数f(x)是周期函数,且T=2(b-a);(2)若函数y=f(x)的图象有两个对称中心(a,c),(b,c)(a<b),则函数y=f(x)是周期函数,且T=2(b-a);(3)若函数y=f(x)有一条对称轴x=a和一个对称中心(b,0)(a<b),则函数y=f(x)是周期函数,且T=4(b-a).举一反三【题型1函数的单调性的综合应用】1(2023·广东深圳·统考模拟预测)已知函数f x 的定义域为R,若对∀x∈R都有f3+x= f1-x,且f x 在2,+∞上单调递减,则f1 ,f2 与f4 的大小关系是()A.f4 <f1 <f2B.f2 <f1 <f4C.f1 <f2 <f4D.f4 <f2 <f1【解题思路】由f3+x=f1-x,得到f1 =f3 ,利用单调性即可判断大小关系,即可求解.【解答过程】因为对∀x∈R都有f3+x=f1-x,所以f1 =f3-2=f[1-(-2)]=f3 又因为f x 在2,+∞上单调递减,且2<3<4,所以f4 <f3 <f2 ,即f4 <f1 <f2 .故选:A.【变式训练】1(2023·山西朔州·怀仁市第一中学校校考二模)定义在R上的函数f(x)满足f2-x=f x ,且当x ≥1时,f (x )单调递增,则不等式f 2-x ≥f (x +1)的解集为()A.12,+∞ B.0,12C.-∞,-12D.-∞,12【解题思路】根据函数的对称性和单调性即可.【解答过程】由f 2-x =f (x ),得f (x )的对称轴方程为x =1,故2-x -1 ≥x +1 -1 ,即(1-x )2≥x 2,解得x ≤12.故选:D .2(2023上·江西鹰潭·高三校考阶段练习)已知函数f x =-x 2+2ax +4,x ≤1,1x,x >1是-12,+∞ 上的减函数,则a 的取值范围是()A.-1,-12B.-∞,-1C.-1,-12D.-∞,-1【解题思路】首先分析知,x >1,函数单调递减,则x ≤1也应为减函数,同时注意分界点处的纵坐标大小关系即可列出不等式组,解出即可.【解答过程】显然当x >1时,f x =1x为单调减函数,f x <f 1 =1当x ≤1时,f x =-x 2+2ax +4,则对称轴为x =-2a2×-1=a ,f 1 =2a +3若f x 是-12,+∞上减函数,则a ≤-122a +3≥1解得a ∈-1,-12 ,故选:A .3(2023·四川绵阳·统考三模)设函数f x 为x -1与x 2-2ax +a +3中较大的数,若存在x 使得f x ≤0成立,则实数a 的取值范围为()A.-43,-1 ∪1,4 B.-∞,-43∪4,+∞ C.-∞,1-132∪1+132,4D.-1,1【解题思路】根据绝对值函数的图像和二次函数讨论对称轴判定函数的图像即可求解.【解答过程】因为f x =max x -1,x 2-2ax +a +3 ,所以f x 代表x -1与x 2-2ax +a +3两个函数中的较大者,不妨假设g (x )=|x |-1,h (x )=x 2-2ax +a +3g (x )的函数图像如下图所示:h(x)=x2-2ax+a+3是二次函数,开口向上,对称轴为直线x=a,①当a<-1时,h(x)=x2-2ax+a+3在-1,1上是增函数,需要h(-1)=(-1)2-2a(-1)+a+3=3a+4≤0即a≤-4 3,则存在x使得f x ≤0成立,故a≤-4 3;②当-1≤a≤1时,h(x)=x2-2ax+a+3在-1,1上是先减后增函数,需要h(x)min=h(a)=a2-2a⋅a+a+3=-a2+a+3≤0,即a2-a-3≥0,解得a≥1+132或a≤1-132,又1+132>1,1-132<-1故-1≤a≤1时无解;③当a>1时,h(x)=x2-2ax+a+3在-1,1上是减函数,需要h(1)=12-2a+a+3=-a+4≤0即a≥4,则存在x使得f x ≤0成立,故a≥4.综上所述,a的取值范围为-∞,-4 3∪4,+∞.故选:B.【题型2函数的最值问题】1(2023·江西九江·校考模拟预测)若0<x<6,则6x-x2有()A.最小值3B.最大值3C.最小值9D.最大值9【解题思路】根据二次函数的性质进行求解即可.【解答过程】令y =6x -x 2=-(x -3)2+9,对称轴为x =3,开口向下,因为0<x <6,所以当x =3时,6x -x 2有最大值9,没有最小值,故选:D .【变式训练】1(2023·全国·校联考三模)已知函数f x =bx -b +3 x 3在-1,1 上的最小值为-3,则实数b的取值范围是()A.-∞,-4B.9,+∞C.-4,9D.-92,9【解题思路】由已知可得当-1≤x <1时,可得bx 1+x ≥-3x 2+x +1 恒成立,通过分离变量,结合函数性质可求b 的取值范围【解答过程】因为f 1 =-3,函数f x =bx -b +3 x 3在-1,1 上的最小值为-3,所以对∀x ∈-1,1 ,f x ≥-3恒成立,所以bx -b +3 x 3≥-3恒成立,即bx 1-x 2 ≥-31-x 3 恒成立,当x =1时,b ∈R ,当-1≤x <1时,可得bx 1+x ≥-3x 2+x +1 恒成立.当x =0或x =-1时,不等式显然成立;当0<x <1时,b ≥-3x 2+x +1 x 1+x =-31+1x 2+x,因为x 2+x ∈0,2 ,所以1x 2+x ∈12,+∞ ,1+1x 2+x ∈32,+∞ ,-31+1x 2+x∈-∞,-92 ,所以b ≥-92;当-1<x <0时,b ≤-31+1x 2+x,因为x 2+x ∈-14,0 ,所以1x 2+x ∈-∞,-4 ,1+1x 2+x ∈-∞,-3 ,-31+1x 2+x∈9,+∞ ,所以b ≤9.综上可得,实数b 的取值范围是-92,9.故选:D .2(2023上·广东广州·高一校考阶段练习)定义一种运算min a ,b =a ,a ≤bb ,a >b,设f x =min 4+2x -x 2,x -t (t 为常数,且x ∈[-3,3],则使函数f x 的最大值为4的t 的值可以是()A.-2或4B.6C.4或6D.-4【解题思路】根据定义,先计算y=4+2x-x2在x∈-3,3上的最大值,然后利用条件函数f(x)最大值为4,确定t的取值即可.【解答过程】y=4+2x-x2=-x-12+5在x∈-3,3上的最大值为5,所以由4+2x-x2=4,解得x=2或x=0,所以x∈0,2时,y=4+2x-x2>4,所以要使函数f(x)最大值为4,则根据定义可知,当t≤1时,即x=2时,2-t=4,此时解得t=-2,符合题意;当t>1时,即x=0时,0-t=4,此时解得t=4,符合题意;故t=-2或4.故选:A.3(2023·广东惠州·统考一模)若函数f x 的定义域为D,如果对D中的任意一个x,都有f x > 0,-x∈D,且f-xf x =1,则称函数f x 为“类奇函数”.若某函数g x 是“类奇函数”,则下列命题中,错误的是()A.若0在g x 定义域中,则g0 =1B.若g x max=g4 =4,则g x min=g-4=1 4C.若g x 在0,+∞上单调递增,则g x 在-∞,0上单调递减D.若g x 定义域为R,且函数h x 也是定义域为R的“类奇函数”,则函数G x =g x h x 也是“类奇函数”【解题思路】对A,根据“类奇函数”的定义,代入x=0求解即可;对B,根据题意可得g-x=1g x,再结合函数的单调性判断即可;对C,根据g-x=1g x,结合正负分数的单调性判断即可;对D,根据“类奇函数”的定义,推导G x G-x=1判断即可.【解答过程】对于A,由函数g x 是“类奇函数”,所以g x g-x=1,且g x >0,所以当x=0时,g0 g-0=1,即g0 =1,故A正确;对于B,由g x g-x=1,即g-x=1g x,g-x随g x 的增大而减小,若g(x)max=g4 =4,则g(x)min=g-4=14成立,故B正确;对于C,由g x 在0,+∞上单调递增,所以g-x=1g x,在x∈0,+∞上单调递减,设t=-x∈-∞,0 ,∴g t 在t ∈-∞,0 上单调递增,即g x 在x ∈-∞,0 上单调递增,故C 错误;对于D ,由g x g -x =1,h x h -x =1,所以G x G -x =g x g -x h x h -x =1,所以函数G x =g x h x 也是“类奇函数”,所以D 正确;故选:C .【题型3 函数的奇偶性的综合应用】1(2023·广东·东莞市校联考一模)已知函数f (x )是定义在R 上的奇函数,当x >0时,f (x )=ax +1,若f (-2)=5,则不等式f (x )>12的解集为()A.-∞,-12 ∪0,16B.-12,0 ∪0,16C.-∞,-12 ∪16,+∞ D.-12,0 ∪16,+∞ 【解题思路】根据条件可求得x >0时f (x )的解析式,根据函数为奇函数继而可求得当x <0时f (x )的解析式,分情况解出不等式即可.【解答过程】因为函数f (x )是定义在R 上的奇函数,所以f (-2)=-f (2)=5,则f (2)=-5,则2a +1=-5,所以a =-3,则当x >0时,f (x )=-3x +1,当x <0时,-x >0,则f (x )=-f (-x )=-[-3×(-x )+1]=-3x -1,则当x >0时,不等式f (x )>12为-3x +1>12,解得0<x <16,当x <0时,不等式f (x )>12为-3x -1>12,解得x <-12,故不等式的解集为-∞,-12 ∪0,16,故选:A .【变式训练】1(2023·全国·模拟预测)已知函数f (x ),g (x )的定义域均为R ,f (3x +1)为奇函数,g (x +2)为偶函数,f (x +1)+g (1-x )=2,f (0)=-12,则102k =1 g (k )=()A.-51B.52C.4152D.4092【解题思路】由题意,根据函数奇偶性可得f (x )的图象关于点(1,0)中心对称、g (x )的图象关于点(1,2)中心对称,进而可知g (x )是以4为周期的周期函数.求出g (1),g (2),g (3),g (4),结合周期即可求解.【解答过程】因为f (3x +1)为奇函数,所以f (x +1)为奇函数,所以f (x +1)=-f (-x +1),f (x )的图象关于点(1,0)中心对称,f (1)=0.因为g (x +2)为偶函数,所以g (x +2)=g (-x +2),g (x )的图象关于直线x =2对称.由f (x +1)+g (1-x )=2,得f (-x +1)+g (1+x )=2,则-f (x +1)+g (1+x )=2,所以g (x +1)+g (1-x )=4,g (x )+g (2-x )=4,所以g (x )的图象关于点(1,2)中心对称.因为g (x )的图象关于x =2轴对称,所以g (x )+g (2+x )=4,g (x +2)+g (x +4)=4,所以g (x +4)=g (x ),即g (x )是以4为周期的周期函数.因为f (1)=0,f (0)=-12,所以g (1)=2,g (2)=52,g (3)=g (1)=2,g (4)=g (0)=4-g (2)=32,所以102k =1g (k )=25×2+52+2+32 +2+52=4092.故选:D .2(2023·安徽亳州·蒙城第一中学校联考模拟预测)已知函数f x 是定义在R 上的偶函数,函数g x 是定义在R 上的奇函数,且f x ,g x 在0,+∞ 上单调递减,则()A.f f 2 >f f 3B.f g 2 <f g 3C.g g 2 >g g 3D.g f 2 <g f 3【解题思路】利用函数的单调性以及函数的奇偶性,判断各选项的正负即可.【解答过程】因为f x ,g x 在0,+∞ 上单调递减,f x 是偶函数,g x 是奇函数,所以g x 在R 上单调递减,f x 在-∞,0 上单调递增,对于A ,f 2 >f 3 ,但无法判断f 2 ,f 3 的正负,故A 不正确;对于B ,g 2 >g 3 ,但无法判断g 2 ,g 3 的正负,故B 不正确;对于C ,g 2 >g 3 ,g x 在R 上单调递减,所以g g 2 <g g 3 ,故C 不正确;对于D ,f 2 >f 3 ,g x 在R 上单调递减,g f 2 <g f 3 ,故D 正确.故选:D .3(2023·江西吉安·江西省遂川中学校考一模)若定义在R 上的函数f (x )满足:对任意x 1,x 2∈R有f (x 1+x 2)=f (x 1)+f (x 2)-2016,且x >0时,f (x )>2016,记f (x )在[-2017,2017]上的最大值和最小值为M ,N ,则M +N 的值为()A.2016B.2017C.4032D.4034【解题思路】先计算得到f (0)=2016,再构造函数g (x )=f (x )-2016,判断g (x )的奇偶性得出结论.【解答过程】解:令x 1=x 2=0得f (0)=2f (0)-2016,∴f (0)=2016,令x 1=-x 2得f (0)=f (-x 2)+f (x 2)-2016=2016,∴f (-x 2)+f (x 2)=4032,令g(x)=f(x)-2016,则g max(x)=M-2016,g min(x)=N-2016,∵g(-x)+g(x)=f(-x)+f(x)-4032=0,∴g(x)是奇函数,∴g max(x)+g min(x)=0,即M-2016+N-2016=0,∴M+N=4032.故选:C.【题型4函数的对称性的应用】1(2023·江西赣州·统考二模)已知函数f(x)的图像既关于点(-1,1)对称,又关于直线y=x对称,且当x∈[-1,0]时,f(x)=x2,则f174=()A.-194B.-92C.-72D.-174【解题思路】用Γ表示函数y=f x 的图像,设x0,y0∈Γ,根据中心对称性与轴对称性,得到4+y0,-4+x0∈Γ,令4+y0=174,求出y0,即可求出x0,即可得解.【解答过程】用Γ表示函数y=f x 的图像,对任意的x0∈-1,0,令y0=x20,则x0,y0∈Γ,且y0∈0,1,又函数f(x)的图像既关于点(-1,1)对称,且关于直线y=x对称,所以y0,x0∈Γ,则-2-y0,2-x0∈Γ,则2-x0,-y0-2∈Γ,则-4+x0,4+y0∈Γ,则4+y0,-4+x0∈Γ,令4+y0=174,即y0=14,此时x0=-12或x0=12(舍去),此时-4+x0=-4+-1 2=-92,即174,-92∈Γ,因此f174 =-92.故选:B.【变式训练】1(2023·四川绵阳·绵阳中学校考一模)若函数y=f x 满足f a+x+f(a-x)=2b,则说y=f x 的图象关于点a,b对称,则函数f(x)=xx+1+x+1x+2+x+2x+3+...+x+2021x+2022+x+2022x+2023的对称中心是()A.(-1011,2022)B.1011,2022C.(-1012,2023)D.1012,2023【解题思路】求出定义域,由定义域的对称中心,猜想a=-1012,计算出f(-1012+x)+f(-1012-x) =4046,从而求出对称中心.【解答过程】函数定义域为{x|x≠-1,x≠-2...,...x≠-2022,x≠-2023},定义域的对称中心为(-1012,0),所以可猜a=-1012,则f(-1012+x)=-1012+x-1011+x+-1011+x-1010+x+-1010+x-1009+x+...+1009+xx+1010+1010+x1011+x,f(-1012-x)=-1012-x-1011-x +-1011-x-1010-x+-1010-x-1009-x+...+1009-x1010-x+1010-x1011-x=1012+x 1011+x +1011+x1010+x+1010+x1009+x+...+1009-x1010-x+1010-x1011-x,故f(-1012+x)+f(-1012-x)=1010+x1011+x +1012+x 1011+x+1009+xx+1010+1011+x 1010+x⋯+-1012+x-1011+x +1010-x 1011-x=2×2023=4046所以y=f x 的对称中心为(-1012,2023),故选:C.2(2023·四川南充·四川省南充高级中学校考三模)函数f x 和g x 的定义域均为R,且y=f3+3x为偶函数,y=g x+3+2为奇函数,对∀x∈R,均有f x +g x =x2+1,则f7 g7 = ()A.615B.616C.1176D.2058【解题思路】由题意可以推出f x =f6-x,g x =-4-g6-x,再结合f x +g x =x2+1可得函数方程组,解出函数方程组后再代入求值即可.【解答过程】由函数f3+3x为偶函数,则f3+3x=f3-3x,即函数f x 关于直线x=3对称,故f x =f6-x;由函数g x+3+2为奇函数,则g x+3+2=-g-x+3-2,整理可得g x+3+g-x+3=-4,即函数g x 关于3,-2对称,故g x =-4-g6-x;由f x +g x =x2+1,可得f6-x+g6-x=(6-x)2+1,所以f x -4-g x =(6-x)2+1,故f x +g x =x2+1f x -4-g x =(6-x)2+1 ,解得f x =x2-6x+21,g x =6x-20,所以f7 =72-6×7+21=28,g7 =6×7-20=22,所以f7 g7 =28×22=616.故选:B.3(2023·甘肃张掖·高台县校考模拟预测)已知函数f(x)的定义域为R,f x-1的图象关于点(1,0)对称,f3 =0,且对任意的x1,x2∈-∞,0,x1≠x2,满足f x2-f x1x2-x1<0,则不等式x-1f x+1≥0的解集为()A.-∞,1∪2,+∞B.-4,-1∪0,1C.-4,-1∪1,2D.-4,-1∪2,+∞【解题思路】首先根据f(x-1)的图象关于点(1,0)对称,得出(x)是定义在R上的奇函数,由对任意的x1,x2∈(-∞,0),x1≠x2,满足f(x2)-f(x1)x2-x1<0,得出f(x)在(-∞,0)上单调递减,然后根据奇函数的对称性和单调性的性质,求解即可.【解答过程】∵f(x-1)的图象关于点(1,0)对称,∴f(x)的图象关于点(0,0)对称,∴f(x)是定义在R 上的奇函数,∵对任意的x1,x2∈(-∞,0),x1≠x2,满足f(x2)-f(x1)x2-x1<0,∴f(x)在(-∞,0)上单调递减,所以f(x)在(0,+∞)上也单调递减,又f3 =0所以f-3=0,且f0 =0,所以当x∈-∞,-3∪0,3时,f x >0;当x∈-3,0∪3,+∞时,f x <0,所以由x-1f x+1≥0可得x-1<0,-3≤x+1≤0或x-1>0,0≤x+1≤3或x-1=0,解得-4≤x≤-1或1≤x≤2,即不等式x-1f x+1≥0的解集为-4,-1∪1,2.故选:C.【题型5对称性与周期性的综合应用】1(2023·四川宜宾·统考一模)已知函数f x ,g x 的定义域为R,g x 的图像关于x=1对称,且g2x+2为奇函数,g1 =1,f x =g3-x+1,则下列说法正确的个数为()①g(-3)=g(5);②g(2024)=0;③f(2)+f(4)=-4;④2024n=1f(n)=2024.A.1B.2C.3D.4【解题思路】根据奇函数定义得到g-2x+2=-g2x+2,进而得到g x 的对称中心为,再根据对称轴求出周期,通过赋值得到答案.【解答过程】因为g2x+2为奇函数,所以g-2x+2=-g2x+2,则g-x+2=-g x+2,所以g x 对称中心为2,0,又因为g x 的图像关于x=1对称,则g-x+2=g x ,所以-g x+2=g x ,则g x+4=-g x+2=g x ,所以g x 的周期T=4,①g-3=g-3+8=g5 ,所以①正确;②因为g1 =1,g-x+2=g x ,g x 对称中心为2,0,所以g0 =g2 =0,所以g(2024)=g0 =0,所以②正确;③因为f x =g3-x+1,所以f2 =g1 +1=2,因为-g x+2=g x ,所以g-1=-g1 ,则f4 =g-1+1=-g1 +1=0,所以f(2)+f(4)=2,所以③错误;④因为f x =g 3-x +1且g x 周期T =4,所以f x +4 =g 3-x -4 +1=g 3-x +1=f x ,则f x 的周期为T =4,因为f 1 =g 2 +1=1,f 2 =2,f 3 =g 0 +1=1,f 4 =0,所以f 1 +f 2 +f 3 +f 4 =4,所以2024n =1 f (n )=506f 1 +f 2 +f 3 +f 4 =4 =506×4=2024,所以④正确.故选:C .【变式训练】1(2023·北京大兴·校考三模)已知函数f x 对任意x ∈R 都有f x +2 =-f x ,且f -x =-f x ,当x ∈-1,1 时,f x =x 3.则下列结论正确的是()A.函数y =f x 的图象关于点k ,0 k ∈Z 对称B.函数y =f x 的图象关于直线x =2k k ∈Z 对称C.当x ∈2,3 时,f x =x -2 3D.函数y =f x 的最小正周期为2【解题思路】根据f x +2 =-f x 得到f x +2 =f x -2 ,所以f x 的周期为4,根据f -x =-f x 得到f x 关于x =-1对称,画出f x 的图象,从而数形结合得到AB 错误;再根据f x =-f x -2 求出x ∈2,3 时函数解析式;D 选项,根据y =f x 的最小正周期,得到y =f x 的最小正周期.【解答过程】因为f x +2 =-f x ,所以f x =-f x -2 ,故f x +2 =f x -2 ,所以f x 的周期为4,又f -x =-f x ,所以f -x =f x -2 ,故f x 关于x =-1对称,又x ∈-1,1 时,f x =x 3,故画出f x 的图象如下:A 选项,函数y =f x 的图象关于点1,0 不中心对称,故A 错误;B 选项,函数y =f x 的图象不关于直线x =2对称,B 错误;C 选项,当x ∈2,3 时,x -2∈0,1 ,则f x =-f x -2 =-x -2 3,C 错误;D 选项,由图象可知y =f x 的最小正周期为4,又f x +2 =-f x =f x ,故y =f x 的最小正周期为2,D 正确.故选:D .2(2023·四川绵阳·绵阳校考模拟预测)已知函数f x 的定义域为R ,f 1 =0,且f 0 ≠0,∀x ,y∈R 都有f x +y +f x -y =2f x f y ,则下列说法正确的命题是()①f 0 =1;②∀x ∈R ,f -x +f x =0;③f x 关于点1,0 对称;④2023i =1 f (i )=-1A.①②B.②③C.①②④D.①③④【解题思路】利用特殊值法,结合函数的奇偶性、对称性和周期性进行求解即可.【解答过程】对于①,由于∀x ,y ∈R 都有f x +y +f x -y =2f x f y ,所以令x =y =0,则f 0 +f 0 =2f 0 f 0 ,即f 0 =f 20 ,因为f 0 ≠0,所以f 0 =1,所以①正确,对于②,令x =0,则f y +f -y =2f 0 f y =2f y ,所以f y =f -y ,即f x =f -x ,所以∀x ∈R ,f -x -f x =0,所以②错误,对于③,令x =1,则f 1+y +f 1-y =2f 1 f y =0,所以f 1+y =-f 1-y ,即f 1+x =-f 1-x ,所以f x 关于点1,0 对称,所以③正确,对于④,因为f 1+x =-f 1-x ,所以f 2+x =-f -x ,因为f x =f -x ,所以f 2+x =-f x ,所以f 4+x =-f 2+x ,所以f 4+x =f x ,所以f x 的周期为4,在f x +y +f x -y =2f x f y 中,令x =y =1,则f 2 +f 0 =2f 1 f 1 =0,因为f 0 =1,所以f (2)=-1,f (3)=f (-1)=f (1)=0,f (4)=f (0)=1,所以f (1)+f (2)+f (3)+f (4)=0+(-1)+0+1=0,所以2023i =1 f (i )=505×f (1)+f (2)+f (3)+f (4) +f (1)+f (2)+f (3)=-1,所以④正确,故选:D .3(2023·安徽合肥·合肥一中校考模拟预测)已知函数f x 与g (x )的定义域均为R ,f (x +1)为偶函数,且f (3-x )+g (x )=1,f (x )-g (1-x )=1,则下面判断错误的是()A.f x 的图象关于点(2,1)中心对称B.f x 与g x 均为周期为4的周期函数C.2022i =1f (i )=2022D.2023i =0g (i )=0【解题思路】由f (x +1)为偶函数可得函数关于直线x =1轴对称,结合f (3-x )+g (x )=1和f (x )-g (1-x )=1可得f x 的周期为4,继而得到g x 的周期也为4,接着利用对称和周期算出对应的值即可判断选项【解答过程】因为f x +1 为偶函数,所以f x +1 =f -x +1 ①,所以f x 的图象关于直线x =1轴对称,因为f x -g 1-x =1等价于f 1-x -g x =1②,又f 3-x +g x =1③,②+③得f 1-x +f 3-x =2④,即f 1+x +f 3+x =2,即f 2+x =2-f x ,所以f 4+x =2-f 2+x =f x ,故f x 的周期为4,又g x =1-f 3-x ,所以g x 的周期也为4,故选项B 正确,①代入④得f 1+x +f 3-x =2,故f x 的图象关于点2,1 中心对称,且f 2 =1,故选项A 正确,由f 2+x =2-f x ,f 2 =1可得f 0 =1,f 4 =1,且f 1 +f 3 =2,故f 1 +f 2 +f 3 +f 4 =4,故2022i =1 f (i )=505×4+f (1)+f (2)=2021+f (1),因为f 1 与f 3 值不确定,故选项C 错误,因为f 3-x +g x =1,所以g 1 =0,g 3 =0,g 0 =1-f 3 ,g 2 =1-f 1 ,所以g 0 +g 2 =2-f 1 +f 3 =0,故g 0 +g 1 +g 2 +g 3 =0,故2023i =0 g (i )=506×0=0,所以选项D 正确,故选:C .【题型6 类周期函数】1(2023·安徽合肥·合肥一六八中学校考模拟预测)定义在R 上的函数f x 满足f x +1 =12f x ,且当x ∈0,1 时,f x =1-2x -1 .当x ∈m ,+∞ 时,f x ≤332,则m 的最小值为()A.278B.298C.134D.154【解题思路】根据已知计算出f x =12n 1-2x -2n +1 ≤12n ,画出图象,计算f x =332,解得x =298,从而求出m 的最小值.【解答过程】由题意得,当x ∈1,2 时,故f x =12f x -1 =121-2x -3 ,当x ∈2,3 时,故f x =12f x -1 =141-2x -5 ⋯,可得在区间n ,n +1 n ∈Z 上,f x =12n 1-2x -2n +1 ≤12n ,所以当n ≥4时,f x ≤332,作函数y =f x 的图象,如图所示,当x ∈72,4 时,由f x =181-2x -7 =332,2x -7 =14,x =298,则m ≥298,所以m 的最小值为298故选:B .【变式训练】1(2023上·湖南长沙·高三校考阶段练习)定义域为R 的函数f x 满足f x +2 =2f x -1,当x∈0,2 时,f x =x 2-x ,x ∈0,1 1x,x ∈1,2.若x ∈0,4 时,t 2-7t 2≤f x ≤3-t 恒成立,则实数t 的取值范围是()A.1,2B.1,52C.12,2D.2,52【解题思路】由f (x +2)=2f (x )-1,求出x ∈(2,3),以及x ∈[3,4]的函数的解析式,分别求出(0,4]内的四段的最小值和最大值,注意运用二次函数的最值和函数的单调性,再由t 2-7t2≤f x ≤3-t 恒成立即为t 2-7t2≤f x min ,f x max ≤3-t ,解不等式即可得到所求范围【解答过程】当x ∈(2,3),则x -2∈(0,1),则f (x )=2f (x -2)-1=2(x -2)2-2(x -2)-1,即为f (x )=2x 2-10x +11,当x ∈[3,4],则x -2∈[1,2],则f (x )=2f (x -2)-1=2x -2-1.当x ∈(0,1)时,当x =12时,f (x )取得最小值,且为-14;当x ∈[1,2]时,当x =2时,f (x )取得最小值,且为12;当x ∈(2,3)时,当x =52时,f (x )取得最小值,且为-32;当x ∈[3,4]时,当x =4时,f (x )取得最小值,且为0.综上可得,f (x )在(0,4]的最小值为-32.若x ∈(0,4]时, t 2-7t2≤f x min 恒成立,则有t 2-7t 2≤-32.解得12≤t ≤3.当x ∈(0,2)时,f (x )的最大值为1,当x ∈(2,3)时,f (x )∈-32,-1 ,当x ∈[3,4]时,f (x )∈[0,1],即有在(0,4]上f (x )的最大值为1.由f x max ≤3-t ,即为1≤3-t ,解得t ≤2,综上,即有实数t 的取值范围是12,2.故选:C .2(2022·四川内江·校联考二模)定义域为R 的函数f (x )满足f (x +2)=3f (x ),当x ∈[0,2]时,f (x )=x 2-2x ,若x ∈[-4,-2]时,f (x )≥1183t-t 恒成立,则实数t 的取值范围是()A.-∞,-1 ∪0,3B.-∞,-3 ∪0,3C.-1,0 ∪3,+∞D.-3,0 ∪3,+∞【解题思路】根据题意首先得得到函数的具体表达式,由x ∈[-4,-2],所以x +4∈[0,2],所以f (x +4)=x 2+6x +8,再由f (x +4)=3f (x +2)=9f (x )可得出f (x )的表达式,在根据函数思维求出f (x )最小值解不等式即可.【解答过程】因为x ∈[-4,-2],所以x +4∈[0,2],因为x ∈[0,2]时,f x =x 2-2x ,所以f x +4 =(x +4)2-2(x +4)=x 2+6x +8,因为函数f x 满足f x +2 =3f x ,所以f x +4 =3f x +2 =9f x ,所以f x =19f x +4 =19x 2+6x +8 ,x ∈[-4,-2],又因为x ∈[-4,-2],f x ≥1183t-t 恒成立,故1183t -t ≤f x min =-19,解不等式可得t ≥3或-1≤t <0.故选C .3(2023上·浙江台州·高一校联考期中)设函数f x 的定义域为R ,满足f x =2f x -2 ,且当x∈0,2 时,f x =x 2-x .若对任意x ∈-∞,m ,都有f x ≤3,则m 的取值范围是()A.-∞,52B.-∞,72C.-∞,92D.-∞,112【解题思路】根据给定条件分段求解析式及对应函数值集合,再利用数形结合即得.【解答过程】因为函数f x 的定义域为R ,满足f x =2f x -2 ,且当x ∈0,2 时,f x =x 2-x =-x -1 2+1∈0,1 ,当x ∈(2,4],时,x -2∈(0,2],则f (x )=2f (x -2)=2x -2 2-x -2 =-2x -3 2+2∈0,2 ,当x ∈(4,6],时,x -4∈(0,2],则f (x )=4f (x -2)=4x -2-2 4-x -2 =-4x -5 2+4∈0.4 ,当x ∈(-2,0],时,x +2∈(0,2],则f (x )=12f (x +2)=12(x +2)-x =-12x +1 2+12∈0,12,作出函数f x 的大致图象,对任意x ∈-∞,m ,都有f x ≤3,设m 的最大值为t ,则f t =3,所以-4t -5 2+4=3,解得t =92或t =112,结合图象知m 的最大值为92,即m 的取值范围是-∞,92.故选:C .【题型7 抽象函数的性质】1(2023·新疆乌鲁木齐·统考二模)已知f x ,g x 都是定义在R 上的函数,对任意x ,y 满足f x -y=f x g y -g x f y ,且f -2 =f 1 ≠0,则下列说法正确的是()A.f 0 =1B.函数g 2x +1 的图象关于点1,0 对称C.g 1 +g -1 =0D.若f 1 =1,则2023n =1 f n =1【解题思路】利用赋值法结合题目给定的条件可判断AC ,取f x =sin2π3x ,g x =cos 2π3x 可判断B ,对于D ,通过观察选项可以推断f x 很可能是周期函数,结合f x g y ,g x f y 的特殊性及一些已经证明的结论,想到令y =-1和y =1时可构建出两个式子,两式相加即可得出f x +1 +f x -1 =-f x ,进一步得出f x 是周期函数,从而可求2023n =1 f n 的值.【解答过程】解:对于A ,令x =y =0,代入已知等式得f 0 =f 0 g 0 -g 0 f 0 =0,得f 0 =0,故A 错误;对于B ,取f x =sin 2π3x ,g x =cos 2π3x ,满足f x -y =f x g y -g x f y 及f -2 =f 1 ≠0,因为g 3 =cos2π=1≠0,所以g x 的图象不关于点3,0 对称,所以函数g 2x +1 的图象不关于点1,0 对称,故B 错误;对于C ,令y =0,x =1,代入已知等式得f 1 =f 1 g 0 -g 1 f 0 ,可得f 1 1-g 0 =-g 1 f 0 =0,结合f 1 ≠0得1-g 0 =0,g 0 =1,再令x =0,代入已知等式得f -y =f 0 g y -g 0 f y ,将f 0 =0,g 0 =1代入上式,得f -y =-f y ,所以函数f x 为奇函数.令x =1,y =-1,代入已知等式,得f 2 =f 1 g -1 -g 1 f -1 ,因为f -1 =-f 1 ,所以f 2 =f 1 g -1 +g 1 ,又因为f 2 =-f -2 =-f 1 ,所以-f 1 =f 1 g -1 +g 1 ,因为f 1 ≠0,所以g 1 +g -1 =-1,故C 错误;对于D ,分别令y =-1和y =1,代入已知等式,得以下两个等式:f x +1 =f x g -1 -g x f -1 ,f x -1 =f x g 1 -g x f 1 ,两式相加易得f x +1 +f x -1 =-f x ,所以有f x +2 +f x =-f x +1 ,即:f x =-f x +1 -f x +2 ,有:-f x +f x =f x +1 +f x -1 -f x +1 -f x +2 =0,即:f x -1 =f x +2 ,所以f x 为周期函数,且周期为3,因为f 1 =1,所以f -2 =1,所以f 2 =-f -2 =-1,f 3 =f 0 =0,所以f 1 +f 2 +f 3 =0,所以2023n =1 f n =1=f 1 +f 2 +f 3 +⋯+f 2023 =f 2023 =f 1 =1,故D 正确.故选:D .【变式训练】1(2023·福建宁德·福鼎市校考模拟预测)已知函数f x 及其导函数f x 的定义域均为R ,对任意的x ,y ∈R ,恒有f x +y +f x -y =2f x f y ,则下列说法正确的个数是()①f 0 =0;②fx 必为奇函数;③f x +f 0 ≥0;④若f (1)=12,则2023n =1f (n )=12.A.1B.2C.3D.4【解题思路】利用赋值法可判断①;利用赋值法结合函数奇偶性定义判断②;赋值,令y =x ,得出f 2x+f0 ≥0,变量代换可判断③;利用赋值法求出f(n)部分函数值,推出其值具有周期性,由此可计算2023n=1f(n),判断④,即可得答案.【解答过程】令x=y=0,则由f x+y+f x-y=2f x f y 可得2f0 =2f20 ,故f(0)=0或f0 =1,故①错误;当f(0)=0时,令y=0,则f(x)+f(x)=2f(x)f(0)=0,则f(x)=0,故f (x)=0,函数f (x)既是奇函数又是偶函数;当f(0)=1时,令x=0,则f(y)+f(-y)=2f(0)f(y),所以f-y=f y ,则-f (-y)=f (y),即f (-y)=-f (y),则f (x)为奇函数,综合以上可知f (x)必为奇函数,②正确;令y=x,则f2x+f0 =2f2x ,故f2x+f0 ≥0.由于x∈R,令t=2x,t∈R,即f t +f0 ≥0,即有f x +f0 ≥0,故③正确;对于D,若f1 =12,令x=1,y=0,则f1 +f1 =2f1 f0 ,则f(0)=1,令x=y=1,则f2 +f0 =2f21 ,即f2 +1=12,∴f2 =-12,令x=2,y=1,则f3 +f1 =2f2 f1 ,即f3 +12=-12,∴f(3)=-1,令x=3,y=1,则f4 +f2 =2f3 f1 ,即f4 -12=-1,∴f(4)=-12,令x=4,y=1,则f5 +f3 =2f4 f1 ,即f5 -1=-12,∴f(5)=12,令x=5,y=1,则f6 +f4 =2f5 f1 ,即f6 -12=12,∴f(6)=1,令x=6,y=1,则f7 +f5 =2f6 f1 ,即f7 +12=1,∴f(7)=12,令x=7,y=1,则f8 +f6 =2f7 f1 ,即f8 +1=12,∴f(8)=-12,⋯⋯,由此可得f(n),n∈N*的值有周期性,且6个为一周期,且f(1)+f(2)+f(3)+f(4)+f(5)+f(6)=0,故2023n=1f n =337×[f(1)+f(2)+f(3)+f(4)+f(5)+f(6)]+f(1)=12,故④正确,即正确的是②③④,故选:C.2(2023·河南·校联考模拟预测)已知函数f x 对任意实数x,y恒有f(x-y)+f(x+y)=f(2x)成立,且当x<0时,f(x)>0.(1)求f(0)的值;(2)判断f x 的单调性,并证明;(3)解关于x的不等式:f x2-(a+2)x+f(a+y)+f(a-y)>0.【解题思路】(1)根据题意,令x=0,y=0,即可求得f(0)=0;(2)令x=0,得到f(-y)=-f(y),所以f x 为奇函数,在结合题意和函数单调性的定义和判定方法,即可求解;(3)化简不等式为f x2-(a+2)x>f(-2a),结合函数f x 的单调性,把不等式转化为x2-(a+2)x <-2a,结合一元二次不等式的解法,即可求解.【解答过程】(1)解:因为函数f(x)对任意实数x,y恒有f(x-y)+f(x+y)=f(2x)成立,令x=0,y=0,则f(0)+f(0)=f(0),所以f(0)=0.(2)解:函数f x 为R上的减函数.证明:令x=0,则f(-y)+f(y)=f(0)=0,所以f(-y)=-f(y),故f x 为奇函数.任取x1,x2∈R,且x1<x2,则x1-x2<0,因为当x<0时,f(x)>0,所以f x1-x2>0,所以f x1-f x2=f x1+f-x2=fx1-x22+x1+x22+f x1-x22-x1+x22=f x1-x2>0,即f x1>f x2,所以f x 是R上的减函数.(3)解:根据题意,可得f x2-(a+2)x>-[f(a+y)+f(a-y)]=-f(2a)=f(-2a),由(2)知f x 在R上单调递减,所以x2-(a+2)x<-2a,即x2-(a+2)x+2a<0,可得(x-2)(x-a)<0,当a>2时,原不等式的解集为(2,a);当a=2时,原不等式的解集为∅;当a<2时,原不等式的解集为(a,2).3(2023上·广东东莞·高一校联考期中)已知函数f x 对任意实数x,y恒有f x+y=f x +f y ,当x>0时,f x <0,且f1 =-2.(1)判断f x 的奇偶性;(2)判断函数单调性,求f x 在区间-3,3上的最大值;(3)若f x <m2-2am+2对所有的x∈-1,1,a∈-1,1恒成立,求实数m的取值范围.【解题思路】(1)令x=y=0,求得f0 =0,再令y=-x,从而得f-x=-f x ,从而证明求解. (2)设x1,x2∈R且x1<x2,结合条件用单调性的定义证明函数f x 的单调性,然后利用单调性求解区间-3,3上的最大值.(3)根据函数f x <m2-2am+2对所有的x∈-1,1,a∈-1,1恒成立,说明f x 的最大值2小于右边,因此先将右边看作a的函数,解不等式组,即可得出m的取值范围.【解答过程】(1)f x 为奇函数,证明如下:令x=y=0,则f0+0=2f0 ,所以f0 =0,令y=-x,则f x-x=f x +f-x=f0 =0,所以:f-x=-f x 对任意x∈R恒成立,所以函数f x 为奇函数.(2)f x 在R上是减函数,证明如下:任取x1,x2∈R且x1<x2,则x2-x1>0f x2-f x1=f x2+f-x1=f x2-x1<0,所以f x2<f x1,所以f x 在R上为减函数.当x∈-3,3时,f x 单调递减,所以当x=-3时,f x 有最大值为f-3,因为f3 =f2 +f1 =3f1 =-2×3=-6,所以f-3=-f3 =6,故f x 在区间-3,3上的最大值为6.(3)由(2)知f x 在区间-1,1上单调递减,所以f x ≤f-1=-f1 =2,因为f x <m2-2am+2对所有的x∈-1,1,a∈-1,1恒成立,即m2-2am>0对任意a∈-1,1恒成立,令g a =-2am+m2,则g-1>0g1 >0,即2m+m2>0-2m+m2>0,解得:m>2或m<-2.故m的取值范围为-∞,-2∪2,+∞.【题型8函数性质的综合应用】1(2023上·河北石家庄·高一校考阶段练习)已知函数f(x)=a x,g(x)=b⋅a-x+x,a>0且a≠1,若f(1)+g(1)=52,f(1)-g(1)=32,设h(x)=f(x)+g(x),x∈[-4,4].(1)求函数h(x)的解析式并判断其奇偶性;(2)判断函数h(x)的单调性(不需证明),并求不等式h(2x+1)+h(2x-1)≥0的解集.【解题思路】(1)由f(1)+g(1)=52、f(1)-g(1)=32代入可解出a、b,得到h(x),再计算h(x)与h(-x)的关系即可得到奇偶性;(2)分别判断h(x)中每一部分的单调性可得h(x)的单调性,结合函数的单调性与奇偶性解决该不等式即可得.【解答过程】(1)由f(1)+g(1)=52,f(1)-g(1)=32,即有a+ba+1=52a-ba-1=32,解得a=2b=-1,即f(x)=2x,g(x)=-2-x+x,则h(x)=2x-2-x+x,其定义域为R,h (-x )=2-x -2x -x =-2x -2-x +x =-h (x ),故h (x )为奇函数.(2)h (x )=2x -2-x +x ,由2x 在R 上单调递增,-2-x 在R 上单调递增,x 在R 上单调递增,故h (x )在R 上单调递增,由h (2x +1)+h (2x -1)≥0,且h (x )为奇函数,即有h (2x +1)≥-h (2x -1)=h 1-2x ,即有2x +1≥1-2x ,解得x ≥0,故该不等式的解集为x x ≥0 .【变式训练】1(2023上·上海·高一校考期中)已知定义在全体实数上的函数f x 满足:①f x 是偶函数;②f x 不是常值函数;③对于任何实数x 、y ,都有f x +y =f x f y -f 1-x f 1-y .(1)求f 1 和f 0 的值;(2)证明:对于任何实数x ,都有f x +4 =f x ;(3)若f x 还满足对0<x <1有f x >0,求f 13+f 23 +⋯+f 20263 的值.【解题思路】(1)取x =1,y =0代入计算得到f 1 =0,取y =0得到f x =f x f 0 ,得到答案.(2)取y =1,结合函数为偶函数得到f x +2 =-f x ,变换得到f x +4 =f x ,得到证明.(3)根据函数的周期性和奇偶性计算f 13 +f 23 +⋯+f 123 =0,取x =y =13和取x =13,y =-13得到f 13 =32,根据周期性得到f 13 +f 23 +⋯+f 20263=-f 13 -1,计算得到答案.【解答过程】(1)f x +y =f x f y -f 1-x f 1-y取x =1,y =0得到f 1 =f 1 f 0 -f 0 f 1 =0,即f 1 =0;取y =0得到f x =f x f 0 -f 1-x f 1 =f x f 0 ,f x 不是常值函数,故f 0 =1;(2)f x +y =f x f y -f 1-x f 1-y ,取y =1得到f x +1 =f x f 1 -f 1-x f 0 =-f 1-x ,f x 是偶函数,故f x +1 =-f x -1 ,即f x +2 =-f x ,f x +4 =-f x +2 =f x .(3)f x +2 +f x =0,f x 为偶函数,取x =-13,则f 53 +f -13 =0,即f 53 +f 13 =0;取x =-23,则f 43 +f -23 =0,即f 43 +f 23=0;故f 73+f 83 +f 103 +f 113 =-f 13 -f 23 -f 43 -f 53 =0,f 2 =-f 0 =-1,f 3 =f -1 =f 1 =0,f 4 =f 0 =1,故f 13+f 23 +⋯+f 123 =0,取x =y =13得到f 23 =f 213 -f 223,取x =13,y =-13得到f 0 =f 213 -f 23 f 43 =f 213 +f 223=1,f 13 >0,f 23 >0,解得f 13 =32,f 13+f 23 +⋯+f 20263 =-f 113 -f 123 =-f 13 -1=-32-1.2(2023下·山西运城·高二统考期末)已知f x =e x -1+e 1-x +x 2-2x +a ,(1)证明:f x 关于x =1对称;(2)若f x 的最小值为3(i )求a ;(ii )不等式f m e x +e -x +1 >f e x -e -x 恒成立,求m 的取值范围【解题思路】(1)代入验证f (x )=f (2-x )即可求解,(2)利用单调性的定义证明函数的单调性,即可结合对称性求解a =2,分离参数,将恒成立问题转化为m >e x -e -x -1e x +e -xmax ,构造函数F (x )=e x -e -x -1e x +e-x ,结合不等式的性质即可求解最值.【解答过程】(1)证明:因为f x =e x -1+e 1-x +x 2-2x +a ,所以f (2-x )=e 2-x -1+e1-(2-x )+(2-x )2-2(2-x )+a =e 1-x +e x -1+x 2-2x +a ,所以f (x )=f (2-x ),所以f (x )关于x =1对称.(2)(ⅰ)任取x 1,x 2∈(1,+∞),且x 1<x 2f x 1 -f x 2 =e x 1-1+e1-x 1+x 21-2x 1-ex 2-1+e1-x 2+x 22-2x 2=e x 1-1-ex 2-1+e1-x 1-e1-x 2+x 21-x 22 -2x 1-x 2=(ex 1-1-ex 2-1)(e x 1-1e x 2-1-1)ex 1-1ex 2-1+(x 1-x 2)(x 1+x 2-2)∵1<x 1<x 2,∴0<x 1-1<x 2-1,∴e x 1-1>1,ex 2-1>1,ex 1-1-ex 2-1<0,ex 1-1e x 2-1-1>0,x 1-x 2<0,x 1+x 2-2>0,∴f (x 1)<f (x 2),所以f (x )在1,+∞ 上单调递增,又f (x )关于x =1对称,则在-∞,1 上单调递减.所以f (x )min =f (1)=1+a =3,所以a =2.(单调性也可以用单调性的性质、复合函数的单调性判断、导数证明)(ⅱ)不等式f (m (e x +e -x )+1)>f (e x -e -x )恒成立等价于(m (e x +e -x )+1)-1 >e x -e -x -1 恒成立, 即m >ex-e -x -1 e x +e -x =e x -e -x -1e x +e -x恒成立,即m >e x -e -x -1e x +e -xmax令F (x )=e x -e -x -1e x +e -x ,则F (x )=e 2x -e x -1e 2x +1=1-e x +2e 2x +1,令e x +2=n ,n ∈2,+∞ ,则e x =n -2则g n =1-n n 2-4n +5=1-1n -4+5n,因为n ∈2,+∞ ,n -4+5n ≥25-4,n =5取等号,则g n ∈-52,1,所以g n ∈0,52,所以m >52,即m ∈-∞,-52 ∪52,+∞ .3(2023下·广东·高一统考期末)已知函数y =φx 的图象关于点P a ,b 成中心对称图形的充要条件是φa +x +φa -x =2b .给定函数f x =x -6x +1及其图象的对称中心为-1,c .(1)求c 的值;(2)判断f x 在区间0,+∞ 上的单调性并用定义法证明;(3)已知函数g x 的图象关于点1,1 对称,且当x ∈0,1 时,g x =x 2-mx +m .若对任意x 1∈0,2 ,总存在x 2∈1,5 ,使得g x 1 =f x 2 ,求实数m 的取值范围.【解题思路】(1)根据函数的对称性得到关于c 的方程,解出即可求出函数的对称中心;(2)利用函数单调性的定义即可判断函数f (x )单增,(3)问题转化为g (x )在[0,2]上的值域A ⊆[-2,4],通过讨论m 的范围,得到关于m 的不等式组,解出即可.【解答过程】(1)由于f (x )的图象的对称中心为-1,c ,则f (-1+x )+f (-1-x )=2c ,即(x -1)-6x -1+1+(-x -1)-6-x -1+1=2c ,整理得-2=2c ,解得:c =-1,故f (x )的对称中心为(-1,-1);(2)函数f (x )在(0,+∞)递增;设0<x 1<x 2,则f x 1 -f x 2 =x 1-6x 1+1-x 2+6x 2+1=x 1-x 2 +6x 1-x 2 x 2+1 x 1+1=x 1-x 2 1+6x 2+1 x 1+1,由于0<x 1<x 2,所以x 1-x 2<0, 6x 2+1 x 1+1>0,所以f x 1 -f x 2 <0⇒f x 1 <f x 2 ,故函数f (x )在(0,+∞)递增;。
函数值域的常见求法8大题型(解析版)

函数值域的求法8大题型命题趋势函数的值域是函数概念中三要素之一,是高考中的必考内容,具有较强的综合性,贯穿整个高中数学的始终。
在高考试卷中的形式千变万化,但万变不离其宗,真正实现了常考常新的考试要求,考生在复习过程中首先要掌握一些简单函数的值域求解的基本方法,其次要多看多练在其他板块中涉及值域类型的内容。
满分技巧一、求函数值域的常见方法1.直接法:对于简单函数的值域问题,可通过基本初等函数的图象、性质直接求解;2.逐层法:求f 1(f 2⋯f n (x ))型复合函数的值域,利用一些基本初等函数的值域,从内向外逐层求函数的值域;3.配方法:配方法是二次型函数值域的基本方法,即形如“y =ax x +bx +c (a ≠0)”或“y =a [f (x )]2+bf (x )+c (a ≠0)”的函数均可用配方法求值域;4.换元法:利用换元法将函数转化为易求值域的函数,常用的换元有(1)y =ax +b cx +d或y =cx +dax +b 的结构,可用“cx +d =t ”换元;(2)y =ax +b ±cx +d (a ,b ,c ,d 均为常数,a ≠0,c ≠0),可用“cx +d =t ”换元;(3)y =bx ±a 2-x 2型的函数,可用“x =a cos θ(θ∈[0,π])”或“x =a sin θθ∈-π2,π2”换元;5.分离常数法:形如y =ax +b cx +d (ac ≠0)的函数,应用分离常数法求值域,即y =ax +b cx +d=ac +bc -adc 2x +d c ,然后求值域;6.基本不等式法:形如y =ax +bx(ab >0)的函数,可用基本不等式法求值域,利用基本不等式法求函数的值域时,要注意条件“一正、二定、三相等”,即利用a +b ≥2ab 求函数的值域(或最值)时,应满足三个条件:①a >0,b >0;②a +b (或ab )为定值;③取等号的条件为a =b ,三个条件缺一不可;7.函数单调性法:确定函数在定义域上的单调性,根据函数单调性求出函数值域(或最值)(1)形如y =ax +b -cx +d (ac <0)的函数可用函数单调性求值域;(2)形如y =ax +bx的函数,当ab >0时,若利用基本不等式等号不能成立时,可考虑利用对勾函数求解;公众号:高中数学最新试题当ab <0时,y =ax +bx在(-∞,0)和(0,+∞)上为单调函数,可直接利用单调性求解。
函数与导数压轴题题型与解题方法(高考必备)

函数与导数压轴题题型与解题方法(高考必备)题型与方法(选择、填空题)一、函数与导数1、抽象函数与性质主要知识点:定义域、值域(最值)、单调性、奇偶性、周期性、对称性、趋势线(渐近线)对策与方法:赋值法、特例法、数形结合例1:已知定义在$[0,+\infty)$上的函数$f(x)$,当$x\in[0,1]$时,$f(x)=\frac{2}{3}-4x$;当$x>1$时,$f(x)=af(x-1)$,$a\in R$,$a$为常数。
下列有关函数$f(x)$的描述:①当$a=2$时,$f(\frac{3}{2})=4$;②当$a<\frac{1}{2}$时,函数$f(x)$的值域为$[-2,2]$;③当$a>\frac{1}{2}$时,不等式$f(x)\leq 2a$恒成立;④当$-\frac{1}{2}<a<\frac{1}{2}$时,函数$f(x)$的图像与直线$y=2an-1$($n\in N^*$)在$[1,n]$内的交点个数为$n-\frac{1+(-1)^n}{2}$。
其中描述正确的个数有(。
)【答案】C分析:根据题意,当$x>1$时,$f(x)$的值由$f(x-1)$决定,因此可以考虑特例法。
当$a=2$时,$f(x)$的值域为$[0,4]$,因此①正确。
当$a\frac{1}{2}$时,$f(x)$在$[0,1]$上单调递减,在$[1,+\infty)$上单调递增,因此不等式$f(x)\leq 2a$恒成立,③正确。
当$-\frac{1}{2}<a<\frac{1}{2}$时,$f(x)$在$[0,1]$上单调递减,在$[1,+\infty)$上单调递增,因此$f(x)$与直线$y=2an-1$($n\in N^*$)在$[1,n]$内的交点个数为$n-\frac{1+(-1)^n}{2}$,④正确。
因此,答案为$\boxed{\textbf{(C) }2}$。
高一函数题型及解题技巧

高一函数题型及解题技巧高一函数是高中数学中的重要内容,包括函数的定义、性质、图像、变化规律等,在考试中也经常出现。
下面是一些高一函数题型及解题技巧的介绍。
1.函数的定义题型函数的定义题型考察的是对函数的基本概念和定义的理解。
通常会给出一个函数的表达式或定义,然后要求判断函数的性质或回答问题。
解题时要仔细分析函数的定义,注意函数值的范围、定义域和值域等因素。
2.函数的性质题型函数的性质题型考察的是对函数性质的理解和运用。
通常会给出一个函数的表达式或定义,并且要求判断函数的奇偶性、单调性、周期等性质。
解题时要根据函数的性质进行分析,可以使用导数、导数的符号变化、函数图像等方法。
3.函数的图像题型函数的图像题型考察的是对函数图像的理解和分析能力。
通常会给出一个函数的表达式或定义,然后要求画出函数的图像或分析图像的特点。
解题时可以先分析函数的性质,然后根据性质画图,注意函数的变化规律和特殊点的位置。
4.函数的变化规律题型函数的变化规律题型考察的是对函数变化规律的掌握和分析能力。
通常会给出一个函数的表达式或定义,然后要求分析函数的变化规律或进行函数的运算。
解题时要注意函数的变化趋势、特点和规律,可以使用导数、极值、最值等方法。
解题技巧:1.熟练掌握函数的基本概念和定义,理解函数的性质和特点。
2.注意观察题目中给出的已知条件和要求,对问题进行合理的分析和解答。
3.尽量画出函数的图像,根据图像进行分析和判断。
首先确定函数的性质和特点,然后根据特点进行计算或推导。
4.注意函数的定义域和值域,合理利用函数的性质进行推导和计算。
5.灵活运用导数和基本函数的性质,尤其是对于求导和导数的符号变化。
6.注意函数的极值和最值,找出极值点和最值点的位置和数值。
以上是一些高一函数题型及解题技巧的介绍,希望对你有帮助。
在学习函数的过程中,要多做练习题,熟练掌握函数的概念、性质和画图方法,提高解题能力。
求函数最值的题型和方法

求函数最值的题型和方法
求函数的最值是数学中的常见问题,下面列举了几种常见的求函数最值的题型和方法:
1. 单变量函数的最值:对于单变量函数,可以通过求导数的方法来求函数的最值。
首先求出函数的导数,然后将导数等于0的方程求解,得到驻点(即函数取得极值的点)。
接着,通过将
驻点和函数的端点(如果有的话)进行比较,确定函数的最值。
2. 多变量函数的最值:对于多变量函数,求解最值的方法更加复杂。
可以通过求偏导数和二阶导数的方法来求解。
首先求出函数的偏导数,然后将偏导数等于0的方程组求解,得到驻点。
接着,求解雅可比矩阵的特征值,根据特征值的正负来确定驻点的类型(最大值、最小值或鞍点)。
最后,对比驻点和函数的端点(如果有的话),确定函数的最值。
3. 约束条件下的最值:在某些情况下,函数的变量受到一定的约束条件限制。
求解这种情况下函数的最值,可以通过拉格朗日乘数法来实现。
首先,将约束条件转化为方程组,然后定义拉格朗日函数。
接着,求解拉格朗日函数的导数等于0的方程组,得到驻点。
最后,通过对比驻
点和边界点,确定函数的最值。
4. 条件最值:在某些情况下,函数的取值受到一定的条件限制。
求解这种情况下函数的最值,可以通过消元法来实现。
首先,将条件限制转化为方程组,然后将其中的一个方程代入到函数中,得到一个只包含一个变量的函数。
接着,通过求解这个函数的最值,得到函数在满足条件限制下的最值。
需要注意的是,对于非线性函数或复杂函数,求解最值可能涉及到数值计算或近似计算的方法。
在实际应用中,通常会使用数值计算软件来求解函数的最值。
高考函数题型及解题方法总结

高考函数题型及解题方法总结
高考函数题型及解题方法总结
1、一元二次函数的求根求最值
求根:要求一元二次函数的根,可使用中国剩余定理,从根式公式中
求出函数的两个相等根;也可采用“二分法”或“牛顿迭代法”,从试值中求出函数的两个相等根。
求最值:要求一元二次函数的最值,可通过求函数的判别式delta=b^2-
4ac,并分析delta>0、delta=0和delta <0时函数在原点周围的情况,分
类判断即可求出函数的最值;也可根据函数有理切线斜率的性质,及
函数的拐点的特性,求出函数的最值。
2、多项式的分析
多项式的分析:可使用“系数比例”、“极坐标曲线”、“相关数列”等方法,从多项式本身角度分析多项式性质及多项式各分段性质;也可使用“解
析法”,将一维函数转化为一等关系,从而分析多项式的性质。
3、参数方程的解法
使用“换元法”,将参数方程中的参数化为一个变量,并采用一元混合
方程的解法去求解;也可使用“牛顿迭代法”,通过试值法得到参数方
程的解;或使用“分步解法”,将参数方程转化为一组参量方程,一步
步地求解参数方程。
4、函数图象的绘制和分析
采用“图形分析法”,结合函数图象结构特点,分析函数图象性质;也
可根据函数定义域及值域以及函数特性,使用“穷举法”绘制函数图象。
5、函数及函数图象之间的关系
要求函数及函数图象之间的关系,可利用函数导数的性质,将函数求
导得到函数的导数,或考虑到函数的有理切线斜率的性质,从而把函
数的性质及函数图象的性质联系起来;又或者根据函数有理切线的特点,从函数图象中求出函数的特性。
初三函数题型及解题方法

初三函数题型及解题方法初三函数是一个重要的高中数学学科,学习这个学科的学生应该具备一定的函数基础知识,以及函数题型及解题方法。
函数题也是考察学生数学基础的核心考试内容之一,它的出题越多,越值得学生们重视。
因此,本文将要介绍如何正确解决初三函数题。
初三函数题一般分为三类:映射函数型、反函数型和综合函数型。
一、映射函数型映射函数型中,学生可能会遇到求函数值、求最值、求导数等问题。
解决方法是:1、求函数值:学生需要根据给定的函数公式,得出被测量点的函数值。
2、求最值:学生需要根据函数的特征,如单调性和平滑性,得出函数的最大值或最小值。
3、求导数:学生需要根据函数的定义,利用微分运算计算出函数的导数值。
二、反函数型反函数型中的题目是求函数的反函数,解决方法是:1、首先计算原函数的导数。
2、然后利用反函数的定义:若函数y=f(x)满足f(x)>0,则函数y=f^(-1)(x)满足f^(-1)(x)<0;若函数y=f(x)满足f(x)=0,则函数y=f^(-1)(x)满足f^(-1)(x)=0。
3、根据定义求出反函数的导数,即可得到反函数的表达式。
三、综合函数型综合函数型中的题目比较复杂,要求学生将映射函数与反函数结合起来,解答求反函数与求函数最值等问题。
解决方法是:1、根据所给函数公式计算出其原函数以及反函数的表达式。
2、根据定义求出原函数与反函数的导数表达式。
3、利用函数是单调函数或函数最值的定义,求出其最大值或最小值。
总之,解决初三函数题要根据题目的不同,掌握正确的解题方法,以便把握住函数的特点,有效解决函数题。
学生们在复习的过程中,要多练习,多加强初三函数的专项训练,以期达到高分的考试成绩。
本文就介绍了初三函数题的基本类型及解题方法,希望能为学生们提供一定的参考和帮助,从而能够在考试中取得理想的成绩。
八年级函数题型及解题方法

八年级函数题型及解题方法
八年级学习函数时,掌握函数题型及解题方法对于理解函数的性质和应用至关重要。
下面将介绍常见的八年级函数题型及解题方法。
1. 判断奇偶性
对于函数$f(x)$,若$f(-x)=f(x)$,则它是偶函数;若$f(-x)=-f(x)$,则它是奇函数。
解题时可将对称轴设为$y$轴或原点,以判断函数的奇偶性。
2. 求定义域和值域
定义域是函数可以取值的集合,常见的限制有根号内不能为负数、分母不能为零等。
值域是函数所有可能取到的值的集合。
求定义域和值域可以通过对函数进行分析和计算得出。
3. 求解方程
求解函数方程即求函数的解析式,常见的方法有代数法、函数性质法、复合函数法等。
其中代数法是最常用的方法,通过代入变量求解方程,然后化简得出函数的解析式。
4. 求极值
对于函数$f(x)$,若存在$x_0$,使得在$x_0$的某个邻域内,
$f(x)leqslant f(x_0)$,则称$f(x_0)$为函数$f(x)$的最大值;若
存在$x_0$,使得在$x_0$的某个邻域内,$f(x)geqslant f(x_0)$,
则称$f(x_0)$为函数$f(x)$的最小值。
求函数的极值可以通过求导数、利用函数图像等方法。
5. 绘制函数图像
绘制函数图像是理解函数性质及应用的重要手段。
可通过手绘或利用计算机工具进行绘制,先求出函数的零点、导数、极值等特征,再根据特征绘制出函数的图像。
总之,八年级学习函数时,需要掌握常见的函数题型及解题方法,通过不断练习和思考,提高解题能力和理解函数的水平。
高中函数题型及解题方法

高中函数题型及解题方法1. 分析函数的解析式:给定一个函数,要求分析该函数的解析式,即找出函数的表达式形式。
解题方法:通过对函数给定的条件进行分析,利用对应的函数性质和已知信息,推导出函数的解析式。
2. 求函数的定义域:给定一个函数,要求确定该函数的定义域,即使该函数在哪个区间或值集上有意义。
解题方法:根据函数的定义,找出对函数的约束条件,推导出函数的定义域。
3. 求函数的值域:给定一个函数,要求确定该函数的值域,即使该函数在实数范围内能够取到的所有值。
解题方法:通过对函数的性质进行分析,找到函数的最大值和最小值,推导出函数的值域范围。
4. 求函数的导数:给定一个函数,要求求出该函数的导数,即该函数的变化率。
解题方法:使用导数的定义或导数的性质进行求解,并化简表达式。
5. 求函数的极值点:给定一个函数,要求确定该函数的极值点,即函数在哪些点上达到最大值或最小值。
解题方法:求出函数的导数,令导数为0,解方程得到函数的极值点。
6. 求函数的最值:给定一个函数,要求确定该函数的最大值或最小值。
解题方法:找到函数的极值点,并比较极值点和区间端点的函数值,确定函数的最值。
7. 求函数的反函数:给定一个函数,要求确定该函数的反函数,即使得该函数复合反函数为恒等函数的逆运算。
解题方法:通过函数的定义和性质,进行变量的代换和方程的转换,求解反函数。
8. 求函数的零点:给定一个函数,要求确定该函数的零点,即函数取到0的点。
解题方法:将函数的表达式设置为0,解方程得到函数的零点。
9. 求函数的不等式解集:给定一个函数,要求确定该函数的不等式解集,即满足给定不等式的函数取值范围。
解题方法:对不等式进行转化和化简,然后根据函数和不等式的性质,确定函数的解集。
10. 求函数的复合函数:给定两个函数,要求确定它们的复合函数,即通过一个函数对另一个函数进行运算。
解题方法:将一个函数的表达式代入另一个函数的表达式中,得到复合函数的表达式。
函数问题的题型与解题方法

函数问题的题型与解题方法一、函数的概念函数有二种定义,一是变量观点下的定义,一是映射观点下的定义.复习中不能仅满足对这两种定义的背诵,而应在判断是否构成函数关系,两个函数关系是否相同等问题中得到深化,更应在有关反函数问题中正确运用.具体要求是:1.深化对函数概念的理解,明确函数三要素的作用,并能以此为指导正确理解函数与其反函数的关系.2.系统归纳求函数定义域、值域、解析式、反函数的基本方法.在熟练有关技能的同时,注意对换元、待定系数法等数学思想方法的运用.3.通过对分段定义函数,复合函数,抽象函数等的认识,进一步体会函数关系的本质,进一步树立运动变化,相互联系、制约的函数思想,为函数思想的广泛运用打好基础.本部分的难点首先在于克服“函数就是解析式”的片面认识,真正明确不仅函数的对应法则,而且其定义域都包含着对函数关系的制约作用,并真正以此作为处理问题的指导.其次在于确定函数三要素、求反函数等课题的综合性,不仅要用到解方程,解不等式等知识,还要用到换元思想、方程思想等与函数有关概念的结合.Ⅰ深化对函数概念的认识例1.下列函数中,不存在反函数的是()分析:处理本题有多种思路.分别求所给各函数的反函数,看是否存在是不好的,因为过程太繁琐.从概念看,这里应判断对于给出函数值域内的任意值,依据相应的对应法则,是否在其定义域内都只有惟一确定的值与之对应,因此可作出给定函数的图象,用数形结合法作判断,这是常用方法。
此题作为选择题还可采用估算的方法.对于D,y=3是其值域内一个值,但若y=3,则可能x=2(2>1),也可能x=-1(-1≤-1).依据概念,则易得出D中函数不存在反函数.于是决定本题选D.说明:不论采取什么思路,理解和运用函数与其反函数的关系是这里解决问题的关键.由于函数三要素在函数概念中的重要地位,那么掌握确定函数三要素的基本方法当然成了函数概念复习中的重要课题.例1.函数)23(log21-=xy的定义域是(D)A、[1,)+∞B、23(,)+∞C、23[,1]D、23(,1]例2.函数123-=xy(01<≤-x)的反函数是(D)A、)31(log13≥+=xxy B、)31(log13≥+-=xxyC 、)131(log 13≤<+=x x yD 、)131(log 13≤<+-=x x y 也有个别小题的难度较大,如 例3.函数,,(),,x x P f x x x M ∈⎧=⎨-∈⎩其中P 、M 为实数集R 的两个非空子集,又规定f P y y f x x P (){|(),}==∈,f M y y f x x M (){|(),}==∈,给出下列四个判断: ①若P M ⋂=∅,则f P f M ()()⋂=∅ ②若P M ⋂≠∅,则f P f M ()()⋂≠∅ ③若P M ⋃=R ,则()()f P f M ⋃=R ④若P M R ⋃≠,则()()f P f M ⋃≠R 其中正确判断有( B )A 、 1个B 、 2个C 、 3个D 、 4个分析:若P M ⋂≠∅,则只有}0{=⋂M P 这一种可能.②和④是正确的.Ⅱ 系统小结确定函数三要素的基本类型与常用方法1.求函数定义域的基本类型和常用方法由给定函数解析式求其定义域这类问题的代表,实际上是求使给定式有意义的x 的取值范围.它依赖于对各种式的认识与解不等式技能的熟练.这里的最高层次要求是给出的解析式还含有其他字例2.已知函数()f x 定义域为(0,2),求下列函数的定义域:分析:x 的函数f(x 2)是由u=x 2与f(u)这两个函数复合而成的复合函数,其中x 是自变量,u 是中间变量.由于f(x),f(u)是同一个函数,故(1)为已知0<u <2,即0<x 2<2.求x 的取值范围.解:(1)由0<x 2<2, 得说明:本例(1)是求函数定义域的第二种类型,即不给出f(x)的解析式,由f(x)的定义域求函数f[g(x)]的定义域.关键在于理解复合函数的意义,用好换元法.(2)是二种类型的综合.求函数定义域的第三种类型是一些数学问题或实际问题中产生的函数关系,求其定义域。
函数基本性质题型及解题技巧

函数基本性质题型及解题技巧函数基本性质题型及解题技巧一、函数解析式的求法:1.配凑法:将关系式配凑成括号内的形式。
例如,已知$f(x+)=\frac{x^2}{2}$,求解析式$f(x)$。
解:因为$f(x+)=\frac{x^2}{2}=(x+)^2-2$,所以$f(x)=x^2-2$,$x\in(-\infty,-2]\cup[2,\infty)$。
2.换元法:令括号内的部分等于$t$,然后解出$x$,带入得到关于$t$的解析式,最后再换回$x$。
例如,已知$f(x+1)=x+2x$,求$f(x)$的解析式。
解:令$t=x+1$,则$x=(t-1)^2$,$(t\geq1)$,因此$f(t)=(t-1)^2+2(t-1)=t^2-1$。
所以$f(x)=x^2-1$,$(x\geq1)$。
3.待定系数法:根据已知函数类型,设相应的函数解析式,然后根据已知条件算出相应系数。
例如,已知$f(x)$是二次函数,且$f(0)=2$,$f(x+1)-f(x)=x-1$,求$f(x)$。
解:设$f(x)=ax^2+bx+c$,由$f(0)=2$得$c=2$,由$f(x+1)-f(x)=x-1$,得恒等式$2ax+a+b=x-1$,解得$a=\frac{1}{2}$,$b=-\frac{1}{2}$。
因此,所求函数的解析式为$f(x)=\frac{1}{2}x^2-\frac{1}{2}x+2$。
4.消元法(方程组法):若函数方程中同时出现$f(x)$与$f(-x)$,则一般用$x$代之或用$-x$代之,构造另一个方程,然后联立解方程组得到$f(x)$。
例如,已知$3f(x)+2f(-x)=x+3$,求$f(x)$。
解:因为$3f(x)+2f(-x)=x+3$,令$x=-x$得$3f(-x)+2f(x)=-x+3$,消去$f(-x)$得$f(x)=\frac{x}{5}+\frac{3}{5}$。
二、绝对值图像的画法:5.对于函数$y=ax^2+b|x|+c$,找出$x=0$的点和两个对称轴上的点,然后将它们连起来。
高中函数值域的7类题型和16种方法

高中函数值域的7类题型和16种方法函数值域是指函数输出值的集合。
在高中数学中,我们常常遇到一些关于函数值域的问题。
下面将介绍高中函数值域的7类题型以及解决这些问题的16种方法。
1. 函数值域的确定式题:给出一个函数的解析式,要求确定函数的值域。
解决方法:- 通过分析函数的定义域和性质推导函数的值域。
- 使用函数的图像来确定函数的值域。
- 借助导数和极值的概念来确定函数的值域。
2. 函数值域的确定性问题:给出一个函数的图像,要求确定函数的值域。
解决方法:- 通过观察图像的特点,确定函数的最大值和最小值。
- 借助极值和区间的概念,确定函数的值域。
3. 函数值域的不等式问题:给出一个函数的不等式解析式,要求确定函数的值域。
解决方法:- 分析给定不等式的解集,确定函数的值域。
- 将不等式转化为等式,解出方程,确定函数的值域。
4. 函数值域的集合表示问题:给出一个函数的值域,要求将其表示为集合。
解决方法:- 分析函数的定义域和性质,将函数的值域表示为集合。
- 借助函数的图像来表示函数的值域。
5. 函数值域的推导题:给出一个函数的值域,要求推导出函数的解析式。
解决方法:- 分析给定的值域,推导出函数的定义域和性质,再根据推导出的定义域和性质写出函数的解析式。
6. 函数值域的综合题:综合运用多种方法,确定函数的值域。
解决方法:- 根据题目要求,运用不同的方法来确定函数的值域。
- 分析题目中给出的条件,结合函数的性质来确定函数的值域。
7. 函数值域的实际问题:将函数值域与实际问题联系起来,解决实际问题。
解决方法:- 将实际问题转化为函数模型,通过确定函数的值域来解决实际问题。
- 根据实际问题给出的条件和约束,运用适当的方法来确定函数的值域,作为问题的解答。
以上是高中函数值域的7类题型和16种方法。
对于不同类型的问题,我们可以根据题目要求和给定条件,选择合适的方法来求解函数的值域。
通过练习这些题型,我们可以提高对函数值域的理解和分析能力。
函数专题:利用函数单调性与奇偶性解不等式的6种常见考法-【题型分类归纳】

函数专题:利用函数单调性与奇偶性解不等式的6种常见考法一、单调性定义的等价形式(1)函数()x f 在区间[]b a ,上是增函数:⇔任取[]b a x x ,,21∈,且21x x <,都有()()021<-x f x f ; ⇔任取[]b a x x ,,21∈,且21x x ≠,()()02121>--x x x f x f ;⇔任取[]b a x x ,,21∈,且21x x ≠,()()()[]02121>--x f x f x x ; ⇔任取[]b a x x ,,21∈,且21x x ≠,()()02121>--x f x f x x .(2)函数()x f 在区间[]b a ,上是减函数:⇔任取[]b a x x ,,21∈,且21x x <,都有()()021>-x f x f ; ⇔任取[]b a x x ,,21∈,且21x x ≠,()()02121<--x x x f x f ;⇔任取[]b a x x ,,21∈,且21x x ≠,()()()[]02121<--x f x f x x ; ⇔任取[]b a x x ,,21∈,且21x x ≠,()()02121<--x f x f x x .二、定义法判断函数奇偶性判断()f x -与()f x 的关系时,也可以使用如下结论:如果()0()f x f x --=或()1(()0)()f x f x f x -=≠,则函数()f x 为偶函数; 如果()0()f x f x -+=或()1(()0)()f x f x f x -=-≠,则函数()f x 为奇函数. 三、利用单调性、奇偶性解不等式原理 1、解()()<f m f n 型不等式(1)利用函数的单调性,去掉函数符号“f ”,将“抽象”的不等式问题转化为“具体”的不等式问题求解;(2)若不等式一边没有函数符号“f ”,而是常数(如()<f m a ),那么我们应该将常数转化带有函数符号“f ”的函数值再解。
初二函数题型及解题方法

初二函数题型及解题方法初二数学中,函数是一个重要的概念,掌握函数的概念以及解决函数题是必不可少的。
本文将介绍初二函数题型及解题方法。
1. 函数定义题型函数定义题是最基本的函数题型,要求学生根据给定的函数定义,求出函数在某一点的函数值。
例如,已知函数f(x) = 2x + 1,求f(3)的值。
解题方法:将x=3代入函数f(x)中,即f(3) = 2 × 3 + 1 = 7,所以f(3) = 7。
2. 函数图象题型函数图象题是常见的函数题型,要求学生根据函数图象求出函数在某一点的函数值,或者根据函数的某些特点画出函数的图象。
例如,已知函数f(x)的图象如下,求f(2)的值。
解题方法:从图中可以看出,当x=2时,f(x)的函数值为4,所以f(2) = 4。
3. 函数性质题型函数性质题是要求学生根据函数的定义和性质解决问题,例如,已知函数g(x) = |x + 2|,求g(x)的单调性。
解题方法:当x1 < x2时,有g(x1) < g(x2)或者g(x1) >g(x2),需要分析|x + 2|的取值情况。
当x < -2时,有g(x) = -(x + 2),当-2 ≤ x时,有g(x) = x + 2。
所以,当x1 < x2且x1, x2 < -2时,有g(x1) < g(x2),当-2 ≤ x1 < x2时,有g(x1) < g(x2),当x1 < x2且x1, x2 ≥ -2时,有g(x1) >g(x2)。
因此,g(x)在区间(-∞, -2)上单调递减,在区间[-2, +∞)上单调递增。
4. 复合函数题型复合函数题要求学生构造复合函数,也就是将一个函数的输出作为另一个函数的输入,例如,已知f(x) = 2x,g(x) = x + 1,求f(g(2))的值。
解题方法:首先,g(2) = 2 + 1 = 3,然后将3代入f(x)中,即f(g(2)) = f(3) = 2 × 3 = 6。
高中数学函数题的解题技巧

高中数学函数题的解题技能高中数学中的函数是非常难的,很多同学在函数部分都会丢分,那么高中数学函数题型及解题技能是什么?下面是作者为大家整理的关于高中数学函数题的解题技能,期望对您有所帮助!高中数学函数解题思路方法一视察法1.视察函数中的特别函数;2.利用这些特别函数的有界性,结合不等式推导出函数的值域方法二分离常数法1.视察函数类型,型如;2.对函数变形成情势;3.求出函数在定义域范畴内的值域,进而求函数的值域方法三配方法1.将二次函数配方成;2.根据二次函数的图像和性质即可求出函数的值域方法四反函数法1.求已知函数的反函数;2.求反函数的定义域;3.利用反函数的定义域是原函数的值域的关系即可求出原函数的值域方法五换元法1.第一步视察函数解析式的情势,函数变量较多且相互关联;2.另新元代换整体,得一新函数,求出新函数的值域即为原函数的值域数学函数题解题技能1.函数值域常见求法和解题技能函数的值域与最值是两个不同的概念,一样说来,求出了一个函数的最值,未必能肯定该函数的值域,反之,一个函数的值域被肯定,这个函数也未必有最大值或最小值.但是,在许多常见的函数中,函数的值域与最值的求法是相通的、类似的.关于求函数值域与最值的方法也是多种多样的,但是有许多方法是类似的,归纳起来常用的方法有:视察法、配方法、换元法、反函数法、判别式法、不等式法、利用函数的单调性、利用三角函数的有界性、数形结合法等,在挑选方法时,要注意所给函数表达式的结构,不同的结构挑选不同的解法。
2.函数奇偶性的判定方法及解题策略肯定函数的奇偶性,一样先考核函数的定义域是否关于原点对称,然后判定与的关系,常用方法有:①利用奇偶性定义判定;②利用图象进行判定,若函数的图象关于原点对称则函数为奇函数,若函数的图象关于轴对称则函数为偶函数;③利用奇偶性的一些常见结论:奇奇奇,偶偶偶,奇奇偶,偶偶偶,偶奇奇,奇奇偶,偶偶偶,奇偶奇,偶奇奇;④对于偶函数可利用,这样可以免对自变量的繁琐的分类讨论。
函数基本性质题型及解题技巧

函数基本性质题型及解题技巧一、函数解析式的求法:1. 配凑法:把关系式配凑成含有括号里的形式; 例:已知221)1(xx x x f +=+,求解析式; 解:因为221)1(x x x x f +=+=2)1(2-+xx ,所以2)(2-=x x f , ),2[]2,(+∞⋃--∞∈x 。
2. 换元法:令括号里的部分等于t ,然后解出x 在带进去,得出关于t 的解析式,最后在换成x ; 例:已知x x x f 2)1(+=+,求)(x f 解析式; 解:令,1+=x t 则)1(,)1(2≥-=t t x ,所以1)1(2)1()(22-=-+-=t t t t f所以)1(,1)(2≥-=x x x f3. 待定系数法:(已知函数类型)告诉你什么函数,就设什么函数解析式,然后根据已知条件算出相应系数, 例:已知()f x 是二次函数,且(0)2,(1)()1f f x f x x =+-=-,求()f x解:设2()(0)f x ax bx c a =++≠,由(0)2,f =得2c =由(1)()1f x f x x +-=-,得恒等式2ax+a+b=x-1,得13,22a b ==-,故所求函数的解析式为213()222f x x x =-+.4. 消元法(方程组法):若函数方程中同时出现()f x 与1()f x 或者()f x 与)(x f -,则一般x 用1x 代之或x 用-x 代之,构造另一个方程.然后联立解方程组得到()f x例:已知3()2()3f x f x x +-=+,求()f x解:因为3()2()3f x f x x +-=+,① x 用x -代替得3()2()3f x f x x -+=-+,② 由①②消去()f x -,得3()5f x x =+.二、绝对值图像画法:5. c x b ax y ++=||2的图像画法:找三个点,x=0的点和两个对称轴的点;然后把三个点连起来,a >0,开口向上;a<0,开口向下,形状如“屁股”;6. ||2c bx ax y ++=的图像画法:先画出二次函数的图像,然后把x 轴下方的函数图像对折上去;三、对勾函数性质 7. 对勾函数)0(>+=k xk x y 的性质: 1).单调增区间),(),,(+∞--∞k k ,单调减区间),0(),0,(k k -2).x>0时,有最小值,最小值为k 2,当x<0时,有最大值,最大值为k 2-;四、单调性8.分段函数的单调性问题:首先保证每一段是增(减)函数,得到两个不等式,然后左边的最大值(左边的最小值)小于(大于)右边的最小值(右边的最大值)得到另一个不等式,然后解不等式组;例: 已知1,2)24(1,{)(≤+->=x x a x a x f x ,是R 上的单调递增函数,则实数a 的取值范围为_________;解:因为f (x )是R 上的单调递增函数,所以可得⎩⎪⎨⎪⎧ a >1,4-a 2>0,a ≥4-a 2+2.解得4≤a <8,9. 抽象函数的单调性证明:在高中数学中,主要有两种类型的抽象函数,一是“()f x y +=)()(y f x f +”型二是“()f xy =)()(y f x f +”型.对于()f x y +型的函数,只需构造2121()[()]f x f x x x =+-,再利用题设条件将它用1()f x 与21()f x x -表示出来,然后利用题设条件确定21()f x x -的范围,从而确定2()f x 与1()f x 的大小关系;对()f xy 型的函数,则只需构造2211()()x f x f x x =⋅即可. 例:已知()f x 的定义域为(0,)+∞,且当1x >时()0f x >.若对于任意两个正数x 和y 都有()()()f xy f x f y =+,试判断()f x 的单调性.解:设120x x >>则,112>x x .又因为当1x >时()0f x >, 0)()()()()()()()(121121112112>=-+=-•=-∴x x f x f x x f x f x f x x x f x f x f ∴()f x 在()0,+∞上单调递增.10. 单调性性质:增+增=增;减+减=减;增-减=增;减-增=减;增=增;减=减;增1=减;减1=增-增=减;-减=增11. 复合函数单调性:同增异减:先列出函数由哪两个函数复合而成,然后求出每一区间两个函数对应的单调性,然后同增异减写出对应区间例:求函数y =x 2+x -6的单调区间解 令u =x 2+x -6,y =x 2+x -6可以看作有y =u 与u =x 2+x -6的复合函数.由u =x 2+x -6≥0,得x ≤-3或x ≥2.∵u =x 2+x -6在(-∞,-3]上是减函数,在[2,+∞)上是增函数,而y =u 在(0,+∞)上是增函数.∴y =x 2+x -6的单调减区间为(-∞,-3],单调增区间为[2,+∞).13. 作差法证明单调性步骤:1).取值,在定义域内取21x x <;2)最差;3)变形:变形到()()()()••形式,每一个括号能判断出正负,变形方法有提公因式、通风、合并同类项;4)得出结论,方向一致为增函数,方向相反为减函数;五、奇偶性:14. 判断奇偶性之前得保证定义域关于原点对称;反之,一个函数只要告诉你奇偶性,定义域一定关于原点对称,对应区间两个端点值相加为零15. 对于奇函数,只要在0=x 处有意义,也就是定义域里包含0,则0)0(=f (做题易忽略点)16. 对于d cx bx ax x f +++=23)(这种类型的函数,如果)(x f 是偶函数,则奇次项系数为零,如果)(x f 是奇函数,则偶次项系数为零;例:已知函数)127()2()1()(22+-+-+-=m m x m x m x f 为偶函数,则m 的值是( B )A. 1B. 2C. 3D. 417.奇 + 奇 = 奇; 偶 + 偶 = 偶;奇⨯偶 = 奇; 奇⨯奇 = 偶;偶⨯偶 = 偶;(乘和除一致)|奇|=偶,复合函数奇偶性,一偶则偶:复合函数的两个分函数,只要一个为偶,整体就是偶函数;例:若函数2()1x a f x x bx +=++在[]1,1-上是奇函数,则()f x 的解析式为 .解:首先由结论15得,0)0(=f ,然后得到0=a ,然后因为分子是奇函数,整体也是奇函数,所以由结论17得分母是偶函数,然后再由结论16得0=b ,然后得到2()1x f x x =+ 18. 告诉你分段函数)(x f 的奇偶性,给出一半的解析式,让你求另一半或整体的解析式的题型做法:给出大于0的解析式,就设0<x ,给出小于0的解析式,就设0>x ,然后把x -带到给出的解析式里求出)(x f -,然后通过奇偶性得到)(x f ,然后写出解析式,记住不要漏掉0=x 的时候;例: 已知()f x 是定义在R 上的奇函数,当0x >时,2()31f x x x =+-,求()f x 的解析式.【解析】()f x 是定义在R 上的奇函数,()()f x f x ∴-=-,当0x <时,0x ->,2()()()3()1f x f x x x ⎡⎤∴=--=--+--⎣⎦=231x x -++又奇函数()f x 在原点有定义,(0)0f ∴=.2231,0,()0,0,31,0.x x x f x x x x x ⎧+->⎪∴==⎨⎪-++<⎩19. 遇到c x bg x af x H ++=)()((),其中)x f (、)(x g 为奇函数这种题型,构造奇函数解决问题,令c x H x F -=)((),则)(x F 为奇函数; 例:已知f(x)=x 5+ax 3-bx-8,且f(-2)=10,求f(2).解:令g(x)=f(x)+8易证g(x)为奇函数∴g(-2)=-g(2) ∴f(-2)+8=-f(2)-8∴f(2)=-f(-2)-16=-10-16=-26.六、周期性:20.若)(x f T x f =+)(,周期为T ;周期为2T 的有)()(T x f T x f -=+;)()(x f T x f -=+;)()(x f T x f -=+,且)(x f 为奇函数;)(1)(x f T x f =+;)(1)(x f T x f -=+; 例: (1)已知定义在R 上的奇函数f (x )满足f (x -4)=-f (x ),且在区间[0,2]上是增函数,则 ( )A .f (-25)<f (11)<f (80)B .f (80)<f (11)<f (-25)C .f (11)<f (80)<f (-25)D .f (-25)<f (80)<f (11)【答案】D七、对称性:21.若)()(xafxaf+=-,则)(xf关于ax=对称;22.若)()(xbfxaf-=+,则)(xf关于2ba x +=对称;23.若)(axf+是偶函数,则)(xf关于ax=对称;24.若)(axf+是奇函数,则)(xf关于)(0,a中心对称;。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
函数问题的题型与方法一.复习目标:1.了解映射的概念,理解函数的概念。
2.了解函数的单调性和奇偶性的概念,掌握判断一些简单函数的单调性和奇偶性的方法,并能利用函数的性质简化函数图象的绘制过程。
3.了解反函数的概念及互为反函数的函数图象间的关系,会求一些简单函数的反函数。
4.理解分数指数的概念,掌握有理指数幂的运算性质,掌握指数函数的概念、图象和性质。
5.理解对数的概念,掌握对数的运算性质,掌握对数函数的概念、图象和性质。
6.能够运用函数的性质、指数函数和对数函数的性质解决某些简单的实际问题。
二.考试要求:1.灵活运用函数概念、性质和不等式等知识以及分类讨论等方法,解函数综合题。
2.应用函数知识及思想方法,解决函数的最值问题、探索性问题与应用性问题,提高分析问题和解决问题的能力。
三.教学过程:(Ⅰ)函数的概念型问题函数概念的复习当然应该从函数的定义开始.函数有二种定义,一是变量观点下的定义,一是映射观点下的定义.复习中不能仅满足对这两种定义的背诵,而应在判断是否构成函数关系,两个函数关系是否相同等问题中得到深化,更应在有关反函数问题中正确运用.具体要求是:1.深化对函数概念的理解,明确函数三要素的作用,并能以此为指导正确理解函数与其反函数的关系.2.系统归纳求函数定义域、值域、解析式、反函数的基本方法.在熟练有关技能的同时,注意对换元、待定系数法等数学思想方法的运用.3.通过对分段定义函数,复合函数,抽象函数等的认识,进一步体会函数关系的本质,进一步树立运动变化,相互联系、制约的函数思想,为函数思想的广泛运用打好基础.本部分内容的重点是不仅从认识上,而且从处理函数问题的指导上达到从三要素总体上把握函数概念的要求,对确定函数三要素的常用方法有个系统的认识,对于给出解析式的函数,会求其反函数.本部分的难点首先在于克服“函数就是解析式”的片面认识,真正明确不仅函数的对应法则,而且其定义域都包含着对函数关系的制约作用,并真正以此作为处理问题的指导.其次在于确定函数三要素、求反函数等课题的综合性,不仅要用到解方程,解不等式等知识,还要用到换元思想、方程思想等与函数有关概念的结合.函数的概念是复习函数全部内容和建立函数思想的基础,不能仅满足会背诵定义,会做一些有关题目,要从联系、应用的角度求得理解上的深度,还要对确定函数三要素的类型、方法作好系统梳理,这样才能进一步为综合运用打好基础.复习的重点是求得对这些问题的系统认识,而不是急于做过难的综合题.㈠深化对函数概念的认识例1.下列函数中,不存在反函数的是()分析:处理本题有多种思路.分别求所给各函数的反函数,看是否存在是不好的,因为过程太繁琐.从概念看,这里应判断对于给出函数值域内的任意值,依据相应的对应法则,是否在其定义域内都只有惟一确定的值与之对应,因此可作出给定函数的图象,用数形结合法作判断,这是常用方法,请读者自己一试.此题作为选择题还可采用估算的方法.对于D,y=3是其值域内一个值,但若y=3,则可能x=2(2>1),也可能x=-1(-1≤-1).依据概念,则易得出D中函数不存在反函数.于是决定本题选D.说明:不论采取什么思路,理解和运用函数与其反函数的关系是这里解决问题的关键.由于函数三要素在函数概念中的重要地位,那么掌握确定函数三要素的基本方法当然成了函数概念复习中的重要课题.㈡系统小结确定函数三要素的基本类型与常用方法1.求函数定义域的基本类型和常用方法由给定函数解析式求其定义域这类问题的代表,实际上是求使给定式有意义的x的取值范围.它依赖于对各种式的认识与解不等式技能的熟练.这里的最高层次要求是给出的解析式还含有其他字f x定义域为(0,2),求下列函数的定义域:例2.已知函数()分析:x的函数f(x2)是由u=x2与f(u)这两个函数复合而成的复合函数,其中x是自变量,u是中间变量.由于f(x),f(u)是同一个函数,故(1)为已知0<u<2,即0<x2<2.求x的取值范围.解:(1)由0<x2<2,得说明:本例(1)是求函数定义域的第二种类型,即不给出f(x)的解析式,由f(x)的定义域求函数f[g(x)]的定义域.关键在于理解复合函数的意义,用好换元法.(2)是二种类型的综合.求函数定义域的第三种类型是一些数学问题或实际问题中产生的函数关系,求其定义域,后面还会涉及到.2.求函数值域的基本类型和常用方法函数的值域是由其对应法则和定义域共同决定的.其类型依解析式的特点分可分三类:(1)求常见函数值域;(2)求由常见函数复合而成的函数的值域;(3)求由常见函数作某些“运算”而得函数的值域.3.求函数解析式举例例3.已知xy<0,并且4x2-9y2=36.由此能否确定一个函数关系y=f(x)?如果能,求出其解析式、定义域和值域;如果不能,请说明理由.分析:4x2-9y2=36在解析几何中表示双曲线的方程,仅此当然不能确定一个函数关系y=f(x),但加上条件xy<0呢?所以因此能确定一个函数关系y=f(x).其定义域为(-∞,-3)∪(3,+∞).且不难得到其值域为(-∞,0)∪(0,+∞).说明:本例从某种程度上揭示了函数与解析几何中方程的内在联系.任何一个函数的解析式都可看作一个方程,在一定条件下,方程也可转化为表示函数的解析式.求函数解析式还有两类问题:(1)求常见函数的解析式.由于常见函数(一次函数,二次函数,幂函数,指数函数,对数函数,三角函数及反三角函数)的解析式的结构形式是确定的,故可用待定系数法确定其解析式.这里不再举例.(2)从生产、生活中产生的函数关系的确定.这要把有关学科知识,生活经验与函数概念结合起来,举例也宜放在函数复习的以后部分.(Ⅱ)函数与方程的思想方法函数思想,是指用函数的概念和性质去分析问题、转化问题和解决问题。
方程思想,是从问题的数量关系入手,运用数学语言将问题中的条件转化为数学模型(方程、不等式、或方程与不等式的混合组),然后通过解方程(组)或不等式(组)来使问题获解。
有时,还实现函数与方程的互相转化、接轨,达到解决问题的目的。
方程思想是:实际问题→数学问题→代数问题→方程问题。
函数和多元方程没有什么本质的区别,如函数y=f(x),就可以看作关于x、y的二元方程f(x)-y=0。
可以说,函数的研究离不开方程。
列方程、解方程和研究方程的特性,都是应用方程思想时需要重点考虑的。
函数描述了自然界中数量之间的关系,函数思想通过提出问题的数学特征,建立函数关系型的数学模型,从而进行研究。
一般地,函数思想是构造函数从而利用函数的性质解题,经常利用的性质是:f(x)、f 1(x)的单调性、奇偶性、周期性、最大值和最小值、图像变换等,要求我们熟练掌握的是一次函数、二次函数、指数函数、对数函数、三角函数的具体特性。
在解题中,善于挖掘题目中的隐含条件,构造出函数解析式和妙用函数的性质,是应用函数思想的关键。
对所给的问题观察、分析、判断比较深入、充分、全面时,才能产生由此及彼的联系,构造出函数原型。
另外,方程问题、不等式问题和某些代数问题也可以转化为与其相关的函数问题,即用函数思想解答非函数问题。
(一)函数的性质函数的性质是研究初等函数的基石,也是高考考查的重点内容.在复习中要肯于在对定义的深入理解上下功夫.复习函数的性质,可以从“数”和“形”两个方面,从理解函数的单调性和奇偶性的定义入手,在判断和证明函数的性质的问题中得以巩固,在求复合函数的单调区间、函数的最值及应用问题的过程中得以深化.具体要求是:1.正确理解函数单调性和奇偶性的定义,能准确判断函数的奇偶性,以及函数在某一区间的单调性,能熟练运用定义证明函数的单调性和奇偶性.2.从数形结合的角度认识函数的单调性和奇偶性,深化对函数性质几何特征的理解和运用,归纳总结求函数最大值和最小值的常用方法.3.培养学生用运动变化的观点分析问题,提高学生用换元、转化、数形结合等数学思想方法解决问题的能力.这部分内容的重点是对函数单调性和奇偶性定义的深入理解.函数的单调性只能在函数的定义域内来讨论.函数y=f(x)在给定区间上的单调性,反映了函数在区间上函数值的变化趋势,是函数在区间上的整体性质,但不一定是函数在定义域上的整体性质.函数的单调性是对某个区间而言的,所以要受到区间的限制.对函数奇偶性定义的理解,不能只停留在f(-x)=f(x)和f(-x)=-f(x)这两个等式上,要明确对定义域内任意一个x,都有f(-x)=f(x),f(-x)=-f(x)的实质是:函数的定义域关于原点对称.这是函数具备奇偶性的必要条件.稍加推广,可得函数f(x)的图象关于直线x=a对称的充要条件是对定义域内的任意x,都有f(x+a)=f(a-x)成立.函数的奇偶性是其相应图象的特殊的对称性的反映.这部分的难点是函数的单调性和奇偶性的综合运用.根据已知条件,调动相关知识,选择恰当的方法解决问题,是对学生能力的较高要求.1.对函数单调性和奇偶性定义的理解例4.下面四个结论:①偶函数的图象一定与y轴相交;②奇函数的图象一定通过原点;③偶函数的图象关于y轴对称;④既是奇函数又是偶函数的函数一定是f(x)=0(x∈R),其中正确命题的个数是()A.1B.2 C.3D.4分析:偶函数的图象关于y轴对称,但不一定相交,因此③正确,①错误.奇函数的图象关于原点对称,但不一定经过原点,因此②不正确.若y=f(x)既是奇函数,又是偶函数,由定义可得f(x)=0,但不一定x∈R,如例1中的(3),故④错误,选A.说明:既奇又偶函数的充要条件是定义域关于原点对称且函数值恒为零.2.复合函数的性质复合函数y=f[g(x)]是由函数u=g(x)和y=f(u)构成的,因变量y通过中间变量u与自变量x建立起函数关系,函数u=g(x)的值域是y=f(u)定义域的子集.复合函数的性质由构成它的函数性质所决定,具备如下规律:(1)单调性规律如果函数u=g(x)在区间[m,n]上是单调函数,且函数y=f(u)在区间[g(m),g(n)] (或[g(n),g(m)])上也是单调函数,那么若u=g(x),y=f(u)增减性相同,则复合函数y=f[g(x)]为增函数;若u=g(x),y= f(u)增减性不同,则y=f[g(x)]为减函数.(2)奇偶性规律若函数g(x),f(x),f[g(x)]的定义域都是关于原点对称的,则u=g(x),y=f(u)都是奇函数时,y=f[g(x)]是奇函数;u=g(x),y=f(u)都是偶函数,或者一奇一偶时,y= f[g(x)]是偶函数.例5.若y=loga(2-ax)在[0,1]上是x的减函数,则a的取值范围是()A.(0,1) B.(1,2) C.(0,2) D.[2,+∞)分析:本题存在多种解法,但不管哪种方法,都必须保证:①使loga(2-ax)有意义,即a>0且a≠1,2-ax>0.②使loga(2-ax)在[0,1]上是x的减函数.由于所给函数可分解为y=loga u,u=2-ax,其中u=2-ax在a>0时为减函数,所以必须a>1;③[0,1]必须是y=loga(2-ax)定义域的子集.解法一:因为f(x)在[0,1]上是x的减函数,所以f(0)>f(1),即loga 2>loga(2-a).解法二:由对数概念显然有a>0且a≠1,因此u=2-ax在[0,1]上是减函数,y= logau 应为增函数,得a>1,排除A,C,再令故排除D,选B.说明:本题综合了多个知识点,无论是用直接法,还是用排除法都需要概念清楚,推理正确.3.函数单调性与奇偶性的综合运用例6.甲、乙两地相距Skm,汽车从甲地匀速行驶到乙地,速度不得超过c km/h,已知汽车每小时的运输成本(以元为单位)由可变部分和固定部分组成:可变部分与速度v(km /h)的平方成正比,比例系数为b;固定部分为a元.(1)把全程运输成本y(元)表示为速度v(km/h)的函数,并指出这个函数的定义域;(2)为了使全程运输成本最小,汽车应以多大速度行驶.分析:(1)难度不大,抓住关系式:全程运输成本=单位时间运输成本×全程运输时间,而全程运输时间=(全程距离)÷(平均速度)就可以解决.故所求函数及其定义域为但由于题设条件限制汽车行驶速度不超过ckm/h,所以(2)的解决需要论函数的增减性来解决.由于v1v2>0,v2-v1>0,并且又S>0,所以即则当v=c时,y取最小值.说明:由于限制汽车行驶速度不得超过c,因而求最值的方法也就不完全是常用的方法,再加上字母的抽象性,使难度有所增大.(二)函数的图象1.掌握描绘函数图象的两种基本方法——描点法和图象变换法.2.会利用函数图象,进一步研究函数的性质,解决方程、不等式中的问题.3.用数形结合的思想、分类讨论的思想和转化变换的思想分析解决数学问题.4.掌握知识之间的联系,进一步培养观察、分析、归纳、概括和综合分析能力.以解析式表示的函数作图象的方法有两种,即列表描点法和图象变换法,掌握这两种方法是本节的重点.运用描点法作图象应避免描点前的盲目性,也应避免盲目地连点成线.要把表列在关键处,要把线连在恰当处.这就要求对所要画图象的存在范围、大致特征、变化趋势等作一个大概的研究.而这个研究要借助于函数性质、方程、不等式等理论和手段,是一个难点.用图象变换法作函数图象要确定以哪一种函数的图象为基础进行变换,以及确定怎样的变换.这也是个难点.1.作函数图象的一个基本方法例7.作出下列函数的图象(1)y=|x-2|(x+1);(2)y=10|lgx|.分析:显然直接用已知函数的解析式列表描点有些困难,除去对其函数性质分析外,我们还应想到对已知解析式进行等价变形.解:(1)当x≥2时,即x-2≥0时,当x<2时,即x-2<0时,这是分段函数,每段函数图象可根据二次函数图象作出(见图6)(2)当x≥1时,lgx≥0,y=10|lgx|=10lgx=x;当0<x<1时,lgx<0,所以这是分段函数,每段函数可根据正比例函数或反比例函数作出.(见图7)说明:作不熟悉的函数图象,可以变形成基本函数再作图,但要注意变形过程是否等价,要特别注意x,y的变化范围.因此必须熟记基本函数的图象.例如:一次函数、反比例函数、二次函数、指数函数、对数函数,及三角函数、反三角函数的图象.在变换函数解析式中运用了转化变换和分类讨论的思想.2.作函数图象的另一个基本方法——图象变换法.一个函数图象经过适当的变换(如平移、伸缩、对称、旋转等),得到另一个与之相关的图象,这就是函数的图象变换.在高中,主要学习了三种图象变换:平移变换、伸缩变换、对称变换.(1)平移变换函数y=f(x+a)(a≠0)的图象可以通过把函数y=f(x)的图象向左(a>0)或向右(a<0)平移|a|个单位而得到;函数y=f(x)+b(b≠0)的图象可以通过把函数y=f(x)的图象向上(b>0)或向下(b<0)平移|b|个单位而得到.(2)伸缩变换函数y=Af(x)(A>0,A≠1)的图象可以通过把函数y=f(x)的图象上各点的纵坐标伸长(A >1)或缩短(0<A<1)成原来的A倍,横坐标不变而得到.函数y=f(ωx)(ω>0,ω≠1)的图象可以通过把函数y=f(x)的图象上而得到.(3)对称变换函数y=-f(x)的图象可以通过作函数y=f(x)的图象关于x轴对称的图形而得到.函数y=f(-x)的图象可以通过作函数y=f(x)的图象关于y轴对称的图形而得到.函数y=-f(-x)的图象可以通过作函数y=f(x)的图象关于原点对称的图形而得到.函数y=f-1(x)的图象可以通过作函数y=f(x)的图象关于直线y=x对称的图形而得到。