多元函数的Taylor公式与极值问题

合集下载

n元泰勒公式

n元泰勒公式

n元泰勒公式摘要:一、引言二、泰勒公式的定义与性质三、n 元泰勒公式的推导四、n 元泰勒公式的应用领域五、总结与展望正文:一、引言元泰勒公式,作为多元函数微积分中的重要理论,广泛应用于数学、物理、工程等多个领域。

本文将重点介绍n 元泰勒公式的相关知识。

二、泰勒公式的定义与性质泰勒公式(Taylor formula)是一种用多项式逼近函数的方法。

给定一个函数f(x),如果存在一个正数r 和多项式P_n(x),使得在区间[a, a+r] 上,有|f(x) - P_n(x)| < ε(ε为任意小的正数),那么我们可以用泰勒公式表示该函数在这个区间内的近似值,即f(x) ≈ P_n(x)。

泰勒公式具有如下性质:多项式系数与函数的各阶导数有关,系数具有递推关系。

三、n 元泰勒公式的推导元泰勒公式是泰勒公式的推广。

设f(x) = (f_1(x_1), f_2(x_2), ...,f_n(x_n)),对于任意一点(a_1, a_2, ..., a_n) 在定义域内,我们可以得到n 元泰勒公式:f(x) ≈ (f_1(a_1), f_2(a_2), ..., f_n(a_n)) + ∑[(x_1 - a_1)^k *(f_1^{(k)}(a_1), f_2^{(k)}(a_2), ..., f_n^{(k)}(a_n))]其中,k 从0 到∞,f_i^{(k)}(a_i) 表示f_i(x_i) 关于x_i 的k 阶导数。

四、n 元泰勒公式的应用领域元泰勒公式在多元函数微积分中具有广泛的应用,例如求解多元函数的极值、证明多元函数的性质、建立多元函数的近似模型等。

此外,在实际问题中,如机器学习、数据挖掘、图像处理等领域,n 元泰勒公式也发挥着重要作用。

五、总结与展望元泰勒公式作为多元函数微积分中的重要理论,对于理解和分析多元函数具有重要的意义。

多元泰勒公式

多元泰勒公式

多元泰勒公式
多元泰勒公式是数学中的一个重要概念,它用于描述一个函数在某一点附近的近似值。

通过多元泰勒公式,我们可以将一个函数在某一点处的导数、二阶导数、三阶导数等信息整合在一起,从而得到一个更加准确的函数近似值。

在实际应用中,多元泰勒公式常常被用来进行函数的近似计算,尤其是在数值分析和优化问题中起到至关重要的作用。

多元泰勒公式的推导过程并不复杂,但是其应用却是非常广泛的。

在实际问题中,我们常常会遇到需要对某个函数在某一点进行近似计算的情况。

这时,多元泰勒公式就可以派上用场了。

通过多元泰勒公式,我们可以将一个函数在某一点处的值用该点处的导数、二阶导数、三阶导数等信息来近似表示,从而得到一个更加精确的近似值。

多元泰勒公式的应用范围非常广泛,几乎涉及到了所有需要进行函数近似计算的领域。

比如,在数值分析中,我们常常需要对某个函数进行数值逼近,以便进行数值计算。

而多元泰勒公式恰好可以提供这样的近似计算方法。

此外,在优化问题中,我们也经常会遇到需要对某个目标函数进行近似求解的情况。

而多元泰勒公式可以帮助我们更好地理解目标函数在某一点处的性质,从而为优化算法的设计提供更加准确的参考。

总的来说,多元泰勒公式是数学中一个非常有用的工具,它可以帮
助我们更好地理解函数的性质,并且为实际问题的近似计算提供了便利。

通过多元泰勒公式,我们可以将一个函数在某一点的值用该点处的导数、二阶导数、三阶导数等信息来近似表示,从而得到一个更加准确的近似值。

在数值分析、优化问题等领域,多元泰勒公式的应用将极大地方便了我们的工作,为数学建模和计算科学的发展提供了重要的支持。

多元函数的Taylor公式与极值

多元函数的Taylor公式与极值

.
2
2
注 由以上结果还可以得到一个不等式 ( 这是获得
不等式的一种好方法 ). 那就是具体算出目标函数
17
(表面积) 的最小值:
Smin
3
2
2V 2
(3
2V
3
2V
)(
3
2V
)2 3 3
4V 2 ,
于是有 2z( x y) xy 3 3 4V 2 , 其中 V x yz. 消
去 V 后便得不等式
28
把x y z a3看成z z( x, y),
则目标函数 f ( x, y, z) 1 1 1 F ( x, y).
满足隐函数定理的条件, 则在n个变量 x1, x2 ,, xn中唯一确定了其中 m个变量为其余n m个变量的一组隐函数. 将这m个函数代入目标函数 f , 得到一个有 n m个独立变量函数. 应用隐函数求导法则, 算出此函数的黑赛矩阵, 由此判断极值点的 类型.
12
2.

(
x(0) 1
,,
xn(0
Lx f x ( x, y) x ( x, y) 0,
Ly
f y ( x, y) y ( x, y) 0,
(2)
L
(x, y) 0.
也就是说, (2) 式是函数 L( x, y, ) 在其极值点处所
满足的必要条件. 由此产生了一个重要思想:
通过引入辅助函数 L( x, y, ), 把条件极值问题 (1)
u0
)
0Fu
(
u0
,
v0
)
0,
2(
y0
v0
)
0
Fv
(
u0
,
v0

泰勒公式-文献综述

泰勒公式-文献综述

泰勒公式及其应用前言:泰勒公式是数学分析中的重要组成部分,它的理论方法已成为研究函数极限和估计误差等方面的不可或缺的工具,它集中体现了微积分“逼近法”的精髓,在近似计算方面有着得天独厚的优势,利用它可以将复杂问题简单化,可以将非线性问题化为线性问题,并且能满足相当高的精确度要求。

它是微积分中值定理的推广,亦是应用高阶导数研究函数性态的重要工具。

正文:18世纪早期英国牛顿学派最优秀代表人物之一的英国数学家泰勒(Brook Taylor),于1685 年8月18日在米德尔塞克斯的埃德蒙顿出生。

1709年后移居伦敦,获法学硕士学位。

他在1712年当选为英国皇家学会会员,并于两年后获法学博士学位。

同年(即1714年)出任英国皇家学会秘书,四年后因健康理由辞退职务。

1717年,他以泰勒定理求解了数值方程。

最后在1731年1 2月29日于伦敦逝世。

泰勒的主要着作是1715年出版的《正的和反的增量方法》,书内以下列形式陈述出他已于1712年7月给其老师梅钦(数学家、天文学家)信中首先提出的着名定理——泰勒定理:式内v为独立变量的增量,及为流数。

他假定z随时间均匀变化,则为常数。

上述公式以现代形式表示则为:这公式是从格雷戈里-牛顿插值公式发展而成的,当x=0时便称作马克劳林定理。

1772年,拉格朗日强调了此公式之重要性,而且称之为微分学基本定理,但泰勒于证明当中并没有考虑级数的收敛性,因而使证明不严谨,这工作直至十九世纪二十年代才由柯西完成。

十七世纪中叶,随着近代微积分的蓬勃发展,极限作为数学中的一个概念也就被明确地提了出来。

但是最初提出的极限概念是含糊不清的,相关的许多理论常常难以自圆其说,甚至自相矛盾。

极限理论的确立使得数学中出现了暂时混乱的局面,直到十九世纪才有了改善,首次给出极限严格定义的是捷克斯洛伐克的数学家贝尔纳·波尔查诺,但对他来说有点遗憾的是,他的数学著作多半没有受到他同时代的人的重视,他的许多成果等到后来才被人们重新发现,但是此时功劳已经被别人抢占。

多元函数的Taylor公式与极值问题课件

多元函数的Taylor公式与极值问题课件

推导基于一元函数的Taylor公式
01
首先回顾一元函数在某点的Taylor公式,然后将其推
广到多元函数。
展开多元函数
02 将多元函数在某点进行泰勒展开,利用偏导数和函数
值计算出各项系数。
确定余项形式
03
根据泰勒展开的余项形式,确定多元函数泰勒公式的
余项。
证明方法
利用多元函数的偏导数
通过利用多元函数的偏导数,推导出 泰勒公式的各项系数。
求解技巧
01
利用Taylor公式展开
在极值点附近,可以利用Taylor公式 将函数展开,从而更精确地确定极值 点。
02
结合几何意义
函数的极值点往往对应着函数图像的 拐点或凹凸性改变的点,结合几何意 义有助于直观地理解极值点的性质。
03
转化为一元函数
在多元函数中,有时可以将问题转化 为求解一元函数的极值问题,从而简 化计算。
具体步骤
1. 确定点
选择一个合适的点(通常是函数内部的点),作为Taylor公式的中心 点。
2. 计算导数
计算函数在中心点处的所有导数值。
3. 应用Taylor公式
将中心点和待求的x值代入Taylor公式,得到近似的函数表达式。
4. 寻找极值
通过观察近似的函数表达式,确定极值点。
实例解析
例题:求函数f(x, y) = x^2 + y^2在点(0, 0) 处的极值。
实际应用中的考虑因素
实际问题的背景
在应用极值理论时,需要考虑实际问题的背景和限制条件,如物 理定律、约束条件等。
数据的不确定性
在实际问题中,数据往往存在不确定性,需要考虑这些不确定性 对极值分析的影响。
模型的适用性

环境工程高等数学教材目录

环境工程高等数学教材目录

环境工程高等数学教材目录【环境工程高等数学教材目录】前言1. 数学在环境工程中的作用2. 本教材的编写目的和特点第一章:函数与极限1. 函数的概念和性质2. 初等函数与复合函数3. 无穷小与无穷大4. 极限的定义与性质5. 极限的运算法则6. 一些重要的极限公式第二章:导数与微分1. 导数的定义与几何意义2. 导数的基本运算法则3. 高阶导数与Leibniz公式4. 隐函数与参数方程的导数5. 微分的概念和应用第三章:一元函数的微分学1. 函数的单调性与极值2. 函数的凹凸性与拐点3. 函数的曲线及其切线方程4. 微分中值定理与Taylor公式5. 常用的近似计算方法第四章:多元函数的微分学1. 多元函数的概念与性质2. 多元函数的偏导数与全微分3. 多元函数的极值与条件极值4. 多元函数的隐函数和参数方程的导数5. 多元函数的最值问题第五章:重积分与曲线积分1. 重积分的概念与性质2. 二重积分的计算方法3. 三重积分的计算方法4. 曲线积分的概念与性质5. 线积分的计算方法第六章:级数与无穷级数1. 级数的概念与性质2. 常见级数的求和方法3. 收敛级数的性质4. 收敛级数的运算5. 正项级数的收敛判别附录1. 常用数学函数表2. 常用数学公式表3. 习题答案与解析结语1. 环境工程高等数学教材的学习建议2. 数学在环境工程中的应用案例3. 推荐相关参考书目注意:以上仅为一个示例目录,实际教材目录可能根据具体内容和编写要求略有差异。

编写教材目录时,需要根据实际情况进行相应调整和完善。

同时,在文章中不提供具体章节内容,目录仅展示了教材的整体结构和章节安排。

多元函数Taylor公式及其应用

多元函数Taylor公式及其应用

2021年第08期256高教论坛多元函数Taylor公式及其应用刘心蕾西南石油大学,四川资阳000000一、课题背景:于一七一二年,泰勒公式由布瑞科泰勒所提出,他是英国的一位伟大的数学家.泰勒公式后来经过了拉格朗日以及柯西等数学家的进一步补充后,为数学理论未来的发展提供了非常有效的工具.近几年来关于公式的研究非常繁多,对泰勒公式在一些近似计算、向量值函数、等式与不等式、判断函数的敛散性和极限中都有特别深刻的研究.下面就我对其在几篇文章中的应用的理解为,在其中有一篇名为泰勒公式及其余项的证明中,主要研究的内容是先理解泰勒公式的一般型,在理解泰勒公式基本概念后,对泰勒公式的一般型进行一些推导,就可以分别得到佩诺型、拉格朗日型以及积分型三种不同形式的余项。

其次也研究了泰勒公式“中点函数”的可微性以及其余项“中间点”的渐进性.在高阶方向导数与多元泰勒定理的简单基本形式的文章中,泰勒公式对方向导数进行了推广.并且在对多元函数的研究中得到了高阶方向导数的概念及其相关方面的计算.最后,利用高阶方向导数从而推导出了多元函数泰勒公式的简单形式.泰勒是英国的一位伟大的数学家,他在函数值逼近上面做出了伟大的成就,而且他在函数值逼近上的研究结果显示:若这个函数具有一直到n + 1阶的导数,并且在某一个点的邻域中取得的值能用此函数在这一点的函数值和这个函数的各阶导数值所组成的n次多项式来近似表达出来,则由此产生的就称为泰勒公式.二、多元函数泰勒公式及其应用的发展状况:对于研究者来说,泰勒公式的证明与应用方面的研究一直都具有非常强大的吸引力.很多研究者在此领域中获得的成就很高,并且在一些优秀的文献中,有的作者在不等式和等式的证明和计算中都最大限度地利用了泰勒公式及其性质,而且使用的研究方法新颖又简便易懂,非常值得我们引以为我们学习的风向标.在泰勒提出公式后,一九九九年六月,就关于多元函数的高阶微分和泰勒共识这一篇文章的探讨中,它主要是研究了把一阶微分的微分定义为二阶微分的明确性,并且对多元函数泰勒公式也进行了一些推导,但在此文中仅仅是以二元函数来进行的展开。

§7多元函数Taylor公式和极值问题练习参考解答

§7多元函数Taylor公式和极值问题练习参考解答

887§7 多元函数Taylor 公式和极值问题练习参考解答1. 下列函数极值(1) )2(),(22y y x e y x f x ++=; (2) )4)(6(),(22y y x x y x f −−=; (3) )0(333>−−=a y x axy z ; (4)2. 都很小时,将超越函数当z y x , ,z y x z y x z y x f cos cos cos )cos(,,(−++=).,y x,的多项式近似表示z解 二阶偏导数),有展成马克劳林公式(到将函数),,(z y x f)),,(0,0,0()0,0,0()0,0,0(000),,('z y x f z f y f x f z y x f ′+′+′+= []0,0,0( )0,0,0(2)0,0,0(2)0,0,0(20,0,0()0,0,0(0,0,0(''21222=′′+′′+′′+′′+′′++)))!f f zx f yz f xy f z f y f x zx yz xy zz yy xx []()[]()0cos cos cos )cos()0,0,0( 0)0,0,0( 00,0,0( 0cos cos sin )sin()0,0,0( 0,0,00,0,0=+++−=′=′=′=+++−=′z y x z y x f f f z y x z y x f xxz y x )同样[]())(),,( 10,0,0( 1)0,0,0( 1cos sin sin )cos()0,0,0( 0)0,0,0( 00,0,0( 0,0,0zx yz xy z y x f f f z y x z y x f f f zx yz xyzz yy ++−=−=′′−=′′−=−++−=′′=′′=′′于是,)同样,)同样,即 )(cos cos cos cos(zx yz xy z y x z y x ++−=−++) 3. 求函数x y x y x y x f 933),(2233−++−=的极值。

多元函数极值的判定

多元函数极值的判定

目录摘要 (1)关键词 (1)Abstract (1)Keywords (1)引言 (1)1定理中用到的定义 (2)2函数极值的判定定理.............................................................. .. (5)3多元函数极值判定定理的应用 (7)参考文献 (8)多元函数极值的判定摘要:通过引入多元函数的导数,给出了多种方法来判定多元函数的极值.关键词:极值;条件极值;偏导数;判定The judgement of the extremum of the function of manyvariablesAbstract :This paper passes to lead into the derivative of the function of many variables, and give several methods to judge the extremum of the function of many variables and the conditional extremum of the function of many variables .Keywords : extremum; conditional ;partial derivative引言在现行的数学分析教材中,关于多元函数的极值判定,一般只讲到二元函数的极值判定,在参考文献[1]和[3]中有关多元函数极值的判定是都是在实际情况中一定有极值的问题,本文将引入多元函数的偏导数把二元函数的极值判定推广到多元函数极值问题中去.1 定理中用到的定义定义 1.1[]1 函数f 在点000(,)P x y 的某领域0()U P 有定义.若对于任何点0(,)()P x y U P ∈,成立不等式0()()f P f P ≤(或0()()f P f P ≥),则称函数f 在点0P 取得极大值(或极小值),点0P 称为f 的极大值(或极小值)点.定义1.2[]1设函数(,)z f x y =, (,)x y D ∈.若00(,)x y D ∈,且0(,)f x y 在0x 的某一领域有定义,则当极限0000000(,)(,)(,)limx xf x y f x x y f x y x x→+-=V V V V V 存在时,称这个极限为函数f 在点00(,)x y 关于x 的偏导数,记作00(,)x y fx∂∂.定义1.3[]3 设n D R ⊂为开集,12(,,,)n P x x x D ∈L ,0000122(,,,)P x x x D ∈L :f D R →,若在某个矩阵A ,使当0()P U P ∈时,有000()()()limP P f P f P A P P P P →----,则称n 元函数12(,,,)n f x x x L 在点0P 可导.称A 为在点0P 处的导数,记为0()f P '.注1:01122(,,,)T n n P P x x x x x x '''-=---L 为n 维列向量. 注2:0P P -=注3:在导数存在的条件下,可求得:012()(,,,)nf f f f P A x x x ∂∂∂'==∂∂∂L ,它是一个n 维向量函数.定义 1.4[]3(二阶导数)若n 元函数f 的一阶导数f '在D (或D 某一点)上可微,则称f 在D (或D 某一点)上二阶可微,并定义n 维向量函数()T f '的导数为f 的二阶导数,记作()f P '',并可求得2222121122222122222212()n n nnn ff f x x x x x f f f f P x x x x x f f f x x x x x ⎛⎫∂∂∂ ⎪∂∂∂∂∂ ⎪ ⎪∂∂∂⎪''=∂∂∂∂∂ ⎪ ⎪⎪ ⎪∂∂∂⎪∂∂∂∂∂⎝⎭L L L L L L L此矩阵为f 在P 点的Hesse 矩阵.在二阶混合偏导数连续的条件下,它是一个对称矩阵. n 元函数f 在点0P 的二阶Taylor 公式可简单地写成:00000001()()()()()()()()2T n f P f P f P P P P P f P P P O P P '=+-+--+-.2 函数极值的判定定理对于二元函数的无条件极值的判定,先给出数学分析教材中有的相应的判定定理.定理2.1[]1 (必要条件)若函数(,)z f x y =在点00(,)x y 的某领域偏导数存在,切点00(,)x y 是是其极值点,则0000(,)(,)0f x y f x y x y∂∂==∂∂. 定理2.2[]1 (充分条件)设点00(,)x y 是函数(,)z f x y =的驻点,且在点00(,)x y 的某领域有二阶连续偏导数存在.记222200000022(,)(,)(,),,,,f x y f x y f x y A B C AC B x x y y∂∂∂====-∂∂∂∂V 则1)当0<V 时,点00(,)x y 不是函数的极值点;2)当0>V 是,若0A >,则点00(,)x y 是函数的极小值点,若0A <,则点00(,)x y 是函数的极大指点;3)当0=V 时,该方法不能判断其是不是极值点.注3:对于二阶导数存在的二元函数的极值,这两个定理能解决绝大多数的我们碰到的问题(除了0=V 的情形).利用定义1.3和定义1.4,我们可以将这定理2.1和定理2.2推广到二元以上的函数中去.定理2.3 (必要条件)设n D R ⊂为开集,n 元实值函数12(,,,)n y f x x x =L 在点0P D ⊂可微,且在该点取得极值,则0()0f P '=(此0表示n 维向量(0,0,,0)L ).证明 由费马定理知当f 在0P 点取得极值时,012()(,,,)0nf f ff P x x x ∂∂∂'==∂∂∂L . 定理2.4(充分条件)设n D R ⊂为开集,n 元实函数12(,,,)n y f x x x =L 在0()U P D ⊂上存在二阶连续偏导数,且0()0f P '=,则当0()n f P 为正定或半正定时,f 在0P 点取得极小值,当0()n f P 为负定或半负定时,f 在0P 点取得极大值.证明 0P ,P 点坐标分别满足00012(,,,)n x x x L 与12(,,,)n x x x L ,且0()P U P ⊂,0i i i x x x =-V ,当0()0f P '=时,由Taylor 公式,有000000212012121211()()()()()()21(,,,)()(,,,)(())2(,,,)()T n nT nn n i i i nn i i f f P f P P P f P P P O P P x x x f P x x x o x x g x x x o x ===-=--+-=+-=+∑∑V V V L V V V L V V V L V V 当0()U P 充分小时,只要0()P U P ⊂,则该式子的符号由12(,,,)n g x x x V V L V 确定.当0()n f P 为正定时,二次型12(,,,)0n g x x x >V V L V ,当0()n f P 为半正定时,二次型12(,,,)0n g x x x ≥V V L V .故当0()n f P 为正定或半正定时,0()()0f f P f P =-≥V ,所以0()()f P f P ≥,故0P 点是f 的极小值点.同理可证,当0()n f P 为负定或半负定时,0P 点是f 的极大值点.定理 2.5[]1 设在条件12(,,,)0,1,2,,()k n x x x k m m n ϕ==<L L 的限制下,求函数12(,,,)n y f x x x =L 的极值问题,其中f 与(1,2,,)k k m ϕ=L 在区域D 有连续的一阶偏导数.若D 的点000012(,,,)n P x x x L 是上述问题的极值点,且雅可比矩阵01111n m m n P x x x x ϕϕϕϕ∂∂⎛⎫ ⎪∂∂ ⎪⎪ ⎪∂∂ ⎪ ⎪∂∂⎝⎭K M O M L的秩为m ,则存在m 个常数(0)(0)(0)12,,,mλλλL ,使得000(0)(0)(0)1212(,,,,,,,)n m x x x λλλL L 为拉格朗日函数121212121(,,,,,,)(,,,)(,,,)mn m n k k n k L x x x f x x x x x x λλλλϕ==+∑L L L L的稳定点,即000(0)(0)(0)1212(,,,,,,,)n m x x x λλλL L 为下述n m +个方程: 111111112120(,,,)0(,,,)0n mmx k k mx k k n nn m n f L x x f L x xL x x x L x x x λλϕλϕλϕϕ==∂∂⎧=+=⎪∂∂⎪⎪⎪∂∂⎪=+=⎨∂∂⎪⎪==⎪⎪⎪==⎩∑∑L L L L L L L L L L L L L L L L L L L L 的解.此定理的证明可参阅文献[1]第二十三章的定理23.19的证明. 由定理5可见条件极值的问题都可以通过拉格朗日数乘法转化为无条件极值的形式来求解,即上述判定无条件极值的定理都可以用来判定条件极值.除此之外,我们用二阶全微分的符号来判定其是极大值还是极小值.定理 2.6[]2 设n D R ⊂为开集,n 元实值函数12(,,,)n y L x x x =L 在0()U P D ⊂存在二阶连续偏导数,且0()0L P '=,则当20()0d L P >时,12(,,,)n y L x x x =L 在0P 点取得极小值;20()0d L P <时,12(,,,)n y L x x x =L 在0P 点取得极大值.证明 11n nL LdL dx dx x x ∂∂=++∂∂L , 2121222212121211()()n nn n L L Ld L d dL ddx d dx d dx x x x L L Ldx dx dx dx x x x x x ∂∂∂==+++∂∂∂∂∂∂=+++∂∂∂∂∂L L22212221222222122212()()n n n n n nL L L dx dx dx dx x x x x x L L L dx dx dx dx x x x x x ∂∂∂++++++∂∂∂∂∂∂∂∂+++∂∂∂∂∂L L L22211112221(,,)n n n nn L L x x x dx dx dx dx L L x x x ⎛⎫∂∂ ⎪∂∂∂⎛⎫⎪ ⎪ ⎪= ⎪ ⎪ ⎪∂∂ ⎪⎝⎭ ⎪∂∂∂⎝⎭K L MO M L L11(,,)()n n dx dx dx f P dx ⎛⎫⎪''= ⎪ ⎪⎝⎭L L .又因为0()0L P '=,固由定理4知当0()f P ''正定,即20()0d L P >时,0P 为L 的极小值点,当0()f P ''负定,即20()0d L P <时,0P 为L 的极小值点 .3 多元函数极值判定定理的应用由于函数的条件极值都可以通过定理5转化成无条件极值,也就是说在条件极值的判定中能充分体现无条件极值的判定.例 3.1[]2 求三元函数(,,)22f x y z x y z =-+在受约束条件2221x y z ++=限制下的极值.解 设222(,,,)22(1)L x y z x y z x y z λλ=-++++-,由0L L L L x y z λ∂∂∂∂====∂∂∂∂有:当32λ=-时,122(,,)(,,)333x y z =-,当32λ=时,122(,,)(,,)333x y z =--,现判断是极大值还是极小值 .方法1:对函数(,,)22f x y z x y z =-+用定理2,其中z 视为,x y 的函数,即(,)z z x y =,它由2221x y z ++=决定。

多元函数的Taylor公式

多元函数的Taylor公式

多元函数的Taylor公式一、引言多元函数的Taylor公式是一种重要的多元函数在某一点附近进行近似展开的方法,在数学和物理领域具有广泛的应用。

本文将介绍多元函数的Taylor公式的推导过程以及其在实际问题中的应用。

二、一元函数的Taylor公式回顾在介绍多元函数的Taylor公式之前,我们先回顾一下一元函数的Taylor公式。

对于一元函数f(x)在x=a处的n次Taylor展开式为:$$ f(x) = f(a) + f'(a)(x-a) + \\frac{f''(a)}{2!}(x-a)^2 + \\cdots +\\frac{f^{(n)}(a)}{n!}(x-a)^n + R_n(x) $$其中R n(x)是余项。

三、多元函数的Taylor公式推导现在考虑多元函数$f(x_1, x_2, \\cdots, x_n)$在点$\\mathbf{a}=(a_1, a_2,\\cdots, a_n)$附近的Taylor展开式。

多元函数在点$\\mathbf{a}$处的Taylor公式可以表示为:$$ f(\\mathbf{x}) = f(\\mathbf{a}) + \ abla f(\\mathbf{a}) \\cdot(\\mathbf{x}-\\mathbf{a}) + \\frac{1}{2!}(\\mathbf{x}-\\mathbf{a})^THf(\\mathbf{a})(\\mathbf{x}-\\mathbf{a}) + \\cdots + R_n(\\mathbf{x}) $$其中$\ abla f(\\mathbf{a})$是$f(\\mathbf{x})$在$\\mathbf{a}$处的梯度,$Hf(\\mathbf{a})$是$f(\\mathbf{x})$在$\\mathbf{a}$处的Hessian矩阵。

四、多元函数的Taylor公式的应用多元函数的Taylor公式在数学、物理、工程等领域有着广泛的应用。

多元函数的Taylor公式与极值

多元函数的Taylor公式与极值

矩阵为: H f ( x0 )
f11 f21
f12
f
22
f1n
f
2n
设u f (P)在点
f
n1
f
n
2
f
nn
x0
P0 ( x01 , x02 , , x0n ) 的所有二阶偏导数
f11
f12
f1n
f 在点P0的 Hessian
H
f
(P0 )
f21
f
22
f
2n
矩阵为:
f
n1
f
x
, y)2
3 f
2! ,
x py3 p (1 x y)3
( p 0,1,2,3),
4 f 3! , ( p 0,1,2,3,4), x py4 p (1 x y)4
20
x x
y y
f
(0,0)
xfx (0,0)
yf y (0,0)
x
y,
x
y
2
f
(0,0)
x y
由假设, (t) 在 [0,1] 上满足一元函数泰勒公式的条件
于是有 (1) (0) (0) (0)
1!
2!
(n) (0) (n1) ( )
(0
1) .
n!
(n 1)!
(0) f ( x0 , y0 ) , (1) f ( x0 h , y0 k)
利用多元复合函数求导法则可得:
11
(4)在泰勒公式中,如果取 x0 0, y0 0,则 成为n阶麦克劳林(Maclaurin)公式.
f (x, y)
f
(0,0)
x
x
y

第十二章 多元函数的微分学

第十二章 多元函数的微分学
《数学分析》教案 ----多元函数的微分学
华中科技大学数学系汤燕斌
第十二章 多元函数的微分学
28
〖教学内容〗本章介绍偏导数和全微分的概念、运算、性质、求导方法和几何应用,二元函数的泰勒公式。 隐函数的概念,隐函数存在定理的各种表述,隐函数存在的判别法。多元函数极值和条件极值的概念;极值 必要条件、充分条件:求条件极值的拉格朗日乘法。 〖教学要求〗掌握多元函数的偏导数与微分的概念,区分它们与一元函数对应概念之间的区别,熟练掌握多 元函数与隐函数的求导方法,掌握偏导数在几何上的应用,掌握求多元函数无条件极值与条件极值的方法。 〖教学安排〗 §1 偏导数与全微分 §2 多元复合函数的求导法则 §3 Taylor 公式 §4 隐函数 §5 偏导数在几何中的应用 §6 无条件极值 §7 条件极值问题与 Lagrange 乘数法
定理 1 给出了计算可微函数全微分的方法. 但是两个偏导数存在只是可微的必要条件,而不是充分条件.


1
考查函数
f
(x,
y)
=
⎪ ⎨
xy ,
x2 + y2
⎪⎩0 ,
x2 + y2 ≠ 0,
在原点的可微性.
x2 + y2 = 0
2
《数学分析》教案 ----多元函数的微分学
华中科技大学数学系汤燕斌

f x (0,0)
=
∂f ∂y
| = ( x0 , y0 )
lim
∆x→0
f (x0 , y0
+ ∆y) − ∆y
f (x0 , y0 )
注: 1) 偏导数 f x (x0 , y0 ) 或 f y (x0 , y0 ) 存在,函数 z = f (x, y)

(完整word版)(整理)数学分析教案(华东师大版)第十七章多元函数微分学

(完整word版)(整理)数学分析教案(华东师大版)第十七章多元函数微分学

第十七章多元函数微分学教学目的:1.理解多元函数微分学的概念,特别应掌握偏导数、全微分、连续及偏导存在、偏导连续等之间的关系;2.掌握多元函数特别是二元函数可微性及其应用。

教学重点难点:本章的重点是全微分的概念、偏导数的计算以及应用;难点是复合函数偏导数的计算及二元函数的泰勒公式。

教学时数:18学时§1 可微性一.可微性与全微分:1.可微性:由一元函数引入. 亦可写为, 时.2.全微分:例1 考查函数在点处的可微性 . P107例1二.偏导数:1.偏导数的定义、记法:2.偏导数的几何意义: P109 图案17—1.3.求偏导数:例2 , 3 , 4 . P109—110例2 , 3 , 4 .例5. 求偏导数.例6. 求偏导数.例7. 求偏导数, 并求.例8. 求和.解=,=.例9证明函数在点连续, 并求和.证. 在点连续 .,不存在 .三.可微条件:1.必要条件:Th 1 设为函数定义域的内点.在点可微, 和存在, 且. ( 证) 由于, 微分记为.定理1给出了计算可微函数全微分的方法.两个偏导数存在是可微的必要条件, 但不充分.例10考查函数在原点的可微性 . [1]P110 例5 .2.充分条件:Th 2 若函数的偏导数在的某邻域内存在, 且和在点处连续 . 则函数在点可微 . ( 证) P111 Th 3 若在点处连续, 点存在,则函数在点可微 .证.即在点可微 .要求至少有一个偏导数连续并不是可微的必要条件 .例11验证函数在点可微, 但和在点处不连续 . (简证,留为作业)证因此, 即,在点可微, . 但时, 有,沿方向不存在, 沿方向极限不存在; 又时,,因此, 不存在, 在点处不连续. 由关于和对称,也在点处不连续 .四.中值定理:Th 4 设函数在点的某邻域内存在偏导数 . 若属于该邻域, 则存在和, , 使得. ( 证) 例12设在区域D内. 证明在D内.五.连续、偏导数存在及可微之间的关系:六.可微性的几何意义与应用:1.可微性的几何意义:切平面的定义. P113.Th 5 曲面在点存在不平行于轴的切平面的充要条件是函数在点可微 . ( 证略)2. 切平面的求法: 设函数在点可微,则曲面在点处的切平面方程为(其中),法线方向数为,法线方程为.例13试求抛物面在点处的切平面方程和法线方程 . P115例63. 作近似计算和误差估计: 与一元函数对照, 原理 .例14 求的近似值. P115例7例15 应用公式计算某三角形面积 . 现测得,. 若测量的误差为的误差为. 求用此公式计算该三角形面积时的绝对误差限与相对误差限. P116.§2 复合函数微分法简介二元复合函数: .以下列三种情况介绍复合线路图;, ;.一.链导法则: 以“外二内二”型复合函数为例.Th 设函数在点D可微, 函数在点可微, 则复合函数在点可微, 且,. ( 证) P118称这一公式为链导公式 . 该公式的形式可在复合线路图中用所谓“分线加,沿线乘”或“并联加,串联乘”)来概括 .对所谓“外三内二”、“外二内三”、“外一内二”等复合情况,用“并联加,串联乘”的原则可写出相应的链导公式.链导公式中内函数的可微性可减弱为存在偏导数 . 但对外函数的可微性假设不能减弱.对外元, 内元, 有,.外元内一元的复合函数为一元函数 . 特称该复合函数的导数为全导数.例1. 求和. P120例1例2, . 求和.例3, 求和.例4设函数可微 ..求、和.例5用链导公式计算下列一元函数的导数:ⅰ> ; ⅱ> . P121例4例6设函数可微. 在极坐标变换下, 证明. P120例2 例7设函数可微, . 求证.二.复合函数的全微分: 全微分和全微分形式不变性 .例8. 利用全微分形式不变性求, 并由此导出和.P122 例5§3 方向导数和梯度一.方向导数:1.方向导数的定义:定义设三元函数在点的某邻域内有定义 .为从点出发的射线 . 为上且含于内的任一点, 以表示与两点间的距离 . 若极限存在, 则称此极限为函数在点沿方向的方向导数, 记为或、.对二元函数在点, 可仿此定义方向导数 .易见, 、和是三元函数在点分别沿轴正向、轴正向和轴正向的方向导数 .例1=. 求在点处沿方向的方向导数,其中ⅰ>为方向; ⅱ>为从点到点的方向.解ⅰ>为方向的射线为. 即. ,.因此,ⅱ>从点到点的方向的方向数为方向的射线为., ;.因此,2. 方向导数的计算:Th 若函数在点可微, 则在点处沿任一方向的方向导数都存在, 且++,其中、和为的方向余弦. ( 证) P125 对二元函数, +, 其中和是的方向角.註由++==, , , , , 可见, 为向量, , 在方向上的投影.例2 ( 上述例1 )解ⅰ>的方向余弦为=, =, =.=1 , =, =.因此, =++=.ⅱ>的方向余弦为=, =, =. 因此, =.可微是方向导数存在的充分条件, 但不必要 .例3 P126 .二. 梯度( 陡度):1. 梯度的定义: , , .|= .易见, 对可微函数, 方向导数是梯度在该方向上的投影.2. 梯度的几何意义: 对可微函数, 梯度方向是函数变化最快的方向 . 这是因为|.其中是与夹角. 可见时取最大值, 在的反方向取最小值 .3. 梯度的运算:ⅰ> .ⅱ>(+) = +.ⅲ> () = +.ⅳ> .ⅴ> () = .证ⅳ> , ..§4 Taylor公式和极值问题一、高阶偏导数:1.高阶偏导数的定义、记法:例9 求二阶偏导数和. P128例1 例10 . 求二阶偏导数. P128例2 2.关于混合偏导数: P129—131.3.求含有抽象函数的二元函数的高阶偏导数: 公式, P131-132例11 . 求和. P132例34. 验证或化简偏微分方程:例12 . 证明+ . ( Laplace方程) 例13 将方程变为极坐标形式.解., , , ., ;因此, .方程化简为.例14试确定和, 利用线性变换将方程化为.解, .=+++==+2+.=+++==++.=++.因此,+ (+ . 令, 或或……, 此时方程化简为.二.中值定理和泰肋公式:凸区域 .Th 1 设二元函数在凸区域D 上连续, 在D的所有内点处可微 . 则对D内任意两点 D , 存在, 使.证令.系若函数在区域D上存在偏导数, 且, 则是D上的常值函数.二. Taylor公式:Th 2 (Taylor公式) 若函数在点的某邻域内有直到阶连续偏导数, 则对内任一点,存在相应的, 使证P134例1 求函数在点的Taylor公式( 到二阶为止) . 并用它计算P135—136例4 .三. 极值问题:1. 极值的定义: 注意只在内点定义极值.例2 P136例52.极值的必要条件:与一元函数比较 .Th 3 设为函数的极值点 . 则当和存在时, 有=. ( 证)函数的驻点、不可导点,函数的可疑点 .3. 极值的充分条件:代数准备: 给出二元( 实)二次型. 其矩阵为.ⅰ> 是正定的,顺序主子式全,是半正定的,顺序主子式全;ⅱ> 是负定的,, 其中为阶顺序主子式.是半负定的, .ⅲ> < 0时, 是不定的.充分条件的讨论: 设函数在点某邻域有二阶连续偏导数 . 由Taylor公式, 有++ .令, , , 则当为驻点时, 有.其中.可见式的符号由二次型完全决定.称该二次型的矩阵为函数的Hesse矩阵. 于是由上述代数准备, 有ⅰ> , 为( 严格) 极小值点;ⅱ> , 为( 严格) 极大值点;ⅲ> 时, 不是极值点;ⅳ> 时, 可能是极值点, 也可能不是极值点 .综上, 有以下定理 .Th 4 设函数在点的某邻域内有连续的二阶偏导数, 是驻点 . 则ⅰ> 时, 为极小值点;ⅱ> 时, 为极大值点;ⅲ> 时, 不是极值点;ⅳ> 时, 可能是极值点, 也可能不是极值点 .例3—7 P138—140 例6—10 .四.函数的最值:例8 求函数在域D = 上的最值 .解令解得驻点为. .在边界上, , 驻点为, ;在边界上, , 没有驻点;在边界上, , 驻点为, .又.于是,..[]。

清华大学微积分A习题课3_多元函数微分学及应用(泰勒公式、极值)

清华大学微积分A习题课3_多元函数微分学及应用(泰勒公式、极值)

AC −B
i i
2 i
16
−32
−32
−32
64
64
−32
由极值的充分条件可知,函数 f 在 ( x1 , y1 ) 点取局部极大值,
( x5 , y5),( x 6 , y 6 )( x8 , y8 )( x 9 , y 9 )
取局部极小值,其它点均为鞍点(非极值点). 例6 函数 z ( x, y ) 在有界闭区域 D 上连续,在 D 内部偏导数存在, z ( x, y ) 在 D 的边界上的值 为零,在 D 内部满足
dz = −
4 x + 8z 4y dx − dy 2 z + 8x − 1 2 z + 8x − 1 ∂z 4 x + 8z =− =0 ∂x 2 z + 8x − 1 ∂z 4y =− =0 ∂y 2 z + 8x − 1
2 x 2 + 2 y 2 + z 2 + 8 xz − z + 8 = 0

cosθx − 1 1 + θy 【答案】 f ( x, y ) = 1 − y + ( x, y ) sin θx 2 (1 + θy )2
sin θx x (1 + θy )2 , θ ∈ (0,1) 2 cosθx y (1 + θy )3
2 2
t
(
2
2
)
Hale Waihona Puke − x2 + y2
(
)在
曲线 x 2 + y 2 = 1 上取到极大值 e . 例8 (隐函数的极值)设 z = z ( x, y ) 由 2 x 2 + 2 y 2 + z 2 + 8 xz − z + 8 = 0 确定,求该函数 的极值. 解:

多元函数微分学中的有关问题

多元函数微分学中的有关问题

多元函数微分学中的有关问题·多元函数中一些概念的关系 ·复合函数的求导·与一元的对比与多元处理的思路 ·多元函数的极值问题 ·几何应用问题 求函数ln(1)z x y =--的定义域并作定义域的草图。

解:定义域 {(,)|1}D x y x y =+<为什么是直线1x y +=的左下方部分?即为何D 中任一点(,)x y 都满足1x y +<?反证法。

若∃一点000(,)p x y ,使001x y +>,则在包含点(0,0)和0p 在内的某有界区域内二元函数1Z x y =+-连续,且(0,0)|0z <,0|0P z >,由有界闭区域上连续函数的性质(价值定理),必∃一点p D ∈,使0pz=,即1x y +=(矛盾)。

1.多元函数中一些概念的关系,以(,)z f x y =为例⇒连续可微⇒偏导数存在连续偏导数⇒可微 偏导存在⇒连续⇒任意方向 ⇒可微方向导数存在例如 222222,0(,)0,0xy x y x yf x y x y ⎧+≠⎪+=⎨⎪+=⎩在点(0,0)处0,0x y f f ==,但00lim x y f →→不存在,当然不连续,更不可微。

沿任意方向{cos ,cos }l αβ=的方向导数(按非电类教材的定义):2(0,0)3000(0cos ,0cos )(0,0)cos cos cos cos lim lim lim ff f lρρρραρβραβαβρρρ+++→→→∂++-===∂当cos 0α=或cos 0β=,即 22or ππαβ==,即沿y 轴正、负方向,(or 沿x 轴正负方向的方向导数存在,沿其它方向方向导数不存在。

)2.多元复合函数微分法ex1 设(,)z f x y =在点(1,1)处可微,且(1,1)1,(1,1)2,(1,1)3x y f f f ==-=,()(,(,))x f x f x x ϕ=,求21d ()d x x xϕ=解:211d ()2()[()]d 21[23(23)]2(32)2x x y x y x x x f f f f x ϕϕ===++=⋅-+-+=-=ex2 设(,)f x y 有二阶连续偏导数,且2(,)(,),(,2),xx yy f x y f x y f x x x ==(,2)x f x x x =,试求(,2)(,2)xx xy f x x f x x 与解: 由 2(,2)f x x x = 得 22x y f f x +=, 再求偏导 (,2)2242xx xy yx yy f x x f f f +⋅++=即(条件) 5(,2)4(,2)2xx xy f x x f x x += (1) 又由(,2)x f x x x =,得(,2)2(,2)1xx xy f x x f x x += (2)联立(1),(2)解之,得 1(,2)0, 2xx xy f x x f ==ex3 设(,,,),(,,)0,(,)0,,,u f x y z t g x z t h z t f g h ===可微,且(,)0(,)g h t z ∂≠∂,求,u u x y∂∂∂∂。

多元函数Taylor公式与极值

多元函数Taylor公式与极值
第四节 多元函数Taylor公式与极值
4.1 多元函数的Taloy公式
定义 4.1 设 f ( x ) 是定义在区域 R n 内的 n 元函数,若 f 在
内连续,则称 f 是 上的 C (0) 类函数,记为 f C (0) () ,或
f C () ;若 f 在 内有连续的 m 阶偏导数,则称 f 是 上的 C ( m)
其中 ( x x0 )2 ( y y0 )2 .
4.2 无约束极值、最大值与最小值
1. 无约束极值
定义 4.2 恒成立不等式 设 f : U (x0 ) Rn R ,若 x U ( x0 ) ,
f ( x) f ( x0 ) ( f ( x) f ( x0 )) ,则称 f 在点
(2)若 A 0, AC B2 0 ,则 H f ( P 0 ) 为极大值; 0 ) 负定,故 f ( P (3)当 AC B 2 0 ,则 H f ( P 0 ) 不是极值。 0 ) 不定,故 f ( P
求函数 z f ( x , y ) 的极值的步骤
f x ( x , y ) 0 (1) 解方程组 ,求出一切驻点; f y ( x , y ) 0
∴函数 f ( x , y ) 在点 (1, 1) 有极小值 f (1, 1) 1 .
2. 最大值与最小值
最值的求法 :
由于有界闭区域 D 上的连续函数必有最大值和最小值. 因此将函数在 D 内的所有驻点、偏导数不存在的点处的 函数值及在 D 的边界上的最大值和最小值进行比较,其 中最大(小)者即为函数在 D 上的最大(小)值.
驻点为 (0, 0), (1, 1).
f x x ( x, y ) 6 x,
f x y ( x, y) 3,

多元函数取得极值的条件

多元函数取得极值的条件

序列可行方向的性质 性 质 1 处可微, 设ci(x)在x处可微,则 ∀d ∈SFD(x, X )有 在 处可微
∇cj (x)T d ≥ 0, (∀j ∈I (x)) T ∇cj (x) d = 0, (∀j ∈E)
证明
∀d ∈SFD(x, X ), dk (k =1,2,L 和δk X, 且有dk →d和δk →0,则
由于该方程组的系数矩阵的行向量组线性无关, 由于该方程组的系数矩阵的行向量组线性无关,所以该方程组有解
∀d ∈S*,则d ≠ 0,且d与∇ci (x*)(i ∈E)正交。
{∇c1(x*),L, ∇cme (x*), d} 成 e +1 空 , 法 间 n − me −1 空 , 生 m 维 间 其 空 是 为 间 在 空 中 取 组 准 交 di (i =1,2,L, n − me −1), 考 函 方 组 法 间 任 一 标 正 基 虑 数 程
∇f (x*) = 0
设 元 数 (x)存 二 连 偏 数 x*是 小 n 函 f 在 阶 续 导 , 极
值点,则
∇f (x*) = 0,且∇2 f (x*)半正定
证明: f (x*) = 0显然。 ∇ ∀d ∈Rn , 令x = x *+αd,由Taylor公式有 1 2 T 2 0 ≤ f (x) − f (x*) = α d ∇ f (x *+θαd)d 2
若函数z= 在点P(x 若函数 f(x,y) 在点 0,y0)的某邻域内连续且存在一 的某邻域内连续且存在一
f x′(x0 , y0 ) = 0
′′ ′′ ′′ A = f xx (x0 , y0 ), B = f xy (x0 , y0 ), C = f yy (x0 , y0 )

多元函数泰勒展开公式

多元函数泰勒展开公式

多元函数泰勒展开公式泰勒展开是将一个函数在某个点a附近展开成无穷级数的方法。

多元函数的泰勒展开是将一个多元函数在某个点a附近展开成多项式的方法。

多元函数的泰勒展开与一元函数的泰勒展开类似,只是需要引入多元偏导数的概念。

设f(x1, x2, ..., xn)是n个变量的函数,我们希望在点a=(a1,a2, ..., an)附近展开函数f(x1, x2, ..., xn)。

首先,我们定义一个多元变量h=(h1, h2, ..., hn),表示偏离点a的多元向量。

然后,我们构造一个n维多项式的级数:P(h) = f(a) + (∂f/∂x1)(a)h1 + (∂f/∂x2)(a)h2 + ... + (∂f/∂xn)(a)hn + (∂^2f/∂x1^2)(a)(h1)^2 + (∂^2f/∂x1∂x2)(a)h1h2 + ... +(∂^nf/∂x1∂x2∂x3...∂xn)(a)(h1h2...hn) + ...这个级数就是多元函数的泰勒展开公式,其中(∂f/∂x1)(a)表示在点a处对x1的偏导,(∂^2f/∂x1^2)(a)表示在点a处对x1的二阶偏导,(∂^nf/∂x1∂x2∂x3...∂xn)(a)表示在点a处对x1, x2, ..., xn的n阶偏导。

多元函数的泰勒展开公式的推导与一元函数类似,利用多元函数的偏导数进行展开。

由于涉及多个变量,我们需要使用多元链式法则来计算高阶偏导数。

具体来说,设f(x1, x2, ..., xn)在点a附近具有二阶连续偏导数,并且存在一点xi使得xi在[a, x]的线段上,其中0 < i < n。

则对于任何x=(x1, x2, ..., xn),都有:f(x) = f + ∑(∂f/∂xi)(a)(xi-a) + 1/2∑∑(∂^2f/∂xixj)(a)(xi-a)(xj-a) + R 其中f表示f(a),R为余项。

多元函数的泰勒展开公式的应用广泛,尤其在近似计算和数值分析中有重要作用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
k
k 1,2,, m 1.
定理8.2’ 设n元函数 f x C m U x0 , 则当 x 0 时,有


f ( x0 x ) f ( x0 )
f ( x0 ) k1! (x ) k f ( x0 ) o m .
k 1
1 m 1 (x ) f ( x0 ) (x ) f ( x0 x). m 1!


特别地,当x0=0时,又称为Maclaurin公式.
(x ) x i x i i 1
k n
k
k! in i1 x1 xn i1 , in x1 xn i1 i2 in k i1!i2 ! in !
通常把使得函数可能取极值的点称为它的可能极值点. 显然,可能极值点未必一定是极值点.
推论8.1 (函数取极值的充分条件) 设二元函数 2 f x, y C U x0 , y 0 , (x0,y0)是f(x,y)的驻点,记 A f xx x0 , y0 , B f xy x0 , y0 , C f yy x0 , y0 , 则
z z z
x x x
在点 (0,0) 有极大值;
在点 (0,0) 无极值.
y y y
定理8.3 (函数取极值的必要条件) 设n元函数f(x)在点x0
可偏导, 且在该点取得极值 , 则有 f x0 0i 0,1,, n , x i 即 f x0 0 . 证: 以二元函数情况加以证明. 设二元函数f(x,y)在点 (x00时,一元函数 ,y0) 可偏导并取得极值,则固定y=y x f x, y0 在点x0可导,并取得极值. 据一元函数极值 f x0 , y0 df x, y0 ' 0. 的必要条件,有 x0 x x0 x dx f x0 , y0 0. 同理,有 y
几何解释: 设(x0,y0)是二元函数f(x,y)的驻点.由泰勒公式,在点 P0(x0,y0,f(x0,y0))附近,曲面z=f(x,y)可以由二次曲面 z g x, y 1 2 2 f x0 , y0 Ax x0 2 Bx x0 y y0 C y y0 2 近似替代. 2 (1) 当A>0,且 AC B 0 时, z= g(x,y)为顶点在P0, 开口向上的椭圆抛物面,f(x0,y0)是g(x,y)及f(x,y)的极小值; (2) 当A<0,且 AC B 2 0 时, z= g(x,y)为顶点在P0, 开口向下的椭圆抛物面,f(x0,y0)是g(x,y)及f(x,y)的极大值; 2 AC B 0 时,z= g(x,y)为双曲抛物面,f(x0,y0) (3) 当 不是极值.
f ( x, y) e x y 1 1 2 n 1 x y x y x y Rn , 2! n! 1 n 1 x y 其中 Rn x y e ,0 1. n 1!
8.2 多元函数的极值问题 1.极值 定义8.1 设n元函数f(x)在点x0的某邻域内有定义,若 恒有 则称函数在该点取得极大值(极小值). 极大值和极小值统称为极值, 使函数取得极值的点称为极值点. 例如 : 在点 (0,0) 有极小值;
(x x y y ) f ( x0 , y0 )
2 1 2 ( x y ! x y ) f ( x0 , y0 )
(x
1 n!
f x0 , y0 k1! (x x y y ) k f ( x0 , y0 )
利用 max ( x 1 x 2 ) 2
[ 0,1]
则有
M n 1 n 1 n ( 2 ) n 1 1 o ( )y k ) Rn ( n 1 ( h k ) f ( x h , ()n 1 ) ! 0 0 ! x y
说明:(1) 当 n = 0 时, 得二元函数的拉格朗日中值公式:
n 1 1 ( x y f ( x0 x, y0 y ) ② 其中 Rn ( n 1)! x y) (0 1) ①称为f 在点(x0 , y0 )的 n 阶泰勒公式, ②称为其拉格朗日型余项 .
n
x
y ) f ( x0 , y0 ) Rn ①


说明: 使偏导数都为 0 的点称为驻点 (或稳定点).
由定理8.3知,对可偏导的n元函数,极值点必为驻点. 但驻点不一定是极值点. 例如, 例如, 有驻点( 0, 0 ), 但在该点不取极值. 在点( 0, 0 )取得极值, 但它的两个 偏导数不存在的点也可能是极值点. 偏导数在点( 0, 0 )处不存在.
m • 一般地, (h k ) f ( x0 , y0 ) 表示 x y m m f p p m p Cm h k x p y m p ( x , y ) 0 0 p 0
定理8.1 设 z f ( x, y) 在点( x0 , y0 ) 的某一邻域内有直 到 n + 1 阶连续偏导数 , ( x0 x , y0 y) 为此邻域内任 一点, 则有 f ( x0 x , y0 y) f ( x0 , y0 )
A
在点(1,0) 处 AC B 2 12 6 0 , A 0 ,
为极小值;
在点(1,2) 处
AC B 2 12 (6) 0 ,
(0) (h x k y ) f ( x0 , y0 )
(t ) h 2 f x x ( x0 ht , y0 k t )
2hk f x y ( x0 ht , y0 k t )
k 2 f y y ( x0 h t , y 0 k t )
f ( x0 h , y0 k ) f ( x0 , y0 ) h f x ( x0 h, y0 k ) k f y ( x0 h, y0 k ) (0 1)
(2) 若函数 z f ( x, y ) 在区域D 上的两个一阶偏导数 恒为零, 由中值公式可知在该区域上 f ( x, y) 常数 .
定理8.1’ 设n元函数 f x C m1 U x0 , x x0 U x0 , 则 0,1, 使




k 1
f ( x0 x ) f ( x0 )
m 1 k! k
0 0 其中 x x1 , x2 ,, xn , x0 x10 , x2 ,, xn , , , , x x1, x2 ,, xn . 而 x x x 2 n 1 上式称为f(x)在x0处带有Lagrange余项的n阶Taylor公式.
(1) 当A>0,且 AC B 2 0 时,f(x0,y0)是极小值; (2) 当A<0,且 AC B 2 0 时,f(x0,y0)是极大值; (3) 当 AC B 2 0 时,f(x0,y0)为不是极值; (4) 当 AC B 2 0 时,不能确定f(x0,y0)是否为极值.
(0) (h x k y ) 2 f ( x0 , y0 )
一般地,
m f (m) p p m p (t ) C m h k p m p ( x ht , y k t ) x y 0 0 p 0 m
( m) (0) (h x k y ) m f ( x0 , y0 )
8.3条件极值问题
8.1 多元函数的Taylor公式 一元函数 f ( x) 的泰勒公式:
f ( x0 ) 2 f ( x0 h) f ( x0 ) f ( x0 )h h 2!
f ( n ) ( x0 ) n h n!
推广
多元函数泰勒公式
(0 1)
记号 (设下面涉及的偏导数连续): • ( h k ) f ( x0 , y0 ) 表示 h f x ( x0 , y0 ) k f y ( x0 , y0 ) x y 2 • (h k ) f ( x0 , y0 ) 表示 x y h 2 f x x ( x 0 , y 0 ) 2 h k f x y ( x0 , y 0 ) k 2 f y y ( x 0 , y 0 )
其中 Rn o n 称为Peano余项, 上式称为f(x,y)在(x0,y0)处带有Peano余项的n阶Taylor公式.

k 1
1 k!
x
yBiblioteka k y) f ( x0 , y0 ) Rn ,
说明: 余项估计式. 因 f 的各 n+1 阶偏导数连续, 在某闭
邻域其绝对值必有上界 M , M h cos Rn ( h k ) n 1 k sin (n 1) ! M n 1 n 1 ( cos sin ) (n 1) !
m

上式称为f(x)在x0处带有Peano余项的n阶Taylor公式. 特别地,当x0=0时,又称为Maclaurin公式.
例8.1 求函数 f ( x, y) e Maclaurin公式. k
x y
带有Lagrange余项的
f x y 解:对k=1,2,…,n+1有 k i i e i 0,1,, k , x y k f 0,0 1, 由公式有 所以 k i i x y
n y
k 1
证: 令 (t ) f ( x0 t h, y0 t k ) (0 t 1), h x, k y 则
(0) f ( x0 , y0 ) , (1) f ( x0 h , y0 k )
利用多元复合函数求导法则可得: (t ) h f x ( x0 ht , y0 k t ) k f y ( x0 ht , y0 k t )
相关文档
最新文档