顶燃式热风炉剖面图

合集下载

顶燃式热风炉刚性炉底上翘原因分析及改进

顶燃式热风炉刚性炉底上翘原因分析及改进

顶燃式热风炉刚性炉底上翘原因分析及改进摘要:介绍了带预燃烧室的顶燃式热风炉钢性炉底的结构;建立力学模型分析了钢性炉底上翘的原因;提出了炉底结构的改进方案。

关键词:带预燃烧室的顶燃式热风炉;辐射梁;刚性炉底;引言山东省冶金设计院股份有限公司研究开发并有自主知识产权的带预燃室的顶燃式热风炉除莱钢从2001年起全部采用外,天钢3200m3高炉、安阳3200m3高炉、通钢2600m3高炉、济钢1750m3高炉、杭钢1260m3高炉、南钢1250m3高炉、首秦1260m3高炉、山东石横1080m3高炉、凌钢750m3高炉、济源450m3高炉、重钢2500m3高炉、吉林建龙1800m3高炉等均采用了带预燃室的顶燃式热风炉。

其中1000m3及以下级别高炉在2006年以前均采用了带辐射梁的刚性炉底,这种炉底结构简单,刚性足,自稳定性好。

但是部分热风炉在使用几年甚至刚建成后炉底就出现了上翘的现象,虽然这一问题对热风炉的正常操作不会有很大影响,但热风炉自身稳定性及抗震性将受到削弱,必须加以改进。

1引起顶燃式热风炉炉底上翘的原因顶燃式热风炉炉底上翘的原因是多方面的,归纳起来有三个方面。

1)制造误差。

顶燃式热风炉炉底结构较为复杂,特别是中间H型钢焊接时和容易产生变形,使得热风炉还没有投入运行炉底就已经产生了部分上翘。

对于热风炉这种大直径设备来说完全避免是不可能的。

2)热风炉炉内压力及静载荷引起的弯曲变形。

热风炉正常工作气体压力为0.3~0.45MPa,内部气体压力对热风炉炉底产生均布载荷。

热风炉壳体、炉箅子、铁块等自重约1400t,通过炉柱子对炉底形成集中载荷。

这两种载荷叠加作用会对炉底梁产生弯曲挠度,这就会使炉底产生上翘。

3)温度效应产生变形。

由于炉壳和炉底结构保温形式和所处坏境不同,在炉底部分炉壳温度和炉底结构的温度相差较大,所以在经向上二者膨胀量有较大不同,二者协调结果而产生炉底上翘。

制造误差引起的的炉底上翘因其随机性暂不作讨论。

高炉热风炉介绍.

高炉热风炉介绍.

一、高炉热风炉结构与性能简介热风炉顾名思义就是为工艺需要提供热气流的集燃烧与传热过程于一体的热工设备,一般有两个大的类型,即间歇式工作的蓄热式热风炉和连续换热式热风炉。

在高温陶瓷换热装置尚不成熟的当今,间歇式工作的蓄热式热风炉仍然是热风炉的主流产品。

蓄热式热风炉为了持续提供热风最起码必须有两座热风炉交替进行工作。

热风炉被广泛应用在工业生产的诸多领域,因工艺要求不同、燃料种类不同、热风介质不同而派生出不同用途与不同结构的热风炉。

这里要介绍的是为高炉冶炼提供高温热风的热风炉,且都是蓄热室热风炉,因其间歇式的工作方式,必须多台配合以实现向高炉连续提供高风温。

1.1高炉热风炉的分类高炉热风炉从结构可以分为外燃结构的热风炉和内燃结构的热风炉两个大类,前者是燃烧室设置在蓄热室的外面,而后者是燃烧室与蓄热室在一个结构里(燃烧室放置在蓄热室上部)热风炉和侧燃式(火井燃烧室与蓄热室并行放置)热风炉,通常我们也将侧燃式热风炉称为一般意义上的内燃式热风炉,因而在目前使用的热风炉中主要是外燃式热风炉、内燃式热风炉和顶燃式热风炉。

在这三种典型的热风炉中,外燃式热风炉结构最复杂而材料用量大,故实现结构稳定和提高风温的技术要求也就较高;而内燃式热风炉的火井墙结构稳定性差、且存在燃烧震荡、热风温度不易提高等问题;至于顶燃式热风炉,因其结构简单而材料用量少,也便于高风温实现。

因此,随着热风炉技术的发展,顶燃式热风炉正在逐步取代内燃式热风炉和外燃式热风炉而成为热风炉的主流产品。

在顶燃式热风炉中,随着卡鲁金旋流分层混合燃烧技术的应用,与该技术相适应的带旋流混合预燃室的顶燃式热风炉得到了人们的普遍认同,逐步成为顶燃式热风炉中的主流产品。

A 、外燃式热风炉B 、内燃式热风炉C 、1型顶燃式热风炉D 、1型顶燃式热风炉 E 、3型顶燃式热风炉 F 、3型顶燃式热风炉粘土格子砖废气出口中心线煤气入口中心线助燃风入口中心线热风出口中心线高铝格子砖鞍钢6号高炉外燃式热风炉 宝钢1号高炉新日铁式外燃热风 热风阀中心线助燃风入口中心线煤气入口中心线内燃热风炉横断面图旋流顶燃式热风炉结构图流顶燃式热风炉烧嘴布置图二、高炉热风炉的结构与组成前已述及,热风炉是一个为工艺过程提供热风的完成燃烧过程与传热过程的热工装置,其结构一定应该包含为燃料在其中燃烧的燃烧装置,和气流在其中进行热量交换的传热装置。

攀钢改进型顶燃式热风炉燃烧器砌筑技术

攀钢改进型顶燃式热风炉燃烧器砌筑技术
第3卷 1
第6 期
四川 冶金
S c u n Me alr y ih a tl g u
Vo. 1 No 6 13 .
De .,00 c 2 9
20 0 9年 1 2月
攀钢 改进 型 顶燃 式热风 炉 燃烧 器砌 筑 技 术
周仕才
( 冶修建分 公 司 , 攀 四川 攀枝花
r e h i e o o —p e e y tc n q ft p s h r . u
[ yw rs t — m utnht lss v ,u e, a ny Ke od] o cb so o at t eb r rm s r po i b o n o 砖区, 上部硅 砖 区。格子 砖为 六 边形 ,9个 孔 , 个 l 每
m l 燃烧 室拱 顶 隔热 层 ( N 一 . ) 灰缝 小 于 3 i; l P G 08 的
nl ; I n
烧器采用支撑于炉壳上的独立支撑结构 , 位于热风
炉最上 部 ( 图 1 ) 如 示 。这 种 形式 的热风 炉 , 结构 更 稳定 , 达两 代炉 龄 。煤 气 、 寿命 空气 采用微 机控 制 的 涡流供 给 , 在燃 烧器 内旋 流充分 燃烧 , 烟气 中 C O含
量仅 00 1 %(0m / , .0 6 2 gm )低于德国环保标准要求 的数倍。蓄热室格子砖 区由两 量要 求 .
攀钢炼 铁 2高 炉 系统 3座 热 风 炉 大修 采 用 专
利技术 的顶燃 式工 艺 , 燃式 热 风 炉是 内燃 式热 风 顶 炉 的一种形式 , 只不 过燃 烧室是设 在蓄 热室顶 部 , 从
而减轻 了由 于燃 烧 室 处 于 蓄 热 室 内带 来 的很 多 问
Z o hc i h u S ia

八钢顶燃式热风炉热风管道烧塌的原因分析及处理

八钢顶燃式热风炉热风管道烧塌的原因分析及处理

发现 3 #热 风管 道 三 岔 口部 位 温 度偏 高 ,采 用 红外 测 温 , 该 用说 明及配合 比将 足量浇注料搅拌均匀 ,对管道 内修 复部位开 部 位 上部 超 过 3 5 0℃, 中间宽 2 0 0 m m、 长3 0 0 m m 的 部位 达 始浇注 。浇注料浇注时应不间断施工 , 一次浇注成型 。浇注时用
有 的膨 胀 缝 , 用 纤 维 毡 充填 。
3 . 处理过 程。 ( 1 ) 拆 除。 关 闭热风 阀, 打开倒 流热休风 阀 , 使热 风管道 内处 于微 负压状态 。在施工部位管道上部上层钢平 台对 应位置切割拆除 , 为处理三岔 口腾 出空间。在 3号主支管相贯处 测温画线位置保护性拆除钢壳 , 上部开一个 7 0 0 mm : x 1 0 0 0 m m 的方孔 。拆除管道 内损坏的耐火内衬 , 用抓具清理管 内废渣。 ( 2 ) 内胎支模将 8 mm厚的直管 钢模 分两片分别从岔 口开 口 处 放入支管 内, 用吊钩将 钢模 挂起调整好位置 , 将两片钢模相对
约 安 全 生产 。 随后 对 三岔 口烧 塌 原 因进 行 了调 查 研 究 , 并 进行 了浇 注料 热 态 浇 注修 复 , 取得 较 好 效 果 。 热 风 炉 热 风 管道 三 岔 口 烧 塌
关键词


前 言
八 钢新 区 B高炉 ( 2 5 0 0 m 3 ) 配备 3座 卡 鲁金 改进 型顶 燃 热 风炉 , 于2 0 0 9年 2月 2 8日建 成投产 , 一直处 于 良好运 行状 态 。在 近两 年 的生产实 践 中 , 通 过强 化操作 管理 。 采 取 多种技 术 手段 , 在使 用 布 袋 干 法 除 尘 煤 气 ( 以下 简 称 干煤 气 ) 及 双 预热的情况下 , 拱 顶 温 度 可 快 速燃 烧到 1 3 2 0℃ , 废 气 温度

热风炉设计说明书

热风炉设计说明书

目录1热风炉本体结构设计 (2)1.1炉基的设计 (3)1.2炉壳的设计 (3)1.3炉墙的设计 (4)1.4拱顶的设计 (5)1.5蓄热室的设计 (6)1.6燃烧室的设计 (6)1.7炉箅子与支柱的设计 (7)2燃烧器选择与设计 (8)2.1金属燃烧器 (8)2.2陶瓷燃烧器 (8)3格子砖的选择 (11)4管道与阀门的选择设计 (16)4.1管道 (16)4.2阀门 (17)5热风炉用耐火材料 (19)5.1硅砖 (19)5.2高铝砖 (19)5.3粘土砖 (19)5.4隔热砖 (19)5.5不定形材料 (19)6热风炉的热工计算 (23)6.1燃烧计算 (23)6.2简易计算 (27)6.3砖量计算 (30)7参考文献 (32)1 热风炉本体结构设计热风炉的原理是借助煤气燃烧将热风炉格子砖烧热,然后再将冷风通入格子砖。

冷风被加热并通过热风管道送往高炉。

目前蓄热式热风炉有三种基本结构形式,即内燃式热风炉、外燃式热风炉、顶燃式热风炉。

传统内燃式热风炉(如图1-1所示)包括燃烧室和蓄热室两大部分,并由炉基、炉底、炉衬、炉箅子、支柱等构成。

热风炉主要尺寸(全高和外径)决定于高炉有效容积、冶炼强度要求的风温。

图1-1 内燃式热风炉我国实际的热风炉尺寸见表1-1。

表1-1我国设计的热风炉尺寸表1.1 炉基的设计由于整个热风炉重量很大又经常震动,且荷重将随高炉炉容的扩大和风温的提高而增加,故对炉基要求严格。

地基的耐压力不小于2.0~2.5kg/2cm,为防止热风炉产生不均匀下沉而是管道变形或撕裂,将三座热风炉基础做成一个整体,A F或16Mn钢筋和325号水泥浇灌成高出地面200~400mm,以防水浸基础由3钢筋混泥土结构。

土壤承载力不足时,需打桩加固。

生产实践表明,不均匀下沉未超过允许值时,可将热风炉基础又做成单体分离形式,如武钢、鞍钢两座大型高炉,克节省大量钢材。

1.2 炉壳的设计热风炉的炉壳由8~20mm厚的钢板焊成。

热风炉炉壳放样、制作及焊接技术指导书

热风炉炉壳放样、制作及焊接技术指导书

方法二:球体的分带展开 球体的分带展开是球体展开的另一种形式,如图 所示,具体展开步骤如下: 1、分带展开处理办法:将球体分割成若干横带, 横带的数量根据球的大小而定,每节横带近似 看做为正圆锥台,然后用放射线法作展开图。 2、分带:将圆周分成7个横带和两个大小相等的圆 板Ⅰ。中间一个横带Ⅴ为圆柱形,其展开为一 矩形。Ⅱ、Ⅲ、 Ⅳ各横带为圆锥形。 3、展开:现以横带Ⅳ为例,展开时在主视图上连 接4、3两点并延长与垂直中心线相交得O4点, 取O4为圆心,R4和O4 -3为半径作圆弧,由中点 向两边各量取Ⅳ段大圆周的一半,得横带Ⅳ的 展开图,其余各段的展开图也用同样方法求得。 4、两极处理:这种展开方法的两极就是两块小圆 板,量取两极上小圆的半径画圆即可。 • 这种展开方法对材料要求较高,一般的板材都 保证不了尺寸。因此,这种展开方法应用很少。
• • • •


方法三: 斜口正圆锥管的展开步骤 1、作视图:视图的作法与正圆锥没有区别,但倾斜 的上口高度一般是中心高度,不要取底位或高位。 2、作正圆椎管的展开:在主视图下面作一半圆周, 将半圆周作六等分,然后画出整个圆锥面的展开图, 做完后的扇形有13条素线。 3、求实长:在注视图上,除了1和7两条素线是实长 外,其余素线均不是实长。求实长的方法是过2、3、 4、5、6五条素线与斜口的交点作水平线,与素线7 相交。(备注:一般位置直线的投影不反映实长) 4、作截割锥顶部分的展开:用圆规分别量取a 、b 、 c 、 d 、 e 、 f 、 g点到锥顶O的距离,在展开图上 分别作出a 、b 、 c 、 d 、 e 、 f 、 g点,再用平滑 的曲线连接起来,将这部分去掉,则剩下部分即为 所求的展开图,见图.
热风炉炉壳本放样、制作及焊接
技术指导书

顶燃式热风炉工作原理过程

顶燃式热风炉工作原理过程

蓄热式,按热风炉内部的蓄热体分球式热风炉(简称球炉)和采用格子砖的热风炉,按燃烧方式可以分为顶燃式,内燃式,外燃式等几种。

如何提高风温,是业内人士长期研究的方向。

常用的办法是混烧高热值燃气,或增加热风炉格子砖的换热面积,或改变格子砖的材质、密度,或改变蓄热体的形状(如蓄热球),以及通过种种方法将煤气和助燃空气预热。

优点:换热温度高,热利用率高。

缺点:体积大,占地面积大,热风温度不稳定,切换机构多,容易出问题,蓄热体寿命短,维修成本高,购置成本极高。

热风炉加热期拱顶温度的上升速率和进入拱顶温度管理期废气温度的上升速率,主要取决于燃烧过程的空燃比和煤气流量,同时还受煤气、空气质量和压力波动的影响。

实现热风炉燃烧过程自动控制的关键是随着煤气、空气压力和质量的波动及热风炉燃烧状态的变化对煤气流量和空气流量进行实时调整,空气流量的调整可以转化为对空燃比的调整。

故在加热期,可以最大空气流量进行加热,据此来调整合适的煤气流量或者以最大煤气流量进行加热,并调整合适的空燃比,迅速提高拱顶温度;到达拱顶温度管理期,适当减小煤气流量,并调整合适的空燃比,保证拱顶温度不变的情况下,提高废气的升温速率。

这样就能大大增加效率且消耗资源少。

高炉送风系统

高炉送风系统

我国几座典型热风炉选用的耐火材料
高炉 拱顶 蓄热室大墙上部 蓄热室大墙中部 蓄热室大墙下部 格子砖上部 格子砖中部 格子砖下部 燃烧室大墙中、上部 燃烧室大墙下部 陶瓷燃烧器材质 设计风温,℃ 宝钢 2 号 宝钢 3 号 重钢 5 号 高铝砖 高铝砖 高铝砖 粘土砖 高铝砖 高铝砖 粘土砖 高铝砖 高铝砖 攀钢 4 号 蠕变率< 0.5%高铝砖 高铝砖 高铝砖 粘土砖 1550℃蠕变 率<1.5% 高铝砖 粘土砖 高铝砖 高铝砖 武钢新 3 号 高密度硅砖 高密度硅砖 低蠕变硅线石砖 粘土砖 高密度硅砖 低蠕变硅线石砖 粘土砖 莫来石砖 粘土砖 4 个短焰燃烧器 1200 1100~1500 3 个短焰燃烧器 1050~1100 首钢 2 号 首钢 4 号 蠕变率<0.8% 蠕变率<0.8% 硅砖 硅砖 硅砖 高铝砖 粘土砖 硅砖 高铝砖 粘土砖 硅砖 高铝砖 上 堇青石砖 下 粘土砖 1200~1250 硅砖 高铝砖 粘土砖 硅砖 高铝砖 粘土砖 硅砖 高铝砖 上 堇青石砖 下 粘土砖 1200~1250 低蠕变高铝砖 莫来石-硅线石 (莫来石-硅线石砖) 砖 莫来石-硅线石 低蠕变高铝砖 砖 高铝砖 粘土砖 低蠕变高铝砖 高铝砖 粘土砖 高铝砖 粘土砖 低蠕变高铝砖 高铝砖 粘土砖
1. 优点: 结构简单,建设费用较低,占地面积 较小。
2. 缺点:
①蓄热室烟气分布不均匀; ②燃烧室隔墙结构复杂,易损坏。
6.2.4 热风炉计算
例题: 高炉容积为1260m3,配备四座热 风炉,做热风炉设计。
1. 确定基本参数
(1)取单位炉容蓄热面积为90m2/m3
(2)定热风炉钢壳下部内径为φ7960mm,
6 送风系统
动画
6.1 高炉鼓风机
6.1.1 高炉冶炼对鼓风机的要求:①Fra bibliotek有足够的鼓风量;
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档