可修改角平分线的性质及应用.ppt
角平分线的性质教学课件
三角形中的角平分线与相对边 成比例,这是三角形中一个重 要的性质。
利用这个性质,可以解决与三 角形相关的问题,例如求边长 、角度等。
此外,三角形中的角平分线还 是三角形内切圆和外接圆的半 径的角平分线。
在日常生活中的应用
角平分线在日常生活中也有广泛的应用,例如在建筑设计、机械制造等领域。
在建筑设计方面,可以利用角平分线来设计建筑物的外观和结构,使其更加美观和 稳固。
THANK YOU
角平分线的性质教学课件
• 角平分线的定义 • 角平分线的性质定理 • 角平分线的应用 • 角平分线的相关定理 • 习题与解答
01
角平分线的定义
什么是角平分线
01
角平分线是从一个角的顶点出发 ,将该角分为两个相等的部分的 一条射线。
02
角平分线将相对边分为两等份, 形成的两个小角相等。
角平分线的作法
通过角的顶点,作一条射线,使得该 射线和角的两边相交形成的两个小角 相等。
使用量角器或三角板等工具辅助作图 。
角平分线的性质
角平分线上的点到角的两边距离 相等。
角平分线将相对边分为两等份。
角平分线上的任意一点到角的两 边的距离之和等于从角的顶点到
该点的距离。
02
角平分线的性质定理
定理内容
01
02
答案: $AB = AC$
解析:由于$AD$是$angle BAC$的角平分线,且$BD = CD$,根据等 腰三角形的性质,我们可以得出$triangle ABD cong triangle ACD$( SAS),所以$AB = AC$。
习题答案与解析
01
答案与解析3:
02
答案: AC是$angle BCD$的角平分线。
角平分线的性质和判定课件
A.1:1:1
B.1:2:3
C.2:3:4 D.3:4:5
点拨:高相等,面积比等 于边长的比。
小结
1、尺规作图作角的平分线
2、角的平分线的性质
1.角平分线的判定结论:
角的内部到角的两边的距离相等的点在角平 分线上。
2.几何语言:
∵PD=PE,PD⊥OA,PE ⊥OB
C
∴OC是∠AOB的平分线
到三角形三边距离相等的点在______
1、 已知∠C=900, ∠1= ∠2,若BC=8, BD=5,求点D到AB的 2
A
2、如图,DE⊥AB于E,DF⊥AC于F,若 BD=CD、BE=CF.求证:AD平分∠BAC.
3、已知PA=PB ,OP平分∠AOB , 求证: ∠1和∠2的数量关系?
F
A1
P
2
O
EB
4.已知PA=PB, ∠1+∠2=1800, 求证:OP平分∠AOB
E
A1
P
2
O
FB
5.如图,O是△ABC的角平分线的交 点,△ABC的面积为2,周长为4,则 点O到BC的距离为( )
6、如图,△ABC的三边AB,BC,AC的长分别是 20㎝,30㎝,40㎝,点O为△ABC三内角平分线 的交点,则S△AOB:S△BOC:S△AOC等于()
角平分线的性质和判定
1.用尺规作图作∠AOB的平分线OC
A
O
B
依据:SSS
2.已知Rt△ABC中,BD平分∠ABC,DE⊥AB于 点E,则图中与DE相等的线段是____,
理由是______________.
若AB=10,BC=8,AC=6,BE=____AE=____
△AED的周长=_____
角平分线的性质和判定(共张PPT)-图文
E
C
D
B
变式 已知AB =15cm, 求△DBE的周长
1、直线表示三条相互交叉的公路,现要建一个货物 中转站,要求它到三条公路的距离相等,则可供选择 的地址有( )
A.一处 B. 两处 C.三处 D.四处
2、已知:BD⊥AM于点D,CE⊥AN于点E,BD,CE交点
F,CF=BF, 求证:点F在∠A的平分线上.
画法:
1.以O为圆心,适当
A
长为半径作弧,交OA于M
M
,交OB于N.
C
2.分别以M,N为
圆心.大于 1/2 MN的长
为半径作弧.两弧在∠A
OB的内部交于C.
3.作射线OC.
B
N
O
射线OC即为所求.
想为什一么想O:C是角平分线呢?
已知:OM=ON,MC=NC。
求证:OC平分∠AOB。
A
M 证明:在△OMC和△ONC中, C
的
又两∵边距点离F相在等∠)C. BD的平分线上,
FH⊥AD, FM⊥BC
M H
∴FM=FH (角平分线上的点到这个角的两边距离相等). ∴FG=FH(等量代换)∴点F在∠DAE的平分线上
例题选析
例1:如图,D在AB上,E在AC上,且∠B =∠C, 那么补充下列一具条件后,仍无法判定 △ABE≌△ACD的是( B )
2 如图,在△ABC中,∠C=90°,DE⊥AB, ∠1=∠2,且AC=6cm,那么线段BE是△ABC 的 角的平分线 ,AE+DE= 6cm 。
3.已知△ABC中, ∠C=900,AD平分∠ CAB,且 BC=8,BD=5,求点D到AB的距离是多少?
你会吗?
C D
A
八年级数学下册1.4.2角平分线课件新版北师大版
度数,可以求此角的度数。
3
应用三 解决实际问题
可以运用角平分线及其性质来解决直角 三角形、等腰三角形等问题。
角平分线的练习
练习一 画出角的平分线
练习用尺规等工具作出各种角的 平分线。
练习二 用角平分线定理 求角度
练习应用角平分线定理来求出角 的度数。
练习三 解决实际问题
练习将角平分线应用于解决不同 的实际问题。
总结
1 角平分线的重要性
角平分线是许多的几何问题的基础课件的学习,你是否已经对角平分线有了更好的理解?
3 知识点回顾
通过课件中的练习,你是否已经掌握了角平分线的基本定义、性质、作用、应用及求解 方法?
可用尺规作图法作出一条角的平 分线。
角平分线的作用
寻找角平分线
可以用尺规作图法求角平分线。
确定长度
若一个角的一条平分线已知其长度,则可以求出与此平分线相应两边的长度。
证明定理
可以用角平分线定理来证明一些定理。
角平分线的应用
1
应用一 求角平分线
通过尺规作图等方法求角平分线。
应用二 求角度大小
2
已知一个角的一条平分线与相应两边的
角平分线课件:北师大版 八年级数学下册1.4.2
本课件将深入讲解角平分线的定义、性质、作用、应用和练习,助你更好地 掌握这一知识点。
角平分线的定义
什么是角平分线
角平分线是指可以将一个角平分 成两个相等的角的线段。
角平分线的性质
作图
1.角平分线可以互相平分。
2.如果一个角的两条平分线相交, 则它们所截的弧上的点都在相同 的直线上。
角的平分线的画法及性质预习课件
性质
角的平分线上的点到 角的两边的距离相等 。
角的平分线与相对的 边形成一个等腰三角 形。
角的平分线将角平分 为两个相等的小角。
角的平分线的作法
使用量角器
首先找到角的顶点,然后使用量角器将角平分为两个相等的小角,最后通过角 的两边画出射线和交点。
使用圆规
首先以角的顶点为圆心,任意长度为半径画弧,与角的两边相交于两点,然后 分别以这两点为圆心,相同的半径画弧,两弧相交于一点,最后连接角的顶点 和交点。
角的平分线定理的逆定理
如果一个点到角的两边的距离相等, 则这个点位于角的平分线上。
与角的平分线相关的习题
习题1
已知角平分线上的点A到角的两边 BC和BA的距离相等,求证:角 BAC是直角。
习题2
在三角形ABC中,AD是角BAC的 平分线,E、F分别是AB、AC上 的点,且DE=DF,求证:E、F分 别位于AD的两侧。
证明方法三
01
利用角平分线的定义证明
02
根据角平分线的定义,利用角的 平分线上的点到角的两边的距离 相等,证明角的平分线性质。
04
角的平分线的拓展知识
与角的平分线相关的定理
角的平分线定理
角的平分线与平行线定理
角的平分线上的点到这个角的两边的 距离相等。
角的平分线与相对的平行线交于一点 ,这一点到这个角的两边的距离相等 。
在日常生活中,角的平分线也有广泛 的应用。例如,在制作风筝时,可以 利用角的平分线来平衡风筝的左右两 侧,使其在空中保持平衡。
在建筑设计、道路规划等领域,角的 平分线也经常被用来确定建筑物的位 置、道路的方向等,以确保整体布局 的协调和美观。
在数学问题中的应用
在数学问题中,角的平分线是常见的考点之一。例如,在解决三角形问题时,可 以利用角的平分线来将一个三角形划分为若干个小三角形,从而利用小三角形的 性质来解决问题。
角平分线的定义及性质应用
角平分线的定义及性质应用角平分线是指从一个角的顶点到其两边上任意一点的线段,将这个角分成两个大小相等的角。
角平分线具有一些重要的性质和应用。
首先,角平分线的定义是从一个角的顶点出发,将这个角分成两个相等的角。
这意味着角平分线与角的两边所夹的角度大小是相等的。
这是角平分线最基本的性质之一。
其次,角平分线具有对称性。
如果一个角的平分线通过其顶点并交于角的另一边上的一个点,那么这个交点将把角分成两个大小相等的角。
同样地,这个交点也可以看作是这个角的另一个平分线通过其顶点并交于另一边上的一个点。
这个交点将角分成两部分,而这两部分的大小是相等的。
此外,角平分线还具有一些其他的重要性质和应用。
以下是其中的一些:1. 角平分线相交于角的内部:角平分线必定在角的内部相交。
这是因为在平面几何中,两点之间的直线是最短的路径,所以角平分线将角分成两部分时必须通过角的内部。
2. 角平分线垂直于角的边:如果一个角的平分线与角的一条边相交,那么它与这条边所夹的角是垂直的。
也就是说,平分线和边的交点处的两个相邻角度是垂直的。
这是一个很有用的性质,可以用来构造垂直角、垂直平分线和垂直双准线等几何图形。
3. 角平分线的长度相等:如果一个角的两条平分线相交,那么它们的长度是相等的。
换句话说,一个角的两条平分线与该角两条边的交点之间的距离是相等的。
这可以通过解析几何或使用三角函数来证明。
4. 角平分线被分成一定比例的线段:如果两个角的平分线相交于一个点,并且它们分别与这两个角的另外一条边相交于不同的点,那么这个交点将把角平分线分成一定比例的线段。
这个性质可以用于求解角平分线上的长度比例,从而解决几何问题。
5. 角平分线和三角形内心:在一个三角形中,三条角的平分线交于一点,这个点称为三角形的内心。
内心是三角形内接圆的圆心,角平分线与三角形内接圆的切点均相交于角的顶点。
内心的存在和性质可以用角平分线来证明。
综上所述,角平分线具有分割角度、对称性、相交于角的内部、垂直于角的边、长度相等、被分成一定比例的线段等性质。
数学上册角的平分线的性质
计算角度
在已知三角形两个角的情况下,可以利用三角形内角和定理计算出第三个角的大小。
证明全等三角形
在证明两个三角形全等时,如果两个三角形有两组对应的角分别相等,并且其中一组等角的 对边相等,那么这两个三角形全等(AAS)。此时,可以通过作角的平分线来构造全等的条 件。
解决实际问题
在实际问题中,如测量、建筑等领域,经常需要利用三角形内角和定理和角的平分线性质 来解决相关问题。例如,在测量一个角度时,可以通过测量另外两个角度并利用三角形内 角和定理来计算出目标角度的大小。
04 角的平分线与三角形面积 关系
04 角的平分线与三角形面积 关系
三角形面积公式
三角形面积公式:S = 1/2 * b * h, 其中b为底边长度,h为高。
三角形面积公式是计算三角形面积的 基础,适用于任何类型的三角形。
三角形面积公式
三角形面积公式:S = 1/2 * b * h, 其中b为底边长度,h为高。
应用二
利用角的平分线性质解决与三角形面积相关的问题。例如, 在三角形中作一条角平分线,可以将原三角形划分为两个面 积相等的小三角形,从而简化问题或找到新的解题思路。
05 角的平分线在几何变换中 性质
05 角的平分线在几何变换中 性质
平移、旋转、对称变换下性质
01
02
03
平移不变性
角的平分线在平移变换下 保持其性质不变,即平移 后的角平分线仍然是原角 的平分线。
三角形内角和定理
三角形内角和定理
三角形的三个内角之和等于180°。
证明方法
通过平行线的性质或外角定理等方式证明。
角的平分线与内角和关系
角的平分线定义
从一个角的顶点引出一条射线,把这个角分成两个相等的角,这条射线叫做这个角的平 分线。
《角的平分线的性质》示范公开课教学PPT课件【部编新人教版八年级数学上册】
创设情境 探究新知 应用新知 巩固新知 课堂小结 布置作业
典型例题
例2:如图,要在S区建一个集贸市场,使它到公路、铁路的距离相 等,并且离公路与铁路的交叉处500m.这个集贸市场应建于何处( 在图上标出它的位置,比例尺为1:20000)?
A
C
D
B
M
S
N
AB:500=1: 20 000 AB=2.5cm
情景导入
(2)下图是一个平分角的仪器,其中AB=AD,BC=DC.将点A放在 角的定点,AB和AD沿着角的两边放下,沿AC画一条射线AE,AE就是 这个角的平分线.你能说明它的道理吗?
分析
在△ACD和△ACB中
AD=AB,DC=BC AC=AC
△ACD≌△ACB
∠DAC=∠BAC
AC平分∠BAD
创设情境 探究新知 应用新知 巩固新知 课堂小结 布置作业
思考
做一做:你能用三角形全等证明这个结论吗?
已知:如图,OC是∠AOB的平分线,P是OC上任意一点,做 PD⊥OA,PE⊥OB,垂足分别是D,E.求证:PD=PE.
分析: 要证明PD=PE,只要证明它们所在的△OPD≌△OPE, 而△OPD≌△OPE的条件由已知容易得到它满足公理 (AAS).故结论可证.
创设情境 探究新知 应用新知 巩固新知 课堂小结 布置作业
情景导入 (1)画一画:在纸上任意画一个角,用剪刀剪下,用折纸的方法, 如何确定角的平分线?
(1)在准备好的角上标好字母A,O,B;
(2)把∠ AOB对折,使得这个角得两边重合;
A
(3)折痕就是∠AOB的角平分线.
O
B
创设情境 探究新知 应用新知 巩固新知 课堂小结 布置作业
角平分线的性质 课件
角的平分线与等边三角形的关系
角的平分线与等边三角形的联系
在等边三角形中,角的平分线也是中垂线,因此,角的 平分线与等边三角形也有密切的联系。
角的平分线与等边三角形的应用
利用这一性质,可以解决一些几何问题,如证明等边三 角形、求角度等。
THANKS
谢谢
角平分线的表示方法
在几何图形中,通常用虚线表示角平 分线,并在角平分线上标注相应的字 母。
例如,若角平分线为AD,则可以表示 为AD平分∠BAC。
角平分线的性质定理
角平分线上的点到该角的两边的距离相等。 这一性质是角平分线的基本性质,也是证明其他角平分线性质的基础。
02
CHAPTER
角平分线的性质
04
CHAPTER
角平分线的作法
通过角的顶点作角的平分线
总结词
角的顶点是角的两条边的交汇点,通过角的顶点作角的平分线的方法是常用的方法之一 。
详细描述
首先,确定角的顶点,然后使用直尺或圆规等工具,从角的顶点出发,作一条与角的一 边平行的线段,线段的长度可以根据需要自行确定。接着,将线段的中点与角的另一边
角的平分线与平行线相交形成的交点,到角的两边的距离 相等。
利用这一性质,可以解决一些几何问题,如求距离、证明 角相等等。
角的平分线与等腰三角形的关系
角的平分线与等腰三角形 的联系
角的平分线是等腰三角形底边上的中垂线, 因此,角的平分线与等腰三角形有密切的联 系。
角的平分线与等腰三角形 的应用
利用这一性质,可以解决一些几何问题,如 证明等腰三角形、求角度等。
角平分线上的点到这个角的两边的距 离相等。
利用角平分线定理,可以证明线段的 比例关系。
证明三角形全等
角平分线课件PPT
生活中有趣角平分线现象
建筑设计中的应用
在建筑设计中,角平分线常被用来确保建筑物的对称性和平衡感。例如,古希腊的帕特 农神庙就运用了角平分线的原理来设计其立面和柱子。
自然界的角平分线
在自然界中,角平分线的现象也很常见。例如,当阳光照射在树叶上时,树叶的脉络就 会呈现出角平分线的形状,这是因为树叶在生长过程中会自然地沿着角平分线的方向扩
例题2
已知在△ABC中,∠C=90° ,AD是∠BAC的平分线, DE⊥AB于E,F在AC上, BD=DF。求证:CF=EB 。
解析
过点D作DM⊥AC于M。 根据角平分线的性质,可 得DE=DM。在Rt△FCD 和Rt△EBD中,DF=BD, DE=DM。 ∴Rt△FCD≌Rt△EBD(HL )。∴CF=EB。
的两边分别与OA、OB相交于点C、D。求证: PC=PD。
输入 标题
解析
根据角平分线的性质和直角三角形的性质,可以证明 △OPC和△OPD全等,从而得出PC=PD。具体证明过 程略。
例题1
例题2
根据角平分线的性质和勾股定理,可以求出点D到AB 的距离。具体求解过程略。
解析
在△ABC中,∠C=90°,AD平分∠BAC交BC于点D,若 BC=32,且BD:CD=9:7,求点D到AB的距离。
04
角平分线在几何变换中应用
旋转对称性质及应用
旋转对称性质
角平分线将一个角分为两个相等的小角,且两个小角关于角平分线对称。当图形 绕角平分线旋转一定角度时,两个小角能够重合,具有旋转对称性。
应用
利用旋转对称性质,可以解决与角平分线相关的角度计算、线段长度等问题。例 如,通过旋转对称性质可以证明两个三角形全等或相似。
建筑设计中角平分线应用
角平分线的性质及应用
利用角平分线定理求角度
总结词
通过利用角平分线定理,我们可以求解一些与角度相关的几何问题。
详细描述
在几何问题中,有时候我们需要求解某个角度的大小。利用角平分线定理,我们可以将问题转化为求 解两个相等的线段之间的夹角。例如,如果一个角的平分线将相对边分为两段相等的线段,那么这个 角被平分线分为两个相等的部分,因此可以利用这个性质来求解角度。
总结词
角平分线定理是几何学中的重要定理之一,它可以用于证明 各种几何命题,如三角形中的角平分线性质、平行线性质等 。
详细描述
角平分线定理指出,角平分线将相对边分为两段相等的线段 。利用这个定理,我们可以证明一些与角平分线相关的几何 命题。例如,如果一个角的平分线与另一个角的两边相交, 那么这两个交点到角平分线的距离相等。
利用角平分线定理证明三角恒等式
总结词
通过构造角平分线,可以将复杂的三角恒等式证明问题转化为简单的几何问题,从而证 明三角恒等式。
详细描述
在证明三角恒等式时,我们可以根据题目的特点,构造角平分线,将问题转化为几何问 题。然后利用角平分线定理和三角形的性质,推导出恒等式。这种方法可以简化证明过
程,使证明更加直观和简单。
利用角平分线定理求距离
总结词
通过利用角平分线定理,我们可以求解 一些与距离相关的几何问题。
VS
详细描述
在几何问题中,有时候我们需要求解两个 点之间的距离。利用角平分线定理,我们 可以将问题转化为求解两个相等的线段之 间的距离。例如,如果一个角的平分线将 相对边分为两段相等的线段,那么这两个 相等的线段之间的距离就是所求的距离。 因此,可以利用这个性质来求解距离。
详细描述
这是角平分线的一个非常重要的性质。在几何学中,我们可以通过这个性质来证明一些与角平分线相关的命题。 例如,如果我们从一个固定点向一个角的两边画线,那么这些线中最短的一条必定是角的平分线。这个性质在解 决几何问题时非常有用,因为它可以帮助我们找到最短的路径或线段。
角平分线的性质kejia
02
多边形一条边的两个端点与不相邻的顶点的连线,将多边形划分为n-2个三角形, 每个三角形的内角和为180°。
03
多边形一条边的两个端点与不相邻的两个顶点的连线,是多边形的两条角平分线, 它们将多边形划分为n-1个三角形,每个三角形的内角和为180°。因此,多边形的 内角和也可以表示为(n-1)×180°-2×角平分线的夹角。
在平行四边形中,相邻两角的角 平分线互相垂直。
角平分线所在的直线是平行四边 形的对称轴。
梯形中角平分线特点
梯形中的角平分线将梯形的一个角平分为两个相等的小角。 梯形两腰的角平分线长度相等。
梯形中一组对角的角平分线互相平行。
多边形内角和与角平分线关系
01
多边形的内角和等于(n-2)×180°,其中n为多边形的边数。
证明垂直或平行问题
1 2
利用角平分线与垂线的性质
角平分线与垂线重合时,可证明两条直线垂直。
构造平行四边形
通过角平分线构造平行四边形,利用平行四边形 的性质证明直线平行。
3
应用同位角、内错角等性质
结合同位角、内错角等相关性质,可证明直线平 行或垂直。
05
角平分线在实际问题中应 用举例
测量问题中角平分线应用
之间的角度关系。
如机械臂的运动轨迹规划、机器人的路
径规划等。
06
总结回顾与拓展延伸
关键知识点总结回顾
角平分线的定义:角平分线是从一个角 的顶点出发,将该角平分为两个相等的 小角的射线。
角平分线的构造:通过角的顶点,使用 圆规和直尺可以构造出角的平分线。
角平分线将相对边分为两段,这两段与 角的两边所构成的三角形面积相等。
在测量角度时,如果无法直接测量或者测量难度较大,可以 利用角平分线的性质,将原角平分,然后分别测量两个较小 的角,再通过计算得到原角的度数。
八年级上-角平分线及性质
角平分线及性质知识集结知识元角平分线的性质知识讲解角平分线的性质:角平分线上的点到角的两边的距离相等.注意:①这里的距离是指点到角的两边垂线段的长度;②该性质可以独立作为证明两条线段相等的依据,有时不必证明全等;③使用该结论的前提条件是图中有角平分线,有垂直;如果没有垂直则需要构造垂直后再使用该性质.例题精讲角平分线的性质例1.下列各图中,OP 是∠MON 的平分线,点E,F,G 分别在射线OM,ON,OP 上,则可以解释定理“角的平分线上的点到角的两边的距离相等”的图形是()A.B.C.D.例2.如图,AD是△ABC的角平分线,DE⊥AB,垂足为E,S△ABC=8,DE=2,AB=5,则AC长是()A.6B.5C.4D.3例3.如图,AB∥CD,AE、CE分别平分∠BAC和∠ACD,BD过点E且垂直于AB,若点E到AC的距离为3,则BD=.角平分线的作图知识讲解在角平分线相关的作图问题中,一般常会用到的是角平分线的定义和角平分线的性质.例题精讲角平分线的作图例1.如图,在Rt△ABC中,∠C=90°,以顶点A为圆心,适当长为半径画弧,分别交AC,AB于点M,N,再分别以点M,N为圆心,大于MN的长为半径画弧,两弧交于点P,作射线AP交边BC于点D,若CD=4,AB=15,则△ABD的面积是().A.15 B.30 C.45 D.60例2.观察图中尺规作图痕迹,下列说法错误的是()A.OE是∠AOB的平分线B.OC=ODC.点C、D到OE的距离不相等D.∠AOE=∠BOE角平分线相关的面积计算知识讲解角平分线的性质能够为面积的计算直接提供现有的高以及高的具体值,所以涉及到角平分的计算也常会与面积结合.例题精讲角平分线相关的面积计算例1.如图,是某油路管道的一部分,延伸其中三条支路恰好构成一个直角三角形,其三边长分别为6cm,8cm,10cm,输油中心O在到三条支路距离相等的地方,则中心O到三条支路的管道总长(计算时视管道为线,中心O为点)为().A.24cm B.12cm C.10cm D.6cm例2.如图,在△ABC中,AD是角平分线,DE⊥AB于点E,△ABC的面积为15,AB=6,DE=3,则AC的长是()A.8B.6C.5D.4例3.如图,AD是△ABC中∠BAC的角平分线,DE⊥AB于点E,DE=2,AC=3,则△ADC的面积是()A.3B.4C.5D.6角平分线求点线距离知识讲解求点到线的距离问题在角平分线相关的部分是非常典型的一种类型题,其中需要明确的知识包括点到线的距离的标准定义、角平分线的性质,将两者结合来添加辅助线也是非常重要的一种处理手段.例题精讲角平分线求点线距离例1.如图,点P是∠AOB平分线OC上一点,PD⊥OB,垂足为D,若PD=2,则点P到边OA的距离是()A.1B.2C.D.4例2.如图,O是直线BC上的点,OM平分∠AOB,ON平分∠AOC,点E在OM上,过点E作EG⊥OA于点G,EP⊥OB于点P,延长EG,交ON于点F,过点F作FQ⊥OC于点Q,若EF=10,则FQ+EP的长度为().A.5B.10C.15D.20例3.如图,在△ABC中,∠C=90°,AM是∠BAC的平分线,CM=20cm,那么M到AB的距离为.利用角平分线的性质求线段取值范围知识讲解求线段取值范围的问题,是利用角平分线的性质和垂线段最短这两个知识处理问题的一个典型题型,有线段的范围就能求出最值,所以求线段的最值问题也是此类型题目,处理方法相同.例题精讲利用角平分线的性质求线段取值范围例1.如图,OC平分∠AOB,点P是射线OC上的一点,PD⊥OB于点D,且PD=3,动点Q在射线OA上运动,则线段PQ的长度不可能是().A.2B.3C.4D.5例2.如图,OP平分∠MON,PA⊥ON于点A,点Q是射线OM上的一个动点,若PA=2,则PQ的最小值为().A.1B.2C.3D.4例3.如图,已知点P是∠AOB角平分线上的一点,∠AOB=60°,PD⊥OA,M是OP的中点,DM=4cm,如果点C是OB上一个动点,则PC的最小值为()A.2B.2C.4D.4角平分线的性质在几何问题中的应用知识讲解角平分线的性质为几何计算、证明题提供线段相等的条件,所以一般在题目中出现角平分线且有垂直条件出现时,常会考虑到角平分线的性质.例题精讲角平分线的性质在几何问题中的应用例1.如图,在△ABC中,∠ABC,∠ACB的平分线交于点O,点O到BC边的距离为3,且△ABC 的周长为20,则△ABC的面积为.例2.'如图所示,在Rt△ABC中,∠C=90°,AC=BC,AD是∠BAC的平分线,DE⊥AB,垂足为E.求证:△DBE的周长等于AB.'例3.'如图①,在△ABC中,∠BAC=90°,AB=AC,直线l经过点A,且BD⊥l于的D,CE⊥l于的E.(1)求证:BD+CE=DE;(2)当变换到如图②所示的位置时,试探究BD、CE、DE的数量关系,请说明理由.'角平分线的判定知识讲解1.角平分线的判定:角的内部到角的两边的距离相等的点在角的平分线上.注意:①这是判定角平分线的一个标准判定方法;②如果强调了“在角的内部”,则满足判定条件的线是唯一的,尤其是在三角形中;如果没有强调“在角的内部”,则满足判定条件的线不唯一.例题精讲角平分线的判定例1.如图,在CD上求一点P,使它到OA,OB的距离相等,则P点是().A.线段CD的中点B.OA与OB的中垂线的交点C.OA与CD的中垂线的交点D.CD与∠AOB的平分线的交点例2.'已知:如图,P是OC上一点,PD⊥OA于D,PE⊥OB于E,F、G分别是OA、OB上的点,且PF=PG,DF=EG.求证:OC是∠AOB的平分线.'例3.'如图,BE=CF,DE⊥AB的延长线于点E,DF⊥AC于点F,且DB=DC,求证:AD是∠EAC的平分线.'角平分线在选址问题中的应用知识讲解对于选址问题,要能够将实际问题抽象成数学问题,到线性实体的距离相等即等价于到点到线的距离相等,这就是典型的对角平分线的判定方法的考查.例题精讲角平分线在选址问题中的应用例1.三条直线l1,l2,l3相互交叉,交点分别为A,B,C,在平面内找一个点,使它到三条直线的距离相等,则这样的点共有().A.一个B.两个C.三个D.四个例2.A、B、C表示三个小城,相互之间有公路相连,现要建一个货物中转站,要求它到三条公路的距离相等,则可供选择的地址可以是()A.三边中线的交点处B.三条角平分线的交点处C.三边上高的交点处D.三边的中垂线的交点处角平分线性质和判定的综合应用知识讲解根据角平分线的定义和性质可知,角平分线不仅能提供角的关系,还能提供边的关系:①角平分线将一个大角分成相等的两个小角;②角平分线上的点到角的两边距离相等.角平分线在几何计算和证明中被利用的频率比较高.例题精讲角平分线性质和判定的综合应用例1.如图,点E是BC的中点,AB⊥BC,DC⊥BC,AE平分∠BAD,下列结论:①∠AED=90°②∠ADE=∠CDE ③DE=BE ④AD=AB+CD,四个结论中成立的是()A.①②④B.①②③C.②③④D.①③例2.如图,BF、CF分别是∠DBC和∠ECB的角平分线,则关于F的说法不正确的是()A.F到△ABC三边所在直线的距离相等B.F在∠A的平分线上C.F到△ABC三顶点的距离相等D.F到BD、CE的距离相等例3.'如图,四边形ABDC中,∠D=∠ABD=90°,点O为BD的中点,且OA平分∠BAC.(1)求证:OC平分∠ACD;(2)求证:OA⊥OC;(3)求证:AB+CD=AC.'角平分线性质模型知识讲解利用角平分线的性质构造辅助线,其最终的模型如下图:例题精讲角平分线性质模型例1.'如图,已知∠1=∠2,P为BN上的一点,PF⊥BC于F,PA=PC.求证:∠PCB+∠BAP=180°.'例2.'四边形ABCD中,AC平分∠BAD,CE⊥AB于E,∠ADC+∠B=180°.求证:2AE=AB+AD.'例3.'在△ABC中,AD、CE分别是∠BAC、∠BCA的平分线,AD、CE相交于点F.(1)①如图(1),当∠B=60°,∠ACB=90°,则∠AFC=;②如图(2),如果∠ACB不是直角,∠B=60°时,请问在①中所得的结论是否仍然成立?若成立,请证明;若不成立,请说明理由.(2)如图(3),在②的条件下,请猜想EF与DF的数量关系,并证明你的猜想.'角平分线的对称模型知识讲解在利用角平分线的对称特点添加辅助线类的题目,常会与下一节要讲的截长补短的结构相关,所以在分析题目时,有时候可以从多个角度入手,拓展解题思路.例题精讲角平分线的对称模型例1.'已知,如图,△ABC中,∠BAC=60°,AD平分∠BAC,AC=AB+BD,求∠B的度数.'例2.'已知在△ABC中,∠ABC=60°,AD、CE分别平分∠BAC、∠ACB,AD、CE交于点O.(1)如图1,若∠BAC=60°,求证:AC=AE+CD;(2)如图2,若∠BAC≠60°,(1)中的结论是否发生变化,请说明理由.'例3.'在△ABC中,∠A=60°,BE,CF分别是∠ABC和∠ACB的平分线,CF与BE相交于点O.(1)如图1,若∠ACB=90°,求证:BF+CE=BC;(2)如图2,若∠ABC与∠ACB是任意角度,(1)中的结论是否仍成立?请说明理由.'当堂练习单选题练习1.某地为了发展旅游业,要在三条公路围成的一块平地上修建一个度假村,使度假村到三条公路的距离相等,这个度假村的选址地点共有()处.练习2.如图,BF、CF分别是∠DBC和∠ECB的角平分线,则关于F的说法不正确的是()A.F到△ABC三边所在直线的距离相等B.F在∠A的平分线上C.F到△ABC三顶点的距离相等D.F到BD、CE的距离相等练习3.观察图中尺规作图痕迹,下列说法错误的是()A.OE是∠AOB的平分线B.OC=ODC.点C、D到OE的距离不相等D.∠AOE=∠BOE练习4.如图,在△ABC中,AD是角平分线,DE⊥AB于点E,△ABC的面积为15,AB=6,DE=3,则AC的长是()练习5.如图,OP平分∠MON,PA⊥OA于点A,点Q是射线OM上的一个动点,若PA=2,则PQ的值为()A.1B.2C.大于2 D.不小于2练习6.如图,已知点P是∠AOB角平分线上的一点,∠AOB=60°,PD⊥OA,M是OP的中点,DM=4cm,如果点C是OB上一个动点,则PC的最小值为()A.2B.2C.4D.4练习7.A、B、C表示三个小城,相互之间有公路相连,现要建一个货物中转站,要求它到三条公路的距离相等,则可供选择的地址可以是()A.三边中线的交点处B.三条角平分线的交点处C.三边上高的交点处D.三边的中垂线的交点处练习8.如图,AB⊥AC,AG⊥BG,CD、BE分别是∠ACB,∠ABC的角平分线,AG∥BC,下列结论:①∠BAG=2∠ABF;②BA平分∠CBG;③∠ABG=∠ACB;④∠CFB=135°、其中正确的结论是()A.①③B.②④C.①③④D.①②③④练习9.如图,AD是△ABC的角平分线,DE⊥AB,垂足为E,S△ABC=8,DE=2,AB=5,则AC长是()A.6B.5C.4D.3填空题练习1.在△ABC中,∠BAC=120°,AB=AC,∠ACB的平分线交AB于D,AE平分∠BAC交BC于E,连接DE,DF⊥BC于F,则∠EDC=°.解答题练习1.'如图,BE=CF,DE⊥AB的延长线于点E,DF⊥AC于点F,且DB=DC,求证:AD是∠EAC的平分线.'练习2.'已知在△ABC中,∠ABC=60°,AD、CE分别平分∠BAC、∠ACB,AD、CE交于点O.(1)如图1,若∠BAC=60°,求证:AC=AE+CD;(2)如图2,若∠BAC≠60°,(1)中的结论是否发生变化,请说明理由.'练习3.'观察、猜想、探究:在△ABC中,∠ACB=2∠B.(1)如图①,当∠C=90°,AD为∠BAC的角平分线时,求证:AB=AC+CD;(2)如图②,当∠C≠90°,AD为∠BAC的角平分线时,线段AB、AC、CD又有怎样的数量关系?不需要证明,请直接写出你的猜想;(3)如图③,当AD为△ABC的外角平分线时,线段AB、AC、CD又有怎样的数量关系?请写出你的猜想,并对你的猜想给予证明.'练习4.'如图,在△ABC中,D是BC的中点,DE⊥AB,DF⊥AC,垂足分别是E,F,BE=CF.求证:AD是△ABC的角平分线.'练习5.'如图,已知∠1=∠2,P为BN上的一点,PF⊥BC于F,PA=PC.求证:∠PCB+∠BAP=180°.'练习6.'如图,在四边形ABCD中,BC>BA,AD=CD,BD平分∠ABC,求证:∠A+∠C=180°.'练习7.'如图,在△ABC中,D为AB的中点,F为BC上一点,DF∥AC,延长FD至E,且DE=DF,联结AE、AF.(1)求证:∠E=∠C;(2)如果DF平分∠AFB,求证:AC⊥AB.'。
角平分线的性质课件
角平分线定理也被广泛应用于实际生活中,如建筑设计、机械制造和测 量等领域。
角平分线定理的应用在其他学科领域中的体现
在经济学中,角平分线定理可以用于研究市场结构和 市场份额。
在物理学中,角平分线定理可以用于研究物体的运动 轨迹和受力分析。
CHAPTER
角平分线的历史背景和起源
角平分线的起源可以追溯到古代 数学和几何学的研究。
在古埃及和古希腊时期,角平分 线被用于解决几何问题,如土地
测量和建筑。
中世纪欧洲数学家进一步研究了 角平分线,将其与三角形的其他
性质联
角平分线是数学中的一个基本概念,是几何学中的重要定理之一。
02 角平分线的定义与性质
CHAPTER
角平分线的定义
角平分线是一条射线,它把一个角分 成两个相等的部分。
角平分线用符号“”表示,如“”表 示角平分线。
角平分线的性质定理
角平分线将角的两边分为等长 线段。
在角平分线上的点到角的两边 的距离相等。
在角的内部,到角的两边距离 相等的点一定在角平分线上。
角平分线的性质解决实际问题。
对后续学习的建议和展望
加强对角平分线性质的应用练习,通过更多的实际案例和应用实践提高自己的应用能力。 加强与角平分线相关的其他几何性质的学习和研究,为后续的学习和实践打下坚实的基础。
通过参加数学竞赛、学术交流等活动,提高自己的数学素养和应用能力。
谢谢
THANKS
面积等。
03
利用角平分线定理解决立体几何问题
在立体几何中,角平分线定理可以用来解决一些与角度、距离相关的问
题。
04 角平分线在三角函数中的应用
角平分线的原理及应用
角平分线的原理及应用角平分线的原理及应用1. 介绍角平分线的概念和定义角平分线是指将一个角分成两个相等的角的直线。
具体来说,对于一个角ABC,如果有一条线段AD,且AD等于BD,那么AD就是角ABC的平分线。
角平分线可以通过作图和计算来确定,它从角的顶点向角的两边延伸。
2. 角平分线的原理与性质角平分线有一些重要的原理和性质,下面将逐一介绍。
2.1 角平分线将角分成相等的两个角根据角平分线的定义,角平分线将一个角分成两个相等的角。
这是角平分线的基本性质之一。
2.2 角平分线与角的两边相交于角的顶点角平分线与角的两边相交于角的顶点。
这是角平分线的另一个重要性质。
具体来说,如果一条线段与角的两边相交于角的顶点,并且将这个角分成两个相等的角,那么这条线段就是角的平分线。
2.3 角平分线对称地分割角的两边角平分线将角的两边对称地分割成相等的线段。
也就是说,将角的两边上的点与角的顶点连线后,由角平分线分割的两个线段的长度相等。
3. 角平分线的一些常见应用3.1 三角形内部角平分线定理在一个三角形中,如果一条线段从一个角的顶点出发,并且平分了这个角,那么这条线段分割了相对应的边,并且这些分割线段的比值等于相邻两边的比值。
这个定理可以用于解决一些与三角形有关的问题。
3.2 角平分线判定角的大小关系通过角平分线可以判断两个角的大小关系。
如果两个角的平分线相交且交点在角的内部,那么这两个角的大小关系可以根据平分线分割角的两边的长度来确定,长度较长的一边对应的角较大。
3.3 三角形外角平分线定理在一个三角形中,如果从三角形的一个外角作出一条平分线,那么这条平分线将另外两个内角分割成相等的角。
这个定理可以应用于解决一些与三角形外角有关的问题。
总结回顾:角平分线是将一个角分成相等的两个角的直线。
它具有多个重要性质,如:将角分成相等的两个角、与角的两边相交于角的顶点等。
角平分线可以运用于三角形内部角平分线定理、判定角的大小关系以及三角形外角平分线定理等问题的求解。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
或:∵ ∠1= ∠2,
O
PD ⊥ OA, PE ⊥ OB
∴PD=PE(角平分线的性质)
A D
1
P
2
C
E B
.精品课件.
8
A 例:已知:如图,△ABC中
∠C=90°,AD是△ABC的角平
分线,DE⊥AB于E,F在AC上
BD=DF,求证:CF=EB。
F
E
证明: ∵ AD平分∠CAB
CD B
DE⊥AB,∠C=90°(已知)
2.分别以M,N为 圆心.大于 1/2 MN的长 为半径作弧.两弧在∠A OB的内部交于C.
A
M C
B
N
3.作射线OC.
射线OC即为所求.
.精品课件.
O
4
解决问题
如图,要在S区建一个贸易市场,使它到 铁路和公路距离相等,这个集贸市场应建在 何处
公路
铁路
S
.精品课件.
5
1、怎样画一个已知角的角平分线
A
P
B
D
C
.精品课件.
13
课堂 小结
回味无穷
性质 角平分线上的点到这
个角的两边距离相等.
几何语言:
∵OC是∠AOB的平分线, P是OC上任意一点
O
PD⊥OA,PE⊥OB,垂足分别是D,E(
已知)
∴PD=PE(角平分线上的点到这个角
的两边距离相等).
A
D
1
PC
2
EB
.精品课件.
14
课本:习题11.3 第5题
画一个∠AOB,用尺规作出∠AOB的平分线OP, 过P作PD ⊥ OA,PE ⊥ OB 问题:①比较PD和PE 的大小关系(量一量)。
PD=PE ②再换一个新的位置看看情况会怎样?
A
D C
P
(2)猜想: 角的平分线上的 点到角的两边的距离相等.
O
EB
.精品课件.
6
2、验证猜想:角的平分线上的点到角的两边的距离相等.
是E,F.求证:EB=FC.
A
◆证明: ∵AD平分∠CAB
E
F
DE⊥AB ,DF⊥AC(已知)
∴DE=DF (角平分线的性质) B 在Rt△BED和Rt△CFD中,
D
C
BD=CD (已证)
DE=DF (已知)
∴ Rt△ BED ≌Rt△CFD (HL)
∴ BE=FC (全等三角形对应边相等)
.精品课件.
解:过E作EN⊥OA垂足为N
B M
∵ E是∠AOB的角平分线上的一点, EM⊥OB,
EN⊥OA,
E
C
∴EM=EN 又∵ EM=3cm,
O
NA
∴EN=3cm
即点E 到OA的距离为3cm。
.精品课件.
12
练习3:如图,四边形ABCD中AB=AD, AB⊥BC,AD⊥CD,P是对角线AC上一点, 求证:PB=PC.
E
C
∴EM=EN 又∵ EM=3cm,
O
NA
∴EN=3cm
即点E 到OA的距离为3cm。
.精品课件.
11
练习:如图,E是∠AOB的角平分线OC上的 一点, EM⊥OB垂足为M,且EM=3cm,求 点E 到OA的距离
分析:点E 到OA的距离是过点E作OA的垂线段,再根据角的平
分线的性质,可知点E到OA的距离。
角平分线的性质及应用
驶向胜利的彼岸
.精品课件.
1
旧知回顾
角的平分线的定义是什么?
.精品课件.
2
旧知回顾
已知一个角你会将它平分吗?说一说,你 有哪些方法?有没有既简单又准确的方法。
A
O
B
.精品课件.
3
1、怎样画一个已知角的角平分线
画法:
1.以O为圆心,适当 长为半径作弧,交OA于M, 交OBN于.
10
练习2:如图,E是∠AOB的角平分线OC上 的一点, EM⊥OB垂足为M,且EM=3cm, 求点E 到OA的距离
分析:点E 到OA的距离是过点E作OA的垂线段,再根据角的平
分线的性质,可知点E到OA的距离。
解:过E作EN⊥OA垂足为N
B M
∵ E是∠AOB的角平分线上的一点, EM⊥OB,
EN⊥OA,
已知:“一个点在一个角的平分线上”。
结论:“这个点到这个角两边得距离相等”
已知:如图,OC平分∠AOB,点P在OC上,PD⊥OA于点D,PE⊥OB于
点E
求证: PD=PE 证明:∵OC平分∠ AOB (已知)
A
D
1
C P
2
O
EB
∴ ∠1= ∠2(角平分线的定义) ∵PD ⊥ OA,PE ⊥ OB(已知) ∴ ∠PDO= ∠PEO(垂直的定义) 在△PDO和△PEO中
∠PDO= ∠PEO(已证) ∠1= ∠2 (已证)
OP=OP (公共边)
∴ △PDO ≌ △PEO(AAS)
∴.P精D品课=件P.E(全等三角形的对应边相7等)
3、角的平分线的性质:
角的平分线上的点到角的两边的距离相等
用数学语言表述:
∵ OC是∠AOB的平分线
PD⊥OA,PE⊥OB
∴ PD=PE
.精品课件.
15
∴ CD=DE (角平分线的性质)
在Rt△CDF和Rt△EDB中,
CD=DE (已证)
DF=DB (已知)
∴ Rt△CDF≌Rt△EDB (HL)
∴ CF=EB (全等三角形对应边相等)
.精品课件.
9
练习1:已知:如图,在△ABC中,AD是它的角
平分线,且BD=CD,DE⊥AB,DF⊥AC,垂足分别