高中数学选修2-2 1.7定积分的简单应用
【全程复习方略】2014-2015学年高中数学 1.7.1 定积分在几何中的应用课件 新人教A版选修2-2
排除A;当阴影有在x轴上方也有在x轴下方时,a f(x)dx是两
面积之差,排除B;无论什么情况C都对,故应选C.
b
【误区警示】曲线f(x)与直线x=a,x=b,y=0围成图形的面积 不能均用 f(x)dx表示,要根据图形位置分不同情况选用适当
a b
的积分值表示.
【补偿训练】过原点的直线l与抛物线y=x2-2ax(a>0)所围成的 图形面积为 9 a3,则直线l的方程为(
【方法技巧】求函数图象围成平面图形面积的方法 (1)画出两个函数的图象,先将两个函数方程联立方程组求解, 得到函数图象的交点的横坐标a,b(a<b),确定积分区间[a, b]. (2)在公共的积分区间上,由上界函数减去下界函数作为被积
函数,定积分的值就等于两个函数图象围成平面图形的面积,
即S= [f1(x)-f2(x)]dx(其中f1(x)>f2(x)).
(2-x)dx.
1 2
2
(3)正确,曲线y=3-x2与直线y=-1的交点为(-2,-1),
(2,-1),所以围成的图形面积为 2[(3-x2)-(-1)]dx=
2
2
(4-x2)dx. (2)√ (3)√
答案:(1)×
2.做一做(请把正确的答案写在横线上)
(1)如图中阴影部分的面积是____________.
b
1.判一判 (正确的打“√”,错误的打“×”) (1)曲线y=sin x,x∈[ , ],与x轴围成的图形的面积为
3 2 2
3 2 2
sin xdx.(
)
1 0
(2)曲线y=x3与直线x+y=2,y=0围成的图形面积为 x3dx+
2020年人教版A版数学选修2-2全册完整讲义学案(教师用书)
第一章导数及其应用§1.1变化率与导数§1.1.1变化率问题§1.1.2导数的概念§1.1.3导数的几何意义§1.2导数的计算§1.2.1几个常用函数的导数§1.2.2基本初等函数的导数公式及导数的运算法则(一) §1.2.2基本初等函数的导数公式及导数的运算法则(二) §1.3导数在研究函数中的应用§1.3.1函数的单调性与导数§1.3.2函数的极值与导数§1.3.3函数的最大(小)值与导数§1.4生活中的优化问题举例§1.5定积分的概念§1.5.1曲边梯形的面积§1.5.2汽车行驶的路程§1.5.3定积分的概念§1.6微积分基本定理§1.7定积分的简单应用§1.7.1定积分在几何中的应用§1.7.2定积分在物理中的应用章末整合提升章末达标测试第二章推理与证明§2.1合情推理与演绎推理§2.1.1合情推理§2.1.2演绎推理§2.2直接证明与间接证明§2.2.1综合法和分析法§2.2.2反证法§2.3数学归纳法章末整合提升章末达标测试第三章数系的扩充与复数的引入§3.1数系的扩充和复数的概念§3.1.1数系的扩充和复数的概念§3.1.2复数的几何意义§3.2复数代数形式的四则运算§3.2.1复数代数形式的加、减运算及其几何意义§3.2.2复数代数形式的乘除运算章末整合提升章末达标测试模块综合检测§1.1 变化率与导数§1.1.1 变化率问题 §1.1.2 导数的概念[课标要求]1.通过实例分析,经历由平均变化率过渡到瞬时变化率的过程,了解导数概念的实际背景.(难点) 2.会求函数在某一点附近的平均变化率.(重点)3.会利用导数的定义求函数在某点处的导数.(重点、难点)一、函数平均变化率如果函数关系用y =f (x )表示,那么变化率可用式子f (x 2)-f (x 1)x 2-x 1表示,我们把这个式子称为函数y =f (x )从x 1到x 2的平均变化率.习惯上用Δx 表示x 2-x 1,即Δx =x 2-x 1,可把Δx 看作是相对于x 1的一个“增量”,可用x 1+Δx 代替x 2;类似地,Δy =f (x 2)-f (x 1).于是平均变化率可以表示为Δy Δx. 二、导数的有关概念 1.瞬时变化率函数y =f (x )在x =x 0处的瞬时变化率是f (x 0+Δx )-f (x 0)Δx =ΔyΔx. 2.函数y =f (x )在x =x 0处的导数函数y =f (x )在x =x 0处的瞬时变化率称为函数y =f (x )在x =x 0处的导数,记作,即f ′(x 0)=ΔyΔx=f (x 0+Δx )-f (x 0)Δx.知识点一 平均变化率 【问题1】 气球的膨胀率 阅读教材,思考下面的问题.吹一只气球,观察一下吹气球的过程,可以发现,随着气球内空气容量的增加,气球的半径增加得越来越慢.从数学的角度,如何描述这种现象呢?答案 气球的半径r (单位:dm)与体积V (单位:L)之间的函数关系是r (V )=33V4π, (1)当空气容量V 从0增加到1 L 时,气球半径增加了r (1)-r (0)≈0.62(dm), 气球的平均膨胀率为r (1)-r (0)1-0≈0.62(dm/L).(2)当空气容量V 从1 L 增加到2 L 时,气球半径增加了r (2)-r (1)≈0.16(dm), 气球的平均膨胀率为r (2)-r (1)2-1≈0.16(dm/L).可以看出,随着气球体积逐渐变大,它的平均膨胀率逐渐变小了. 【问题2】 高台跳水人们发现,在高台跳水运动中,运动员相对于水面的高度h (单位:m)与起跳后的时间t (单位:s)存在函数关系h (t )=-4.9t 2+6.5t +10.计算运动员在时间段①0≤t ≤0.5,②1≤t ≤2内的平均速度v ,并思考平均速度有什么作用? 答案 (1)在0≤t ≤0.5这段时间里,v =h (0.5)-h (0)0.5-0=4.05(m/s);(2)在1≤t ≤2这段时间里,v =h (2)-h (1)2-1=-8.2(m/s).由以上计算体会到平均速度可以描述运动员在某段时间内运动的快慢. 【问题3】 结合问题1和问题2说出你对平均变化率的理解.答案 (1)如果上述两个问题中的函数关系用y =f (x )表示,那么问题1中的变化率可用式子f (x 2)-f (x 1)x 2-x 1表示,我们把这个式子称为函数y =f (x )从x 1到x 2的平均变化率,平均变化率可以描述一个函数在某个范围内变化的快慢.问题1中的平均变化率表示在空气容量从V 1增加到V 2时,气球半径的平均增长率.问题2中的平均变化率表示在时间从t 1增加到t 2时,高度h 的平均增长率.(2)平均变化率的几何意义就是函数y =f (x )图象上两点P 1(x 1,f (x 1)),P 2(x 2,f (x 2))所在直线的斜率. (3)平均变化率的取值①平均变化率可以表现函数的变化趋势,平均变化率为0,并不一定说明函数f (x )没有发生变化.②自变量的改变量Δx 取值越小,越能准确体现函数的变化规律. (4)平均变化率的物理意义平均变化率的物理意义是把位移s 看成时间t 的函数s =s (t ),在时间段[t 1,t 2]上的平均速度,即v =s (t 2)-s (t 1)t 2-t 1.知识点二 函数在某点处的导数【问题1】 (1)物体的平均速度能否精确反映它的运动状态? (2)什么叫做瞬时速度? (3)它与平均速度有什么关系?答案 (1)物体的平均速度不能精确地反映物体的运动状态,如高台跳水运动员相对于水面的高度h 与起跳时间t 的函数关系h (t )=-4.9t 2+6.5t +10,易知h (6549)=h (0),v =h (6549)-h (0)6546-0=0,而运动员依然是运动状态.(2)设物体运动的路程与时间的关系是s =f (t ),当Δt 趋近于0时,函数f (t )在t 0到t 0+Δt 之间的平均变化率f (t 0+Δt )-f (t 0)Δt趋近于常数,我们把这个常数称为t 0时刻的瞬时速度.(3)平均速度只能粗略地描述物体的运动状态,并不能反映物体在某一时刻的瞬时速度.当时间间隔|Δt |趋近于0时,平均速度v 就无限趋近于t 0时的瞬时速度.【问题2】 平均变化率与瞬时变化率有什么关系?答案 (1)区别:平均变化率不是瞬时变化率.平均变化率刻画函数值在区间[x 1,x 2]上变化的快慢,瞬时变化率刻画函数值在x 0点处变化的快慢.(2)联系:当Δx 趋近于0时,平均变化率ΔyΔx 趋近于一个常数,这个常数即为函数在x 0处的瞬时变化率,它是一个固定值.【问题3】 导数与瞬时变化率有什么关系? 答案 导数与瞬时变化率的关系导数是函数在x 0及其附近函数的改变量Δy 与自变量的改变量Δx 之比在Δx 趋近于0时所趋近的数,它是一个局部性的概念,若ΔyΔx存在,则函数y =f (x )在x 0处有导数,否则不存在导数.可以说导数就是函数在某点处的导数,例如,位移s 关于时间t 的导数就是运动物体在某时刻的瞬时速度.题型一 求函数的平均变化率求函数f (x )=x 2在x 0到x 0+Δx 之间的平均变化率. 【解析】 函数f (x )=x 2在x 0到x 0+Δx 的平均变化率为 f (x 0+Δx )-f (x 0)Δx =(x 0+Δx )2-x 20Δx=x 20+2x 0Δx +(Δx )2-x 2Δx=2x 0·Δx +(Δx )2Δx =2x 0+Δx .●规律方法求函数y =f (x )平均变化率的步骤(1)先计算函数值的改变量Δy =f (x 2)-f (x 1). (2)再计算自变量的改变量Δx =x 2-x 1. (3)得平均变化率Δy Δx =f (x 2)-f (x 1)x 2-x 1.[特别提醒](1)求函数平均变化率时注意Δx ,Δy ,两者都可正、可负,但Δx 的值不能为零,Δy 的值可以为零. (2)求点x 0附近的平均变化率,可用f (x 0+Δx )-f (x 0)Δx的形式.1.若本例中,Δx =13,x 0=1,2,3,比较函数f (x )=x 2在哪一点附近的平均变化率最大?解析 x 0=1到x =1+13=43的平均变化率k 1=f ⎝⎛⎭⎫43-f (1)13=⎝⎛⎭⎫432-1213=73, x 0=2到x =73的平均变化率k 2=f ⎝⎛⎭⎫73-f (2)13=⎝⎛⎭⎫732-2213=133,x 0=3到x =103的平均变化率k 3=f ⎝⎛⎭⎫103-f (3)13=⎝⎛⎭⎫1032-3213=193,由于k 1<k 2<k 3,∴函数f (x )=x 2在x 0=3附近的平均变化率最大. 题型二 物体运动的瞬时速度物体自由落体的运动方程是s =12gt 2(g =9.8 m/s 2),求物体在t =3 s 这一时刻的速度.【解析】 平均速度Δs Δt =12g (3+Δt )2-12g ×32Δt=12g (6+Δt ). 当Δt 趋于0时,Δs Δt =12g (6+Δt )趋于3g ,所以v =3g =29.4(m/s),即物体在t =3 s 时的速度为29.4 m/s.●规律方法求运动物体瞬时速度的步骤(1)求时间改变量Δt 和位置改变量Δs =s (t 0+Δt )-s (t 0). (2)求平均速度v =ΔsΔt.(3)求瞬时速度:当Δt 无限趋近于0,ΔsΔt 无限趋近于的常数v 即为瞬时速度.提示 求ΔyΔx (当Δx 无限趋近于0时)的极限的方法(1)在极限表达式中,可把Δx 作为一个变量来参与运算.(2)求出ΔyΔx的表达式后,Δx 无限趋近于0就是令Δx =0,求出结果即可.2.一辆汽车按规律s =2t 2+3做直线运动,求这辆车在t =2时的瞬时速度(时间单位:s ,位移单位:m). 解析 设这辆车在t =2附近的时间变化量为Δt ,则位移的增量Δs =[2(2+Δt )2+3]-(2×22+3)=8Δt +2(Δt)2,ΔsΔt=8+2Δt,ΔsΔt=(8+2Δt)=8.所以,这辆车在t=2时的瞬时速度为8 m/s.题型三求函数在某点处的导数(6分)求函数y=x-1x在x=1处的导数.【规范解答】因为Δy=(1+Δx)-11+Δx-(1-11)=Δx+Δx1+Δx,(2分)所以ΔyΔx=Δx+Δx1+ΔxΔx=1+11+Δx.(4分)当Δx→0时,f′(1)=ΔyΔx=(1+11+Δx)=2,即函数y=x-1x在x=1处的导数为2.(6分)●规律方法求函数y=f(x)在x=x0处的导数的步骤(1)求函数值的变化量Δy=f(x0+Δx)-f(x0);(2)求平均变化率ΔyΔx=f(x0+Δx)-f(x0)Δx;(3)取极限,得导数f′(x0)=ΔyΔx.3.利用导数的定义求函数f(x)=-x2+3x在x=2处的导数.解析由导数的定义知,函数在x=2处的导数f′(2)=f(2+Δx)-f(2)Δx,而f(2+Δx)-f(2)=-(2+Δx)2+3(2+Δx)-(-22+3×2)=-(Δx)2-Δx,于是f′(2)=-(Δx)2-ΔxΔx=(-Δx-1)=-1.易错误区(一) 对导数的概念理解不清致误若函数f (x )在x =a 的导数为m ,那么 f (a +2Δx )-f (a -2Δx )Δx 的值为________.【解析】f (a +2Δx )-f (a -2Δx )Δx=f (a +2Δx )-f (a )+f (a )-f (a -2Δx )Δx=f (a +2Δx )-f (a )Δx +f (a )-f (a -2Δx )Δx ①=2f (a +2Δx )-f (a )2Δx+2f (a -2Δx )-f (a )-2Δx=2m +2m =4m . 【答案】 4m [易错防范]1.误认为①处两极限值均为m ,即运算结果为2m .2.对平均变化率中自变量的增加量“Δx ”理解不当.在平均变化率f (x 0+Δx )-f (x 0)Δx 中,分子中的“Δx ”与分母中的“Δx ”应取相同值,且可正可负.3.熟记瞬时变化率(即导数)的几种变形形式f (x 0+Δx )-f (x 0)Δx=f (x 0-Δx )-f (x 0)-Δx=f (x 0+n Δx )-f (x 0)n Δx=f (x 0+Δx )-f (x 0-Δx )2Δx=f ′(x 0).若f ′(1)=2 016,则f (1+Δx )-f (1)-2Δx=________.解析f (1+Δx )-f (1)-2Δx=-12f (1+Δx )-f (1)Δx=-12f ′(1)=-12×2 016=-1 008.答案 -1 008[限时50分钟,满分80分]一、选择题(每小题5分,共30分)1.质点运动规律s =2t 2+5,则在时间(2,2+Δt )中,相应的平均速度等于 A .8+2Δt B .8+2Δt +4ΔtC .4+ΔtD .8+Δt解析 Δs =s (2+Δt )-s (2)=2(2+Δt )2+5-(2×22+5)=2(Δt )2+8Δt . ∴Δs Δt =2(Δt )2+8Δt Δt =8+2Δt . 答案 A2.函数y =x 2-2x 在x =2附近的平均变化率是 A .2B .ΔxC .Δx +2D .1解析 Δy =f (2+Δx )-f (2) =(2+Δx )2-2(2+Δx )-(4-4) =(Δx )2+2Δx ,∴Δy Δx =(Δx )2+2Δx Δx=Δx +2.答案 C3.设函数y =f (x )可导,则f (1+3Δx )-f (1)Δx 等于 A .f ′(1)B .3f ′(1) C.13f ′(1) D .以上都不对 解析 f (1+3Δx )-f (1)Δx=3f (1+3Δx )-f (1)3Δx =3f ′(1). 答案 B4.一个物体的运动方程为s =(2t +1)2,其中s 的单位是米,t 的单位是秒,那么该物体在1秒末的瞬时速度是A .10米/秒B .8米/秒C .12米/秒D .6米/秒解析 ∵s =4t 2+4t +1,Δs =[4(1+Δt )2+4(1+Δt )+1]-(4×12+4×1+1)=4(Δt )2+12Δt ,Δs Δt =4(Δt )2+12Δt Δt=4Δt +12, ∴v =Δs Δt =(4Δt +12)=12(米/秒). 答案 C5.如果函数y =f (x )=x 在点x =x 0处的瞬时变化率是33,那么x 0的值是 A.34B.12 C .1D .3解析 函数f (x )=x 在x =x 0处的瞬时变化率,f ′(x 0)=x 0+Δx -x 0Δx =Δx Δx (x 0+Δx +x 0)=12x 0=33,答案 A 6.某物体做直线运动,其运动规律是s =t 2+16t(t 的单位是秒,s 的单位是米),则它的瞬时速度为0米/秒的时刻为A .8秒末B .6秒末C .4秒末D .2秒末解析 设当t =t 0时该物体瞬时速度为0米/秒,∵Δs Δt =(t 0+Δt )2+16t 0+Δt -⎝⎛⎭⎫t 20+16t 0Δt =2t 0+Δt -16(t 0+Δt )t 0, ∴Δs Δt=2t 0-16t 20, 由2t 0-16t 20=0得t 0=2. 答案 D二、填空题(每小题5分,共15分)7.函数y =-3x 2+6在区间[1,1+Δx ]内的平均变化率是________.解析 Δy Δx =[-3(1+Δx )2+6]-(-3×12+6)Δx=-6Δx -3(Δx )2Δx=-6-3Δx . 答案 -6-3Δx8.一质点的运动方程为s =1t,则t =3时的瞬时速度为________. 解析 由导数定义及导数的物理意义知s ′=1t +Δt -1t Δt=-Δt (t +Δt )·t ·Δt =-1t 2+t ·Δt =-1t 2, ∴s ′ |t =3=-19,即t =3时的瞬时速度为-19.9.已知曲线y =1x -1上两点A ⎝⎛⎭⎫2,-12、B ⎝⎛⎭⎫2+Δx ,-12+Δy ,当Δx =1时,割线AB 的斜率为________. 解析 Δy =⎝ ⎛⎭⎪⎫12+Δx -1-⎝⎛⎭⎫12-1 =12+Δx -12=2-(2+Δx )2(2+Δx )=-Δx 2(2+Δx ). ∴Δy Δx =-Δx2(2+Δx )Δx =-12(2+Δx ), 即k =Δy Δx =-12(2+Δx ). ∴当Δx =1时,k =-12×(2+1)=-16. 答案 -16三、解答题(本大题共3小题,共35分)10.(10分)一做直线运动的物体,其位移s 与时间t 的关系是s =3t -t 2.(1)求此物体的初速度;(2)求此物体在t =2时的瞬时速度;(3)求t =0到t =2的平均速度.解析 (1)v 0=s (Δt )-s (0)Δt=3Δt -(Δt )2Δt=(3-Δt )=3. (2)v 2=s (2+Δt )-s (2)Δt =(-Δt -1)=-1.(3)v -=s (2)-s (0)2=6-4-02=1. 11.(12分)已知f (x )=x 2,g (x )=x 3,求适合f ′(x 0)+2=g ′(x 0)的x 0值.解析 由导数的定义知,f ′(x 0)=Δf Δx =(x 0+Δx )2-x 20Δx =2x 0,g ′(x 0)=Δg Δx =(x 0+Δx )3-x 30Δx=3x 20. 因为f ′(x 0)+2=g ′(x 0),所以2x 0+2=3x 20,即3x 20-2x 0-2=0,解得x 0=1-73或x 0=1+73.12.(13分)节日期间燃放烟花是中国的传统习惯之一,制造时通常希望它在达到最高点时爆裂.如果烟花距地面的高度h (m)与时间t (s)之间的关系式为h (t )=-4.9t 2+14.7t +18,求烟花在t =2 s 时的瞬时速度,并解释烟花升空后的运动状况.解析 因为Δh Δt =h (t +Δt )-h (t )Δt=-9.8t -4.9Δt +14.7, 所以h ′(t )=Δh Δt =(-9.8t -4.9Δt +14.7)=-9.8t +14.7,所以h ′(2)=-4.9,即在t =2 s 时烟花正以4.9 m/s 的速度下降.由h ′(t )=0得t =1.5,所以在t =1.5 s 附近,烟花运动的瞬时速度几乎为0,此时达到最高点并爆裂,在1.5 s 之前,导数大于0且递减,所以烟花以越来越小的速度上升,在1.5 s 之后,导数小于0且绝对值越来越大,所以烟花以越来越大的速度下降,直至落地.§1.1.3 导数的几何意义[课标要求]1.了解导函数的概念;理解导数的几何意义.(难点)2.会求导函数.(重点)3.根据导数的几何意义,会求曲线上某点处的切线方程.(重点、易错点)一、导数的几何意义1.切线:如图,当点P n (x n ,f (x n ))(n =1,2,3,4…)沿着曲线f (x )趋近于点P (x 0,f (x 0))时,割线PP n 趋近于确定的位置,这个确定位置的直线PT 称为点P 处的切线.显然割线PP n 的斜率是k n =f (x n )-f (x 0)x n -x 0,当点P n 无限趋近于点P 时,k n 无限趋近于切线PT 的斜率.2.几何意义:函数y =f (x )在x =x 0处的导数的几何意义是曲线y =f (x )在点P (x 0,f (x 0))处的切线的斜率,即曲线y =f (x )在点P (x 0,f (x 0))处的切线斜率k =f (x 0+Δx )-f (x 0)Δx=f ′(x 0).相应地,切线方程为y -f (x 0)=f ′(x 0)(x -x 0).二、函数y =f (x )的导函数从求函数f (x )在x =x 0处导数的过程可以看到,当x =x 0时,f ′(x 0)是一个确定的数.这样,当x 变化时, f ′(x )便是x 的一个函数,我们称它为f (x )的导函数(简称导数).y =f (x )的导函数有时也记作y ′,即f ′(x )=y ′=f (x +Δx )-f (x )Δx.知识点一 导数的几何意义【问题1】 曲线的切线是不是一定和曲线只有一个公共点?答案 不一定.曲线的切线和曲线不一定只有一个公共点,和曲线只有一个公共点的直线和曲线也不一定相切.如图,曲线的切线是通过逼近将割线趋于确定位置的直线.【问题2】 曲线f (x )在点(x 0,f (x 0))处的切线与曲线过某点(x 0,y 0)的切线有何不同?答案 曲线f (x )在点(x 0,f (x 0))处的切线,点(x 0,f (x 0))一定是切点,只要求出k =f ′(x 0),利用点斜式写出切线即可;而曲线f (x )过某点(x 0,y 0)的切线,给出的点(x 0,y 0)不一定在曲线上,即使在曲线上也不一定是切点.知识点二 导数与函数的单调性【问题1】 观察下面两个图形,在曲线的切点附近(Δx →0时)曲线与那一小段线段有何关系?答案 能在曲线的切点附近,曲线与切线贴合在一起,可用切线近似代替曲线.【问题2】 按照切线近似代替曲线的思想,切线的单调性能否表示曲线的变化趋势?如上左图,若在某一区间上曲线上各点的切线斜率均为负,则可判定在该区间上曲线的单调性如何?答案 在连续区间上切线斜率的正负,对应了曲线的单调性.【问题3】 如问题1中右图,当t 在(t 0,t 2)上变化时,其对应各点的导数值变化吗?会怎样变化? 答案 会.当t 变化时h ′(t )便是t 的一个函数,我们称它为h (t )的导函数.知识点三 函数y =f (x )的导函数【问题】 函数在某点处的导数与导函数有什么关系?答案 区别:(1)f ′(x )是函数f (x )的导函数,简称导数,是对一个区间而言的,它是一个确定的函数,依赖于函数本身,而与x 0,Δx 无关;(2)f ′(x 0)表示的是函数f (x )在x =x 0处的导数,是对一个点而言的,它是一个确定的值,与给定的函数及x 0的位置有关,而与Δx 无关.联系:在x =x 0处的导数f ′(x 0)是导函数f ′(x )在x =x 0处的函数值,因此求函数在某一点处的导数,一般先求导函数,再计算导函数在这点的函数值.题型一 求曲线的切线方程已知曲线y =13x 3上一点P ⎝⎛⎭⎫2,83,如图,求:(1)点P 处的切线的斜率;(2)点P 处的切线方程.【解析】 (1)∵y =13x 3, ∴y ′=Δy Δx =13(x +Δx )3-13x 3Δx =133x 2Δx +3x (Δx )2+(Δx )3Δx =13[3x 2+3x Δx +(Δx )2]=x 2, y ′|x =2=22=4.∴点P 处的切线的斜率等于4.(2)在点P 处的切线方程是y -83=4(x -2), 即12x -3y -16=0.●规律方法求曲线上某点处的切线方程的步骤(1)求出该点的坐标.(2)求出函数在该点处的导数,即曲线在该点处的切线的斜率.(3)利用点斜式写出切线方程.1.例1中的P 点换为坐标原点(0,0),其他不变,如何解答?解析 由例1知y =13x 3的导函数为y ′=x 2. (1)点P 处的切线斜率k =0.(2)在点P 处的切线方程是y -0=0×(x -0)即y =0.(注意:原点处的切线即x 轴,结合图象理解切线的定义)题型二 求切点坐标过曲线y =x 2上哪一点的切线满足下列条件?(1)平行于直线y =4x -5;(2)垂直于直线2x -6y +5=0;(3)倾斜角为135°.【解析】 f ′(x )=f (x +Δx )-f (x )Δx=(x +Δx )2-x 2Δx=2x , 设P (x 0,y 0)是满足条件的点.(1)∵切线与直线y =4x -5平行,∴2x 0=4,x 0=2,y 0=4,即P (2,4)是满足条件的点.(2)∵切线与直线2x -6y +5=0垂直,∴2x 0·13=-1,得x 0=-32,y 0=94, 即P ⎝⎛⎭⎫-32,94是满足条件的点. (3)∵切线的倾斜角为135°,∴其斜率为-1,即2x 0=-1,得x 0=-12,y 0=14, 即P ⎝⎛⎭⎫-12,14是满足条件的点. ●规律方法求切点坐标的一般步骤(1)先设切点坐标(x 0,y 0).(2)求导函数f ′(x ).(3)求切线的斜率f ′(x 0).(4)由已知条件求出切线的斜率k .由此得到方程f ′(x 0)=k ,解此方程求出x 0.(5)由于点(x 0,y 0)在曲线y =f (x )上,故将x 0代入曲线方程可得y 0,即可写出切点坐标.2.(1)曲线y =x 2-3x 在点P 处的切线平行于x 轴,则点P 的坐标为________.(2)已知函数y =f (x )的图象在点M (1,f (1))处的切线方程是y =12x +2,则f (1)+f ′(1)=________. 解析 (1)根据题意可设切点为P (x 0,y 0),因为Δy =(x +Δx )2-3(x +Δx )-(x 2-3x )=2x Δx +(Δx )2-3Δx , Δy Δx =2x +Δx -3, 所以f ′(x )=Δy Δx =(2x +Δx -3)=2x -3.由f ′(x 0)=0,即2x 0-3=0,得x 0=32, 代入曲线方程得y 0=-94, 所以P ⎝⎛⎭⎫32,-94. (2)由导数的几何意义得f ′(1)=12, 由切线方程得f (1)=12×1+2=52, 所以f (1)+f ′(1)=3.答案 (1)⎝⎛⎭⎫32,-94 (2)3 题型三 导数几何意义的综合应用已知直线l 1为曲线y =x 2+x -2在点(1,0)处的切线,l 2为该曲线的另一条切线,且l 1⊥l 2.(1)求直线l 1,l 2的方程;(2)求由直线l 1、l 2和x 轴所围成的三角形的面积.【解析】 (1)f ′(1)=Δy Δx =f (1+Δx )-f (1)Δx=[(1+Δx )2+(1+Δx )-2]-(1+1-2)Δx=(Δx +3)=3, 所以直线l 1的方程为y =3x -3.设直线l 2与曲线y =x 2+x -2相切于点B (b ,b 2+b -2),则可求得切线l 2的斜率为2b +1.因为l 1⊥l 2,则有2b +1=-13,b =-23. 所以直线l 2的方程为y =-13x -229. (2)解方程组⎩⎪⎨⎪⎧y =3x -3,y =-13x -229,得⎩⎨⎧x =16,y =-52.所以直线l 1和l 2的交点坐标为⎝⎛⎭⎫16,-52. l 1、l 2与x 轴交点的坐标分别为(1,0)、⎝⎛⎭⎫-223,0. 所以所求三角形的面积S =12×253×⎪⎪⎪⎪-52=12512. ●规律方法与导数几何意义相关题目的解题策略(1)与导数的几何意义相关的综合问题解题的关键是函数在某点处的导数,已知切点可以求斜率,已知斜率也可以求切点,切点的坐标是常设的未知量.(2)与导数的几何意义相关的题目往往涉及解析几何的相关知识,如直线间的位置关系等,因此要综合应用所学知识解题.3.设函数f (x )=x 3+ax 2-9x -1(a <0),若曲线y =f (x )的斜率最小的切线与直线12x +y =6平行,求a 的值. 解析 ∵Δy =f (x 0+Δx )-f (x 0)=(x 0+Δx )3+a (x 0+Δx )2-9(x 0+Δx )-1-(x 30+ax 20-9x 0-1)=(3x 20+2ax 0-9)Δx +(3x 0+a )(Δx )2+(Δx )3, ∴Δy Δx=3x 20+2ax 0-9+(3x 0+a )Δx +(Δx )2.当Δx 无限趋近于零时,Δy Δx 无限趋近于3x 20+2ax 0-9,即f ′(x 0)=3x 20+2ax 0-9. ∴f ′(x 0)=3⎝⎛⎭⎫x 0+a 32-9-a23. 当x 0=-a 3时,f ′(x 0)取最小值-9-a 23.∵斜率最小的切线与12x +y =6平行, ∴该切线斜率为-12. ∴-9-a 23=-12.解得a =±3.又a <0,∴a =-3.规范解答(一) 求曲线过点P (x 1,y 1)的切线方程(12分)已知函数y =f (x )=x 3-3x 及y =f (x )上一点P (1,-2),求过点P 与曲线y =f (x )相切的直线l的方程.[审题指导]【规范解答】 (1)y ′=(x +Δx )3-3(x +Δx )-x 3+3xΔx=3x 2-3.(2分)设切点坐标为(x 0,x 30-3x 0), 则直线l 的斜率k =f ′(x 0)=3x 20-3,所以直线l 的方程为y -(x 30-3x 0)=(3x 20-3)(x -x 0).又因为直线l 过点P (1,-2),所以-2-(x 30-3x 0)=(3x 20-3)(1-x 0), 所以2x 30-3x 20+1=0,即(x 0-1)2(2x 0+1)=0,解得x 0=1或x 0=-12.(6分)故所求直线斜率为k =3x 20-3=0或k =3x 20-3=-94, 于是y -(-2)=0·(x -1)或y -(-2)=-94(x -1),即y =-2或y =-94x +14.(10分)故过点P (1,-2)的切线方程为 y =-2或y =-94x +14.(12分)[题后悟道]1.求过点P (x 1,y 1)的切线方程的步骤: (1)设切点(x 0,f (x 0)).(2)利用所设切点求斜率k =Δy Δx. (3)用(x 0,f (x 0)),P (x 1,y 1)表示斜率(或利用切点和斜率写出切线方程).(4)根据斜率相等求得x 0,然后求得斜率k (或利用已写出的切线过点P (x ,y ),求出x 0,然后求得斜率k ). (5)根据点斜式写出切线方程. 2.注意事项:(1)求曲线的切线要注意“过点P 的切线”与“在点P 处的切线”的差异.过点P 的切线,点P 不一定是切点,也不一定在曲线上;在点P 处的切线,点P 必为切点,且在曲线上.(2)若曲线y =f (x )在点x 0处的导数f ′(x 0)不存在,则切线与y 轴平行或不存在;若f ′(x 0)=0,则切线与x 轴平行.已知曲线y =2x 2-7,求曲线过点P (3,9)的切线方程. 解析 y ′=Δy Δx=[2(x +Δx )2-7]-(2x 2-7)Δx=(4x +2Δx )=4x .由于2×32-7=11≠9,故点P (3,9)不在曲线上.设切点为A (x 0,y 0),则切线的斜率k =4x 0, 故所求切线方程为y -y 0=4x 0(x -x 0). 将P (3,9)及y 0=2x 20-7代入上式,得 9-(2x 20-7)=4x 0(3-x 0).解得x 0=2或x 0=4,所以切点为(2,1)或(4,25). 从而所求切线方程为8x -y -15=0或16x -y -39=0.[限时50分钟,满分80分]一、选择题(每小题5分,共30分)1.已知y =f (x )的图象如图,则f ′(x A )与f ′(x B )的大小关系是A .f ′(x A )>f ′(xB ) B .f ′(x A )<f ′(x B )C .f ′(x A )=f ′(x B )D .不能确定解析 由图可知,曲线在点A 处的切线的斜率比曲线在点B 处的切线的斜率小, 结合导数的几何意义知f ′(x A )<f ′(x B ),选B. 答案 B2.曲线y =12x 2-2在点⎝⎛⎭⎫1,-32处的切线的倾斜角为 A .1 B.π4 C.5π4D .-π4解析 f ′(1)=12(1+Δx )2-2+32Δx=12+Δx +12(Δx )2-2+32Δx=(1+12Δx )=1,即切线的斜率为1,故切线的倾斜角为π4.答案 B3.若曲线y =2x 2-4x +a 与直线y =1相切,则a 等于 A .1 B .2 C .3D .4解析 设切点坐标为(x 0,1), 则f ′(x 0)=[2(x 0+Δx )2-4(x 0+Δx )+a ]-(2x 20-4x 0+a )Δx=(4x 0+2Δx -4)=4x 0-4=0,∴x 0=1,即切点坐标为(1,1). ∴2-4+a =1,即a =3. 答案 C4.设曲线y =x 2+x -2在点M 处的切线斜率为3,则点M 的坐标为 A .(0,-2) B .(1,0) C .(0,0)D .(1,1)解析 设点M (x 0,y 0), ∴k =(x 0+Δx )2+(x 0+Δx )-2-(x 20+x 0-2)Δx=2x 0+1, 令2x 0+1=3,∴x 0=1,则y 0=0.故选B. 答案 B5.曲线y =x 2在点(1,1)处的切线与坐标轴所围三角形的面积为 A.14B.12 C .1D .2 解析 f ′(1)=Δy Δx=(1+Δx )2-1Δx=(2+Δx )=2.则曲线在点(1,1)处的切线方程为y -1=2(x -1), 即y =2x -1.则三角形的面积为S =12×1×12=14.答案 A6.已知点P 在曲线F :y =x 3-x 上,且曲线F 在点P 处的切线与直线x +2y =0垂直,则点P 的坐标为 A .(1,1)B .(-1,0)C .(-1,0)或(1,0)D .(1,0)或(1,1)解析 设点P (x 0,y 0),则f ′(x 0)=ΔyΔx=[(x 0+Δx )3-(x 0+Δx )]-(x 30-x 0)Δx=3x 20-1=2⇒x 0=±1. 答案 C二、填空题(每小题5分,共15分)7.如果函数f (x )在x =x 0处的切线的倾斜角是钝角,那么函数f (x )在x =x 0附近的变化情况是________(填“逐渐上升”或“逐渐下降”).解析 由题意知f ′(x 0)<0,根据导数的几何意义知,f (x )在x =x 0附近的变化情况是“逐渐下降”. 答案 逐渐下降8.已知函数y =ax 2+b 在点(1,3)处的切线斜率为2,则ab =________.解析a (1+Δx )2+b -(a +b )Δx=(a Δx +2a )=2a =2,∴a =1,又3=a ×12+b ,∴b =2, 即a b =12. 答案 129.已知曲线y =x 24的一条切线的斜率为12,则切点的坐标为________.解析 设切点的坐标为(x 0,y 0), 因为Δy Δx =(x 0+Δx )24-x 204Δx =12x 0+14Δx ,当Δx →0时,Δy Δx →12x 0,而切线的斜率为12,所以12x 0=12,所以x 0=1,y 0=14.故切点坐标为⎝⎛⎭⎫1,14. 答案 ⎝⎛⎭⎫1,14 三、解答题(本大题共3小题,共35分) 10.(10分)已知曲线C :y =x 3.求:(1)曲线C 上横坐标为1的点处的切线的方程;(2)第(1)小题中的切线与曲线C 是否还有其他的公共点? 解析 (1)将x =1代入曲线C 的方程得y =1, ∴切点为P (1,1). ∵y ′=ΔyΔx=(x +Δx )3-x 3Δx=3x 2Δx +3x (Δx )2+(Δx )3Δx=[3x 2+3x Δx +(Δx )2]=3x 2,∴y ′|x =1=3.∴点P 处的切线方程为y -1=3(x -1), 即3x -y -2=0.(2)由⎩⎪⎨⎪⎧3x -y -2=0,y =x 3,可得(x -1)(x 2+x -2)=0,解得x 1=1,x 2=-2.从而求得公共点为P (1,1)或P (-2,-8). 故第(1)小题中的切线与曲线C 还有其他的公共点.11.(12分)已知一物体的运动方程是s =⎩⎪⎨⎪⎧3t 2+2,0≤t <3,29+3(t -3)2,t ≥3.求此物体在t =1和t =4时的瞬时速度. 解析 当t =1时,Δs Δt =3(1+Δt )2+2-(3×12+2)Δt =6+3Δt , 所以s ′(1)=ΔsΔt=(6+3Δt )=6.故当t =1时的瞬时速度为6. 当t =4时,Δs Δt =29+3(4+Δt -3)2-[29+3×(4-3)2]Δt =6+3Δt , 所以s ′(4)=ΔsΔt=(6+3Δt )=6,故当t =4时的瞬时速度为6.12.(13分)已知曲线f (x )=x 2的一条在点P (x 0,y 0)处的切线,求: (1)切线平行于直线y =-x +2时切点P 的坐标及切线方程; (2)切线垂直于直线12x -4y +5=0时切点P 的坐标及切线方程;(3)切线的倾斜角为60°时切点P 的坐标及切线方程. 解析 f ′(x 0)=(x 0+Δx )2-x 20Δx=2x 0.(1)因为切线与直线y =-x +2平行, 所以2x 0=-1,x 0=-12,即P ⎝⎛⎭⎫-12,14, 所以切线方程为y -14=-⎝⎛⎭⎫x +12, 即4x +4y +1=0.(2)因为切线与直线12x -4y +5=0垂直,所以2x 0·18=-1,x 0=-4,即P (-4,16).所以切线方程为y -16=-8(x +4), 即8x +y +16=0.(3)因为切线的倾斜角为60°,所以切线的斜率为3,即2x 0=3,x 0=32, 所以P ⎝⎛⎭⎫32,34,所以切线方程为y -34=3⎝⎛⎭⎫x -32, 即43x -4y -3=0.§1.2 导数的计算§1.2.1 几个常用函数的导数§1.2.2 基本初等函数的导数公式及导数的运算法则(一)[课标要求]1.能根据导数的定义求函数y =c ,y =x ,y =x 2,y =x ,y =1x 的导数.(难点)2.掌握基本初等函数的导数公式并能进行简单的应用.(重点、难点)一、常用函数的导数原函数导函数f (x )=c f ′(x )=0 f (x )=x f ′(x )=1 f (x )=x 2 f ′(x )=2x f (x )=1xf ′(x )=-1x 2f (x )=xf ′(x )=12x二、基本初等函数的导数公式原函数导函数①f (x )=c f ′(x )=0 ②f (x )=x n (n ∈Q *) f ′(x )=nx n -1 ③f (x )=sin x f ′(x )=cos_x ④f (x )=cos x f ′(x )=-sin_x ⑤f (x )=a x (a >0) f ′(x )=a x ln_a ⑥f (x )=e xf ′(x )=e x ⑦f (x )=log a x (a >0且a ≠1) f ′(x )=1x ln a⑧f (x )=ln xf ′(x )=1x知识点一 几个常用函数的导数【问题1】 用定义求下列常用函数的导数: ①y =c ;②y =x ;③y =x 2;④y =1x ;⑤y =x .答案 ①y ′=0;②y ′=1;③y ′=2x ;④y ′=Δy Δx=1x +Δx -1xΔx=-1x (x +Δx )=-1x 2(其他类似);⑤y ′=12x.【问题2】 导数的几何意义是曲线在某点处的切线的斜率.物理意义是运动物体在某一时刻的瞬时速度. (1)函数y =f (x )=c (常数)的导数的物理意义是什么? (2)函数y =f (x )=x 的导数的物理意义呢?答案 (1)若y =c 表示路程关于时间的函数,则y ′=0可以解释为某物体的瞬时速度始终为0,即一直处于静止状态.(2)若y =x 表示路程关于时间的函数,则y ′=1可以解释为某物体做瞬时速度为1的匀速运动. 【问题3】 由正比例函数y =kx (k ≠0)的图象及导数可知;|k |越大函数增加(k >0)或减少(k <0)的速度越 快.画出函数y =x 2的图象,结合图象及导数说明函数y =x 2的变化情况.答案 图象如图从导数作为函数在一点的瞬时变化率来看,y ′=2x 表明:当x <0时,随着x 的增加,y =x 2减少得越来越慢;当x >0时,随着x 的增加,y =x 2增加得越来越快.若y =x 2表示路程关于时间的函数,则y ′=2x 可以解释为某物体做变速运动,它在时刻x 的瞬时速度为2x .知识点二 基本初等函数的导数公式【问题】 你能说出基本初等函数的导数公式的特点吗? 答案 (1)常数函数的导数为零.(2)有理数幂函数f (x )=x α的导数依然为幂函数,且系数为原函数的次数,幂指数是原函数的幂指数减去1. (3)正弦函数的导数为余弦函数,余弦函数的导数为正弦函数的相反数. (4)指数函数的导数依然为指数函数,且系数为原函数底数的自然对数. (5)公式⑥是公式⑤的特例,公式⑧是公式⑦的特例.题型一 利用公式求导数求下列函数的导数:(1)y =x 7;(2)y =1x 2;(3)y =3x ;(4)y =2sin x 2cos x2;(5)y =log 12x 2-log 12x .【解析】 (1)y ′=7x 7-1=7x 6. (2)∵y =x -2,∴y ′=-2x -2-1=-2x -3. (3)∵y =x 13,∴y ′=13x -23.(4)∵y =2sin x 2cos x2=sin x ,∴y ′=cos x .(5)∵y =log 12x 2-log 12x =log 12x ,∴y ′=(log 12x )′=1x ln 12.●规律方法用公式求函数导数的方法(1)若所求函数符合导数公式,则直接利用公式求解.(2)对于不能直接利用公式的类型,关键是将其合理转化为可以直接应用公式的基本函数的模式,如y =1x 2可以写成y =x -2,y = 3x =x 13等,这样就可以直接使用幂函数的求导公式求导,以免在求导过程中出现指数或系数的运算失误.1.求下列函数的导数:(1)y =lg 4;(2)y =2x;(3)y =x 2x ;(4)y =2cos 2x 2-1. 解析 (1)y ′=(lg 4)′=0;(2)y ′=(2x )′=2x ln 2;(3)∵y =x 2x=x 2-12=x 32,∴y ′=(x 32)′=32x 12; (4)∵y =2cos 2x 2-1=cos x , ∴y ′=(cos x )′=-sin x .题型二 导数公式在解决切线问题中的应用(6分)已知点P (-1,1),点Q (2,4)是曲线y =x 2上的两点,求与直线PQ 平行的曲线y =x 2的切线方程.【规范解答】 y ′=(x 2)′=2x ,设切点为M (x 0,y 0),则y ′0|x x ==2x 0.(2分)∵PQ 的斜率为k =4-12+1=1,而切线平行于PQ , ∴k =2x 0=1,即x 0=12,所以切点为M ⎝⎛⎭⎫12,14.(4分) ∴所求的切线方程为y -14=x -12,(5分) 即4x -4y -1=0.(6分)●规律方法利用导数解决求曲线的切线方程问题的策略求曲线的切线方程主要有两种类型.(1)已知切点型,其步骤为: 求导函数―→求切点处导数,即切线斜率―→写出切线方程 (2)未知切点型,其步骤为:设切点―→求导函数―→求切线斜率k =f ′(x 0) 写出切线的点斜式方程―→列出关于x 0的方程(组)―→求切点―→写出切线方程2.求曲线y =x 过点(3,2)的切线方程.解析 ∵点(3,2)不在曲线y =x 上,∴设过(3,2)与曲线y =x 相切的直线在曲线的切点为(x 0,y 0),则y 0=x 0. ∵y =x ,∴y ′=(x 12)′=12x 12-1=12x. ∴根据导数的几何意义,曲线在点(x 0,y 0)处的切线斜率k =12x 0. ∵切线过点(3,2),∴2-y 03-x 0=12x 0,2-x 03-x 0=12x 0, 整理得(x 0)2-4x 0+3=0,解得x 0=1,x 0=9,∴切点坐标为(1,1)或(9,3).(1)当切点坐标为(1,1)时,切线斜率k =12, ∴切线方程为y -2=12(x -3),即x -2y +1=0. (2)当切点坐标为(9,3)时,切线斜率k =16,∴切线方程为y -2=16(x -3),即x -6y +9=0. 综上可知:曲线y =x 过点(3,2)的切线方程为:x -2y +1=0或x -6y +9=0.易错误区(二) 正确使用求导公式已知直线y =kx 是曲线f (x )=e x 的切线,则k 的值等于________.【解析】 设切点的坐标为(x 0,y 0),由f (x )=e x ,可得y ′=f ′(x )=e x ,又k =y 0x 0,f ′(x 0)=0e x , 所以0e x =y 0x 0且y 0=0e x ①. 解得x 0=1,y 0=e.k =y 0x 0=e. 【答案】 e[易错防范]1.①处一要注意导数0e x ,即切线斜率y 0x 0,二要注意切点在曲线上,即y 0=0e x . 2.导数几何意义的应用本例实质是求过点(0,0)且与曲线y =e x 相切的直线方程的斜率.要把切线的斜率与导数联系起来,要注意切点的坐标既满足切线方程又满足曲线方程.3.牢记导数公式导数公式是函数导数计算的关键,解题时要注意使用.例如,在本例中,要正确应用公式(e x )′=e x .已知曲线y =1x3在点P (-1,-1)处的切线与直线m 平行且距离等于10,求直线m 的方程.解析 因为y ′=-3x 4, 所以曲线在点P (-1,-1)处的切线斜率为k =-3,则切线方程为y +1=-3(x +1),即3x +y +4=0.由题意设直线m 的方程为3x +y +b =0(b ≠4),所以|b -4|32+12=10,所以|b -4|=10, 所以b =14或b =-6,所以直线m 的方程为3x +y +14=0或3x +y -6=0.[限时50分钟,满分80分]一、选择题(每小题5分,共30分)1.下列结论不正确的是A .若y =3,则y ′=0B .若y =1x ,则y ′=-x 2C .若y =x ,则y ′=12x D .若y =x ,则y ′=1解析 对于A ,常数的导数为零,故A 正确;对于B ,y ′=(x -12)′=-12x -32=-12x 3,故B 错误; 对于C ,y ′=(x 12)′=12x -12=12x,故C 正确; 对于D ,y ′=x ′=1,故D 正确.答案 B2.已知曲线f (x )=x 3的切线的斜率等于3,则切线有A .1条B .2条C .3条D .不确定 解析 ∵f ′(x )=3x 2=3,解得x =±1,切点有两个,即可得切线有两条.。
人教a版数学【选修2-2】1.7《定积分的简单应用》ppt课件
[答案]
1 2
2 3
[解析] 曲线y=x 与y=cx 由题意知
1 1 的交点为c ,c2.
2 1 =3.∴c=2.
典例探究学案
不分割型平面图形面积的求解
如图,求曲线y=x2与直线y=2x所围图形的面 积S.
[分析] 从图形上可以看出,所求图形的面积可以转化为一 个三角形与一个曲边三角形面积的差,进而可以用定积分求 出面积.为了确定出积分的上、下限,我们需要求出直线和 抛物线的交点的横坐标.
(1)(2014· 山东理,6)直线y=4x与曲线y=x3在第一象限内 围成的封闭图形的面积为( A.2 2 C.2 ) B.4 2 D.4
(2)由y=-x2与y=x-2围成图形的面积S=________.
9 [答案] (1)D (2)2
[解析] (1)如图所示
y=4x, 由 3 y = x .
[答案] C
) B.gt2 0 1 2 D.6gt0
[解析] 如果变速直线运动的速度为 v=v(t)(v(t)≥0), 那么
b 从时刻 t=a 到 t=b 所经过的路程是 v(t)dt,
a
故应选 C.
2 4.若两曲线y=x 与y=cx (c>0)围成的图形的面积是 3 ,
2 3
则c=________.
[解析]
y=2x, 解方程组 2 y = x ,
得x1=0,x2=2.
故所求图形的面积为 S= 2xdx- x
2 0 2 0
2
2 2 dx=x 0
1 3 4 2 -3x 0 =3.
[方法规律总结] 利用定积分求平面图形的面积的步骤 (1)画出草图,在直角坐标系中画出曲线或直线的大致图象. (2)将平面图形分割成曲边梯形,并分清在x轴上方与下方的 部分. (3)借助图形确定出被积函数. (4)求出交点坐标,确定积分的上、下限. (5)求出各部分的定积分,并将面积表达为定积分的代数和( 定积分为负的部分求面积时要改变符号处理为正),求出面 积.
高中数学选修2-2同步练习题库:定积分的简单应用(较难)
定积分的简单应用(较难)1、由直线,,曲线及轴所围成的封闭图形的面积是()A. B.C. D.2、已知,,则展开式中,项的系数为()A. B. C. D.3、的值为( )A.0 B. C.2 D.44、设则多项式的常数项是()A.-332. B.332 C.166 D.-1665、由直线,曲线及轴所围图形的面积为()A. B. C. D.积是()A. B. C. D.7、函数的图象与轴所围成的封闭图形的面积为()A. B. C. D.8、设,则多项式的常数项()A. B. C. D.9、曲线在点(1,)处的切线与坐标轴围成的三角面积为()A. B. C. D.10、的值为A.0 B. C.2 D.4积是()A.1 B. C. D.212、设下列关系式成立的是()A. B. C. D.13、设,则的值为()A. B. C. D.14、A. B. C. D.15、若S1=dx,S2=dx,S3=dx,则S1,S2,S3的大小关系为( ) A.S1<S2<S3 B.S2<S1<S3C.S2<S3<S1 D.S3<S2<S116、由曲线,直线及y轴所围成的图形的面积为()A. B.4 C. D.617、下列等于1的积分是()A. B.C. D.18、下列计算错误的是()A. B.C. D.19、由曲线所围成的封闭图形的面积为A. B. C. D.20、如图,阴影部分的面积是( )A.2 B.2- C. D.21、由曲线围成的封闭图形面积为()A. B. C. D.22、定积分的值为,则()A. B. C. D.23、的值为A.0 B.1 C. D.224、函数与的图象所围成的封闭图形的面积为()A. B. C. D.25、已知函数f(x)=x3+ax2+bx(a,b∈R)的图象如图所示,它与直线在原点处相切,此切线与函数图象所围区域(图中阴影部分)的面积为,则a的值为________.26、随机地向区域内投点,点落在区域的每个位置是等可能的,则坐标原点与该点连线的倾斜角不大于的概率是________________.27、若,则从小到大的顺序为 .28、曲线与直线所围成的封闭图形的面积为 .29、直线与曲线在第一象限内围成的封闭图形的面积为 .30、由直线,曲线及轴所围成的图形的面积是___________.31、函数在点(1,2)处的切线与函数围成的图形的面积等于__________.32、已知在区间上,,,对轴上任意两点,都有. 若,,,则的大小关系为_________.33、若一组数据的中位数为,则直线与曲线围成图形的面积为 .34、.给出下列命题:①已知线性回归方程,当变量增加2个单位,其预报值平均增加4个单位;②在进制计算中,;③若,且,则;④ “”是“函数的最小正周期为4”的充要条件;⑤设函数的最大值为M,最小值为m,则M+m=4027,其中正确命题的个数是个。
高中数学 1.7 1定积分的应用教案 新人教A版选修2-2
2013年高中数学 1.7 1定积分的应用教案新人教A版选修2-2一、主要内容:1.面积:了解定积分的元素法,掌握用两条、三条、四条简单曲线所围平面图形的面积,并能根据图形选用以y作积分变量以简化计算过程;会用参数方程求解常用图形(圆、星形线)的面积,能用极坐标求用极坐标表示的圆、阿基米德螺线的图形的面积2.体积:掌握简单图形分别绕x轴、y轴旋转所得旋转体体积,能在平行截面面积为已知时求立体的体积3.弧长:掌握用参数方程所表示的常用曲线(圆、星形线等)的弧长4.功:会求在变力沿直线所作的功5.习题课2学时二、具体的内容分配如下:习题6-1:定积分的元素法,平面图形的面积, 旋转体体积(1)习题6-2:旋转体体积(2),平面曲线的弧长,变力沿直线所作的功总习题六:三、习题内容:习题6—1一、填空题1、曲线x e y =,x 轴及直线()ln ,ln 0.x a x b b a ==,围成图形面积 是_____2、由曲线θcos 2a r =所围成图形的面积是 二、选择题1、曲线3x y =与直线1,0==y x 围成的面积是( ) A .43 B .1 C .34 D .32 2、由x 轴、曲线2x y =和直线32=x 围成的图形面积被直线k x =分成两个相等的面积,则 k 应为( )A .322- B .612 C .1 D .312-三、求解题1、用定积分计算下列图形的面积 (1)由曲线222,1x y x y =+=围成(2)由曲线21y x=与直线4,==y x y 围成(3)由曲线x y 42=与圆()4122=+-y x 围成2、求星形线{33cos sin x a ty a t==所围成0.的面积 3、求以下极坐标所表示的图形的面积 (1)心形线()θcos 1-=a r 围成(2)对数螺线a r e θ=对应θ从0到2π的一段与极轴所围成 (3)伯努利双纽线θ2cos 22a r =右边一支(即对应θ从4π-到4π的一段)习题 6—2 一、填空题1、连续曲线()x f y = ()()0≥x f ,直线b x a x ==,()b a 及x 轴所围成图形绕x 轴旋转而成的旋转体的体积是______2、曲线2x y =及直线1=y 所围成图形绕y 轴旋转而成的旋转体的体积是_______ 二、选择题1、由曲线2x y =与直线x y =围成平面图形绕y 轴旋转所得的旋转体的体积是( )A .()dx x x ⎰-102π B.)21d y y π-⎰C.()⎰-1042dx x x π D.()dy y y ⎰-102π2、底面为圆422=+y x ,垂直于x 轴的所有截面都是正方形的立体体积为( )A. 3121 B. 3210 C. 3242 D. 3185 三、解答题1、求下列旋转体的体积(1)曲线x y sin = ()π≤≤x 0与x 轴所围成的图形分别绕x 轴、y 轴旋转(2)曲线x y =与直线2-=x y ,0=y 所围成的图形分别绕x 轴、y轴旋转(3)星形线{ta y t a x 33sin cos == ()π≤≤t 0绕x 轴旋转2、求底面为园222R y x =+,而垂直于x 轴的所有截面都是等边三角形的立体的体积习题6—3一、求下列弧线段的长度1、星形线{ta y ta x 33sin cos ==的全长 2、抛物线x y 2= 从()2,1到()4,4的一段二、根据虎克定律,弹簧的倔强系数为k ,把弹簧拉长x 的拉力为kx f =,求将一根弹簧从原长拉伸x 的长度,外力做的功三、在一个半径为R 的半球形容器里盛放着密度为ρ的液体,求为将液体吸出容器至少应做多少功四、水渠的截面为一等腰梯形,上、下底分别为2m 和1m ,深为2m ,水渠上有一闸门,求渠水满时对闸门的压力(水的密度31000m kg=ρ)。
高中数学选修2-2优质课件:1.7.1 定积分在几何中的应用
2.曲线 y=cos x(0≤x≤32π)与坐标轴所围图形的面积是( B )
A.2 解析
B.3
C.52
S=π2
0
cos
xdx-32πcos π
xdx=sin
π x2 0
D.4 3π 2
-sin x π 2
2
=sin π2-sin 0- sin 32π+sin π2=1-0+1+1=3.
1234
4 3.由曲线y=x2与直线y=2x所围成的平面图形的面积为__3__.
1234
S=4f(x)dx-7f(x)dx
1
4
③
S=a[g(x)-f(x)]dx+b[f(x)-g(x)]dx
0
a
④
A.①③ C.①④
B.②③ D.③④
1234
解析 ①应是 S=b[f(x)-g(x)]dx,②应是 S=82 2xdx-
a
0
8(2x-8)dx,③和④正确.故选 D.
4
答案 D
1234
跟踪演练2 求由曲线y=x2,直线y=2x和y=x围成的图形的面积.
y=x2, y=x2,
解 方法一 如图,由
和
y=x
y=2x
解出 O,A,B 三点的横坐标分别是 0,1,2.
故所求的面积 S=10(2x-x)dx+12(2x-x2)dx=x2210 + x2-x3321 =12-0+(4-83)-(1-13)=76.
y=2x, x=0, x=2,
解析 解方程组
得
或
y=x2, y=0, y=4.
∴曲线y=x2与直线y=2x交点为(2,4),(0,0).
∴S=2(2x-x2)dx= 0
x2-13x320
数学人教A版选修2-2-1.7定积分的简单应用
1.7.2定积分在物理中的应用
1、变速直线运动的路程
设做变速直线运动的物体运动的速度
v=v(t)≥0,则此物体在时间区间[a, b]
内运动的距离(位移)s为
v
v v(t)
t
Oa
b
例 1:一辆汽车的速度一时间曲线如图所示,求汽
车在这 1 min 行驶的路程.
解:由速度──时间曲线可知:
3t (0≤ t ≤10)
0
1kx 2 2
|0L
1 2
kl 2(J
)
答:克服弹力所作功的功为 1 kl 2J .
2
做P59练习:
1.一物体沿直线以v=2t+3(t的单位为s,v的
单位为m/s)的速度运动,求该物体在3~5s
间行进的路程. S
5
(2t 3)dt 22m
3
2.一物体在力F(x)=3x+4(单位:N)的作用下,
当a≤0时, 0 (x2 2x)dx 4 ,解得a=-1
a
3
当0<a≤2时,
a
(2x
x2 )dx
4
,解得a=2
0
3
当a>2时,
2 (2x x2 )dx
a
,(
x2
2x)dx
4
,无解
0
2
3
故a=-1或a=2
注意 S
b
| f (x) |dx(a b)
a
若”面积为4/3”,改为”面积不超过4/3”呢? [-1,2]
64 3
26 3
18
法2:s
4
[(4
2
y)
1 2
y2 ]dy
(4 y
推荐高中数学第一章导数及其应用1.7定积分的简单应用学案含解析新人教A版选修2_2
1.7定积分的简单应用积为S 1.由直线x =a ,x =b ,曲线y =g(x )和x 轴围成的曲边梯形的面积为S 2.问题1:如何求S 1? 提示:S 1=⎠⎛a b f(x)d x.问题2:如何求S 2? 提示:S 2=⎠⎛ab g(x)d x.问题3:如何求阴影部分的面积S? 提示:S =S 1-S 2.平面图形的面积由两条曲线y =f (x ),y =g (x )和直线x =a ,x =b (b >a )所围图形的面积.(1)如图①所示,f (x )>g (x )>0,所以所求面积S =⎠⎛ab d x .(2)如图②所示,f (x )>0,g (x )<0,所以所求面积S =⎠⎛a b f (x )d x +⎪⎪⎪⎪⎠⎛a b=⎠⎛ab d x .相交曲线所围图形的面积求法如下图,在区间上,若曲线y =f (x ),y =g (x )相交,则所求面积S =S 1+S 2=⎠⎛ac d x +⎠⎛c b-=⎠⎛ab |f (x )-g (x )|d x .问题:在《1.5.2 汽车行驶的路程》中,我们学会了利用积分求物理中物体做变速直线运动的路程问题,利用积分还可以解决物理中的哪些问题?提示:变力做功.1.变速直线运动的路程做变速直线运动的物体所经过的路程s ,等于其速度函数v =v (t )(v (t )≥0)在时间区间上的定积分,即s =⎠⎛ab2.变力做功如果物体在变力F(x)的作用下做直线运动,并且物体沿着与F (x )相同的方向从x =a 移动到x =b(a<b),那么变力F(x)所做的功为W =⎠⎛ab F(x )d x.求变速直线运动的路程的注意点对于给出速度-时间曲线的问题,关键是由图象得到速度的解析式及积分的上、下限,需要注意的是分段解析式要分段求路程,然后求和.计算曲线由⎩⎪⎨⎪⎧y =x +3,y =x2-2x +3,解得x =0或x =3.如图.因此所求图形的面积为S =⎠⎛03(x +3)d x -⎠⎛03(x 2-2x +3)d x=⎠⎛03d x =⎠⎛03(-x 2+3x )d x =⎝ ⎛⎭⎪⎫-13x3+32x23=92.求由两条曲线围成的平面图形的面积的解题步骤(1)画出图形;(2)确定图形范围,通过解方程组求出交点的坐标,定出积分上、下限; (3)确定被积函数,特别要注意分清被积函数图象上、下位置; (4)写出平面图形面积的定积分表达式;(5)运用微积分基本定理计算定积分,求出平面图形的面积.求曲线y =e x,y =e -x及x =1所围成的图形面积.解:作图,并由⎩⎪⎨⎪⎧y =ex ,y =e -x ,解得交点(0,1). 所求面积为⎠⎛01(e x-e -x)d x =(e x +e -x)1=e +1e-2.先求抛物线和直线的交点,解方程组⎩⎪⎨⎪⎧y2=2x ,y =-x +4,求出交点坐标为A (2,2)和B (8,-4).法一:选x 为积分变量,变化区间为,将图形分割成两部分(如图),则面积为S =S 1+S 2=2⎠⎛022xd x +⎠⎛28(2x -x +4)d x=423x322+⎝ ⎛⎭⎪⎫223x -12x2+4x 82=18.法二:选y 作积分变量,则y 的变化区间为,如图得所求的面积为 S =⎠⎛-42⎝ ⎛⎭⎪⎫4-y -y22d y =⎝ ⎛⎭⎪⎫4y -12y2-16y324-=18.需分割的图形的面积的求法由两条或两条以上的曲线围成的较为复杂的图形,在不同的区间上位于上方和下方的曲线不同.求出曲线的不同的交点横坐标,将积分区间细化,分别求出相应区间上曲边梯形的面积再求和,注意在每个区间上被积函数均是由上减下.试求由抛物线y =x 2+1与直线y =-x +7以及x 轴、y 轴所围成图形的面积.解:画出图形(如下图).解方程组⎩⎪⎨⎪⎧y =x2+1,y =-x +7,得⎩⎪⎨⎪⎧x =2,y =5或⎩⎪⎨⎪⎧x =-3,y =10(舍去),即抛物线与直线相交于点(2,5).于是所求面积为S =⎠⎛02(x 2+1)d x +⎠⎛27(7-x)d x=⎝ ⎛⎭⎪⎫13x3+x 20+⎝⎛⎭⎪⎫7x -12x272=143+252 =1036.A ,BC 点,这一段的速度为1.2t m/s ,到C 点的速度为24 m/s ,从C 点到B 点前的D 点以等速行驶,从D 点开始刹车,速度为(24-1.2t ) m/s ,经t s 后,在B 点恰好停车.试求:(1)A ,C 间的距离; (2)B ,D 间的距离. (1)设A 到C 的时间为t 1, 则1.2t 1=24,t 1=20 s ,则AC =⎠⎛0201.2t d t =0.6t220=240(m).(2)设D 到B 的时间为t 2, 则24-1.2t 2=0,t 2=20 s , 则DB =⎠⎛020 (24-1.2t )d t求变速直线运动的路程、位移应关注三点(1)分清运动过程中的变化情况;(2)如果速度方程是分段函数,那么要用分段的定积分表示;(3)明确是求位移还是求路程,求位移可以正负抵消,求路程不能正负抵消.一点在直线上从时刻t =0(单位:s )开始以速度v =t 2-4t +3(单位:m /s )运动,求: (1)在t =4 s 时的位置; (2)在t =4 s 时运动的路程. 解:(1)在t =4 s 时该点的位移为⎠⎛04(t 2-4t +3)d t =⎝ ⎛⎭⎪⎫13t3-2t2+3t 40=43(m ), 即在t =4 s 时该点距出发点43m .(2)∵v(t)=t 2-4t +3=(t -1)(t -3), ∴在区间及上v(t)≥0, 在区间上,v(t)≤0. ∴在t =4 s 时的路程为s =⎠⎛01(t 2-4t +3)d t -⎠⎛13(t 2-4t +3)d t +⎠⎛34(t 2-4t +3)d t =⎝ ⎛⎭⎪⎫13t3-2t2+3t 10-⎝ ⎛⎭⎪⎫13t3-2t2+3t 31+13t 3-2t 2+3t43=4(m ), 即在t =4 s 时运动的路程为4 m .一物体在力F (x )(单位:N)的作用下沿与力F 相同的方向运动,力位移曲线如图所示.求该物体从x =0 m 处运动到x =4 m 处力F (x )做的功.由力位移曲线可知F (x )=⎩⎪⎨⎪⎧10,0≤x≤2,3x +4,2<x≤4,因此该物体从x =0处运动到x =4处力F (x )做的功为W =⎠⎛0210d x +⎠⎛24(3x +4)d x =10x 2+⎝ ⎛⎭⎪⎫32x2+4x 42=46(J).解决变力做功应关注两点(1)首先将变力用其方向上的位移表示出来,这是关键的一步; (2)根据变力做功的公式将其转化为求定积分的问题.设有一长25 cm 的弹簧,若加以100 N 的力,则弹簧伸长到30 cm ,又已知弹簧伸长所需要的拉力与弹簧的伸长量成正比,求使弹簧由25 cm 伸长到40 cm 所做的功.解:设x 表示弹簧伸长的量(单位:m),F (x )表示加在弹簧上的力(单位:N).由题意F (x )=kx ,且当x =0.05 m 时,F (0.05)=100 N ,解得即0.05k =100,∴k =2 000, ∴F (x )=2 000x .∴将弹簧由25 cm 伸长到40 cm 时所做的功为W =⎠⎛00.152 000x d x =1 000x 2.015=22.5(J).4.利用定积分求面积的策略由抛物线y 2=8x (y >0)与直线x +y -6=0及y =0所围成图形的面积为( ) A .16-3223B .16+3223C.403D.403+3223由题意,作图形如图所示,由⎩⎪⎨⎪⎧y2=>,x +y -6=0,得⎩⎪⎨⎪⎧x =2,y =4,所以抛物线y 2=8x (y >0)与直线x +y -6=0的交点坐标为(2,4).法一:(选y 为积分变量)S =⎠⎛04⎝ ⎛⎭⎪⎫6-y -18y2d y=⎝⎛⎭⎪⎫6y -12y2-124y340=24-8-124×64=403.法二:(选x 为积分变量)S =⎠⎛02(8x)d x +⎠⎛26(6-x )d x=8×23x 322+⎝⎛⎭⎪⎫6x -12x262=163+⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫6×6-12×62-⎝ ⎛⎭⎪⎫6×2-12×22=403.C1.本题易搞错被积函数及积分上、下限,误认为S =⎠⎛04-x -8x)d x ,从而得出S =16-3223的错误答案.2.求平面图形面积时,应首先求出交点坐标,确定积分上、下限,然后确定被积函数,判定积分的正负,用公式求解面积.如本例法一中的被积函数为f(y)=6-y -18y 2,y ∈(0,4],法二中的被积函数为f(x)=⎩⎨⎧8x ,,2],6-x ,,6].3.利用定积分求面积时,应根据具体问题选择不同的方法求解,常见类型有以下几种: (1)换元积分:当两区域所围成图形纵坐标一致时,换元变成对y 积分可简化运算.如本例中的法一. (2)分割求和:当两曲线处于不同区间时,可分割成几块,分别求出面积再相加,如本节例2的求解法.事实上,本例中的法二就是分割求和.(3)上正下负:若a ≤x ≤c 时,f(x)<0,则⎠⎛a c f(x)d x <0;若c ≤x ≤b 时,f(x)≥0,则⎠⎛cb f(x)d x ≥0.此时曲线y =f(x)和直线x =a ,x =b(a <b)及y =0所围图形的面积是 S =⎪⎪⎪⎪⎠⎛ac +⎠⎛c b f(x)d x =-⎠⎛ac f(x)d x +⎠⎛c bd x.例:求正弦曲线y =sin x ,x ∈⎣⎢⎡⎦⎥⎤0,3π2和直线x =0,x =3π2及y =0所围图形的面积S .解:作出曲线y =sin x 和直线x =0,x =3π2,y =0的草图,如图所示,所求面积为图中阴影部分的面积.由图可知,当x ∈时,曲线y =sin x 位于x 轴的上方; 当x ∈⎣⎢⎡⎦⎥⎤π,3π2时,曲线位于x 轴下方. 因此,所求面积应为两部分的和,即S =π⎰32|sin x |d x =⎠⎛0πsin x d x -ππ⎰32sin x d x =-cos xπ+cos xππ32=3.(4)上下之差:若在区间上f (x )>g (x ),则曲线f (x )与g (x )所围成的图形的面积S =⎠⎛a b d x .例:求由曲线y 2=x ,y =x 3所围图形的面积S .解:作出曲线y 2=x ,y =x 3的草图,如图所示,所求面积为图中阴影部分的面积.解方程组⎩⎪⎨⎪⎧y2=x ,y =x3得交点的横坐标为x =0及x =1.因此,所求图形的面积为S =⎠⎛01xd x -⎠⎛01x 3d x =23x 321-14x 41=512.1.(山东高考)直线y =4x 与曲线y =x 3在第一象限内围成的封闭图形的面积为( ) A .22B .4 2 C .2 D .4解析:选D 由4x =x 3,解得x =0或x =2或x =-2(舍去),根据定积分的几何意义可知,直线y =4x 与曲线y =x 3在第一象限内围成的封闭图形的面积为⎠⎛02-=⎝⎛⎭⎪⎫2x2-14x42=4.2.一物体沿直线以v =3t +2(t 的单位:s ,v 的单位:m/s)的速度运动,则该物体在3 s ~6 s 间的运动路程为( )A .46 mB .46.5 mC .87 mD .47 m解析:选B s =⎠⎛36 (3t +2)d t =⎝ ⎛⎭⎪⎫32t2+2t 63=(54+12)-⎝ ⎛⎭⎪⎫272+6=46.5(m).3.(天津高考)曲线y =x 2与直线y =x 所围成的封闭图形的面积为________.解析:如图,阴影部分的面积即为所求.由⎩⎪⎨⎪⎧y =x2,y =x 得A(1,1).故所求面积为S =⎠⎛01(x -x 2)d x =⎝ ⎛⎭⎪⎫12x2-13x3⎪⎪⎪10=16. 答案:164.设a >0,若曲线y =x 与直线x =a ,y =0所围成封闭图形的面积为a 2,则a =________. 解析:由已知得S =⎠⎛0a xd x =23x 32a=23a 32=a 2,所以a 12=23,所以a =49. 答案:495.一物体在变力F (x )=36x2(x 的单位:m ,F 的单位:N)的作用下沿坐标平面内x 轴的正方向由x =8处运动到x =18处,求力F (x )在这一过程中所做的功.解:由题意得力F (x )在这一过程中所做的功为F (x )在上的定积分,从而W =⎠⎛818F (x )d x =-36x -1188=(-36×18-1)-(-36×8-1)=(-2)-⎝ ⎛⎭⎪⎫-92=52(J).从而可得力F (x )在这一过程中所做的功为52 J.一、选择题1.用S 表示下图中阴影部分的面积,则S 的值是( )A .⎠⎛a c f (x )d xB.⎪⎪⎪⎪⎠⎛acC.⎠⎛a b f(x)d x +⎠⎛bc f(x)d x D .⎠⎛b c f (x )d x -⎠⎛ab f (x )d x解析:选D 由图可知,x 轴上方阴影部分的面积为⎠⎛b c ,x 轴下方阴影部分的面积为-⎠⎛ab f (x )d x ,故D 正确. 2.曲线y =x 3与直线y =x 所围图形的面积等于( ) A.⎠⎛-11(x -x 3)d x B.⎠⎛-11(x 3-x )d x C .2⎠⎛01(x -x 3)d xD .2⎠⎛-10(x -x 3)d x解析:选C 由⎩⎪⎨⎪⎧y =x ,y =x3,求得直线y =x 与曲线y =x 3的交点分别为(-1,-1),(1,1),(0,0),由于两函数都是奇函数,根据对称性得S =2⎠⎛01(x -x 3)d x .3.由直线x =-π3,x =π3,y =0与曲线y =cos x 所围成的封闭图形的面积为( )A.12 B .1 C.32D. 3 解析:选D 结合函数图象可得所求的面积是定积分∫π3-π3cos x d x =sin x π3-π3= 3. 4.一质点运动的速度与时间的关系为v (t )=t 2-t +2,质点做直线运动,则它在时间内的位移为( )A.176B.143C.136 D.116解析:选A 质点在时间内的位移为⎠⎛12(t 2-t +2)d t =⎝ ⎛⎭⎪⎫13t3-12t2+2t 21=176. 5.由抛物线y =x 2-x ,直线x =-1及x 轴围成的图形的面积为( ) A.23 B .1 C.43 D.53解析:选B S =⎠⎛0-1(x 2-x )d x +⎠⎛01(x -x 2)d x=⎝ ⎛⎭⎪⎫13x3-12x20-1+⎝ ⎛⎭⎪⎫12x2-13x310=1.二、填空题6.曲线y =sin x (0≤x ≤π)与直线y =12围成的封闭图形的面积为________.解析:由于曲线y =sin x (0≤x ≤π)与直线y =12的交点的横坐标分别为x =π6及x =5π6,因此所求图形的面积为∫5π6π6sin x -12d x =-cos x -12x 5π6π6=3-π3.答案:3-π37.物体A 以速度v =3t 2+1(t 的单位:s ;v 的单位:m/s)在一直线上运动,在此直线上,物体A 出发的同时,物体B 在物体A 的正前方5 m 处以v =10t 的速度与A 同向运动,则两物体相遇时物体A 运动的距离为________m.解析:设t =a 时两物体相遇,依题意有⎠⎛0a (3t 2+1)d t -⎠⎛0a 10t d t =(t 3+t )a 0-5t 2a 0=5,即a 3+a -5a 2=5,(a -5)(a 2+1)=0,解得a =5,所以⎠⎛05(3t 2+1)d t =53+5=130.答案:1308.有一横截面面积为4 cm 2的水管控制往外流水,打开水管后t s 末的流速为v (t )=6t -t 2(单位:cm/s)(0≤t ≤6),则t =0到t =6这段时间内流出的水量为________.解析:由题意可得t =0到t =6这段时间内流出的水量V =⎠⎛064(6t -t 2)d t =4⎠⎛6(6t -t 2)d t =4⎝⎛⎭⎪⎫3t2-13t360=144(cm 3).故t =0到t =6这段时间内流出的水量为144 cm 3. 答案:144 cm 3三、解答题9.求由曲线y =x 2和直线y =x 及y =2x 所围图形的面积S .解:由⎩⎪⎨⎪⎧y =x2,y =x 得A (1,1),由⎩⎪⎨⎪⎧y =x2,y =2x 得B (2,4).如图所示,所求面积(即图中阴影部分的面积)为S =⎠⎛01(2x -x )d x +⎠⎛12-x 2)d x =⎠⎛01x d x +⎠⎛12-x 2)d x =12x 210+⎝⎛⎭⎪⎫x2-13x321=76.10.有一动点P 沿x 轴运动,在时间t 时的速度为v (t )=8t -2t 2(速度的正方向与x 轴正方向一致).(1)点P 从原点出发,当t =6时,求点P 离开原点的路程和位移; (2)求点P 从原点出发,经过时间t 后又返回原点时的t 值. 解:(1)由v (t )=8t -2t 2≥0,得0≤t ≤4, 即当0≤t ≤4时,P 点向x 轴正方向运动; 当t >4时,P 点向x 轴负方向运动.最新中小学教案、试题、试卷故t =6时,点P 离开原点的路程为s 1=⎠⎛04(8t -2t 2)d t -⎠⎛46(8t -2t 2)d t=⎝⎛⎭⎪⎫4t2-23t340-⎝ ⎛⎭⎪⎫4t2-23t364=1283. 当t =6时,点P 的位移为⎠⎛06(8t -2t 2)d t =⎝ ⎛⎭⎪⎫4t2-23t360=0. (2)依题意⎠⎛0t (8t -2t 2)d t =0,即4t 2-23t 3=0,解得t =0或t =6,而t =0对应于P 点刚开始从原点出发的情况, ∴t =6是所求的值.。
【成才之路】高中数学 2、1-7定积分的简单应用同步检测 新人教版选修2-2
选修2-2 1.7 定积分的简单应用一、选择题1.如图所示,阴影部分的面积为( )A.⎠⎛a b f (x )d xB.⎠⎛a b g (x )d xC.⎠⎛ab [f (x )-g (x )]d xD.⎠⎛ab [g (x )-f (x )]d x[答案] C[解析] 由题图易知,当x ∈[a ,b ]时,f (x )>g (x ),所以阴影部分的面积为⎠⎛ab [f (x )-g (x )]d x .2.如图所示,阴影部分的面积是( )A .2 3B .2- 3 C.323D.353[答案] C[解析] S =⎠⎛1-3(3-x 2-2x )d x即F (x )=3x -13x 3-x 2,则F (1)=3-1-13=53,F (-3)=-9-9+9=-9.∴S =F (1)-F (-3)=53+9=323.故应选C.3.由曲线y =x 2-1、直线x =0、x =2和x 轴围成的封闭图形的面积(如图)是( ) A.⎠⎛02(x 2-1)d xB .|⎠⎛02(x 2-1)d x |C.⎠⎛02|x 2-1|d xD.⎠⎛01(x 2-1)d x +⎠⎛12(x 2-1)d x[答案] C[解析] y =|x 2-1|将x 轴下方阴影反折到x 轴上方,其定积分为正,故应选C. 4.设f (x )在[a ,b ]上连续,则曲线f (x )与直线x =a ,x =b ,y =0围成图形的面积为( ) A.⎠⎛a b f (x )d xB .|⎠⎛ab f (x )d x |C.⎠⎛ab |f (x )|d xD .以上都不对[答案] C[解析] 当f (x )在[a ,b ]上满足f (x )<0时,⎠⎛ab f (x )d x <0,排除A ;当阴影有在x 轴上方也有在x 轴下方时,⎠⎛ab f (x )d x 是两面积之差,排除B ;无论什么情况C 对,故应选C.5.曲线y =1-1681x 2与x 轴所围图形的面积是( )A .4B .3C .2D.52[答案] B[解析] 曲线与x 轴的交点为⎝ ⎛⎭⎪⎫-94,0,⎝ ⎛⎭⎪⎫94,0故应选B.6.一物体以速度v =(3t 2+2t )m/s 做直线运动,则它在t =0s 到t =3s 时间段内的位移是( )A .31mB .36mC .38mD .40m[答案] B[解析] S =⎠⎛03(3t 2+2t )d t =(t 3+t 2)| 30=33+32=36(m),故应选B.7.(2010·山东理,7)由曲线y =x 2,y =x 3围成的封闭图形面积为( ) A.112B.14 C.13D.712[答案] A[解析] 由⎩⎪⎨⎪⎧y =x 2y =x3得交点为(0,0),(1,1).∴S =⎠⎛01(x 2-x 3)d x =⎪⎪⎪⎝⎛⎭⎪⎫13x 3-14x 410=112.8.一物体在力F (x )=4x -1(单位:N)的作用下,沿着与力F 相同的方向,从x =1运动到x =3处(单位:m),则力F (x )所做的功为( )A .8JB .10JC .12JD .14J[答案] D[解析] 由变力做功公式有:W =⎠⎛13(4x -1)d x =(2x 2-x )| 31=14(J),故应选D.9.若某产品一天内的产量(单位:百件)是时间t 的函数,若已知产量的变化率为a =36t,那么从3小时到6小时期间内的产量为( ) A.12B .3-32 2C .6+3 2D .6-3 2[答案] D [解析] ⎠⎛3636tdt =66t | 63=6-32,故应选D.10.过原点的直线l 与抛物线y =x 2-2ax (a >0)所围成的图形面积为92a 3,则直线l 的方程为( )A .y =±axB .y =axC .y =-axD .y =-5ax[答案] B[解析] 设直线l 的方程为y =kx ,由⎩⎪⎨⎪⎧y =kx y =x 2-2ax 得交点坐标为(0,0),(2a +k,2ak +k 2) 图形面积S =∫2a +k[kx -(x 2-2ax )]d x=⎝ ⎛⎭⎪⎫k +2a 2x 2-x 33| 2a +k 0 =(k +2a )32-(2a +k )33=(2a +k )36=92a 3∴k =a ,∴l 的方程为y =ax ,故应选B. 二、填空题11.由曲线y 2=2x ,y =x -4所围图形的面积是________. [答案] 18[解析] 如图,为了确定图形的范围,先求出这两条曲线交点的坐标,解方程组⎩⎪⎨⎪⎧y 2=2xy =x -4得交点坐标为(2,-2),(8,4).因此所求图形的面积S =⎠⎛4-2(y +4-y 22)d y取F (y )=12y 2+4y -y 36,则F ′(y )=y +4-y22,从而S =F (4)-F (-2)=18.12.一物体沿直线以v =1+t m/s 的速度运动,该物体运动开始后10s 内所经过的路程是________.13.由两条曲线y =x 2,y =14x 2与直线y =1围成平面区域的面积是________.[答案] 43[解析] 如图,y =1与y =x 2交点A (1,1),y =1与y =x 24交点B (2,1),由对称性可知面积S =2(⎠⎛01x 2d x +⎠⎛12d x -⎠⎛0214x 2d x )=43.14.一变速运动物体的运动速度v (t )=⎩⎪⎨⎪⎧2t (0≤t ≤1)a t(1≤t ≤2)b t (2≤t ≤e )则该物体在0≤t ≤e 时间段内运动的路程为(速度单位:m/s ,时间单位:s)______________________.[答案] 9-8ln2+2ln2[解析] ∵0≤t ≤1时,v (t )=2t ,∴v (1)=2; 又1≤t ≤2时,v (t )=a t, ∴v (1)=a =2,v (2)=a 2=22=4; 又2≤t ≤e 时,v (t )=bt, ∴v (2)=b2=4,∴b =8.∴路程为S =⎠⎛012t d t +⎠⎛122td t +⎠⎛2e 8td t =9-8ln2+2ln2 .三、解答题15.计算曲线y =x 2-2x +3与直线y =x +3所围图形的面积. [解析] 由⎩⎪⎨⎪⎧y =x +3y =x 2-2x +3解得x =0及x =3.从而所求图形的面积S =⎠⎛03(x +3)d x -⎠⎛03(x 2-2x +3)d x=⎠⎛03[(x +3)-(x 2-2x +3)]d x=⎠⎛03(-x 2+3x )d x=⎝ ⎛⎭⎪⎫-13x 3+32x 2| 30=92.16.设y =f (x )是二次函数,方程f (x )=0有两个相等的实根,且f ′(x )=2x +2. (1)求y =f (x )的表达式;(2)若直线x =-t (0<t <1)把y =f (x )的图象与两坐标轴所围成图形的面积二等分,求t 的值.[解析] (1)设f (x )=ax 2+bx +c (a ≠0),则f ′(x )=2ax +b , 又已知f ′(x )=2x +2,∴a =1,b =2, ∴f (x )=x 2+2x +c .又方程f (x )=0有两个相等实根. ∴判别式Δ=4-4c =0,即c =1. 故f (x )=x 2+2x +1.(2)依题意有⎠⎛-1-t (x 2+2x +1)d x =⎠⎛0-t (x 2+2x +1)d x ,∴⎝ ⎛⎭⎪⎫13x 3+x 2+x | -t -1=⎝ ⎛⎭⎪⎫13x 3+x 2+x | 0-t 即-13t 3+t 2-t +13=13t 3-t 2+t .∴2t 3-6t 2+6t -1=0, ∴2(t -1)3=-1,∴t =1-132.17.A 、B 两站相距7.2km ,一辆电车从A 站开往B 站,电车开出t s 后到达途中C 点,这一段速度为1.2t (m/s),到C 点的速度达24m/s ,从C 点到B 站前的D 点以等速行驶,从D 点开始刹车,经t s 后,速度为(24-1.2t )m/s ,在B 点恰好停车,试求:(1)A 、C 间的距离; (2)B 、D 间的距离;(3)电车从A 站到B 站所需的时间. [解析] (1)设A 到C 经过t 1s , 由1.2t =24得t 1=20(s),所以AC =∫2001.2t d t =0.6t 2| 200=240(m).(2)设从D →B 经过t 2s , 由24-1.2t 2=0得t 2=20(s), 所以DB =∫200(24-1.2t )d t =240(m). (3)CD =7200-2×240=6720(m). 从C 到D 的时间为t 3=672024=280(s).于是所求时间为20+280+20=320(s).18.在曲线y =x 2(x ≥0)上某一点A 处作一切线使之与曲线以及x 轴所围成的面积为112,试求:(1)切点A 的坐标; (2)过切点A 的切线方程.[解析] 如图所示,设切点A (x 0,y 0),由y ′=2x ,过A 点的切线方程为y -y 0=2x 0(x -x 0),即y =2x 0x -x 20.令y =0得x =x 02,即C ⎝ ⎛⎭⎪⎫x 02,0.设由曲线和过A 点的切线及x 轴所围成图形的面积为S ,S =S曲边△AOB -S △ABC . S 曲边△AOB =∫x 00x 2d x =13x 30, S △ABC =12|BC |·|AB | =12⎝ ⎛⎭⎪⎫x 0-x 02·x 20=14x 30,即S =13x 30-14x 30=112x 30=112.所以x 0=1,从而切点A (1,1),切线方程为y =2x -1.。
高中数学人教A版选修2-2学案:第一章 1.7 定积分的简单应用含解析
定积分的简单应用预习课本P56~59,思考并完成下列问题(1)利用定积分求平面图形的面积时,需要知道哪些条件?(2)两条曲线相交围成的平面图形能否用定积分求其面积?[新知初探]1.定积分与平面图形面积的关系(1)已知函数f (x )在[a ,b ]上是连续函数,由直线y =0,x =a ,x =b 与曲线y =f (x )围成的曲边梯形的面积为S .f (x )的符号 平面图形的面积与定积分的关系f (x )≥0 S =⎠⎛a bf (x )d x f (x )<0S =-⎠⎛a b f (x )d x(2)一般地,如图,如果在公共的积分区间[a ,b ]上有f (x )>g (x ),那么直线x =a ,x =b 与曲线y =f (x ),y =g (x )围成的平面图形的面积为S =⎠⎛a b[f (x )-g (x )]d x .[点睛] 对于不规则平面图形面积的处理原则定积分只能用于求曲边梯形的面积,对于非规则的曲边梯形,一般要将其分割或补形为规则的曲边梯形,再利用定积分的和与差求面积.对于分割或补形中的多边形的面积,可直接利用相关面积公式求解.2.变速直线运动的路程做变速直线运动的物体所经过的路程s ,等于其速度函数v =v (t )(v (t )≥0)在时间区间[a ,b ]上的定积分,即s =⎠⎛a bv (t )d t .3.力做功(1)恒力做功:一物体在恒力F (单位:N)的作用下做直线运动,如果物体沿着与F 相同的方向移动了s ,则力F 所做的功为W =Fs .(2)变力做功:如果物体在变力F (x )的作用下做直线运动,并且物体沿着与F (x )相同的方向从x =a 移动到x =b (a <b ),那么变力F (x )所做的功为W =⎠⎛a bF (x )d x .[点睛] 变速直线运动物体的路程、位移与定积分的关系如果做变速直线运动物体的速度-时间函数为v =v (t ),则物体在区间[a ,b ]上的位移为定积分⎠⎛a bv (t )d t ;物体在区间[a ,b ]上的路程为⎠⎛a b|v (t )|d t .[小试身手]1.判断(正确的打“√”,错误的打“×”)(1)曲线y =x 3与直线x +y =2,y =0围成的图形面积为⎠⎛01x 3d x +⎠⎛12(2-x )d x .( ) (2)曲线y =3-x 2与直线y =-1围成的图形面积为⎠⎛-2 2(4-x 2)d x .( )(3)速度是路程与时间的函数关系的导数.( )(4)一个物体在2≤t ≤4时,运动速度为v (t )=t 2-4t ,则它在这段时间内行驶的路程为⎠⎛24(t 2-4t )d t .( )答案:(1)√ (2)√ (3)√ (4)×2.曲线y =cos x ⎝⎛⎭⎫0≤x ≤3π2与坐标轴所围成的图形面积是( ) A .2 B .3 C.52 D .4答案:B3.已知做自由落体运动的物体的速度为v =gt ,则物体从t =0到t =t 0所走过的路程为( )A.13gt 20B. gt 20C. 12gt 20D.14gt 20答案:C4.一列车沿直线轨道前进,刹车后列车速度v (t )=27-0.9t ,则列车从刹车到停车所前进的路程为________.答案:405利用定积分求平面图形的面积[典例] 求抛物线y 2=2x 和直线y =-x +4所围成的图形的面积.[解] 先求抛物线和直线的交点,解方程组⎩⎪⎨⎪⎧y 2=2x ,y =-x +4,求出交点坐标为A (2,2)和B (8,-4).法一:选x 为积分变量,变化区间为[0,8],将图形分割成两部分(如图),则面积为S =S 1+S 2=2⎠⎛022x d x +⎠⎛28()2x -x +4d x =423x 3220+⎝⎛⎭⎫223x 32-12x 2+4x 82=18.法二:选y 作积分变量,则y 的变化区间为[-4,2],如图得所求的面积为 S =⎠⎛2-4⎝⎛⎭⎫4-y -y22d y =⎝⎛⎭⎫4y -y 22-y362-4=18.利用定积分求由两条曲线围成的平面图形的面积的解题步骤 (1)画出图形.(2)确定图形范围,通过方程组求出交点的横坐标,确定积分上限和积分下限. (3)确定被积函数及积分变量,确定时可以综合考察下列因素:①被积函数的原函数易求;②较少的分割区域;③积分上限和积分下限比较简单. (4)写出平面图形的面积的定积分表达式.(5)运用微积分基本定理计算定积分,求出平面图形的面积. [活学活用]求曲线y =e x ,y =e -x 及直线x =1所围成的图形的面积.解: 如图,由⎩⎪⎨⎪⎧y =e x ,y =e -x ,解得交点为(0,1), 所求面积为S =⎠⎛01(e x -e -x )d x =(e x +e -x )10=e +1e -2.求变速直线运动的路程、位移[典例] 有一动点P 从原点出发沿x 轴运动,在时刻为t 时的速度为v (t )=8t -2t 2(速度的正方向与x 轴正方向一致).求(1)t =6时,点P 离开原点后运动的路程和点P 的位移; (2)经过时间t 后又返回原点时的t 值. [解] (1)由v (t )=8t -2t 2≥0得0≤t ≤4, 即当0≤t ≤4时,P 点沿x 轴正方向运动, 当t >4时,P 点向x 轴负方向运动. 故t =6时,点P 离开原点后运动的路程 s 1=⎠⎛04(8t -2t 2)d t -⎠⎛46(8t -2t 2)d t =⎝⎛⎭⎫4t 2-23t 3⎪⎪⎪ 40-⎝⎛⎭⎫4t 2-23t 3⎪⎪⎪64=1283. 当t =6时,点P 的位移为⎠⎛06(8t -2t 2)d t =⎝⎛⎭⎫4t 2-23t 3⎪⎪⎪60=0.(2)依题意,⎠⎛0t(8t -2t 2)d t =0, 即4t 2-23t 3=0,解得t =0或t =6,因为t =0对应于点P 刚开始从原点出发的情况,所以t =6为所求,(1)用定积分解决变速直线运动的位移和路程问题时,将物理问题转化为数学问题是关键.(2)路程是位移的绝对值之和,因此在求路程时,要先判断速度在区间内是否恒正,若符号不定,应求出使速度恒正或恒负的区间,然后分别计算,否则会出现计算失误.[活学活用]一质点在直线上从时刻t =0(s)开始以速度v =t 2-4t +3(m/s)运动,求点在t =4 s 时的位置及经过的路程.解:在t =4 s 时该点的位移为 ⎠⎛04(t 2-4t +3)d t =⎝⎛⎭⎫13t 3-2t 2+3t ⎪⎪⎪4=43(m). 即在t =4 s 时该点距出发点43m.又因为v (t )=t 2-4t +3=(t -1)(t -3), 所以在区间[0,1]及[3,4]上的v (t )≥0, 在区间[1,3]上,v (t )≤0.所以在t =4 s 时的路程为s =⎠⎛01(t 2-4t +3)d t -⎠⎛13(t 2-4t +3)d t +⎠⎛34(t 2-4t +3)d t =⎝⎛⎭⎫t 33-2t 2+3t ⎪⎪⎪1-⎝⎛⎭⎫t 33-2t 2+3t ⎪⎪⎪31+⎝⎛⎭⎫t 33-2t 2+3t ⎪⎪⎪ 43=4(m).求变力做功[典例] 一物体在变力F (x )=⎩⎪⎨⎪⎧2x +4,0≤x ≤2,x 2+2x ,2≤x ≤5,(x 的单位:m ,F 的单位:N)的作用下,沿着与力F 相同的方向从x =0运动到x =5处,求变力所做的功.[解] 变力F (x )所做的功为 W =⎠⎛02(2x +4)d x +⎠⎛25(x 2+2x )d x=(x 2+4x ) ⎪⎪⎪2+⎝⎛⎭⎫13x 3+x 2⎪⎪⎪52=12+60=72(J).求变力做功的方法步骤(1)要明确变力的函数式F (x ),确定物体在力的方向上的位移. (2)利用变力做功的公式W =⎠⎛ab F (x )d x 计算.(3)注意必须将力与位移的单位换算为牛顿与米,功的单位才为焦耳. [活学活用]在弹性限度内,用力把弹簧从平衡位置拉长10 cm 所用的力是200 N ,求变力F 做的功. 解:设弹簧所受到的拉力与弹簧伸长的函数关系式为F (x )=kx (k >0),当x =10 cm =0.1 m 时,F (x )=200 N ,即0.1k =200,得k =2 000,故F (x )=2 000x , 所以力F 把弹簧从平衡位置拉长10 cm 所做的功是W =⎠⎛0 0.12 000x d x =1 000x 2⎪⎪⎪1=10(J).层级一 学业水平达标1.在下面所给图形的面积S 及相应的表达式中,正确的有( )A .①③B .②③C .①④D .③④解析:选D ①应是S =⎠⎛a b[f (x )-g (x )]d x ,②应是S =⎠⎛0822x d x -⎠⎛48(2x -8)d x ,③和④正确.故选D.2.一物体以速度v =(3t 2+2t )m/s 做直线运动,则它在t =0 s 到t =3 s 时间段内的位移是( )A .31 mB .36 mC .38 mD .40 m解析:选B S =⎠⎛03(3t 2+2t )d t =(t 3+t 2)30=33+32=36(m),故应选B. 3.如图所示,阴影部分的面积是( ) A .2 3 B .2- 3 C.323D.353解析:选C S =⎠⎛-3 1(3-x 2-2x )d x ,即F (x )=3x -13x 3-x 2,则F (1)=3-13-1=53,F (-3)=-9+9-9=-9.∴S =F (1)-F (-3)=53+9=323.故应选C.4.由y =x 2,y =14x 2及x =1围成的图形的面积S =( )A.14B.12C.13D .1解:选A 图形如图所示,S =⎠⎛01x 2d x -⎠⎛0114x 2d x=⎠⎛0134x 2d x=14x 310=14. 5.曲线y =x 3-3x 和y =x 围成的图形面积为( ) A .4 B .8 C .10D .9解析:选B 由⎩⎪⎨⎪⎧ y =x 3-3x ,y =x ,解得⎩⎪⎨⎪⎧ x =0,y =0或⎩⎪⎨⎪⎧ x =2,y =2或⎩⎪⎨⎪⎧x =-2,y =-2.∵两函数y =x 3-3x 与y =x 均为奇函数,∴S =2⎠⎛02[x -(x 3-3x )]d x =2·⎠⎛02(4x -x 3)d x=2⎝⎛⎭⎫2x 2-14x 4⎪⎪⎪20=8,故选B.6.若某质点的初速度v (0)=1,其加速度a (t )=6t ,做直线运动,则质点在t =2 s 时的瞬时速度为________.解析:v (2)-v (0)=⎠⎛02a (t )d t =⎠⎛026t d t =3t 2⎪⎪⎪2=12,所以v (2)=v (0)+3×22=1+12=13. 答案:137.一物体沿直线以速度v =1+t m/s 运动,该物体运动开始后10 s 内所经过的路程是______.解析:S =⎠⎛0101+t d t =23(1+t )32 ⎪⎪⎪10=23⎝⎛⎭⎫1132-1. 答案: 23⎝⎛⎭⎫1132-1 8.由y =1x,x =1,x =2,y =0所围成的平面图形的面积为________.解析:画出曲线y =1x (x >0)及直线x =1,x =2,y =0,则所求面积S 为如图所示的阴影部分面积.∴S =⎠⎛121x d x =ln x ⎪⎪⎪21=ln 2-ln 1=ln 2.答案:ln 29.计算曲线y =x 2-2x +3与直线y =x +3所围图形的面积.解:由⎩⎪⎨⎪⎧y =x +3,y =x 2-2x +3,解得x =0及x =3.从而所求图形的面积S =⎠⎛03[(x +3)-(x 2-2x +3)]d x =⎠⎛03(-x 2+3x )d x =⎝⎛⎭⎫-13x 3+32x 2⎪⎪⎪30=92. 10. 设y =f (x )是二次函数,方程f (x )=0有两个相等的实根,且f ′(x )=2x +2. (1)求y =f (x )的表达式;(2)求y =f (x )的图象与两坐标轴所围成图形的面积. 解:(1)∵y =f (x )是二次函数且f ′(x )=2x +2, ∴设f (x )=x 2+2x +c . 又f (x )=0有两个等根,∴4-4c =0,∴c =1,∴f (x )=x 2+2x +1.(2)y =f (x )的图象与两坐标所围成的图形的面积S =⎠⎛-10(x 2+2x +1)d x =13x 3+x 2+x ⎪⎪⎪-1=13. 层级二 应试能力达标1.一物体在力F (x )=4x -1(单位:N)的作用下,沿着与力F 相同的方向,从x =1运动到x =3处(单位:m),则力F (x )所做的功为( )A .8 JB .10 JC .12 JD .14 J解析:选D 由变力做功公式有:W =⎠⎛13(4x -1)d x =(2x 2-x ) ⎪⎪⎪31=14(J),故应选D.2.若某产品一天内的产量(单位:百件)是时间t 的函数,若已知产量的变化率为a =36t,那么从3小时到6小时期间内的产量为( )A.12B .3-322 C .6+3 2D .6-3 2解析:选D ⎠⎛3636t d t =6t ⎪⎪⎪63=6-32,故应选D.3.以初速40 m/s 竖直向上抛一物体,t s 时刻的速度v =40-10t 2,则此物体达到最高时的高度为( )A.1603 m B.803 m C.403m D.203m 解析:选A 由v =40-10t 2=0,得t 2=4,t =2. ∴h =⎠⎛02(40-10t 2)d t =⎝⎛⎭⎫40t -103t 3⎪⎪⎪2=80-803=1603(m).故选A. 4.(山东高考)直线y =4x 与曲线y =x 3在第一象限内围成的封闭图形的面积为( ) A .2 2 B .4 2 C .2D .4解析:选D 由4x =x 3,解得x =0或x =2或x =-2(舍去),根据定积分的几何意义可知,直线y =4x 与曲线y =x 3在第一象限内围成的封闭图形的面积为⎠⎛02(4x -x 3)d x=⎝⎛⎭⎫2x 2-14x 4⎪⎪⎪2=4.5.椭圆x 216+y 29=1所围区域的面积为________.解析:由x 216+y 29=1,得y =±3416-x 2.又由椭圆的对称性知,椭圆的面积为S =4⎠⎛043416-x 2d x =3⎠⎛0416-x 2d x. 由y =16-x 2,得x 2+y 2=16(y ≥0).由定积分的几何意义知⎠⎛0416-x 2d x 表示由直线x =0,x =4和曲线x 2+y 2=16(y ≥0)及x 轴所围成图形的面积,∴⎠⎛0416-x 2d x =14×π×16=4π,∴S =3×4π=12π.答案:12π6.如图,在边长为e (e 为自然对数的底数)的正方形中随机撒一粒黄豆,则它落到阴影部分的概率为____________.解析:∵S 阴=2⎠⎛01(e -e x )d x =2(e x -e x ) ⎪⎪⎪1=2,S 正方形=e 2,∴P =2e 2.答案:2e27.求由曲线xy =1及直线x =y ,y =3所围成平面图形的面积.解:作出曲线xy =1,直线x =y ,y =3的草图,所求面积为图中阴影部分的面积.求交点坐标:由⎩⎪⎨⎪⎧xy =1,y =3,得⎩⎪⎨⎪⎧x =13,y =3,故A ⎝⎛⎭⎫13,3;由⎩⎪⎨⎪⎧xy =1,y =x , 得⎩⎪⎨⎪⎧ x =1,y =1或⎩⎪⎨⎪⎧x =-1,y =-1(舍去), 故B(1,1);由⎩⎪⎨⎪⎧y =x ,y =3得⎩⎪⎨⎪⎧x =3,y =3,故C(3,3),8.函数f(x)=ax 3+bx 2-3x ,若f(x)为实数集R 上的单调函数,且a ≥-1,设点P 的坐标为(b ,a ),试求出点P 的轨迹所形成的图形的面积S .解:当a =0时,由f (x )在R 上单调,知b =0.当a ≠0时,f (x )在R 上单调⇔f ′(x )≥0恒成立或f ′(x )≤0恒成立.∵f ′(x )=3ax 2+2bx -3,∴⎩⎪⎨⎪⎧Δ=4b 2+36a ≤0,a ≥-1.∴a ≤-19b 2且a ≥-1.因此满足条件的点P (b ,a )在直角坐标平面xOy 的轨迹所围成的图形是由曲线y =-19x 2与直线y =-1所围成的封闭图形.联立⎩⎪⎨⎪⎧y =-19x 2,y =-1,解得⎩⎪⎨⎪⎧ x =-3,y =-1或⎩⎪⎨⎪⎧x =3,y =-1,如图,其面积S =⎠⎛3-3⎝⎛⎭⎫1-19x 2d x =⎝⎛⎭⎫x -x 327⎪⎪⎪3-3=(3-1)-(-3+1)=4.(时间: 120分钟 满分:150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.若f (x )=sin α-cos x ,则f ′(x )等于( ) A .sin x B .cos x C .cos α+sin xD .2sin α+cos x解析:选A 函数是关于x 的函数,因此sin α是一个常数.2.以正弦曲线y =sin x 上一点P 为切点的切线为直线l ,则直线l 的倾斜角的范围是( )A.⎣⎡⎦⎤0,π4∪⎣⎡⎭⎫3π4,π B .[0,π) C.⎣⎡⎦⎤π4,3π4D.⎣⎡⎦⎤0,π4∪⎝⎛⎦⎤π2,3π4 解析:选A y ′=cos x ,∵cos x ∈[-1,1],∴切线的斜率范围是[-1,1],∴倾斜角的范围是⎣⎡⎦⎤0,π4∪⎣⎡⎭⎫3π4,π. 3.函数f (x )的定义域为开区间(a ,b ),导函数f ′(x )在(a ,b )内的图象如图所示,则函数f (x )在开区间(a ,b )内有极小值点( )A .1个B .2个C .3个D .4个解析:选A 设极值点依次为x 1,x 2,x 3且a <x 1<x 2<x 3<b ,则f (x )在(a ,x 1),(x 2,x 3)上递增,在(x 1,x 2),(x 3,b )上递减,因此,x 1,x 3是极大值点,只有x 2是极小值点.4.函数f (x )=x 2-ln x 的单调递减区间是( ) A. ⎝⎛⎦⎤0, 22 B.⎣⎡⎭⎫22,+∞ C. ⎝⎛⎦⎤-∞,-22,⎝⎛⎭⎫0, 22 D.⎣⎡⎭⎫-22, 0,⎝⎛⎦⎤0, 22 解析:选A ∵f ′(x )=2x -1x =2x 2-1x ,当0<x ≤22时,f ′(x )≤0,故f (x )的单调递减区间为⎝⎛⎦⎤0,22. 5.函数f (x )=3x -4x 3(x ∈[0,1])的最大值是( ) A .1 B.12 C .0D .-1解析:选A f ′(x )=3-12x 2,令f ′(x )=0, 则x =-12(舍去)或x =12,f (0)=0,f (1)=-1,f ⎝⎛⎭⎫12=32-12=1,∴f (x )在[0,1]上的最大值为1.6.函数f (x )=x 3+ax 2+3x -9,已知f (x )在x =-3处取得极值,则a =( ) A .2 B .3 C .4D .5解析:选D f ′(x )=3x 2+2ax +3,∵f ′(-3)=0. ∴3×(-3)2+2a ×(-3)+3=0,∴a =5.7.函数f (x )=13ax 3+12ax 2-2ax +1的图象经过四个象限,则实数a 的取值范围是( )A.⎝⎛⎭⎫-310,67 B.⎝⎛⎭⎫-85,-316 C.⎝⎛⎭⎫-83,-116 D.⎝⎛⎭⎫-∞,-310∪⎝⎛⎭⎫67,+∞ 解析:选D f ′(x )=ax 2+ax -2a =a (x +2)(x -1),要使函数f (x )的图象经过四个象限,则f (-2)f (1)<0,即⎝⎛⎭⎫103a +1⎝⎛⎭⎫-76a +1<0,解得a <-310或a >67. 故选D.8.已知函数f (x )的导函数f ′(x )=a (x -b )2+c 的图象如图所示,则函数f (x )的图象可能是( )解析:选D 由导函数图象可知,当x <0时,函数f (x )递减,排除A 、B ;当0<x <x 1时,f ′(x )>0,函数f (x )递增.因此,当x =0时,f (x )取得极小值,故选D.9.定义域为R 的函数f (x )满足f (1)=1,且f (x )的导函数f ′(x )>12,则满足2f (x )<x +1的x 的集合为( )A .{x |-1<x <1}B .{x |x <1}C .{x |x <-1或x >1}D .{x |x >1}解析:选B 令g (x )=2f (x )-x -1,∵f ′(x )>12,∴g ′(x )=2f ′(x )-1>0,∴g (x )为单调增函数, ∵f (1)=1,∴g (1)=2f (1)-1-1=0,∴当x <1时, g (x )<0,即2f (x )<x +1,故选B.10.某产品的销售收入y 1(万元)是产量x (千台)的函数:y 1=17x 2,生产成本y 2(万元)是产量x (千台)的函数:y 2=2x 3-x 2(x >0),为使利润最大,应生产( )A .6千台B .7千台C .8千台D .9千台解析:选A 设利润为y ,则y =y 1-y 2=17x 2-(2x 3-x 2)=18x 2-2x 3,y ′=36x -6x 2,令y ′=0得x =6或x =0(舍),f (x )在(0,6)上是增函数,在(6,+∞)上是减函数,∴x =6时y 取得最大值.11.已知定义在R 上的函数f (x ),f (x )+x ·f ′(x )<0,若a <b ,则一定有( ) A .af (a )<bf (b ) B .af (b )<bf (a ) C .af (a )>bf (b )D .af (b )>bf (a )解析:选C [x ·f (x )]′=x ′f (x )+x ·f ′(x )=f (x )+x ·f ′(x )<0, ∴函数x ·f (x )是R 上的减函数, ∵a <b ,∴af (a )>bf (b ).12.若函数f (x )=sin x x ,且0<x 1<x 2<1,设a =sin x 1x 1,b =sin x 2x 2,则a ,b 的大小关系是( )A .a >bB .a <bC .a =bD .a ,b 的大小不能确定解析:选A f ′(x )=x cos x -sin xx 2,令g (x )=x cos x -sin x ,则g ′(x )=-x sin x +cos x-cos x =-x sin x .∵0<x <1,∴g ′(x )<0,即函数g (x )在(0,1)上是减函数,得g (x )<g (0)=0,故f ′(x )<0,函数f (x )在(0,1)上是减函数,得a >b ,故选A.二、填空题(本大题共4小题,每小题5分,满分20分.把答案填在题中的横线上) 13.若f (x )=13x 3-f ′(1)x 2+x +5,则f ′(1)=________.解析:f ′(x )=x 2-2f ′(1)x +1,令x =1,得f ′(1)=23.答案:2314.设a >0,若曲线y =x 与直线x =a ,y =0所围成封闭图形的面积为a 2,则a =__________.解析:S =⎠⎛0ax d x =23x 32a0=23a 32=a 2,∴a =49. 答案:4915.已知函数f (x )满足f (x )=f (π-x ),且当x ∈⎝⎛⎭⎫-π2,π2时,f (x )=x +sin x ,设a =f (1),b =f (2),c =f (3),则a ,b ,c 的大小关系是________.解析:f (2)=f (π-2),f (3)=f (π-3), 因为f ′(x )=1+cos x ≥0, 故f (x )在⎝⎛⎭⎫-π2,π2上是增函数, ∵π2>π-2>1>π-3>0, ∴f (π-2)>f (1)>f (π-3),即c <a <b . 答案:c <a <b 16.若函数f (x )=4xx 2+1在区间(m,2m +1)上单调递增,则实数m 的取值范围是__________.解析:f ′(x )=4-4x 2(x 2+1)2,令f ′(x )>0,得-1<x <1,即函数f (x )的增区间为(-1,1). 又f (x )在(m,2m +1)上单调递增, 所以⎩⎪⎨⎪⎧m ≥-1,m <2m +1,2m +1≤1.解得-1<m ≤0.答案:(-1,0]三、解答题(本大题共6小题,共70分.解答时应写出必要的文字说明、证明过程或演算步骤)17.(本小题满分12分)若函数y =f (x )在x =x 0处取得极大值或极小值,则称x 0为函数y =f (x )的极值点.已知a ,b 是实数,1和-1是函数f (x )=x 3+ax 2+bx 的两个极值点.(1)求a 和b 的值;(2)设函数g (x )的导函数g ′(x )=f (x )+2,求g (x )的极值点. 解:(1)由题设知f ′(x )=3x 2+2ax +b ,且f ′(-1)=3-2a +b =0,f ′(1)=3+2a +b =0, 解得a =0,b =-3. (2)由(1)知f (x )=x 3-3x . 因为f (x )+2=(x -1)2(x +2),所以g ′(x )=0的根为x 1=x 2=1,x 3=-2, 于是函数g (x )的极值点只可能是1或-2. 当x <-2时,g ′(x )<0;当-2<x <1时, g ′(x )>0,故-2是g (x )的极值点. 当-2<x <1或x >1时,g ′(x )>0, 故1不是g (x )的极值点. 所以g (x )的极值点为-2.18. (本小题满分12分)(北京高考)设函数f (x )=x e a -x +bx ,曲线y =f (x )在点(2,f (2))处的切线方程为y =(e -1)x +4.(1)求a ,b 的值; (2)求f (x )的单调区间. 解:(1)因为f (x )=x e a -x +bx , 所以f ′(x )=(1-x )e a -x +b .依题设有⎩⎪⎨⎪⎧f (2)=2e +2,f ′(2)=e -1,即⎩⎪⎨⎪⎧2e a -2+2b =2e +2,-e a -2+b =e -1.解得⎩⎪⎨⎪⎧a =2,b =e.(2)由(1)知f(x)=x e2-x+e x.由f′(x)=e2-x(1-x+e x-1)及e2-x>0知,f′(x)与1-x+e x-1同号.令g(x)=1-x+e x-1,则g′(x)=-1+e x-1.所以当x∈(-∞,1)时,g′(x)<0,g(x)在区间(-∞,1)上单调递减;当x∈(1,+∞)时,g′(x)>0,g(x)在区间(1,+∞)上单调递增.故g(1)=1是g(x)在区间(-∞,+∞)上的最小值,从而g(x)>0,x∈(-∞,+∞).综上可知,f′(x)>0,x∈(-∞,+∞),故f(x)的单调递增区间为(-∞,+∞).19.(本小题满分12分)某个体户计划经销A,B两种商品,据调查统计,当投资额为x(x≥0)万元时,在经销A,B商品中所获得的收益分别为f(x)万元与g(x)万元,其中f(x)=a(x-1)+2,g(x)=6ln(x+b)(a>0,b>0).已知投资额为零时收益为零.(1)求a,b的值;(2)如果该个体户准备投入5万元经销这两种商品,请你帮他制定一个资金投入方案,使他能获得最大利润.解:(1)由投资额为零时收益为零,可知f(0)=-a+2=0,g(0)=6ln b=0,解得a=2,b=1.(2)由(1)可得f(x)=2x,g(x)=6ln(x+1).设投入经销B商品的资金为x万元(0<x≤5),则投入经销A商品的资金为(5-x)万元,设所获得的收益为S(x)万元,则S(x)=2(5-x)+6ln(x+1)=6ln(x+1)-2x+10(0<x≤5).S′(x)=6x+1-2,令S′(x)=0,得x=2.当0<x<2时,S′(x)>0,函数S(x)单调递增;当2<x≤5时,S′(x)<0,函数S(x)单调递减.所以当x=2时,函数S(x)取得最大值,S(x)max=S(2)=6ln 3+6≈12.6万元.所以,当投入经销A商品3万元,B商品2万元时,他可获得最大收益,收益的最大值约为12.6万元.20.(本小题满分12分)已知函数f (x )=ax 2+2ln(1-x )(a 为常数).(1)若f (x )在x =-1处有极值,求a 的值并判断x =-1是极大值点还是极小值点; (2)若f (x )在[-3,-2]上是增函数,求a 的取值范围. 解:(1)f ′(x )=2ax -21-x,x ∈(-∞,1), f ′(-1)=-2a -1=0, 所以a =-12.f ′(x )=-x -21-x =(x +1)(x -2)1-x. ∵x <1,∴1-x >0,x -2<0, 因此,当x <-1时f ′(x )>0, 当-1<x <1时f ′(x )<0, ∴x =-1是f (x )的极大值点.(2)由题意f ′(x )≥0在x ∈[-3,-2]上恒成立, 即2ax -21-x≥0在x ∈[-3,-2]上恒成立 ∴a ≤1-x 2+x 在x ∈[-3,-2]上恒成立,∵-x 2+x =-⎝⎛⎭⎫x -122+14 ∈[-12,-6], ∴1-x 2+x ∈⎣⎡⎦⎤-16,-112, ∴⎝⎛⎭⎫1-x 2+ x min =-16,a ≤-16.即a 的取值范围为⎝⎛⎦⎤-∞,-16. 21.(本小题满分12分)已知函数f (x )=x 2-m ln x ,h (x )=x 2-x +a . (1)当a =0时,f (x )≥h (x )在(1,+∞)上恒成立,求实数m 的取值范围;(2)当m =2时,若函数k (x )=f (x )-h (x )在区间(1,3)上恰有两个不同零点,求实数a 的取值范围.解:(1)由f (x )≥h (x ), 得m ≤xln x在(1,+∞)上恒成立. 令g (x )=xln x ,则g ′(x )=ln x -1(ln x )2, 当x ∈(1,e)时,g ′(x )<0;当x ∈(e ,+∞)时,g ′(x )>0,所以g (x )在(1,e)上递减,在(e ,+∞)上递增. 故当x =e 时,g (x )的最小值为g (e)=e. 所以m ≤e.即m 的取值范围是(-∞,e]. (2)由已知可得k (x )=x -2ln x -a . 函数k (x )在(1,3)上恰有两个不同零点,相当于函数φ(x )=x -2ln x 与直线y =a 有两个不同的交点. φ′(x )=1-2x =x -2x,当x ∈(1,2)时,φ′(x )<0,φ(x )递减, 当x ∈(2,3)时,φ′(x )>0,φ(x )递增. 又φ(1)=1,φ(2)=2-2ln 2,φ(3)=3-2ln 3, 要使直线y =a 与函数φ(x )=x -2ln x 有两个交点, 则2-2ln 2<a <3-2ln 3.即实数a 的取值范围是(2-2ln 2,3-2ln 3).22.(本小题满分12分)已知函数f (x )=(x -2)e x +a (x -1)2有两个零点. (1)求a 的取值范围;(2)设x 1,x 2是f (x )的两个零点,证明:x 1+x 2<2. 解:(1)f ′(x )=(x -1)e x +2a (x -1)=(x -1)(e x +2a ). ①设a =0,则f (x )=(x -2)e x ,f (x )只有一个零点. ②设a >0,则当x ∈(-∞,1)时,f ′(x )<0; 当x ∈(1,+∞)时,f ′(x )>0,所以f (x )在(-∞,1)内单调递减,在(1,+∞)内单调递增. 又f (1)=-e ,f (2)=a ,取b 满足b <0且b <ln a2,则f (b )>a2(b -2)+a (b -1)2=a ⎝⎛⎭⎫b 2-32b >0, 故f (x )存在两个零点.③设a <0,由f ′(x )=0得x =1或x =ln(-2a ). 若a ≥-e2,则l n(-2a )≤1,故当x ∈(1,+∞)时,f ′(x )>0,因此f (x )在(1,+∞)内单调递增. 又当x ≤1时,f (x )<0,所以f (x )不存在两个零点. 若a <-e2,则ln(-2a )>1,故当x∈(1,ln(-2a))时,f′(x)<0;当x∈(ln(-2a),+∞)时,f′(x)>0.因此f(x)在(1,ln(-2a))内单调递减,在(ln(-2a),+∞)内单调递增.又当x≤1时,f(x)<0,所以f(x)不存在两个零点.综上,a的取值范围为(0,+∞).(2)证明:不妨设x1<x2,由(1)知,x1∈(-∞,1),x2∈(1,+∞),2-x2∈(-∞,1),又f(x)在(-∞,1)内单调递减,所以x1+x2<2等价于f(x1)>f(2-x2),即f(2-x2)<0.由于f(2-x2)=-x2e2-x2+a(x2-1)2,而f(x2)=(x2-2)e x2+a(x2-1)2=0,所以f(2-x2)=-x2e2-x2-(x2-2)e x2.设g(x)=-x e2-x-(x-2)e x,则g′(x)=(x-1)(e2-x-e x).所以当x>1时,g′(x)<0,而g(1)=0,故当x>1时,g(x)<0.从而g(x2)=f(2-x2)<0,故x1+x2<2.。
《定积分的简单应用》教学反思
《定积分的简单应用》教学反思《定积分的简单应用》教学反思《定积分的简单应用》教学反思王利本节课内容是选修2-2中第四章最后一个小节,要求学生在充分认识导数与定积分的概念的基础上,通过运用积分手段解决曲边梯形的面积问题,从而进一步体会到导数与积分的工具性作用,认识到数学知识的实用价值。
新课标要求我们在教学过程中要着重培养学生的探究、发现、创新等方面的能力。
学习的全过程需要学生的参与,学生是学习的主体和中心。
围绕这个宗旨,我在课堂内容的`编排和教学课件的制作上作了一定的思考。
在内容编排上,我基本遵循由易到难的过程,从最基本的,学生所熟知的前课知识开始引入,由浅入深的引导学生加以足够地探究,使学生的发现变得自然而水到渠成。
同时对于学生可能的探究结果留有足够的空间,充分肯定学生的创新发现,对于学生考虑不到的地方加以补充、引导、完善,并留出一定课后思考得余地。
在课件制作方面,考虑到多媒体直观形象的特点,让其承担起引导思考与解释的重任。
我想,一堂好的示范课,不应该只是一次简单的表演与展示,如果在上课之前反复编排到一词一句,会让学生疲惫,听课老师觉得虚假而没有了讨论与交流的兴致,这其实也是对听课老师的一种不尊重的表现。
因此我按照正常的教学进度,以便学生在课堂上有充分的暴露与发现的机会,当然这样一来对于老师的临场应变要求会更高,我想这也应该是一个合格教师的基本素养吧。
当然这节课还有一些不足之处,课堂容量过大,学生板演的次数过多,导致了出现了拖堂的遗憾。
课件的制作也达不到美观的要求,不能更好的发挥其应有的作用。
在今后的教学中我会不断的完善自己的教学技能,提高自己的业务水平。
湖北省巴东一中高二数学教案 选修2-2:1.7定积分的简单应用第1课时
§1.7.1 定积分在几何中的应用【学情分析】:在上一阶段的学习中,已经学习了利用微积分基本定理计算单个被积函数的定积分,并且已经理解定积分可以计算曲线与x轴所围面积。
本节中将继续研究多条曲线围成的封闭图形的面积问题。
学生将进一步经历到由解决简单问题到解决复杂问题的过程,这是一个研究问题的普遍方法。
学生能正确的理解定积分的几何意义,是求面积问题的基础。
但是对各种图形分割的技巧以及选择x-型区域或y-型区域计算是比较陌生的。
突破点是一定要借助图形直观,让学生清楚根据曲线的交点划分图形(分块)以及根据曲线的特点(解出变量x还是y简单)选择x-型区域或y-型区域。
【教学目标】:(1)知识与技能:解决一些在几何中用初等数学方法难以解决的平面图形面积问题(2)过程与方法:在解决问题中,通过数形结合的思想方法,加深对定积分几何意义的理解(3)情感态度与价值观:体会事物间的相互转化、对立统一的辩证关系,培养学生辩证唯物主义观点,提高理性思维能力.【教学重点】:(1)应用定积分解决平面图形的面积问题,使学生在解决问题的过程中体验定积分的价值以及由浅入深的解决问题的方法。
(2)数形结合的思想方法【教学难点】:利用定积分的几何意义,借助图形直观,把平面图形进行适当的分割,从而把求平面图形面积的问题转化为求曲边梯形面积的问题.教学环节教学活动设计意图一、例题1(1)师:我们已经看到,定积分可以用来计算曲边梯形的面积,事实上,利用定积分还可以求比较复杂的平面图形的面积。
(2)例题1 计算由曲线22,y x y x==所围图形的面积S。
1DC BA1y2=xy=x2O xy生:思考,讨论师(引导,总结):例1是求由两条抛物线所围成的平面图形的面积.第一步,画图并确定图形大致形状、引入课题的面积.师:我们把这个题目提升为一般类型:即求两条曲线所夹面积:若函数()f x 和()g x 在区间[],a b 上连续且在[],a b 上有()()f x g x ≥,那么由y =f (x ),y =g (x ),x =a ,x =b 所围成的有界区域面积为b[()()]d aA f x g x x =-⎰=b()d af x x ⎰-b()d ag x x ⎰-=A y=g(x)baOxyy=f(x)我们看到,尽管我们的证明的示意图中曲线()y f x =与()y g x =的均在x 轴上方,但是,由1.6的学习我们可以知道,曲线()y f x =或()y g x =在x 轴下方也不影响我们的证明,结论仍然是正确的。
北师大版高中数学选修2-2第四章《定积分》定积分的简单应用(三)利用定积分求简单几何体的体积 课件
五、教后反思:
2013-4-2
2013-4-2
∴所求“冰激凌”的体积为:
12 1 4 224 2 2 (2 x ) dx ( x 6) dx (cm) 3 4 2 3 0
2013-4-2
变式引申:某电厂冷却塔外形如图所示,双曲线的一部分绕 其中轴(双曲线的虚轴)旋转所成的曲面,其中A,A’是双曲 线的顶点,C,C’是冷却塔上口直径的两个端点,B,B’ 是 下底直径的两个端点,已知 AA’=14m,CC’=18m,BB’=22m,塔高20m.
x
2013-4-2
分析:解此题的关键是如何建立数学模型。将 其轴载面按下图位置放置,并建立坐标系。则 A,B坐标可得,再求出直线AB和抛物线方程, “冰激凌”可看成是由抛物线弧OB和线段AB 绕X轴旋转一周形成的。
解:将其轴载面按下图位置放
置,并建立如图的坐标系。则 A(12,0), (4,4) B
(1)建立坐标系,并写出该曲线方程. (2)求冷却塔的容积(精确到10m3塔壁厚度不计, 取3.14) 2 2 x y (1) 1 49 98
8 2 8
C’ A’ A
C
1 2 ( 2)V x dy ( y 49)dy 12 12 2 B’ 2013-4-2
B
S侧 2 f ( x) 1 [ f ' ( x)]2 dx
V f
a
b
2
x dx,即可求旋转体体积的值。
(三)、课堂小结:求体积的过程就是对定 积分概念的进一步理解过程,总结求旋转体 体积公式步骤如下:1.先求出 y f x b 的表达式;2.代入公式 V f 2 x dx a ,即可求旋转体体积的值。 (四)、作业布置:课本P90页练习题中2;习题 4-3中6、7
数学选修2-2定积分的简单应用练习题含答案
数学选修2-2定积分的简单应用练习题含答案学校:__________ 班级:__________ 姓名:__________ 考号:__________1. 曲线y=sin x与x轴在区间[0, 2π]上所围成阴影部分的面积为()A.−4B.−2C.2D.42. 由直线x=0,x=2,y=0和抛物线x=√1−y所围成的平面图形绕x轴旋转所得几何体的体积为()A.46 15πB.43π C.1615π D.83π3. 由直线x=1,x=2,y=0与抛物线y=x2所围成的曲边梯形的面积为()A.1 3B.53C.73D.1134. 由曲线y=x2+2与y=3x,x=0,x=1所围成的平面图形的面积为()A.5 6B.1C.53D.25. 曲线y=x2和y2=x所围成的平面图形绕x轴旋转一周后,所形成的旋转体的体积为()A.3π10B.π2C.π5D.7π106. 函数y=sin x,y=cos x在区间(π4,5π4)内围成图形的面积为()A.√2B.2√2C.3√2D.4√27. 一物体在力F(x)=3+e2x(x的单位:m,F的单位:N)的作用下,沿着与力F相同的方向,从x=0处运动到x=1处,力F(x)所做的功为()A.(3+e2)JB.(3+12e2)J C.(52+12e2)J D.(2+e2)J8. 由曲线y=√x,y=x−2及x轴所围成的封闭图形的面积是()A.4B.103C.163D.1549. 下列表示图中f(x)在区间[a, b]上的图象与x 轴围成的面积总和的式子中,正确的是( )A.∫f ba (x)dx B.|∫f ba (x)dx|C.∫f c 1a (x)dx +∫f c 2c 1(x)dx +∫f cc 2(x)dxD.∫f c 1a (x)dx −∫f c 2c 1(x)dx +∫f cc2(x)dx10. 直线y =x 与曲线y =√x 3围成的平面图形的面积是.( ) A.14 B.2 C.1D.1211. 设函数f(x)=ax 2+c(a ≠0),若∫f 10(x)dx =f(x 0),0≤x 0≤1,则x 0的值为________.12. y =cos x 与直线x =0,x =π及x 轴围成平面区域面积为________.13. 由曲线y =|x|,y =−|x|,x =2,x =−2合成的封闭图形绕y 轴旋转一周所得的旋转体的体积为V ,则V =________.14. 两曲线x −y =0,y =x 2−2x 所围成的图形的面积是________.15. 由曲线y =x 2和直线x =0,x =1,以及y =0所围成的图形面积是________. 16.若在平面直角坐标系xOy 中将直线y =x 2与直线x =1及x 轴所围成的图形绕x 轴旋转一周得到一个圆锥,则该圆锥的体积V 圆锥=∫π10(x 2)2dx =π12x 3|10=π12据此类比:将曲线y =x 2与直线y =9所围成的图形绕y 轴旋转一周得到一个旋转体,则该旋转体的体积V =________.17. 在直角坐标平面内,由直线x=1,x=2,y=0和曲线y=1所围成的平面区域的x面积是________.18. 在xOy平面上,将抛物线弧y=1−x2(0≤x≤1)、x轴、y轴围成的封闭图形记为D,如图中曲边三角形OAB及内部.记D绕y轴旋转一周而成的几何体为Ω,过点(0, y)(0≤y≤1)作Ω的水平截面,所得截面面积为(1−y)π,试构造一个平放的直三棱柱,利用祖暅原理得出Ω的体积值为________.19. 函数f(x)=x3−x2+x+1在点(1, 2)处的切线与函数g(x)=x2−x围成的图形的面积等于________.2ax2−a2x)dx,则f(a)的最大值为________.20. 已知f(a)=∫(1x2在第一象限内的交点为P.21. 已知曲线C1:y2=2x与C2:y=12(1)求曲线C2在点P处的切线方程;(2)求两条曲线所围成图形的面积S.22. 求由曲线y=x2+2与y=3x,x=0,x=2所围成的平面图形的面积.23. 已知曲线C:y=x2(x≥0),直线l为曲线C在点A(1, 1)处的切线.(1)求直线l的方程;(2)求直线l与曲线C以及x轴所围成的图形的面积.24. 如图一是火力发电厂烟囱示意图.它是双曲线绕其一条对称轴旋转一周形成的几何体,烟囱最细处的直径为10m,最下端的直径为12m,最细处离地面6m,烟囱高14m,试求该烟囱占有空间的大小.(精确到0.1m3)25.(1)已知复数z的共轭复数是z¯,且z⋅z¯−3iz=10,求z;1−3ix所围成的平面图形的面积.(2)求曲线y=√x与直线x+y=2,y=−1326.(1)已知(√x +2√x4)n 展开式的前三项系数成等差数列.求n .(2)如图所示,在一个边长为1的正方形AOBC 内,曲线y =x 2和曲线y =√x 围成一个叶形图(阴影部分),向正方形AOBC 内随机投一点(该点落在正方形AOBC 内任何一点是等可能的),求所投的点落在叶形图内部的概率.27. 求由下列给出的边界所围成的区域的面积: (1)y =sin x(π4≤x ≤π),x =π4,y =0;(2)y =x 2,y =2x 2,x =1;(3)y =x 2,y =√x .28. 求由y =4−x 2与直线y =2x −4所围成图形的面积.29. 已知曲线y =sin x 和直线x =0,x =π,及y =0所围成图形的面积为S 0. (1)求S 0.(2)求所围成图形绕ox 轴旋转所成旋转体的体积.30. 已知函数y =f(x)的图形如图所示,给出y =f(x)与x =10和x 轴所围成图形的面积估计值;要想得到误差不超过1的面积估计值,可以怎么做?31. 已知曲线C:y =√x 和直线:x −2y =0由C 与围成封闭图形记为M . (1)求M 的面积;(2)若M 绕x 轴旋转一周,求由M 围成的体积.32. 已知f(x)为一次函数,且f(x)=x ∫f 20(t)dt +1, (1)求函数f(x)的解析式;(2)若g(x)=x ⋅f(x),求曲线y =g(x)与x 轴所围成的区域绕x 轴旋转一周所得到的旋转体的体积.33. 已知圆锥的高为ℎ,底半径为r ,用我们计算抛物线下曲边梯形面积的思路,推导圆锥体积的计算公式. [提示:(1)用若干张平行于圆锥底面的平面把它切成n 块厚度相等的薄片;(2)用一系列圆柱的体积近似地代替对应的薄片,圆柱的高为ℎn ,底半径顺次为:rn ,2r n,3r n…,(n−1)r n,r ;(3)问题归结为计算和式V(n)=ℎn ×(12+22+...+n 2)×πr 2n 2,当n 越来越大时所趋向的值.].34. 求曲线y =√x(0≤x ≤4)上的一条切线,使此切线与直线x =0,x =4以及曲线y =√x 所围成的平面图形的面积最小.35. 过点(0, 1)作曲线L:y =ln x 的切线,切点为A .又L 与x 轴交于B 点,区城D 由L 、x 轴与直线AB 围成,求区域D 的面积及D 绕x 轴旋转一周所得旋转体的体积.36. 求曲线y =2x −x 2,y =2x 2−4x 所围成图形的面积.37. 已知∫(103ax +1)(x +b)dx =0,a ,b ∈R ,试求ab 的取值范围.38. 求下列曲线所围成图形的面积:曲线y=cos x,x=π2,x=3π2,y=0.39. 求曲线y=sin x与直线x=−π2,x=5π4,y=0所围成的平面图形的面积.40. 如图,直线y=kx分抛物线y=x−x2与x轴所围图形为面积相等的两部分,求k的值.参考答案与试题解析数学选修2-2定积分的简单应用练习题含答案一、 选择题 (本题共计 10 小题 ,每题 3 分 ,共计30分 ) 1.【答案】 D【考点】定积分在求面积中的应用 【解析】由积分的几何意义可得,S =2∫sin π0xdx ,即可得出结论. 【解答】解:由积分的几何意义可得,S =2∫sin π0xdx =(−cos x)|0π=4. 故选:D . 2.【答案】 A【考点】用定积分求简单几何体的体积 【解析】由题意此几何体的体积可以看作是∫π20(1−x 2)2dx ,求出积分即得所求体积. 【解答】解:由题意几何体的体积; ∫π20(1−x 2)2dx=π(x −23x 3+15x 5)|02=π(2−23×23+15×25) =4615π 故选A . 3. 【答案】 C【考点】定积分在求面积中的应用 【解析】先根据题意画出区域,然后依据图形利用定积分表示出曲边梯形的面积,最后用定积分的定义求出所求即可. 【解答】解:直线x =1,x =2,y =0与抛物线y =x 2所围成的曲边梯形的面积为S =∫x 221dx =13x 3|12=83−13=73,故选:C .4.【答案】 A【考点】定积分的简单应用 【解析】因为所求区域均为曲边梯形,所以使用定积分方可求解,然后求出曲线y =x 2+2与y =3x 的交点坐标,然后利用定积分表示所围成的平面图形的面积,根据定积分的定义解之即可. 【解答】解:联立{y =x 2+2y =3x,解得x 1=1,x 2=2∴ S =∫(10x 2+2−3x)d x =[13X 3+2X −32X 2]01=56 故选:A 5.【答案】 A【考点】用定积分求简单几何体的体积 【解析】欲求曲线y =x 2和y 2=x 所围成的平面图形绕x 轴旋转一周后所形成的旋转体的体积,可利用定积分计算,即求出被积函数y =π(x −x 4)在0→1上的积分即可. 【解答】解:设旋转体的体积为V ,则v =∫π10(x −x 4)dx =π(12x 2−15x 5)|01=3π10.故旋转体的体积为:3π10. 故选A . 6. 【答案】 B【考点】定积分在求面积中的应用 【解析】根据定积分的几何意义,所求面积为S =∫(5π4π4sin x −cos x)dx ,然后利用公式求出sin x −cos x 的原函数F(x),算出F(5π4)−F(π4)的值,即为所求图形的面积. 【解答】解:根据题意,所求面积为S =∫(5π4π4sin x −cos x)dx =(−cos x −sin x +C)|π45π4 (其中C 为常数) ∴ S =(−cos 5π4−sin5π4+C)−(−cos π4−sin π4+C)=(√22+√22+C)−(−√22−√22+C)=2√2 故选B 7.【答案】 C【考点】定积分的简单应用 【解析】先根据题意建立关系式∫(103+e 2x )dx ,然后根据定积分的计算法则求出定积分的值即可. 【解答】解:根据题意可知F(x)所做的功为∫(103+e 2x )dx =(3x +12e 2x )|01=3+12e 2−12=52+12e 2故选C .8.【答案】 B【考点】定积分在求面积中的应用 【解析】根据定积分的几何意义,先求出积分的上下限,即可求出所围成的图形的面积 【解答】解:联立直线y =x −2,曲线y =√x 构成方程组,解得{x =4,y =2,联立直线y =x −2,y =0构成方程组,解得{x =2,y =0,如图所示:∴曲线y=√x,y=x−2及x轴所围成的封闭图形的面积S=∫√x40dx−∫(42x−2)dx=2x32|04 −(1x2−2x)|24=163−2=103.故选B.9.【答案】D【考点】定积分在求面积中的应用定积分定积分的简单应用【解析】先根据定积分的几何意义可知将区间[a, b]分成三段,然后利用上方曲线方程减下方的曲线方程,求积分即为面积,从而求出所求.【解答】解:根据定积分的几何意义可知将区间[a, b]分成三段利用上方曲线方程减下方的曲线方程,求积分即为面积S=∫fc1a (x)dx−∫fc2c1(x)dx+∫fcc2(x)dx故选:D10.【答案】D【考点】定积分在求面积中的应用【解析】先画出画出直线y=x与曲线y=√x3围成的平面图形,然后求出交点横坐标得到积分上下限,然后利用定积分表示出图形的面积,根据定积分的运算法则进行求解即可.【解答】解:画出直线y=x与曲线y=√x3围成的平面图形图形关于原点对称,交点的横坐标为−1,1∴直线y=x与曲线y=√x3围成的平面图形的面积是∫(1−1√x3−x)dx=2∫(1√x3−x)dx=2(34x43−12x2)|01=2(34−12−0)=12故选D .二、 填空题 (本题共计 10 小题 ,每题 3 分 ,共计30分 ) 11.【答案】 √33【考点】定积分的简单应用 【解析】求出定积分∫f 10(x)dx ,根据方程ax 02+c =∫f 10(x)dx 即可求解.【解答】解:∵ f(x)=ax 2+c(a ≠0),∴ f(x 0)=∫f 10(x)dx =[ax 33+cx]01=a3+c .又∵f(x 0)=ax 02+c .∴ x 02=13,∵ x 0∈[0, 1]∴ x 0=√33. 12.【答案】2【考点】定积分在求面积中的应用 【解析】本题利用直接法求解,根据三角函数的对称性知,曲线y =cos x 与直线x =0,x =π所围成的平面区域的面积S 为:曲线y =cos x 与直线x =0,x =π2所围成的平面区域的面积的两倍,最后结合定积分计算面积即可. 【解答】解:根据对称性,得:曲线y =cos x 与直线x =0,x =π所围成的平面区域的面积S 为:曲线y =cos x 与直线x =0,x =π2所围成的平面区域的面积的两倍, ∴ S =2∫cos π20xdx =2 故答案为2.13.【答案】323π【考点】旋转体(圆柱、圆锥、圆台)用定积分求简单几何体的体积【解析】作出曲线围成的封闭图象,根据旋转得到旋转体的结构即可得到结论.【解答】解:曲线y=|x|,y=−|x|,x=2,x=−2合成的封闭图形绕y轴旋转一周所得的旋转体为底面半径为2,高为4的圆柱,去掉2个底面半径为2,高为2的圆锥,则对应的体积为π×42−2×13π×22×2=16π−16π3=323π,故答案为:323π14.【答案】92【考点】定积分在求面积中的应用【解析】先根据题意画出区域,然后依据图形得到积分上限为3,积分下限为0,从而利用定积分表示出曲边梯形的面积,最后用定积分的定义求出所求即可.【解答】解:先根据题意画出图形,得到积分上限为3,积分下限为0;两曲线x−y=0,y=x2−2x所围成的图形的面积是∫(33x−x2)dx而∫(303x−x2)dx=(32x2−13x3)|03=272−9=92∴曲边梯形的面积是92故答案为92.15. 【答案】13【考点】定积分在求面积中的应用 【解析】作出两个曲线的图象,求出它们的交点,由此可得所求面积为函数y =x 2在区间[0, 1]上的定积分的值,再用定积分计算公式加以运算即可得到本题答案. 【解答】解:∵ 曲线y =x 2和直线L:x =1的交点为A(1, 1),∴ 曲线C:y =x 2、直线L:x =1与x 轴所围成的图形面积为 S =∫x 210dx =13x 3|01=13.故答案为:13.16. 【答案】81π2【考点】用定积分求简单几何体的体积 【解析】根据类比推理,结合定积分的应用,即可求出旋转体的体积. 【解答】解:根据类比推理得体积V =∫π90(√y)2dy =∫π90ydy =12πy 2|09=81π2,故答案为:81π2.17.【答案】 ln 2【考点】定积分在求面积中的应用 【解析】先根据所围成图形的面积利用定积分表示出来,然后根据定积分的定义求出面积即可. 【解答】解:由题意,S =∫1x 21dx =ln x|12=ln 2.故答案为:ln 2. 18. 【答案】√34π 【考点】用定积分求简单几何体的体积 【解析】(1−y)π看作是把一个底面边长为1,高为π的直三棱柱平放得到的,根据祖暅原理,每个平行水平面的截面积相等,故它们的体积相等,即可得出结论. 【解答】解:(1−y)π看作是把一个底面边长为1,高为π的直三棱柱平放得到的, 根据祖暅原理,每个平行水平面的截面积相等,故它们的体积相等, 即Ω的体积为π⋅√34=√34π. 故答案为√34π. 19. 【答案】92【考点】定积分在求面积中的应用 【解析】求出函数的切线方程,利用积分的几何意义即可求出区域的面积. 【解答】解:函数的导数为f′(x)=3x 2−2x +1,则在(1, 2)处的切线斜率k =f′(1)=3−2+1=2, 则对应的切线方程为y −2=2(x −1),即y =2x , 由{y =x 2−x y =2x,解得x =3或x =0,则由积分的几何意义可得阴影部分的面积S =∫(302x −x 2+x)dx =(32x 2−13x 3)| 30 =92,故答案为:92.20. 【答案】29【考点】定积分的简单应用 【解析】先根据定积分的运算公式求出f(a)的解析式,然后利用二次函数的图象和性质即可求出f(a)的最大值. 【解答】解:f(a)=∫(102ax 2−a 2x)dx =(23ax 3−12a 2x 2)|01=23a −12a 2∴ 当a =23时,f(a)取最大值,最大值为29 故答案为:29三、 解答题 (本题共计 20 小题 ,每题 10 分 ,共计200分 ) 21.【答案】解:(1)∵ 交点为P(2,2),∴ 曲线C 2的导函数为:y ′=x ∴ 切点坐标为(2,2),故该点的切线方程为:2x −y −2=0. (2)两曲线交点坐标(0,0),(2,2), S ∈∫(√2x −12x 2)20dx =43.【考点】定积分在求面积中的应用利用导数研究曲线上某点切线方程 【解析】 此题暂无解析 【解答】解:(1)∵ 交点为P(2,2),∴ 曲线C 2的导函数为:y ′=x ∴ 切点坐标为(2,2),故该点的切线方程为:2x −y −2=0. (2)两曲线交点坐标(0,0),(2,2), S ∈∫(√2x −12x 2)20dx =43. 22. 【答案】解:联立{y =x 2+2y =3x,解得x 1=1,x 2=2∴ S =∫(10x 2+2−3x)d x +∫(213x −x 2−2)d x =[13X 3+2X −32X 2]01+[32X 2−13X 3−2X]12=1【考点】定积分的简单应用 【解析】因为所求区域均为曲边梯形,所以使用定积分方可求解. 【解答】解:联立{y =x 2+2y =3x,解得x 1=1,x 2=2∴ S =∫(10x 2+2−3x)d x +∫(213x −x 2−2)d x =[13X 3+2X −32X 2]01+[32X 2−13X 3−2X]12=1 23. 【答案】解:(1)由y′=2x ,则切线l 的斜率k =y′|x=1=2×1=2,切线l 的方程为y −1=2(x −1)即2x −y −1=0;(2)如图,所求的图形的面积s =∫x 2120dx +∫[112x 2−(2x −1)]dx =112.【考点】定积分在求面积中的应用利用导数研究曲线上某点切线方程【解析】(1)根据导数的几何意义即可求出切线方程;(2)根据定积分的几何意义即可求出所围成的图形的面积. 【解答】解:(1)由y′=2x ,则切线l 的斜率k =y′|x=1=2×1=2,切线l 的方程为y −1=2(x −1)即2x −y −1=0;(2)如图,所求的图形的面积s =∫x 2120dx +∫[112x 2−(2x −1)]dx =112.24.【答案】解:由题意,将烟囱横截面按照如图放置,建立坐标系如图,双曲线的短轴长为2A =10,并且过(−6, 6),所以双曲线方程为y 225−11x 225×36=1,所以V =π∫(8−611x 236+25)dx =1659.2m 3【考点】用定积分求简单几何体的体积 双曲线的特性【解析】由题意建立坐标系,得到如图的双曲线,烟囱最细处的直径为10m 即2a =10,最下端的直径为12m ,最细处离地面6m ,即双曲线经过(−6, 6),烟囱高14m ,即自变量范围为−6到8,由此利用定积分的值得到体积. 【解答】解:由题意,将烟囱横截面按照如图放置,建立坐标系如图,双曲线的短轴长为2A =10,并且过(−6, 6), 所以双曲线方程为y 225−11x 225×36=1,所以V =π∫(8−611x 236+25)dx =1659.2m 325.【答案】解:(1)设z =a +bi (a,b ∈R ), 则z ¯=a −bi ,∴ z ⋅z ¯−3iz =a 2+b 2+3b −3ai . 又∵ z ⋅z ¯−3iz =101−3i =1+3i , ∴ {a 2+b 2+3b =1,−3a =3,解得 {a =−1,b =0,或{a =−1,b =−3,∴ z =−1或z =−1−3i . (2)由{y =√x ,x +y =2,解得{x =1,y =1,即曲线y =√x 与直线x +y =2的交点坐标为(1,1), 同理可得,曲线y =√x 与直线y =−13x 的交点坐标为(0,0),直线x +y =2与直线y =−13x 的交点坐标为(3,−1),所以围成的平面图形的面积为: S =∫(√x +13x)10dx +∫(2−x +13x)31dx=(23x 32+16x 2)|01+(2x −13x 2)|13=136.【考点】 复数的运算 共轭复数复数代数形式的混合运算 定积分在求面积中的应用 【解析】 此题暂无解析 【解答】解:(1)设z =a +bi (a,b ∈R ), 则z ¯=a −bi ,∴ z ⋅z ¯−3iz =a 2+b 2+3b −3ai . 又∵ z ⋅z ¯−3iz =101−3i =1+3i , ∴ {a 2+b 2+3b =1,−3a =3,解得 {a =−1,b =0,或{a =−1,b =−3,∴ z =−1或z =−1−3i . (2)由{y =√x ,x +y =2,解得{x =1,y =1,即曲线y =√x 与直线x +y =2的交点坐标为(1,1), 同理可得,曲线y =√x 与直线y =−13x 的交点坐标为(0,0), 直线x +y =2与直线y =−13x 的交点坐标为(3,−1),所以围成的平面图形的面积为: S =∫(√x +13x)10dx +∫(2−x +13x)31dx=(23x 32+16x 2)|01+(2x −13x 2)|13=136.26. 【答案】解:(1)∵ (√x 2x4)n 展开式的前三项系数成等差数列,∴ C n 0+C n 2(12)2=2C n 1⋅12…∴ 1+n(n−1)2×14=n ,整理得n 2−9n +8=0,n 1=1(舍) n 2=8…(2)所投的点落在叶形图内记为事件A ,由几何概型的概率公式得: P(A)=叶形图面积AOBC 的面积=∫(10√x−x 2)dx1=(23x 32−13x 3)|01=13…【考点】二项式定理的应用定积分在求面积中的应用 等差数列的性质几何概型计算(与长度、角度、面积、体积有关的几何概型) 【解析】(1)由题意可得,C n 0+C n 2(12)2=2C n 1⋅12,解关于n 的方程即可;(2)由几何概型的概率公式可知,需求叶形图的面积,利用定积分∫(10√x −x 2)dx 可求叶形图的面积,从而使问题解决. 【解答】解:(1)∵ (√x 2√x4)n 展开式的前三项系数成等差数列,∴ C n 0+C n 2(12)2=2C n 1⋅12…∴1+n(n−1)2×14=n,整理得n2−9n+8=0,n1=1(舍)n2=8…(2)所投的点落在叶形图内记为事件A,由几何概型的概率公式得:P(A)=叶形图面积AOBC的面积=∫(1√x−x2)dx1=(23x32−13x3)|01=13…27.【答案】利用S=∫ππ4sin xdx=(−cos x)|π4π=1+√22.利用S=∫10(2x2−x2)dx=23x3|01−13x3|01=13.由于{y=x2y=√x,解得{x=0y=0或{x=1y=1,所以S=∫10(√x−x2)dx=23x32|01−13x3|01=23−13=13.【考点】定积分的简单应用【解析】首先求出被积函数的原函数,进一步利用定积分知识求出结果.【解答】利用S=∫ππ4sin xdx=(−cos x)|π4π=1+√22.利用S=∫10(2x2−x2)dx=23x3|01−13x3|01=13.由于{y=x2y=√x,解得{x=0y=0或{x=1y=1,所以S=∫10(√x−x2)dx=23x32|01−13x3|01=23−13=13.28.【答案】解:由y=4−x2与直线y=2x−4联立,可得交点(−4, −12),(2, 0),∴y=4−x2与直线y=2x−4所围成图形的面积S=∫(2−44−x2−2x+4)dx=(−13x3−x2+8x)|−42=36.【考点】定积分在求面积中的应用【解析】先联立方程,组成方程组,求得交点坐标,可得被积区间,再用定积分表示出y=4−x2与直线y=2x−4所围成图形的面积,即可求得结论.【解答】解:由y=4−x2与直线y=2x−4联立,可得交点(−4, −12),(2, 0),∴y=4−x2与直线y=2x−4所围成图形的面积S=∫(2−44−x2−2x+4)dx=(−13x 3−x 2+8x)|−42=36.29. 【答案】解:(1)S 0=∫sin π0xdx =[−cos x]0π=(−cos π)−(−cos 0)=1+1=2 (2)V =π∫sin 2π0xdx =π[x2−14sin 2x]0π=π(π2−14×0)=π22【考点】用定积分求简单几何体的体积 定积分在求面积中的应用【解析】(1)根据题意可知曲线y =sin x 和直线x =0,x =π,及y =0所围成图形的面积为S 0=∫sin π0xdx ,解之即可;(2)所围成图形绕ox 轴旋转所成旋转体的体积为V =π∫sin 2π0xdx ,根据定积分的定义解之即可. 【解答】解:(1)S 0=∫sin π0xdx =[−cos x]0π=(−cos π)−(−cos 0)=1+1=2 (2)V =π∫sin 2π0xdx=π[x 2−14sin 2x]0π=π(π2−14×0)=π2230.【答案】解:设f(x)=ax 3+bx 2+cx +d ,则f′(x)=3ax 2+2bx +c , 由图象可知{ f(0)=0f(1)=1f′(4)=0f′(7)=0,即{ d =0a +b +c =0c 3a =28−2b 3a =11,解得{ a =2137b =−33137c =168137d =0, ∴ f(x)=2137x 3−33137x 2+168137x . ∴ S =∫f 100(x)dx =(2137×x 44−33137×x 33+168137×x 22)|10≈17.5. 若要想得到误差不超过1的面积估计值,可使用分段函数求出f(x)的解析式,然后使用定积分求出面积. 【考点】定积分在求面积中的应用 【解析】设f(x)=ax 3+bx 2+cx +d ,利用待定系数法确定函数关系式,利用定积分求出面积估计值;若要误差小可分段求出f(x)的解析式,然后使用定积分求出面积. 【解答】解:设f(x)=ax 3+bx 2+cx +d ,则f′(x)=3ax 2+2bx +c ,由图象可知{ f(0)=0f(1)=1f′(4)=0f′(7)=0,即{ d =0a +b +c =0c 3a =28−2b 3a =11,解得{ a =2137b =−33137c =168137d =0, ∴ f(x)=2137x 3−33137x 2+168137x . ∴ S =∫f 100(x)dx=(2137×x 44−33137×x 33+168137×x 22)|10≈17.5. 若要想得到误差不超过1的面积估计值,可使用分段函数求出f(x)的解析式,然后使用定积分求出面积. 31. 【答案】解:(1)曲线C:y =√x 和直线:x −2y =0联立,可得交点坐标为(4, 2),则 S =∫(40√x −12x)dx =(23x 32−x 24)|04=43;(2)V =∫[40π(√x)2−π(x2)2]dx =π(x 22−x 312)|04=8π3.【考点】用定积分求简单几何体的体积 旋转体(圆柱、圆锥、圆台)【解析】(1)求得交点坐标,可得积分区间,即可求M 的面积; (2)旋转一周所得旋转体的体积应该用定积分来求.【解答】 解:(1)曲线C:y =√x 和直线:x −2y =0联立,可得交点坐标为(4, 2),则 S =∫(40√x −12x)dx =(23x 32−x 24)|04=43; (2)V =∫[40π(√x)2−π(x2)2]dx=π(x 22−x 312)|04=8π3.32.【答案】 解:(1)设f(x)=kx +b , ∵ f(x)=x ∫f 20(t)dt +1, ∴ kx +b =x •(kt 22+bt)|02+1,∴ kx +b =(2k +2b)x +1,∴ k =−2,b =1, ∴ f(x)=−2x +1,;2)g(x)=xf(x)=−2x 2+x , ∴ V =π∫[120xf(x)]2dx =π240. 【考点】用定积分求简单几何体的体积定积分【解析】(1)利用待定系数法,结合定积分的定义求函数f(x)的解析式;(2)求出g(x),应用定积分来求旋转体的体积.【解答】解:(1)设f(x)=kx+b,∵f(x)=x∫f2(t)dt+1,∴kx+b=x•(kt22+bt)|02+1,∴kx+b=(2k+2b)x+1,∴k=−2,b=1,∴f(x)=−2x+1,;2)g(x)=xf(x)=−2x2+x,∴V=π∫[120xf(x)]2dx=π240.33.【答案】解:(1)若干张平行于圆锥底面的平面把它切成n块厚度相等的薄片;(2)用一系列圆柱的体积近似地代替对应的薄片,圆柱的高为ℎn ,底半径顺次为:rn,2r n ,3rn…,(n−1)rn,r;(3)问题归结为计算和式V(n)=ℎn ×(12+22+...+n2)×πr2n2,当n越来越大时所趋向的值.(对V求极限V=limn→∞ℎn×(12+22+...+n2)×πr2n2=lim n→∞ℎn⋅16n(n+1)(2n+1)⋅πr2n2=ℎπr26limn→∞2n2+3n+1n2=πr2ℎ3=13S底ℎ故圆锥的体积等于13的圆柱体的体积【考点】用定积分求简单几何体的体积【解析】利用极限的定义进行分割、近似代换和求极限的方法,进行推到【解答】解:(1)若干张平行于圆锥底面的平面把它切成n块厚度相等的薄片;(2)用一系列圆柱的体积近似地代替对应的薄片,圆柱的高为ℎn ,底半径顺次为:rn,2r n ,3rn…,(n−1)rn,r;(3)问题归结为计算和式V(n)=ℎn ×(12+22+...+n2)×πr2n2,当n越来越大时所趋向的值.(对V求极限V=limn→∞ℎn×(12+22+...+n2)×πr2n2=lim n→∞ℎ⋅1n(n+1)(2n+1)⋅πr22=ℎπr26limn→∞2n2+3n+1n2=πr2ℎ3=13S底ℎ故圆锥的体积等于13的圆柱体的体积34.【答案】解:设(x0, y0)为曲线y=√x(0≤x≤4)上任一点,得曲线于该点处的切线方程为:y−y0=2√x −x0)即y=y02+2√x.得其与x=0,x=4的交点分别为(0,y02),(4,y02+2y0)于是由此切线与直线x=0,x=4以及曲线y=√x所围的平面图形面积为:S=∫(4 0y022x√x)dx=2y0+x−163=2√x0x−163应用均值不等式求得x0=2时,S取得最小值.即所求切线即为:y=22+√22.【考点】定积分在求面积中的应用【解析】先根据导数的几何意义求出曲线y=√x(0≤x≤4)上任一点处的切线方程,再求出积分的上下限,然后利用定积分表示出图形面积,最后利用定积分的定义进行求解即可.【解答】解:设(x0, y0)为曲线y=√x(0≤x≤4)上任一点,得曲线于该点处的切线方程为:y−y0=2x −x0)即y=y02+2x.得其与x=0,x=4的交点分别为(0,y02),(4,y02+2y0)于是由此切线与直线x=0,x=4以及曲线y=√x所围的平面图形面积为:S=∫(4 0y022√x√x)dx=2y0+√x−163=2√x0√x−163应用均值不等式求得x0=2时,S取得最小值.即所求切线即为:y=2√2+√22.35.【答案】解:设切线方程为y =kx +1,切点坐标为(a, b), 则{k =1aka +1=b ln a =b ,解得a =e 2,b =2,∴ 切线方程为y =1e 2x +1.将y =0代入y =1e 2x +1得x =−e 2,∴ B(−e 2, 0). ∴区域D 的面积为∫(e 2−e 21e 2x+1)dx −∫ln e 21xdx=x 22e 2+x|e 2−e 2−x(ln x −1)|e 21=2e 2+e 2=3e 2.区域D 绕x 轴旋转一周所得几何体体积为13⋅π⋅22⋅2e 2−π⋅∫(e 21ln x)2dx =8πe 23−π⋅x[(ln x)2−2ln x +2]|e 21=8πe 23−(2e 2−2)⋅π=2πe 23+2π.【考点】用定积分求简单几何体的体积 【解析】求出A 的坐标和切线方程,则所求面积和体积均可用两个定积分的差来表示. 【解答】解:设切线方程为y =kx +1,切点坐标为(a, b), 则{k =1aka +1=b ln a =b,解得a =e 2,b =2,∴ 切线方程为y =1e 2x +1.将y =0代入y =1e 2x +1得x =−e 2,∴ B(−e 2, 0). ∴区域D 的面积为∫(e 2−e 21e 2x+1)dx −∫ln e 21xdx=x 22e 2+x|e 2−e 2−x(ln x −1)|e 21=2e 2+e 2=3e 2.区域D 绕x 轴旋转一周所得几何体体积为13⋅π⋅22⋅2e 2−π⋅∫(e 21ln x)2dx=8πe 23−π⋅x[(ln x)2−2ln x +2]|e 21=8πe 23−(2e 2−2)⋅π=2πe 23+2π.36. 【答案】解:由{y =2x −x 2y =2x 2−4x ,得{x =0y =0或{x =2y =0, ∴ 所求图象的面积为:∫[20(2x −x 2)−(2x 2−4x)]dx =∫(206x −3x 2)dx =(3x 2−x 3)|02=3×22−23=12−8=4. 【考点】定积分在求面积中的应用 【解析】先求出两曲线的交点坐标,利用定积分的应用即可求出对应图形的面积. 【解答】解:由{y =2x −x 2y =2x 2−4x ,得{x =0y =0或{x =2y =0, ∴ 所求图象的面积为:∫[20(2x −x 2)−(2x 2−4x)]dx =∫(206x −3x 2)dx =(3x 2−x 3)|02=3×22−23=12−8=4. 37. 【答案】解:∫(103ax +1)(x +b)dx =∫[103ax 2+(3ab +1)x +b]dx=[ax 3+12(3ab +1)x 2+bx]|01 =a +12(3ab +1)+b =0即3ab +2(a +b)+1=0 设ab =t ∴ a +b =−3t+12则a ,b 为方程x 2+3t+12x +t =0两根△=(3t+1)24−4t ≥0∴ t ≤19或t ≥1∴ a ⋅b ∈(−∞, 19]∪[1, +∞) 【考点】定积分的简单应用 【解析】先根据定积分的运算法则建立a 与b 的等量关系,然后设ab =t 则a +b =−3t+12,再利用构造法构造a ,b 为方程x 2+3t+12x +t =0两根,然后利用判别式可求出a .b 的取值范围. 【解答】解:∫(103ax +1)(x +b)dx =∫[103ax 2+(3ab +1)x +b]dx=[ax 3+12(3ab +1)x 2+bx]|01 =a +12(3ab +1)+b =0即3ab +2(a +b)+1=0 设ab =t ∴ a +b =−3t+12则a ,b 为方程x 2+3t+12x +t =0两根△=(3t+1)24−4t ≥0∴ t ≤19或t ≥1∴ a ⋅b ∈(−∞, 19]∪[1, +∞) 38.【答案】解:根据对称性,得: 曲线y =cos x 与直线x =π2、x =3π2、y =0所围成的平面区域的面积S 为:曲线y =cos x与直线x =π2,x =π所围成的平面区域的面积的二倍, ∴ S =−2∫cos ππ2xdx =−2sin x =2.故曲线y =cos x 与直线x =π2、x =3π2、y =0所围成的面积为2.【考点】定积分在求面积中的应用 【解析】本题利用直接法求解,根据三角函数的对称性知,曲线y =cos x 与直线x =π2、x =3π2、y =0所围成的平面区域的面积S 为:曲线y =cos x 与直线x =π2,x =π所围成的平面区域的面积的二倍,最后结合定积分计算面积即可. 【解答】解:根据对称性,得: 曲线y =cos x 与直线x =π2、x =3π2、y =0所围成的平面区域的面积S 为:曲线y =cos x与直线x =π2,x =π所围成的平面区域的面积的二倍, ∴ S =−2∫cos ππ2xdx =−2sin x =2.故曲线y =cos x 与直线x =π2、x =3π2、y =0所围成的面积为2.39. 【答案】解:s =∫|5π4−π2sin x|dx =−∫sin 0−π2xdx+∫sin π0xdx−∫sin 5π4πxdx=cos x|−π20−cos x|0π+cos x|π5π4=1+2+(−√22+1)=4−√22. 【考点】定积分在求面积中的应用 【解析】求曲线y =sin x 与直线x =−π2,x =5π4,y =0所围成的平面图形的面积【解答】解:s =∫|5π4−π2sin x|dx =−∫sin 0−π2xdx+∫sin π0xdx−∫sin 5π4πxdx=cos x|−π20−cos x|0π+cos x|π5π4=1+2+(−√22+1)=4−√22. 40.【答案】 由 {y =kx y =x −x2 得 {x =1−k y =k −k 2 (0<k <1). 由题设得∫10−k[(x −x 2)−kx]dx =12∫(10x −x 2)dx 即∫10−k[(x −x 2)−kx]dx =12( 12x 2−13x 3)|01=112 ∴ (1−k)3=12 ∴ k =1−√432∴ 直线方程为y =(1−√432)x . 故k 的值为:k =1−√432.【考点】定积分的简单应用 【解析】先由 {y =kx y =x −x 2 得 {x =1−k y =k −k 2 ,根据直线y =kx 分抛物线y =x −x 2与x 轴所围成图形为面积相等的两个部分得∫10−k[(x −x 2)−kx]dx =12∫(10x −x 2)dx 下面利用定积分的计算公式即可求得k 值. 【解答】由 {y =kx y =x −x 2得 {x =1−k y =k −k 2 (0<k <1).由题设得∫10−k[(x −x 2)−kx]dx =12∫(10x −x 2)dx 即∫10−k[(x −x 2)−kx]dx =12( 12x 2−13x 3)|01=112试卷第31页,总31页 ∴ (1−k)3=12 ∴k =1−√432∴ 直线方程为y =(1−√432)x . 故k 的值为:k =1−√432.。
高中数学选修2-2同步练习题库:定积分的简单应用(填空题:容易)
定积分的简单应用(填空题:容易)1、若,则实数的值是 .2、由曲线所围成的封闭图形的面积为________3、如图所示,在边长为1的正方形中任取一点,则点恰好取自阴影部分的概率为___________.4、已知,则函数的单调递减区间是______.5、定积分的值为.6、_____________.7、曲线与直线及所围成的封闭图形的面积为 .8、曲线与所围成的封闭图形的面积s=9、已知,则.10、曲线和曲线围成的图形面积是11、的值等于 .12、曲线与直线围成的封闭图形的面积是 .13、在平面直角坐标系内,由曲线所围成的封闭图形的面积为.14、二项式的展开式的第二项的系数为,则的值为.15、.16、由直线与曲线所围成的封闭图形的面积为______________.17、定积分.18、计算定积分:.19、已知函数,则。
20、= .21、计算= .22、计算:= .23、等于.24、________.25、定积分___________;26、=。
27、求曲线,所围成图形的面积.28、由曲线,直线所围图形面积S= .29、定积分= .30、定积分的值为____________.31、计算定积分(x2+sinx)dx=.32、求曲线y=,y=2-x,y=-x所围成图形的面积为_______。
33、已知二次函数y=f(x)的图象如图所示,则它与x轴所围图形的面积为________.34、dx + .35、曲线=x与y=围成的图形的面积为______________.36、=________________。
37、设.若曲线与直线所围成封闭图形的面积为,则______.38、一物体在力(单位:)的作用下沿与力相同的方向,从处运动到(单位:)处,则力做的功为焦.39、由直线,,曲线及轴所围成的图形的面积是.40、计算定积分 .41、已知求 .42、曲线与直线所围成的封闭图形的面积为.43、在的展开式中的常数项为p,则 .44、设=,则二项式展开式中含项的系数是。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
c
b
c
b
(3) S | a f (x)dx | c f (x)dx a f (x)dx c f (x)dx
类型一:由一条曲线和直线所围成平面图形的面
积的求解 练习. 求抛物线y=x2-1,直线x=2,y=0所围成的
图形的面积。
解:如图:由x2-1=0得到抛物线与x轴 y
的交点坐标是(-1,0),(1,0).所求面积
22 3
3
x2
|80
( 1 2
x2
4 x) |84
40 3
法2:s 8 2xdx 1 4 (8 4)
0
2
22 3
3
x2
|80
8
X型求解法
2 2 16 2 8 40
3
3
法3:s
4
[(4
y)
1
y2 ]dy
0
2
(4
y
1 2
y2
1 6
y3
)
|04
x 1 y2 2
x 4 y
4 4 1 42 1 43 40
y2 2x
2
22 3
3
x2
|02
( 2 2 3
3
x2
1 2
x2
4x)
|82
16 3
64 3
26 3
18
法2:s
4
[(4
2
y)
1 2
y2 ]dy
(4 y
1 2
y2
1 6
y3 ) |42
18
练习
练习 2:计算由曲线 y x3 6x 和 y x2 所围成的图形的面积.
解: 两曲线的交点
xb与 x
轴所围成的曲边梯形面积的负值
b
f
(x)dx Sc
a
a
类型一.求由一条曲线y=f(x)和直线 x=a,x=b(a<b)及x轴所围成平面图形的面积S
y y f (x)
y y f (x)
oa
bx
oa c b x
(1)
(2)
(3)
b
(1) S a f (x)dx
b
(2) S a f (x)dx
练习3 求 y x 3 与直线 x 1, x 2 及 x 轴所围成的
平面图形的面积。
y
解 所围成的图形如图所示:
y x3
则
s
0 1
x
3dx
21.7.2定积分在物理中的应用
一、变速直线运动的路程
设做变速直线运动的物体运动的速度v=v(t)≥0, 则此物体在时间区间[a, b]内运动的距离s为
10
40
60
S 3tdt 30dt (1.5t 90)dt
0
10
40
3 2
t2
10 0
30t
40 10
(
3 4
t2
90t)
60
1350(m)
40
法二:由定积分的几何意义,
直观的可以得出路程即为 如图所示的梯形的面积,即
v /m/ s
30 A
B
20
10
C t/s o 10 20 30 40 50 60
解:作出y2=x,y=x2的图象如图所示:
解方程组
y y
x x2
x
y
00或xy
1 1
y
y y2 xx B
即两曲线的交点为(0,0),(1,1)
S = S曲边梯形OABC - S曲边梯形OABD
O
1 xdx 1 x2dx
0
0
C
y x2
o y xx2
DA
S =
1
(
0
x - x2)dx
(2 3
3
x2
x3 3
)
|10
1. 3
求两曲线围成的平面图形的面积的一般步骤:
(1)作出示意图;(弄清相对位置关系) (2)求交点坐标;(确定积分的上限,下限) (3)确定积分变量及被积函数; (4)列式求解.
例 2 计算由曲线 y 2x ,直线 y x 4以及 x 轴所
围成的图形的面积.
26
3
Y型求解法
练习
练习 1(例 2 变式题):
计算由曲线 y2 2x和直线 y x 4所围成的图形的面积
解: 两曲线的交点
y2 2x
(2,2), (8,4).
y x4
S 2S1 S2
x 1 y2
y 2x y 2 x 4
S1 S1
S2 x 4 y
2
8
20 2xdx 2 ( 2x x 4)dx
图1.7 3
s 30 60 30 1350
2
二、变力沿直线所作的功
1、恒力作功
由物理学知道,如果物体在作直线运动的过
程中有一个不变的力F 作用在这物体上,且这力
的方向与物体的运动方向一致,那么,在物体移
动了距离 s时,力 F 对物体所作的功为W F s .
2、变力所做的功
问题:物体在变力F(x)的作用下做直线运动,并
伸长(或压缩)成正比,
即 F kx
已知 F 1N , x 0.01
代入上式得 k 100
o
从而变力为 F 100x 所求的功
比例系数
x
F kx
x
W
0.1
100 xdx
0.5J
0
练一练
3.一物体在力
F
(
x)
10 3 x
4
(0 ≤ x ≤ 2) (单位:N)的作用下,沿着 ( x 2)
(1)
y g(x) (2)
总结:当 x∈[a,b]有 f(x)>g(x)时,由直线 x=a,x=b(a≠b)
和曲线 y=f(x),y=g(x)围成的平面图形的面积 S=
b
a
f
x
g
xd. x
注:
两曲线围成的平面图形的面积的计算 例 1. 计算由两条抛物线 y2 x和 y x2围成图形的面积.
y x3 6x
y
x2
A1
0 2
(0,0), (2,4), (3,9).
(x3 6x x2 )dx
y x2
A1
A2
3 0
(x2 x3 6x)dx
于是所求面积 A A1 A2
A2
y x3 6x
A
0
2
(
x3
6
x
x2
)dx
3
0
(x
2
x3
6
x)dx
253 . 12
说明:注意各积分区间上被积函数的形式.
y 2x
解: 两曲线的交点
y
2x
(0, 0), (8, 4).
y x 4
直线与x轴交点为(4,0)
S2 S1 y x 4
4
8
8
S S1 S2 4
0
2xdx [
8
4
2xdx ( x 4)dx]
8
4
(0 2xdx 4 2xdx) 4 ( x 4)dx
8
8
0 2xdx 4 ( x 4)dx
1.7.1定积分的简单应用
一、复习
1.平面图形的面积:
y y f (x)
y
y f2(x)
A
A
y f1( x)
oa
bx
oa
bx
b
A a f ( x)dx
b
A a[ f2( x) f1( x)]dx
2.微积分基本定理: [其中F´(x)=f(x)]
b a
f
( x)dx
F ( x)
|ba
F (b)
与力 F 相同的方向,从 x=0 处运动到 x=4 处(单位:m),则力 F(x)所
作的功为( )J
(A)44 (B)46 (C)48 (D)50
B
析:W
4
F ( x)dx
2
10dx
4
(3x 4)dx
0
0
2
10 x
|02
( 3 2
x2
4x)
|42
46(J )
练一练4一点在直线上从时刻t=0(s)开始以速 度v=t2-4t+3 (m/s)运动,求:
即:F(x)=kx
所以据变力作功公式有
W
L
F( x)dx
0
L 0
kxdx
1kx 2 2
|0L
1 2
kl 2(J )
答:克服弹力所作功的功为 1 kl 2J .
2
练一练 1.设弹簧在1N力的作用下伸长0.01米, 要使弹簧伸长0.1米,需作多少功?
解 如图:建立直角坐标系。
因为弹力的大小与弹簧的
且物体沿着与F(x)相同的方向从x=a点移动到x= b
点,则变力F(x) 所做的功为:F
y F(x)
b
W a F (x)dx
x
Oa
xi
b
例题
例2:如图:在弹性限度内,将一弹簧从平衡位置拉到 离水平位置l 米处,求克服弹力所作的功.
解:在弹性限度内,拉伸(或压缩)弹簧所需的
力F(x)与弹簧拉伸(或压缩)的长度 x 成正比
F (a)
b
3.定积分 f (x)dx的几何意义: a
当
f(x)0
时,积分
b
f
(x)dx
a
在几何上表示由 y=f (x)、
xa、xb与
x轴所围成的曲边梯形的面积。b
y
a
f
(x)dx
c
=sa