第四章习题(含答案)讲诉
财务管理第四章 习题答案
第四章固定资产投资管理习题1、某企业拟建造一项生产设备。
预计建设期为1年,所需原始投资200万元于建设起点一次投入。
该设备预计使用寿命为5年,使用期满报废清理时无残值。
该设备折旧方法采用直线法。
该设备投产后每年增加息税前利润60万元,项目的基准投资收益率为15%。
该企业为免税企业。
要求:(l)计算项目计算期内各年净现金流量。
(2)计算该项目的静态投资回收期。
(3)计算该投资项目的投资收益率(ROI)。
(4)假定适用的行业基准折现率为10%,计算项目净现值(5)计算项目现值指数(6)并评价其财务可行性。
答案、(l)计算项目计算期内各年净现金流量。
答案:第0年净现金流量(NCFo)=-200(万元)第1年净现金流量(NCF1)=0(万元)第2~6年每年的净现金流量(NCF2-6)=60+(200-0)/5=100(万元)(2)计算该项目的静态投资回收期。
答案:不包括建设期的静态投资回收期=200/100=2(年)包括建设期的静态投资回收期=1+2=3(年)(3)计算该投资项目的投资收益率(ROI)。
答案:投资收益率=60/200×100%=30%(4)假定适用的行业基准折现率为10%,计算项目净现值答案:净现值(NPV)=-200+100×[(P/A,10%,6)-(P/A,10%,1)]=-200+100×(4.3553-0.9091)=144.62(万元)(5)计算项目净现值率答案:净现值率=144.62/200×100%=72.31%(6)并评价其财务可行性。
答案:由于该项目净现值NPV>0,包括建设期的静态投资回收期(3年)等于项目计算期(6年)的一半,不包括建设期的静态投资回收期(2年)小于运营期(5年)的一半,投资收益率(30%)高于基准投资收益率(15%),所以投资方案完全具备财务可行性。
2、某企业拟进行一项固定资产投资,该项目的现金流量表(部分)如下:要求:(1)在答题纸上计算上表中净现金流量。
第四章(习题答案)
§4-3 戴维宁定理和诺顿定理
(一)戴维宁定理的证明
设流过端口以外的电路中的电流为 i,则据替代定 ,则据替代定 理,外电路可以用一个电流为 i的电流源 iS替代,如图(a)所 替代,如图(a) (a)所 示;则又据 叠加定理,得其相应的分电路 (b),(c): 示;则又据叠加定理 ,得其相应的分电路(b) (c): 叠加定理,得其相应的分电路 (b),
:在线性 线性电路中,任一支路的电流或电 叠加定理 :在 线性 电路中,任一支路的电流或电 压是电路中各个独立电源(激励) 单独作用 时在 压是电路中各个独立电源(激励)单独作用 单独作用时在 该支路中产生的电流或电压的 代数和. 该支路中产生的电流或电压的代数和 代数和.
§4-1 叠加定理
也就是说,只要电路存在唯一解,线性电路中 的任一结点电压,支路电压或支路电流均可表示为 以下形式: y = H 1uS1 + H 2 uS 2 + + H m uSm + K 1 iS1 + K 2 iS 2 + + K n iSn ——表示电路中独立 其中:uSk 表示电路中独立电压源的电压 独立电压源的电压
+ Req + u RL
uS1
NS
uS2
RL
口 含一 源 端
1
戴维宁定理
- -
uoc
维 宁 等 效 电 路
1' i1
RL
isc
1'
1'
u R Geq L
-
+
诺顿定理
诺 顿 等 效 电 路
1'
§4-3 戴维宁定理和诺顿定理
对外电路而言,"含源一端口NS"可以用一条含源支路 对外电路而言," 含源一端口N 可以用一条含源支路 等效替代 戴维宁等效电路和诺顿等效电路称为一端口的等效发电机 戴维宁等效电路和诺顿等效电路称为一端口的等效发电机
第四章 习题答案
第四章的习题及答案4-1 设有一台锅炉,水流入锅炉是之焓为62.7kJ ·kg -1,蒸汽流出时的焓为2717 kJ ·kg -1,锅炉的效率为70%,每千克煤可发生29260kJ 的热量,锅炉蒸发量为4.5t ·h -1,试计算每小时的煤消耗量。
解:锅炉中的水处于稳态流动过程,可由稳态流动体系能量衡算方程:Q W Z g u H s +=∆+∆+∆221体系与环境间没有功的交换:0=s W ,并忽 动能和位能的变化, 所以: Q H =∆设需要煤mkg ,则有:%7029260)7.622717(105.43⨯=-⨯m解得:kg m 2.583=4-2 一发明者称他设计了一台热机,热机消耗热值为42000kJ ·kg -1的油料0.5kg ·min -1,其产生的输出功率为170kW ,规定这热机的高温与低温分别为670K 与330K ,试判断此设计是否合理?解:可逆热机效率最大,可逆热机效率:507.06703301112max =-=-=T T η 热机吸收的热量:1m in210005.042000-⋅=⨯=kJ Q热机所做功为:1m in 102000m in)/(60)/(170-⋅-=⨯-=kJ s s kJ W该热机效率为:486.02100010200==-=Q W η 该热机效率小于可逆热机效率,所以有一定合理性。
4-3 1 kg 的水在1×105 Pa 的恒压下可逆加热到沸点,并在沸点下完全蒸发。
试问加给水的热量有多少可能转变为功?环境温度为293 K 。
解:查水蒸气表可得始态1对应的焓和熵为:H 1=83.93kJ/kg, S 1=0.2962kJ/kg.K 末态2对应的焓和熵为:H 2=2675.9kJ/kg, S 2=7.3609kJ/kg.K)/(0.259293.839.267512kg kJ H H Q =-=-=)/(0.522)2962.03609.7(15.2930.25920kg kJ S T H W sys id =-⨯-=∆-∆=4-4如果上题中所需热量来自温度为533 K 的炉子,此加热过程的总熵变为多少?由于过程的不可逆性损失了多少功? 解:此时系统的熵变不变)./(0647.7K kg kJ S sys =∆炉子的熵变为)./(86.45330.2592K kg kJ T H T Q S sur -=-=∆-==∆ )./(205.286.40647.7K kg kJ S t =-=∆ )/(0.646205.215.2930kg kJ S T W t l =⨯=∆=4-5 1mol 理想气体,400K 下在气缸内进行恒温不可逆压缩,由0.1013MPa 压缩到1.013MPa 。
人教版初中七年级数学上册第四章《几何图形初步》经典练习题(含答案解析)
人教版初中七年级数学上册第四章《几何图形初步》经典练习题(含答案解析)一、选择题1.如图所示的四个几何体中,从正面、上面、左面看得到的平面图形都相同的有()A.1个B.2个C.3个D.4个B解析:B【分析】分别找出每个图形从三个方向看所得到的图形即可得到答案.【详解】解:①正方体从上面、正面、左侧三个不同方向看到的形状都是正方形,故此选项正确;②球从上面、正面、左侧三个不同方向看到的形状都是圆,故此选项正确;③圆锥,从左边看是三角形,从正面看是三角形,从上面看是圆,故此选项错误;④圆柱从左面和正面看都是矩形,从上边看是圆,故此选项错误;故选B.【点睛】本题考查了几何体的三种视图,掌握定义是关键.注意所有的看到的棱都应表现在三视图中.2.观察下列图形,其中不是正方体的表面展开图的是()A.B.C.D. B解析:B【分析】利用正方体及其表面展开图的特点解题.【详解】解:A、C、D均是正方体表面展开图;B、是凹字格,故不是正方体表面展开图.故选:B.【点睛】本题考查了正方体的展开图,熟记展开图的11种形式是解题的关键,利用不是正方体展开图的“一线不过四、田凹应弃之”(即不能出现同一行有多于4个正方形的情况,不能出现田字形、凹字形的情况)判断也可.3.一副三角板按如图方式摆放,且1∠的度数比2∠的度数小20︒,则2∠的度数为( )A .35︒B .40︒C .45︒D .55︒D解析:D【分析】 根据题意结合图形列出方程组,解方程组即可.【详解】解:由题意得,1290,2120∠+∠︒⎧⎨∠-∠︒⎩==,解得135,255.∠︒⎧⎨∠︒⎩==. 故选:D .【点睛】本题考查的是余角和补角的概念和性质,两个角的和为90°,则这两个角互余;若两个角的和等于180°,则这两个角互补.4.如图,C ,D 是线段AB 上的两点,E 是AC 的中点,F 是BD 的中点,若EF m =,CD n =,则AB =( )A .m n -B .m n +C .2m n -D .2m n + C解析:C【分析】由条件可知EC+DF=m-n ,又因为E ,F 分别是AC ,BD 的中点,所以AE+BF=EC+DF=m-n ,利用线段和差AB=AE+BF+EF 求解.【详解】解:由题意得,EC+DF=EF-CD=m-n∵E 是AC 的中点,F 是BD 的中点,∴AE=EC ,DF=BF ,∴AE+BF=EC+DF=m-n ,∵AB=AE+EF+FB ,∴AB=m-n+m=2m-n故选:C【点睛】本题考查中点性质及线段和差问题,利用中点性质转化线段之间的倍分关系和灵活运用线段的和、差转化线段之间的数量关系是解答此题的关键.5.已知∠AOB=40°,∠BOC=20°,则∠AOC的度数为( )A.60°B.20°C.40°D.20°或60°D解析:D【分析】考虑两种情形①当OC在∠AOB内部时,∠AOC=∠AOB-∠BOC=40°-20°=20°,②当OC’在∠AOB外部时,∠AOC’=∠AOB+∠BOC=40°+20°=60°.【详解】解:如图当OC在∠AOB内部时,∠AOC=∠AOB-∠BOC=40°-20°=20°,当OC’在∠AOB外部时,∠AOC’=∠AOB+∠BOC=40°+20°=60°,故答案为20°或60°,故选D.【点睛】本题考查角的计算,解决本题的关键是学会正确画出图形,根据角的和差关系进行计算. 6.体育课上,小悦在点O处进行了四次铅球试投,铅球分别落在图中的M,N,P,Q四个点处,则表示他最好成绩的点是()A.M B.N C.P D.Q C解析:C【分析】根据点和圆的位置关系,知最好成绩在P点.【详解】P点与O点距离最长,且在有效范围内,所以最好成绩在P点.【点睛】考查了点和圆的位置关系.7.已知线段AB=6cm,反向延长线段AB到C,使BC=83AB,D是BC的中点,则线段AD的长为____cmA.2 B.3 C.5 D.6A 解析:A【分析】由BC =83AB 可求出BC 的长,根据中点的定义可求出BD 的长,利用线段的和差关系求出AD 的长即可.【详解】∵BC =83AB ,AB=6cm , ∴BC=6×83=16cm , ∵D 是BC 的中点,∴BD=12BC=8cm , ∵反向延长线段AB 到C ,∴AD=BD-AB=8-6=2cm ,故选A.【点睛】本题考查了比较线段的长短,理解线段中点的概念,利用中点的性质转化线段之间的倍分关系是解题关键.8.22°20′×8等于( ).A .178°20′B .178°40′C .176°16′D .178°30′B解析:B【分析】根据角的换算关系即可求解.【详解】22°×8=176°,20′×8=160′=2°40′,故22°20′×8=176°+2°40′=178°40′故选B.【点睛】本题考查了角的度量单位以及单位之间的换算,掌握'160︒=,''160'=是解题的关键. 9.如图,从A 地到C 地,可供选择的方案是走水路、走陆路、走空中,从A 地到B 地有三条水路、两条陆路,从B 地到C 地有4条陆路可供选择,走空中,从A 地不经B 地直线到C 地,则从A 地到C 地可供选择的方案有( )A .10种B .20种C .21种D .626种C解析:C【分析】本题只需分别数出A 到B 、B 到C 、A 到C 的条数,再进一步分析计算即可.【详解】观察图形,得:A到B有5条,B到C有4条,所以A到B到C有5×4=20条,A到C一条.所以从A地到C地可供选择的方案共21条.故选C.【点睛】解决本题的关键是能够有顺序地数出所有情况.10.下列说法不正确的是()A.两条直线相交,只有一个交点B.两点之间,线段最短C.两点确定一条直线D.过平面上的任意三点,一定能作三条直线D解析:D【解析】【分析】根据直线公理、线段公理进行逐一分析判断.【详解】A. 根据直线公理“两点确定一条直线”,则两条直线相交,只有一个交点,故该选项正确;B.两点之间,线段最短,是线段公理,故该选项正确;C. 两点确定一条直线,是直线公理,故该选项正确;D. 当三点共线时,则只能确定一条直线,故该选项错误.故选 D.【点睛】此题考查直线、射线、线段,直线的性质:两点确定一条直线,线段的性质:两点之间线段最短,解题关键在于掌握各性质定义.二、填空题11.如图,点C、D在线段AB上,D是线段AB的中点,AC=13AD ,CD=4cm ,则线段AB的长为_____cm【分析】根据AC=ADCD=4cm求出再根据是线段的中点即可求得答案【详解】∵AC=ADCD=4cm∴∴∵是线段的中点∴∴故答案为【点睛】本题考查了线段中点的几何意义以及求线段的长根据题目中的几何语解析:12【分析】根据AC=13AD ,CD=4cm ,求出AD,再根据D是线段AB的中点,即可求得答案.【详解】∵AC=13AD ,CD=4cm ,∴12433CD AD AC AD AD AD =-=-== ∴6AD =,∵D 是线段AB 的中点,∴212AB AD ==∴12AB cm =故答案为12【点睛】 本题考查了线段中点的几何意义以及求线段的长,根据题目中的几何语言列出等式,是解题的关键.12.线段3AB cm =,在线段AB 的延长线上截取1BC cm =,则AC =__________.4【分析】根据线段的和差关系即可求解【详解】∵线段在线段的延长线上截取则AB+BC=4cm 故填:4【点睛】此题主要考查线段的长度解题的关键是熟知线段的和差关系解析:4【分析】根据线段的和差关系即可求解.【详解】∵线段3AB cm =,在线段AB 的延长线上截取1BC cm =,则AC =AB+BC=4cm ,故填:4.【点睛】此题主要考查线段的长度,解题的关键是熟知线段的和差关系.13.如图是一个正方体的表面展开图,已知正方体的每个面上都是一个有理数,且相对面上的两个数互为倒数,那么代数式a b c-的值是_________. 【解析】【分析】将此正方体的表面展开图折叠成正方体观察abc 分别对应的值即可得出答案【详解】将图中所示图形折叠成正方体后a 与4相对应b 与2相对应c 与-1相对应∴∴【点睛】由平面图形的折叠及立体图形的解析:34- 【解析】【分析】将此正方体的表面展开图折叠成正方体,观察a ,b ,c 分别对应的值,即可得出答案.【详解】将图中所示图形折叠成正方体后,a 与4相对应,b 与2相对应,c 与-1相对应, ∴1a 4=,1b 2=,c 1=- ∴3=-4a b c - 【点睛】由平面图形的折叠及立体图形的表面展开图的特点解题.14.下午3:40时,时钟上分针与时针的夹角是_________度.130【分析】分别求出时针走过的度数和分针走过的度数用分针走过的度数减去时针走过的度数即可得出答案【详解】时针每小时走30°分针每分钟走6°∴下午3:40时时针走了3×30°+×30°=110°分针解析:130【分析】分别求出时针走过的度数和分针走过的度数,用分针走过的度数减去时针走过的度数,即可得出答案.【详解】时针每小时走30°,分针每分钟走6°∴下午3:40时,时针走了3×30°+4060×30°=110° 分针走了40×6°=240°∴夹角=240°-110°=130°【点睛】本题考查的是钟面角问题,易错点在于计算时针走过的度数时,往往大部分人只计算了前面3个小时时针走过的度数,容易忽略后面40分钟时针也在走.15.看图填空.(1)AC =AD -_______=AB +_______,(2)BC +CD =_______=_______-AB ,(3)AD =AC+___.CDBCBDADCD 【分析】根据线段之间的和差关系进行解答即可得答案【详解】(1)AC=AD-CD=AB+BC (2)BC+CD=BD=AD-AB (3)AD=AC+CD 故答案为:CD ;BC ;BD ;AD解析:CD BC BD AD CD【分析】根据线段之间的和差关系进行解答即可得答案.【详解】(1)AC=AD-CD=AB+BC ,(2)BC+CD=BD=AD-AB,(3)AD=AC+CD,故答案为:CD;BC;BD;AD;CD【点睛】本题主要考查线段之间的和差关系,灵活运用线段的和、差、倍、分转化线段之间的数量关系是解题关键.16.如图所示,∠BOD=45°,那么不大于90°的角有___个,它们的度数之和是____.450°【分析】(1)∠AOE=90°故图中所有的角都是不大于90°的角;(2)将所有的角相加发现有的角相加等于∠EOA即和为90°而有的角相加等于∠BOD即和为45°将这样的角凑在一起计算即可求出解析:450°【分析】(1)∠AOE=90°,故图中所有的角都是不大于90°的角;(2)将所有的角相加,发现有的角相加等于∠EOA,即和为90°,而有的角相加等于∠BOD,即和为45°,将这样的角凑在一起计算,即可求出所有角的度数.【详解】不大于 90°的角有∠EOD,∠EOC,∠EOB,∠EOA,∠DOC,∠DOB,∠DOA,∠COB,∠COA,∠BOA共10个;它们的度数之和是(∠EOD+∠DOA)+(∠EOC+∠COA)+(∠ EOB+∠BOA)+[(∠DOC+∠COB)+∠DOB]+∠EOA=90°+90°+90°+(45°+45°)+90°=450°.故答案为10;450°.【点睛】此题主要考查角的表示与和差关系,解题的关键是熟知角的定义运算法则.17.如图,点C是线段AB的中点,点D,E分别在线段AB上,且ADDB=23,AEEB=2,则CDCE的值为____.【分析】由线段中点的定义可得AC=BC=AB根据线段的和差关系及==2可得出CDCE与AB的关系进而可得答案【详解】∵点C是线段AB的中点∴AC=BC=AB∵==2BD=AB-ADAE=AB-BE∴解析:3 5【分析】由线段中点的定义可得AC=BC=12AB,根据线段的和差关系及ADDB=23,AEEB=2,可得出CD、CE与AB的关系,进而可得答案.【详解】∵点C是线段AB的中点,∴AC=BC=12AB,∵ADDB =23,AEEB=2,BD=AB-AD,AE=AB-BE,∴AD=25AB,BE=13AB,∵CD=AC-AD,CE=BC-BE,∴CD=12AB-25AB=110AB,CE=12AB-13AB=16AB,∴CDCE=11016ABAB=35,故答案为3 5【点睛】本题主要考查中点的定义及线段之间的和差关系,灵活运用线段的和、差、倍、分转化线段之间的数量关系是解题关键.18.(1)比较两条线段的长短,常用的方法有_________,_________.(2)比较两条线段a和b的大小,结果可能有种情况,它们是_______________.(1)度量比较法叠合比较法;(2)3a>ba=ba<b【分析】(1)比较两条线段长短的方法有两种:度量比较法叠合比较法依此即可求解;(2)两条线段a和b的大小有三种情况【详解】(1)比较两条线段的大解析:(1)度量比较法,叠合比较法;(2)3,a>b、a=b、a<b【分析】(1)比较两条线段长短的方法有两种:度量比较法、叠合比较法.依此即可求解;(2)两条线段a和b的大小有三种情况.【详解】(1)比较两条线段的大小通常有两种方法,分别是度量比较法、重合比较法.(2)比较两条线段a和b的大小,结果可能有3种情况,它们是a>b、a=b、a<b.故答案为度量比较法,重合比较法;3,a>b、a=b、a<b.【点睛】本题考查了比较线段的长短,是基础题型,是需要识记的知识.19.如图所示,能用一个字母表示的角有________个,以点A为顶点的角有________个,图中所有大于0°小于180°的角有________个.37【分析】根据角的概念和角的表示方法依题意求得答案【详解】能用一个字母表示的角有2个:∠B∠C;以A为顶点的角有3个:∠BAD∠BAC∠DAC;大于0°小于180°的角有7个:∠BAD∠BAC∠D解析:3 7【分析】根据角的概念和角的表示方法,依题意求得答案.【详解】能用一个字母表示的角有2个:∠B,∠C;以A为顶点的角有3个:∠BAD,∠BAC,∠DAC;大于0°小于180°的角有7个:∠BAD,∠BAC,∠DAC,∠B,∠C,∠ADB,∠ADC.故答案为2,3,7.【点睛】利用了角的概念求解.从一点引出两条射线组成的图形就叫做角.角的表示方法一般有以下几种:1.角+3个大写英文字母;2.角+1个大写英文字母;3.角+小写希腊字母;4.角+阿拉伯数字.20.已知∠A=67°,则∠A的余角等于______度.23【解析】∵∠A=67°∴∠A的余角=90°﹣67°=23°故答案为23解析:23【解析】∵∠A=67°,∴∠A的余角=90°﹣67°=23°,故答案为23.三、解答题21.如图所示,已知射线OC将∠AOB分成1∶3的两部分,射线OD将∠AOB分成5∶7的两部分,若∠COD=15°,求∠AOB的度数.解析:90°【分析】设∠AOB的度数为x,根据题意用含x的式子表示出∠AOC,∠AOD,根据角的关键列出方程即可求解.【详解】解:设∠AOB的度数为x.因为射线OC将∠AOB分成1∶3两部分,所以∠AOC=14 x.因为射线OD将∠AOB分成5∶7两部分,所以∠AOD=512x.又因为∠COD=∠AOD-∠AOC,∠COD=15°,所以15°=512x-14x.解得x=90°,即∠AOB的度数为90°.【点睛】本题考查了角的和差,设出未知数,表示出∠AOC,∠AOD,列出方程是解题关键.22.如图,点C是AB的中点,D,E分别是线段AC,CB上的点,且AD=23AC,DE=35AB,若AB=24 cm,求线段CE的长.解析:CE=10.4cm.【分析】根据中点的定义,可得AC、BC的长,然后根据题已知求解CD、DE的长,再代入CE=DE-CD即可.【详解】∵AC=BC=12AB=12cm,CD=13AC=4cm,DE=35AB=14.4cm,∴CE=DE﹣CD=10.4cm.23.如图,射线OA的方向是北偏东15°,射线OB的方向是北偏西40°,∠AOB=∠AOC,射线OE是射线OB的反向延长线.(1)求射线OC的方向角;(2)求∠COE的度数;(3)若射线OD平分∠COE,求∠AOD的度数.解析:(1)射线OC的方向是北偏东70°;(2)∠COE=70°;(3)∠AOD=90°.【分析】(1)先求出∠AOC=55°,再求得∠NOC的度数,即可确定OC的方向;(2)根据∠AOC=55°,∠AOC=∠AOB,得出∠BOC=110°,进而求出∠COE的度数;(3)根据射线OD平分∠COE,即可求出∠COD=35°再利用∠AOC=55°求出答案即可.【详解】(1)∵射线OA的方向是北偏东15°,射线OB的方向是北偏西40°即∠NOA=15°,∠NOB=40°,∴∠AOB=∠NOA+∠NOB=55°,又∵∠AOB=∠AOC,∴∠AOC=55°,=°,∴∠NOC=∠NOA+∠AOC=15°+ 55°70∴射线OC的方向是北偏东70°.(2)∵∠AOB=55°,∠AOB=∠AOC,∴∠BOC=∠AOB+∠AOC=55°+55°=110°,又∵射线OD是OB的反向延长线,∴∠BOE=180°,∴∠COE=180°-110°=70°,(3)∵∠COE=70°,OD平分∠COE,∴∠COD=35°,∴∠AOD=∠AOC+∠COD=55°+35°=90°.【点睛】此题主要考查了方向角的表达即方向角一般是指以观测者的位置为中心,将正北或正南方向作为起始方向旋转到目标的方向线所成的角(一般指锐角),通常表达成北(南)偏东(西)多少度.24.如图,点C为线段AD上一点,点B为CD的中点,且6cmBD=.AC=,2cm(1)图中共有多少条线段?(2)求AD的长.解析:(1)6条;(2)10cm【分析】(1)根据线段的定义,即可得到答案;(2)由点B 为CD 的中点,即可求出CD 的长度,然后求出AD 的长度.【详解】解:(1)根据题意,图中共有6条线段,分别是AC ,AB ,AD ,CB ,CD ,BD . (2)因为点B 是CD 的中点,2cm BD =,所以24cm CD BD ==,所以10cm AD AC CD =+=.【点睛】本题考查了线段中点的有关计算,以及线段的定义,解题的关键是熟练掌握线段有关的计算问题.25.如图,直线AB 与CD 相交于点O ,∠AOE=90°.(1)如图1,若OC 平分∠AOE,求∠AOD 的度数;(2)如图2,若∠BOC=4∠FOB ,且OE 平分∠FOC ,求∠EOF 的度数.解析:(1)135°;(2)54°【分析】(1)利用OC 平分∠AOE ,可得∠AOC =12∠AOE =12×90°=45°,再利用∠AOC+∠AOD=180°,即可得出.(2)由∠BOC=4∠FOB ,设∠FOB=x°,∠BOC=4x°,可得∠COF=∠COB-∠BOF=3x°,根据OE 平分∠COF ,可得∠COE=∠EOF=12∠COF=32x°,即可得出. 【详解】(1)∵∠AOE=90°,OC 平分∠AOE ,∴∠AOC =12∠AOE =12×90°=45°, ∵∠AOC+∠AOD=180°,∴∠AOD=180°-∠AOC=180°-45°=135°,即∠AOD的度数为135°.(2)∵∠BOC=4∠FOB,∴设∠FOB=x°,∠BOC=4x°∴∠COF=∠COB-∠BOF=4x°-x°=3x°∵OE平分∠COF∴∠COE=∠EOF=12∠COF=32x°∵32x+x=90°∴x=36,∴∠EOF=32x°=32×36°=54°即∠EOF的度数为54°.【点睛】本题考查了角平分线的性质、方程思想方法、数形结合方法,考查了推理能力与计算能力.26.如图,∠AOC:∠COD:∠BOD=2:3:4,且A,O,B三点在一条直线上,OE,OF分别平分∠AOC和∠BOD,OG平分∠EOF,求∠GOF的度数。
近代史第四章 习题(含答案)
第四章中国共产党成立和中国革命新局面重要知识点1.五四运动前的新文化运动兴起的时代背景、内容、意义和局限性2.马克思主义在中国的初步传播3.五四运动爆发的时代背景、原因和历史意义4.中国共产党的早期组织及活动5.中国共产党成立及其意义6.国共合作和大革命的进行7.大革命的失败及其教训练习题一、选择题(一)单选题1、在中国最早讴歌十月革命、比较系统地介绍马克思主义的是()A、陈独秀B、李大钊C、毛泽东D、瞿秋白2、新民主主义革命的开端是()A、中共二大B、中国共产党的成立C、中国无产阶级的产生D、五四运动3、1915年9月,陈独秀在上海创办《青年杂志》。
他在该刊发刊词中宣称,“盖改造青年之思想,辅导青年之修养,为本志之天职。
批评时政,非其旨也。
”此时陈独秀把主要注意力倾注于思想变革的原因是()A、他认定改造国民性是政治变革的前提B、他对资本阶级民主主义产生了怀疑C、他对政治问题不感兴趣D、他认为批评时政不利于改造青年思想4、中国共产党第一次提出明确的反帝反封建的民主革命纲领是在()A、中共“一大”会议上B、中共“二大”会议上C、中共“三大”会议上D、中共“四大”会议上5、下列哪篇文章表明,李大钊已经成为中国的第一个马克思主义者。
()A、《法俄革命之比较观》B、《庶民的胜利》C、《Bolshevism的胜利》D、《我的马克思主义观》6、中国工人阶级开始以独立的姿态登上历史舞台是在( )A、辛亥革命B、新文化运动C、五四运动D、中国共产党成立7、1924年1月,中国国民党第一次全国代表大会在广州召开,大会通过的宣言对三民主义作出了新的解释。
新三民主义成为第一次国共合作的政治基础,究其原因,是由于新三民主义的政纲()A、同中国共产党在民主革命阶段的纲领基本一致B、把斗争的矛头直接指向北洋军阀C、体现了联俄、联共、扶助农工三大革命政策D、把民主主义概括为“平均地权”8、第一次国共合作的政治基础是()A、三民主义B、共产主义思想C、联俄、联共、扶助农工的三大政策D、新三民主义9、1928年12月,宣布东北三省“遵守三民主义,服从国民政府,改易旗帜”的是()A、张作霖B、郭松龄C、张学良D、张作相10、1920年8月,()翻译的《共产党宣言》中文全译本公开出版。
化工原理课后习题答案详解第四章.doc
第四章多组分系统热力学4.1有溶剂A与溶质B形成一定组成的溶液。
此溶液中B的浓度为c B,质量摩尔浓度为b B,此溶液的密度为。
以M A,M B分别代表溶剂和溶质的摩尔质量,若溶液的组成用B的摩尔分数x B表示时,试导出x B与c B,x B与b B之间的关系。
解:根据各组成表示的定义4.2D-果糖溶于水(A)中形成的某溶液,质量分数,此溶液在20 C时的密度。
求:此溶液中D-果糖的(1)摩尔分数;(2)浓度;(3)质量摩尔浓度。
解:质量分数的定义为4.3在25 C,1 kg水(A)中溶有醋酸(B),当醋酸的质量摩尔浓度b B介于和之间时,溶液的总体积。
求:(1)把水(A)和醋酸(B)的偏摩尔体积分别表示成b B的函数关系。
(2)时水和醋酸的偏摩尔体积。
解:根据定义当时4.460 ︒C时甲醇的饱和蒸气压是84.4 kPa,乙醇的饱和蒸气压是47.0 kPa。
二者可形成理想液态混合物。
若混合物的组成为二者的质量分数各50 %,求60 ︒C 时此混合物的平衡蒸气组成,以摩尔分数表示。
解:质量分数与摩尔分数的关系为求得甲醇的摩尔分数为根据Raoult定律4.580 ︒C是纯苯的蒸气压为100 kPa,纯甲苯的蒸气压为38.7 kPa。
两液体可形成理想液态混合物。
若有苯-甲苯的气-液平衡混合物,80 ︒C时气相中苯的摩尔分数,求液相的组成。
解:根据Raoult定律4.6在18 ︒C,气体压力101.352 kPa下,1 dm3的水中能溶解O2 0.045 g,能溶解N2 0.02 g。
现将 1 dm3被202.65 kPa空气所饱和了的水溶液加热至沸腾,赶出所溶解的O2和N2,并干燥之,求此干燥气体在101.325 kPa,18 ︒C下的体积及其组成。
设空气为理想气体混合物。
其组成体积分数为:,解:显然问题的关键是求出O2和N2的Henry常数。
18 C,气体压力101.352 kPa下,O2和N2的质量摩尔浓度分别为这里假定了溶有气体的水的密度为(无限稀溶液)。
人教版初中七年级数学上册第四章《几何图形初步》经典复习题(含答案解析)
人教版初中七年级数学上册第四章《几何图形初步》经典复习题(含答案解析)一、选择题1.图1是边长为1的六个小正方形组成的图形,它可以围成图2的正方体,则在图2中,小虫从点A沿着正方体的棱长爬行到点B的长度为()A.0 B.1 C.2 D.3B解析:B【分析】将图1折成正方体,然后判断出A、B在正方体中的位置关系,从而可得到AB之间的距离.【详解】解:将图1折成正方体后点A和点B为同一条棱的两个端点,得出AB=1,则小虫从点A沿着正方体的棱长爬行到点B的长度为1.故选B.【点睛】本题主要考查的是展开图折成几何体,判断出点A和点B在几何体中的位置是解题的关键.2.观察下列图形,其中不是正方体的表面展开图的是()A.B.C.D. B解析:B【分析】利用正方体及其表面展开图的特点解题.【详解】解:A、C、D均是正方体表面展开图;B、是凹字格,故不是正方体表面展开图.故选:B.【点睛】本题考查了正方体的展开图,熟记展开图的11种形式是解题的关键,利用不是正方体展开图的“一线不过四、田凹应弃之”(即不能出现同一行有多于4个正方形的情况,不能出现田字形、凹字形的情况)判断也可.3.如图,点O 在直线AB 上,射线OC ,OD 在直线AB 的同侧,∠AOD =40°,∠BOC =50°,OM ,ON 分别平分∠BOC 和∠AOD ,则∠MON 的度数为( )A .135°B .140°C .152°D .45°A 解析:A【分析】根据题意各种角的关系直接可求出题目要求的角度.【详解】因为∠AOD =40°,∠BOC =50°,所以∠COD =90°,又因为OM ,ON 分别平分∠BOC 和∠AOD ,所以∠N OD+∠M OC =45°,则∠MON=∠N OD+∠M OC+∠COD=135°.【点睛】本题考查了角平分线的知识,掌握角平分线的性质是解决此题的关键.4.已知线段8AB =,在线段AB 上取点C ,使得:1:3AC CB =,延长CA 至点D ,使得2AD AC =,点E 是线段CB 的中点,则线段ED 的长度为( ).A .5B .9C .10D .16B 解析:B【分析】按图形将要求的线段ED 可转化成已知线段.ED=EC+CD=12BC+3AC ,而BC 、AC 都可根据题中比例求得,于是线段ED 可求.【详解】解:根据题意画图:因为:1:3AC CB =,且8AB =,所以2AC =,6BC =.由题意可知:113632922ED EC CD BC AC =+=+=⨯+⨯=, 故选:B .【点睛】本题考查的线段的相关运算,根据题意画好图形是关键,利用图形进行线段间的转化是解题突破口.5.某正方体的平面展开图如下图所示,这个正方体可能是下面四个选项中的( ).A.B.C.D. A解析:A【分析】根据正方体的展开与折叠.可以动手折叠看看,充分发挥空间想象能力解决也可以.【详解】根据题意及图示只有A经过折叠后符合.故选:A.【点睛】此题考查几何体的展开图,解题关键在于空间想象力.6.如图,在数轴上有A,B,C,D四个整数点(即各点均表示整数),且2AB=BC=3CD,若A,D两点表示的数分别为-5和6,点E为BD的中点,在数轴上的整数点中,离点E最近的点表示的数是()A.2 B.1C.0 D.-1A解析:A【分析】根据A、D两点在数轴上所表示的数,求得AD的长度,然后根据2AB=BC=3CD,求得AB、BD的长度,从而找到BD的中点E所表示的数.【详解】解:如图:∵|AD|=|6-(-5)|=11,2AB=BC=3CD,∴AB=1.5CD,∴1.5CD+3CD+CD=11,∴CD=2,∴AB=3,∴BD=8,∴ED=12BD=4, ∴|6-E|=4, ∴点E 所表示的数是:6-4=2.∴离线段BD 的中点最近的整数是2.故选:A .【点睛】本题考查了数轴、比较线段的长短.灵活运用线段的和、差、倍、分转化线段之间的数量关系也是十分关键的一点.7.已知α∠和β∠互补,且αβ∠>∠,则有下列式子:①90β︒-∠;②90α∠-︒;③()12αβ∠+∠;④()12αβ∠-∠;⑤()1902α∠-︒;其中,表示β∠的余角的式子有( ) A .4个 B .3个 C .2个D .1个B解析:B【分析】根据余角和补角的概念进行角度的计算即可得解.【详解】∵9090ββ︒-∠+∠=︒,∴①正确;∵α∠和β∠互补,∴180αβ∠+∠=︒,∴901809090αβ∠-︒+∠=︒-︒=︒,∴②正确,⑤错误; ∵()11180909022αββββ∠+∠+∠=⨯︒+∠=︒+∠≠︒, ∴③错误; ∵()()11118090222αββαβ∠-∠+∠=∠+∠=⨯︒=︒, ∴④正确;∴①②④正确,故选:B.【点睛】 本题主要考查了余角和补角的含义,熟练掌握相关角度的计算是解决本题的关键. 8.如图是正方体的展开图,则原正方体相对两个面上的数字和最小是( )A.8B.7C.6D.4C解析:C【分析】确定原正方体相对两个面上的数字,即可求出和的最小值.【详解】解:由题意,2和6是相对的两个面;3和4是相对两个面;1和5是相对的2个面,因为2+6=8,3+4=7,1+5=6,所以原正方体相对两个面上的数字和最小的是6.故选:C.【点睛】本题考查了正方体相对两个面上的文字,解决本题的关键是根据相对的面的特点得到相对的两个面上的数字.9.由A站到G站的某次列车,运行途中停靠的车站依次是A站——B站—C站——D站——E站——F站——G站,那么要为这次列车制作的火车票有()A.6种B.12种C.21种D.42种C解析:C【解析】【分析】从A出发要经过6个车站,所以要制作6种车票,从B出发要经过5个车站,所以要制作5种车票,从C出发要经过4个车站,所以要制作4种车票,从D出发要经过3个车站,所以要制作3种车票,从E出发要经过2个车站,所以要制作2种车票,从F出发要经过1个车站,所以要制作1种车票,把车票数相加即可得解.【详解】共需制作的车票数为:6+5+4+3+2+1=21(种).故选C.【点睛】本题从A站出发,逐站求解即可得到所有可能的情况,不要遗漏.10.如下图,直线的表示方法正确的是()①②③④A.都正确B.只有②正确C.只有③正确D.都不正确C解析:C【分析】用直线的表示方法解答,通常直线用两个大写字母或一个小写字母表示.【详解】∵通常直线用两个大写字母或一个小写字母表示,例直线AB ,直线a .故选C .【点睛】本题考查了几何中直线的表示方法,是最基本的知识.二、填空题11.线段AB =12cm ,点C 在线段AB 上,且AC =13BC ,M 为BC 的中点,则AM 的长为_______cm.5【分析】可先作出简单的图形进而依据图形分析求解【详解】解:如图∵点C 在AB 上且AC=BC ∴AC=AB=3cm ∴BC=9cm 又M 为BC 的中点∴CM=BC=45cm ∴AM=AC+CM=75cm 故答案为解析:5【分析】可先作出简单的图形,进而依据图形分析求解.【详解】解:如图,∵点C 在AB 上,且AC=13BC , ∴AC=14AB=3cm ,∴BC=9cm ,又M 为BC 的中点, ∴CM=12BC=4.5cm ,∴AM=AC+CM=7.5cm . 故答案为7.5.【点睛】本题考查的是两点间的距离的计算,掌握线段中点的定义、灵活运用数形结合思想是解题的关键.12.线段3AB cm =,在线段AB 的延长线上截取1BC cm =,则AC =__________.4【分析】根据线段的和差关系即可求解【详解】∵线段在线段的延长线上截取则AB+BC=4cm 故填:4【点睛】此题主要考查线段的长度解题的关键是熟知线段的和差关系解析:4【分析】根据线段的和差关系即可求解.【详解】∵线段3AB cm =,在线段AB 的延长线上截取1BC cm =,则AC AB+BC=4cm,故填:4.【点睛】此题主要考查线段的长度,解题的关键是熟知线段的和差关系.13.如图,直线AB,CD交于点O,射线OM平分∠AOC,若∠BOD=76°,则∠BOM等于________.142°【解析】【分析】根据对顶角相等求出∠AOC的度数再根据角平分线的定义求出∠AOM的度数然后根据平角等于180°列式计算即可得解【详解】解:∵∠BOD=76°∴∠AOC=∠BOD=76°∵射线解析:142°【解析】【分析】根据对顶角相等求出∠AOC的度数,再根据角平分线的定义求出∠AOM的度数,然后根据平角等于180°列式计算即可得解.【详解】解:∵∠BOD =76°,∴∠AOC=∠BOD =76°,∵射线OM平分∠AOC,∴∠AOM=12∠AOC=12×76°=38°,∴∠BOM=180°-∠AOM=180°-38°=142°.故答案为142°.【点睛】本题考查了对顶角相等的性质,角平分线的定义,准确识图是解题的关键.14.同一条直线上有三点A,B,C,且线段BC=3AB,点D是BC的中点,CD=3,则线段AC的长为______.4或8【分析】分点C在AB的延长线上与点C在BA的延长线上两种情况画出图形分别利用线段中点的定义和已知条件求出BC和AB再利用线段的和差计算即可【详解】解:(1)当点C在AB的延长线上时如图1∵点D解析:4或8【分析】分点C在AB的延长线上与点C在BA的延长线上两种情况,画出图形,分别利用线段中点的定义和已知条件求出BC和AB,再利用线段的和差计算即可.【详解】解:(1)当点C在AB的延长线上时,如图1,∵点D是线段BC的中点,CD=3,∴BC=2CD=6,∵BC=3AB,∴AB=13BC=13×6=2,∴AC=AB+BC=2+6=8;(2)当点C在BA的延长线时,如图2,∵点D是线段BC的中点,CD=3,∴BC=2CD=6,∵BC=3AB,∴AB=13BC=13×6=2,∴AC=BC-AB=6-2=4.故答案为:4或8.【点睛】本题考查了线段中点的定义、两点间的距离和线段的和差等知识,正确分类、画出图形、熟练掌握线段中点的概念和线段的和差计算是解题的关键.15.植树节,只要定出两棵树的位置,就能确定这一行树所在的直线,这是因为两点确定_______条直线.一【分析】经过两点有且只有一条直线根据直线的性质可得答案【详解】解:植树时只要定出两棵树的位置就能确定这一行树所在的直线用数学知识解释其道理是:两点确定一条直线故答案为:一【点睛】本题考查了直线的性解析:一【分析】经过两点有且只有一条直线.根据直线的性质,可得答案.【详解】解:“植树时只要定出两棵树的位置,就能确定这一行树所在的直线”用数学知识解释其道理是:两点确定一条直线,故答案为:一.【点睛】本题考查了直线的性质,熟练掌握直线的性质是解题的关键.16.某产品的形状是长方体,长为8cm,它的展开图如图所示,则长方体的体积为_____cm3.192【分析】根据已知图形得出长方体的高进而得出答案【详解】解:设长方体的高为xcm 则长方形的宽为(14-2x )cm 根据题意可得:14-2x+8+x+8=26解得:x=4所以长方体的高为4cm 宽为6解析:192【分析】根据已知图形得出长方体的高进而得出答案.【详解】解:设长方体的高为xcm ,则长方形的宽为(14-2x )cm ,根据题意可得:14-2x+8+x+8=26,解得:x=4,所以长方体的高为4cm ,宽为6cm ,长为8cm ,长方形的体积为:8×6×4=192(cm 3);故答案为:192【点睛】本题考查几何体的展开图、一元一次方程的应用及几何体的体积等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型.17.如图,折一张长方形纸的一角,使角的顶点落在A′处,且使得∠ABA′=90°,BC 为折痕,若BD 为∠A′BE 的平分线,则∠CBD =________°.90【分析】根据折叠的性质及平角的定义求出根据BD 为∠A′BE 的平分线得到根据角的和差计算求出答案【详解】∵∠ABA′=90°∴∵BD 为∠A′BE 的平分线∴∴故答案为:90【点睛】此题考查折叠的性质解析:90【分析】根据折叠的性质及平角的定义求出45ABC A BC '∠=∠=︒,18090A BE ABA ''∠=︒-∠=︒,根据BD 为∠A′BE 的平分线,得到45A BD '∠=︒,根据角的和差计算求出答案.【详解】∵∠ABA′=90°,∴45ABC A BC '∠=∠=︒,18090A BE ABA ''∠=︒-∠=︒,∵BD 为∠A′BE 的平分线,∴45A BD '∠=︒,∴90CBD A BC A BD ∠∠∠=+=''︒故答案为:90.【点睛】此题考查折叠的性质:折叠前后的对应角角相等,利用平角求角的度数,角平分线的性质,掌握图形中各角的位置关系是解题的关键.18.如图,上午6:30时,时针和分针所夹锐角的度数是_____.15°【分析】计算钟面上时针与分针所成角的度数一般先从钟面上找出某一时刻分针与时针所处的位置确定其夹角再根据表面上每一格30°的规律计算出分针与时针的夹角的度数【详解】∵时针12小时转一圈每分钟转动 解析:15°【分析】计算钟面上时针与分针所成角的度数,一般先从钟面上找出某一时刻分针与时针所处的位置,确定其夹角,再根据表面上每一格30°的规律,计算出分针与时针的夹角的度数.【详解】∵时针12小时转一圈,每分钟转动的角度为:360°÷12÷60=0.5°,∴时针1小时转动30°,∴6:30时,分针指向刻度6,时针和分针所夹锐角的度数是30°×12=15°. 故答案是:15°.【点睛】考查了钟面角,解题时注意,分针60分钟转一圈,每分钟转动的角度为:360°÷60=6°;时针12小时转一圈,每分钟转动的角度为:360°÷12÷60=0.5°.19.如图,将一副三角板叠放一起,使直角的顶点重合于点O ,则∠AOD +∠COB 的度数为___________度. 180【分析】根据角度的关系∠AOD+∠COB=∠COD+∠AOB据此即可求解【详解】∠AOD+∠COB=∠COD+∠AOC+∠COB=∠COD+∠AOB=90°+90°=180°故答案是:180【解析:180【分析】根据角度的关系∠AOD+∠COB=∠COD+∠AOB,据此即可求解.【详解】∠AOD+∠COB=∠COD+∠AOC+∠COB =∠COD+∠AOB=90°+90°=180°.故答案是:180.【点睛】本题考查了三角板中角度的计算,正确把∠AOD+∠COB转化成∠COD+∠AOB是解决本题的关键.20.如图,::2:3:4AB BC CD=,AB的中点M与CD的中点N的距离是3cm,则BC=______.5cm【分析】运用方程的思想设AB=2xcmBC=3xcmCD=4xcm求出MB=xcmCN=2xcm得出方程x+3x+2x=3求出即可【详解】解:设AB=2xcmBC=3xcmCD=4xcm∵M是解析:5cm【分析】运用方程的思想,设AB=2xcm,BC=3xcm,CD=4xcm,求出MB=xcm,CN=2xcm,得出方程x+3x+2x=3,求出即可.【详解】解:设AB=2xcm,BC=3xcm,CD=4xcm,∵M是AB的中点,N是CD的中点,∴MB=xcm,CN=2xcm,∴MB+BC+CN=x+3x+2x=3,∴x=0.5,∴3x=1.5,即BC=1.5cm.故答案为:1.5cm.【点睛】本题考查了求两点之间的距离的应用,关键是能根据题意得出关于x的方程.三、解答题21.如图,已知线段AB和CD的公共部分1134BD AB CD==,线段AB、CD的中点E、F之间的间距是10cm,求AB、CD的长.解析:AB=12cm,CD=16cm【分析】先设BD=xcm,由题意得AB=3xcm,CD=4xcm,AC=6xcm,再根据中点的定义,用含x的式子表示出AE=1.5xcm和CF=2xcm,再根据EF=AC-AE-CF=2.5xcm,且E、F之间距离是EF=10cm,所以2.5x=10,解方程求得x的值,即可求AB,CD的长.【详解】设BD=xcm,则AB=3xcm,CD=4xcm,AC=6xcm.∵点E、点F分别为AB、CD的中点,∴AE=12AB=1.5xcm,CF=12CD=2xcm.∴EF=AC-AE-CF=2.5xcm.∵EF=10cm,∴2.5x=10,解得:x=4.∴AB=12cm,CD=16cm.【点睛】本题考查了线段中点的性质,设好未知数,用含x的式子表示出各线段的长度是解题关键.22.如图,点C是AB的中点,D,E分别是线段AC,CB上的点,且AD=23AC,DE=35AB,若AB=24 cm,求线段CE的长.解析:CE=10.4cm.【分析】根据中点的定义,可得AC、BC的长,然后根据题已知求解CD、DE的长,再代入CE=DE-CD即可.【详解】∵AC=BC=12AB=12cm,CD=13AC=4cm,DE=35AB=14.4cm,∴CE=DE﹣CD=10.4cm.23.如图,是一个几何体的表面展开图.(1)该几何体是________;A .正方体B .长方体C .三棱柱D .四棱锥(2)求该几何体的体积.解析:(1)C ;(2)4【分析】(1)本题根据展开图可直接得出答案.(2)本题根据体积等于底面积乘高求解即可.【详解】(1)本题可根据展开图中两个全等的等腰直角三角形,以此判定该几何体为三棱柱,故选C .(2)由图已知:该几何体底面积为等腰三角形面积12222=⨯⨯=;该几何体的高为2; 故该几何体体积=底面积⨯高=22=4⨯.【点睛】本题考查几何体展开图以及体积求法,根据展开图推测几何体时需要以展开图的特征位置作为推测依据,求解体积或者面积时按照公式求解即可.24.已知线段10cm AB =,在直线AB 上取一点C ,使16cm AC =,求线段AB 的中点与AC 的中点的距离.解析:13cm 或3cm .【分析】结合题意画出简单的图形,再结合图形进行分类讨论:当C 在BA 延长线上时,当C 在AB 延长线上时,分别依据线段的和差关系求解.【详解】解:①如图,当C 在BA 延长线上时.因为10cm AB =,16cm AC =,D ,E 分别是AB ,AC 的中点,所以15cm 2AD AB ==,18cm 2AE AC ==, 所以81513(cm)DE AE AD =+=+=. ②如图,当C 在AB 延长线上时.因为10cm AB =,16cm AC =,D ,E 分别是AB ,AC 的中点,所以15cm 2AD AB ==,18cm 2AE AC ==, 所以853(cm)DE AE AD =-=-=. 综上,线段AB 的中点与AC 的中点的距离为13cm 或3cm .【点睛】本题主要考查了两点间的距离,解决问题的关键是依据题意画出图形,进行分类讨论.25.如图,已知A、B、C、D四点,根据下列要求画图:(1)画直线AB、射线AD;(2)画∠CDB;(3)找一点P,使点P既在AC上又在BD上.解析:(1)见解析;(2)见解析;(3)见解析.【分析】(1)利用直线以及射线的定义画出图形即可;(2)利用角的定义作射线DC,DB即可;(3)连接AC,与BD的交点即为所求.【详解】解:(1)如图所示:直线AB、射线AD即为所求;(2)如图所示:∠CDB即为所求;(3)如图所示:点P即为所求.【点睛】此题主要考查了直线、射线以及角的定义,正确把握相关定义是解题关键.26.如图,一个点从数轴上的原点开始,先向左移动2cm到达A点,再向左移动3cm到达B点,然后向右移动9cm到达C点.(1)用1个单位长度表示1cm,请你在数轴上表示出A,B, C三点的位置;(2)把点C到点A的距离记为CA,则CA=______cm.(3)若点B以每秒2cm的速度向左移动,同时A.C点分别以每秒1cm、4cm的速度向右移动.设移动时间为t秒,试探索:CA−AB的值是否会随着t的变化而改变?请说明理由.解析:(1)数轴见解析;(2)6;(3)CA−AB的值不会随着t的变化而改变,理由见解析;【分析】(1)在数轴上表示出A,B,C的位置即可;(2)求出CA的长即可;(3)不变,理由如下:当移动时间为t秒时,表示出A,B,C表示的数,求出CA-AB的值即可做出判断.【详解】(1)如图:(2)CA=4−(−2)=4+2=6cm,(3)不变,理由如下:当移动时间为t秒时,点A. B. C分别表示的数为−2+t、−5−2t、4+4t,则CA=(4+4t)−(−2+t)=6+3t,AB=(−2+t)−(−5−2t)=3+3t,∵CA−AB=(6+3t)−(3+3t)=3∴CA−AB的值不会随着t的变化而改变.【点睛】此题考查数轴,两点间的距离,整式的加减,列代数式,解题关键在于结合数轴进行解答. 27.如图,把下列物体和与其相似的图形连接起来.解析:见解析.【分析】根据圆锥,圆柱,球体,正方体的形状连接即可.【详解】连接如图.【点睛】此题考查认识立体图形,解题关键在于掌握立体图的概念.28.如图,已知C是AB的中点,D是AC的中点,E是BC的中点.(1)若DE=9cm,求AB的长.(2)若CE=5cm,求DB的长.解析:(1)AB=18;(2)DB=15.【分析】(1)由线段中点的定义可得CD=12AC,CE=12BC,根据线段的和差关系可得DE=12AB,进而可得答案;(2)根据中点定义可得AC=BC,CE=BE,AD=CD,根据线段的和差关系即可得答案.【详解】(1)∵D是AC的中点,E是BC的中点.∴CD=12AC,CE=12BC,∵DE=CD+CE=9,∴12AC+12BC=12(AC+BC)=9,∵AC+BC=AB,∴AB=18.(2)∵C是AB的中点,D是AC的中点,E是BC的中点,∴AC=BC,CE=BE=12BC,,AD=CD=12AC,∴AD=CD=CE=BE,∴DB=CD+CE+BE=3CE,∵CE=5,∴DB=15.【点睛】本题主要考查中点的定义及线段之间的和差关系,灵活运用线段的和、差、倍、分转化线段之间的数量关系是解题关键.。
工程制图第四章习题集答案解析
某
41 / 49
(1)
(2)
42 / 49
(3)
(4)
第四章 组合体的投影与构型设计 4-24、根据组合体的两投影画出第三投影,并徒手画出其轴测图。
班级
94
学号
某
43 / 49
(1)
(2)
44 / 49
(3)
(4)
第四章 组合体的投影与构型设计 4-25、根据组合体的两投影画出第三投影,并徒手画出其轴测图。
第四章 组合体的投影与构型设计
班级
77
学号
某
14 / 49
4-7、根据所给的正面投影进行组合体多种构型设计,画出水平面图和左侧立面图。
15 / 49
第四章 组合体的投影与构型设计
班级
4-8、根据所给的水平投影进行组合体多种构型设计,画出正面投影,并在下方徒手画出轴测图。
78
学号
某
16 / 49
17 / 49
(5) (6)
7 / 49
第四章 组合体的投影与构型设计 4-3、看懂立体图,找出相应的投影图,标出。
班级
学号
73 某
3
2
5
8 / 49
6
第四章 组合体的投影与构型设计 4-4、看懂立体图,找出相应的投影图,标出,并画出第三视图。
1
4
班级
学号
74 某
9 / 49
(1)
(2)
(3)
(4)
10 / 49
某
32 / 49
(3)
Hale Waihona Puke (4)第四章 组合体的投影与构型设计 4-18、补全下列组合体三视图中所缺的线。
班级
第四章 习题答案
习题4.1选择填空1、选用差分放大电路的原因是 A 。
A 、克服温漂B 、 提高输入电阻C 、稳定放入倍数2、用恒流源取代长尾式差分放大电路中的发射极电阻Re ,将使电路的 B 。
A 、差模放大倍数数值增大B 、抑制共模信号能力增强C 、差模输入电阻增大 3、差动放大器中的差模输入是指两输入端各加大小___相等_____、相位___相反____的信号。
4、设差放电路的两个输入端对地的电压分别为v i1和v i2,差模输入电压为v id ,共模输入电压为v ic ,则当v i1=50mV ,v i2=50mV 时,v id =_0mV __,v ic =_50mV __;当v i1=50mV ,v i2=-50mV 时,v id =_100mA __,v ic =_0mA__;当v i1=50mV ,v i2=0V 时,v id =_50mV __,v ic =_25mA __。
5、电流源常用于放大电路,作为_A ___(A.有源负载,B.电源,C.信号源),使得放大倍数__A __(A.提高,B.稳定)。
6、电压放大电路主要研究的指标是 a 、 b 、 c ;功率放大电路主要研究的指标是 d 、 e 、 f 、 g 、(a 电压放大倍数 b 输入电阻 c 输出电阻 d 输出功率 e 电源提供的功率 f 效率 g 管耗)7、功率放大电路中,___甲类____功率放大电路导通角最大;_____乙类___功率放大电路效率较高。
(甲类、乙类、甲乙类) 8、甲类功放效率低是因为 B 。
A 、只有一个功放管B 、 静态电流过大C 、管压降过大4.1对称差动放大电路如题图 4.1所示。
已知晶体管1T 和2T 的50=β,并设U BE (on )=0.7V,r bb ’=0,r ce =∞。
(1)求V 1和V 2的静态集电极电流I CQ 、U CQ 和晶体管的输入电阻r b’e 。
(2)求双端输出时的差模电压增益A ud ,差模输入电阻R id 和差模输出电阻R od 。
(完整版)第四章连锁遗传习题及答案
第四章连锁遗传习题及答案(陈耀锋)思考题1.试述完全连锁和不完全连锁遗传的特点及规律。
2.简述两对基因连锁遗传和独立遗传的表现特征。
3.简述四分子分析与着丝粒作图的基本原理。
4.何谓同配性别和异配性别,在XX-XY和ZZ-ZW两种性别决定中有何不同?5.何谓限性遗传和从性遗传。
6.a、b两基因位点的染色体距离为10个遗传单位,假定有1000个孢母细胞的基因型为Ab/aB,试求在减数分裂中,有多少个孢母细胞可能在a、b两基因之间发生交换,能形成哪几种配子?其比例如何?7.在玉米中,茎秆红色(G)对绿色(g)显性,高秆(H)对矮秆(h)显性,用纯合的红色、高秆品系与纯合的绿色、矮秆品系杂交,F1为红色、高秆,F1与纯合隐性亲本绿色、矮秆品系测交,得到下列子代:红色、高秆265株;绿色、矮秆275株;红色、矮秆31株;绿色、高秆29株试问:1)这两对基因是否连锁?若连锁,交换值是多少?2)若红色、高秆的F1代自交,F2代中出现纯合的红色、矮秆个体的机率是多少?8.已知连锁遗传的基因t、r的交换值为20%,1)试写出杂合体Tr/tR与隐性纯合个体测交,测交子代的基因型和比例。
2)杂合体Tr/tR自交,自交子代中TTRR个体出现的几率。
9.家鸡的羽色只要有c和o基因两者纯合或任何一个处于纯合状态就表现白色,有色要有两个显性基因C和O同时存在。
今有一基因型为CCoo的雌性个体与一基因型为ccOO 的雄性个体交配,子一代为有色个体,子一代与双隐性个体ccoo测交,测交子代中有色个体68只,白色个体204只,问o-c基因之间有连锁吗?如有连锁,交换值是多少?10.番茄的三个突变基因o(扁圆果实)、p(茸毛果)、s(复合花序)位于第二染色体上,用这三对基因完全杂合的杂种F1个体与三对基因隐性纯合的个体进行测交,得到了下列结果:测交子代表现型数目+++73++s 348+p + 2+p s 96o++110o +s 2o p+306o p s 63总数10001)确定这三个基因在第二染色体上的顺序和距离。
(完整word版)第四章 习题答案
第四章的习题及答案4-1 设有一台锅炉,水流入锅炉是之焓为62.7kJ ·kg -1,蒸汽流出时的焓为2717 kJ ·kg -1,锅炉的效率为70%,每千克煤可发生29260kJ 的热量,锅炉蒸发量为4.5t ·h -1,试计算每小时的煤消耗量。
解:锅炉中的水处于稳态流动过程,可由稳态流动体系能量衡算方程:Q W Z g u H s +=∆+∆+∆221体系与环境间没有功的交换:0=s W ,并忽 动能和位能的变化, 所以: Q H =∆设需要煤mkg ,则有:%7029260)7.622717(105.43⨯=-⨯m解得:kg m 2.583=4-2 一发明者称他设计了一台热机,热机消耗热值为42000kJ ·kg -1的油料0.5kg ·min -1,其产生的输出功率为170kW ,规定这热机的高温与低温分别为670K 与330K ,试判断此设计是否合理?解:可逆热机效率最大,可逆热机效率:507.06703301112max =-=-=T T η 热机吸收的热量:1m in210005.042000-⋅=⨯=kJ Q热机所做功为:1m in 102000m in)/(60)/(170-⋅-=⨯-=kJ s s kJ W该热机效率为:486.02100010200==-=Q W η 该热机效率小于可逆热机效率,所以有一定合理性。
4-3 1 kg 的水在1×105 Pa 的恒压下可逆加热到沸点,并在沸点下完全蒸发。
试问加给水的热量有多少可能转变为功?环境温度为293 K 。
解:查水蒸气表可得始态1对应的焓和熵为:H 1=83.93kJ/kg, S 1=0.2962kJ/kg.K 末态2对应的焓和熵为:H 2=2675.9kJ/kg, S 2=7.3609kJ/kg.K)/(0.259293.839.267512kg kJ H H Q =-=-=)/(0.522)2962.03609.7(15.2930.25920kg kJ S T H W sys id =-⨯-=∆-∆=4-4如果上题中所需热量来自温度为533 K 的炉子,此加热过程的总熵变为多少?由于过程的不可逆性损失了多少功? 解:此时系统的熵变不变)./(0647.7K kg kJ S sys =∆炉子的熵变为)./(86.45330.2592K kg kJ T H T Q S sur -=-=∆-==∆ )./(205.286.40647.7K kg kJ S t =-=∆ )/(0.646205.215.2930kg kJ S T W t l =⨯=∆=4-5 1mol 理想气体,400K 下在气缸内进行恒温不可逆压缩,由0.1013MPa 压缩到1.013MPa 。
第四章课后习题与答案
第四章课后习题与答案:1.发展中国家人口剧增对其经济及整个世界经济产生了哪些影响?人口增长过快给发展中国家造成的消极影响是多方面的。
第一,经济发展负担沉重。
为了解决数量日益庞大的人口的衣食住行和教育等基本生存和发展权利问题,国家不得不将本来并不多的国民收入的大部分用于国民的基本生活消费,致使消费基金占国民收入的比例过大,用于投资的积累基金所占比例过小,其结果是经济增长乏力,其经济发展受到严重束缚和制约;第二,加剧发展中国家的贫困问题。
由于发展中国家人口基数过于庞大,必然导致其个人在生活资料和资源的获取与占有上出现严重短缺,从而导致严重的社会贫困问题;第三,两极分化问题日益突出。
由于发展中国家的个人之间在获取和占有社会经济资源的机会和能力的差别,再加上其他各种不合理现象的存在,必然导致社会分配不公的出现并加剧。
人口过快增长对世界经济发展的影响。
第一,地球资源的消耗加快,并造成生态失衡和环境污染。
世界各国尤其是发展中国家为了养活更多的人口,不得不向自然界索取更多的资源,导致全球性资源危机;第二,南北经济差距加大。
发展中国家人口过快增长,而发达国家人口增长缓慢甚至负增长。
这种人口增长方面的巨大反差无疑会加大南北经济差距,富国愈富、贫国愈贫的局面还将长期存在下去;第三,发展中国家人口的过快增长不仅影响世界经济的发展,而且不利于世界的和平与稳定。
发展中国家人口的急剧增长和经济贫困,必然拖住世界经济增长的后腿,世界经济不可能保持长期的增长和稳定。
战后,世界上不时发生的移民潮、难民潮、偷渡潮以及其他各种社会经济问题,与发展中国家人口的过快增长密不可分。
2.人口老龄化给各有关国家带来哪些社会经济问题?(1)劳动力的年龄结构老化。
45岁以上的雇员、工人所占的比例越来越大。
虽然他们拥有丰富的工作经验,但由于不可抗拒的自然规律,他们的体力、耐力和承受力都已经下降,不再胜任那些需要重体力和耐力的工作;同时,由于他们与年轻人相比,智力减弱,反应迟钝,学习和掌握新技术相当吃力,不能胜任某些高技术作业。
第四章 土的渗流性和渗流问题习题与答案
第四章土的渗流性和渗流问题一、填空题1.当渗流方向向上,且水头梯度大于临界水头梯度时,会发生流砂现象。
2.渗透系数的数值等于水力梯度为1时,地下水的渗透速度越小,颗粒越粗的土,渗透系数数值越大。
3.土体具有被液体透过的性质称为土的渗透性或透水性。
4.一般来讲,室内渗透试验有两种,即常水头法和变水头法。
5.渗流破坏主要有流砂和管涌两种基本形式。
6.达西定律只适用于层流的情况,而反映土的透水性的比例系数,称之为土的渗透系数。
7.出现流砂的水头梯度称临界水头梯度。
8.渗透力是一种体积力。
它的大小和水力坡度成正比,作用方向与渗流方向相一致。
二、名词解释1.渗流力:水在土中流动时,单位体积土颗粒受到的渗流作用力。
2.流砂:土体在向上动水力作用下,有效应力为零时,颗粒发生悬浮、移动的现象。
3.水力梯度:土中两点的水头差与水流过的距离之比。
为单位长度上的水头损失。
4.临界水力梯度:使土开始发生流砂现象的水力梯度。
三、选择题1.流砂产生的条件为:( D )(A)渗流由上而下,动水力小于土的有效重度(B)渗流由上而下,动水力大于土的有效重度(C)渗流由下而上,动水力小于土的有效重度(D)渗流由下而上,动水力大于土的有效重度2.饱和重度为20kN/m3的砂土,在临界水头梯度I Cr时,动水力G D大小为:( C )(A)1 kN/m3(B)2 kN/m3 (C)10 kN/m3 (D)20 kN/m33.反应土透水性质的指标是( D )。
(A)不均匀系数(B)相对密实度(C)压缩系数(D)渗透系数4.下列有关流土与管涌的概念,正确的说法是( C )。
(A)发生流土时,水流向上渗流;发生管涌时,水流向下渗流(B)流土多发生在黏性土中,而管涌多发生在无黏性土中(C)流土属突发性破坏,管涌属渐进式破坏(D)流土属渗流破坏,管涌不属渗流破坏5.土透水性的强弱可用土的哪一项指标来反映?( D )(A)压缩系数(B)固结系数(C)压缩模量(D)渗透系数6.发生在地基中的下列现象,哪一种不属于渗透变形?( A )(A)坑底隆起(B)流土(C)砂沸(D)流砂7.下属关于渗流力的描述不正确的是( D )。
西方经济学第四章练习题(含答案)
第四章生产理论一、关键概念生产函数短期生产函数长期生产函数技术系数总产量(TP)平均产量(AP)边际产量(MP)边际收益递减规律等产量曲线(生产者的无差异曲线)边际技术替代率等成本线(生产者的预算线)生产者均衡扩展线规模报酬递增规模报酬递减规模报酬不变二、单项选择1. 生产要素的边际产量是:A 产量的变化除以厂商所使用的生产要素的量的变化 B 产量除以厂商所使用的生产要素的量 C 产量除以总生产成本 D 产量中能归功于这种生产要素的数量2.在总产量、平均产量、边际产量的变化过程中,下列哪种情况首先发生:A 边际产量下降 B 平均产量下降 C 总产量下降 D B和C3. 生产函数表示:A 一定量的投入,至少能生产多少产品 B 生产一定数量的产品,最多要投入多少生产要素 C 投入与产出的关系 D 以上都对4.边际收益递减规律发生作用的前提是:A 存在技术进步 B 生产技术水平不变 C 具有两种以上可变生产要素 D 只有不变生产要素5.等成本线往外移动表明:A 产量提高了 B 成本增加 C 生产要素价格按相同比例上升了 D 以上都对6.规模报酬递减是在下列哪种情况下发生的:A 只连续投入一种生产要素 B 按比例连续增加各种生产要素 C 不按比例连续增加各种生产要素 D 以上都对7.当某厂商以既定的成本生产出最大产量时,他:A 一定获得了最大利润 B 一定没有获得最大利润 C 无法确定 D 经济利润为零8.一个企业发现,在现在所用的生产技术时,劳动的边际产量与资本的边际产量的比率大于劳动的价格与资本的价格的比率。
该企业可以: A 只要愿意增加总成本就可以增加产量B 只要资本价格下降,在同样的总成本时可以增加生产 C 如果减少劳动并增加资本,就能以更低的生产成本生产同样的产量 D 如果增加劳动并减少资本,就能以更低的生产成本生产同样的产量9.一个国家不同行业之间资本密集程度不同的主要原因是:A 劳动价格的差别 B 等成本线斜率的差别 C 生产函数的差别 D 技术的可获得性10.在生产过程中,可以增加和减少的生产要素叫做:A 不变投入 B 可变投入 C 减少的收益 D 增加的收益11.等成本曲线围绕着它与纵轴的交点逆时针移动表明()A 生产要素X的价格下降了B 生产要素Y的价格下降了C 生产要素X的价格上升了D 生产要素Y的价格上升了12.无数条等产量曲线与等成本曲线的切点连接起来的曲线是()A 无差异曲线B 消费可能线C 收入消费曲线D 生产扩展路线13.在某一生产活动中,投入X与Y时的产量为Q,投入2X和2Y时产出为3Q,这表明() A规模收益递增B可变投入边际收益递增C规模收益递减D规模收益不变14.若企业增加使用一个单位的劳动,减少两个单位的资本,仍能生产出相同产出,则MRTSLK 是() A 1/2 B 2 C 1 D 415..若厂商总成本为24美元,由等成本曲线AB可知生产要素X和Y的价格分别为()A 4美元和3美元B 3美元和4美元C 8美元和6美元D 6美元和8美元16.生产200单位产量的最低成本是()A 24美元B 48美元C 12美元D 36美元17.生产200单位产量的最优生产要素组合是( )A 3单位X 和4单位YB 4单位X 和3单位YC 8单位X 和6单位YD 6单位X 和8单位Y18.等成本线从AB 移到CD ,表明总成本从24增至( ) A 32美元 B 36美元 C48美元 D 60美元19.如果有效的使用32美元,则产量( )A 小于200个单位B 大于300个单位C 小于3 00个单位,大于200个单位D 300个单位参考答案:1-5 CAABB 6-10 BCDCB 11-15 ADABB 16-19 ABBC三、简答题1.边际收益递减规律的内容和前提是什么?内容:边际收益递减规律是指在一定的技术水平下,将一种可变要素投入到其他要素当中时,这种要素所带来的产量水平,先递增,但随着这种要素投入的不断增加,最终使得该要素所带来的产量水平递减。
计算机组成原理第四章课后习题和答案-唐朔飞(完整版)
第4章存储器1. 解释概念:主存、辅存、Cache、RAM、SRAM、DRAM、ROM、PROM、EPROM、EEPROM、CDROM、Flash Memory。
答:主存:主存储器,用于存放正在执行的程序和数据。
CPU可以直接进行随机读写,访问速度较高。
辅存:辅助存储器,用于存放当前暂不执行的程序和数据,以及一些需要永久保存的信息。
Cache:高速缓冲存储器,介于CPU和主存之间,用于解决CPU和主存之间速度不匹配问题。
RAM:半导体随机存取存储器,主要用作计算机中的主存。
SRAM:静态半导体随机存取存储器。
DRAM:动态半导体随机存取存储器。
ROM:掩膜式半导体只读存储器。
由芯片制造商在制造时写入容,以后只能读出而不能写入。
PROM:可编程只读存储器,由用户根据需要确定写入容,只能写入一次。
EPROM:紫外线擦写可编程只读存储器。
需要修改容时,现将其全部容擦除,然后再编程。
擦除依靠紫外线使浮动栅极上的电荷泄露而实现。
EEPROM:电擦写可编程只读存储器。
CDROM:只读型光盘。
Flash Memory:闪速存储器。
或称快擦型存储器。
2. 计算机中哪些部件可以用于存储信息?按速度、容量和价格/位排序说明。
答:计算机中寄存器、Cache、主存、硬盘可以用于存储信息。
按速度由高至低排序为:寄存器、Cache、主存、硬盘;按容量由小至大排序为:寄存器、Cache、主存、硬盘;按价格/位由高至低排序为:寄存器、Cache、主存、硬盘。
3. 存储器的层次结构主要体现在什么地方?为什么要分这些层次?计算机如何管理这些层次?答:存储器的层次结构主要体现在Cache-主存和主存-辅存这两个存储层次上。
Cache-主存层次在存储系统中主要对CPU访存起加速作用,即从整体运行的效果分析,CPU访存速度加快,接近于Cache的速度,而寻址空间和位价却接近于主存。
主存-辅存层次在存储系统中主要起扩容作用,即从程序员的角度看,他所使用的存储器其容量和位价接近于辅存,而速度接近于主存。
第四章弯曲内力习题及答案
q 2qa a a a
A C
D
B
第四章 弯曲内力习题
一、填空题
1、如果一段梁内各横截面上的剪力Q 为零,而弯矩M 为常量,则该段梁的弯曲称为 ;如果该梁各横截面上同时存在剪力Q 和弯矩M ,则这种弯曲为 。
二、计算题
1、作下列两梁的弯矩图。
求出支座处的约束反力、弯矩的最大绝对值,并把该值标注在弯矩图上。
2、作下列梁的弯矩图。
求出支座处的约束反力、弯矩的最大绝对值,并把该值标注在弯矩图上。
3、下列梁的弯矩图。
第四章 弯曲内力习题答案
一、填空题
1 纯弯曲 横力弯曲(或剪切弯曲)
二、计算题
1、 图4.2.2 图4.2.4.1 图4.2.4.2
图4.2.4.3 Pa
25
6q a 22
3q a
2、
3、
22m ax 22B B ql R ql M ql M === 15.75kN 20.25kN 41kN.m
A D m ax R =R =M =m ax A
B R R P M P a
===⨯2m ax 716656A B R qa R qa M qa ==-
= 22q l。
第四章 习题答案
第四章 习题答案4-1 已知烟煤的干燥无灰基组成(%)为:C daf H daf O daf N daf S daf82.4 6.0 9.2 1.7 0.7测得空气干燥基水分M ad =3%,灰分A ad =15%,收到基水分M ar =5%,计算:(1) 1kg 干燥无灰基煤折合成空气干燥基煤、收到基煤时,各为多少?(2) 收到基时该烟煤的组成百分率。
解:(1) 将干燥无灰基换算成空气干燥基后碳的含量为:57.674.82100315100C 100M A 100C daf ad ad ad =⨯--=--= 令1kg 干燥无灰基煤折合成x kg 空气干燥基煤,根据碳含量相等,则有%57.67%4.821⨯=⨯x得x =1.22kg 。
将空气干燥基换算成收到基后碳的含量为:18.6657.6731005100C M 100M 100C ad ad ar ar =⨯--=--= 令1kg 干燥无灰基煤折合成y kg 空气干燥基煤,根据碳含量相等,则有%18.66%4.821⨯=⨯y得y =1.25kg 。
(2) 由(1)可知,空气干燥基该烟煤的组成为:C ad H ad O ad N ad S ad A ad M ad67.57 4.92 7.54 1.39 0.57 15 3则收到基该烟煤的组成为:C ar H ar O ar N ar S ar A ar M ar66.18 4.82 7.38 1.36 0.56 14.69 54-2 已知重油组成(%)为:C H O N S M A87.0 11.5 0.1 0.8 0.5 0.07 0.03设某窑炉在燃烧时空气系数α=1.2,用油量为200kg/h ,计算:(1) 每小时实际空气用量(Nm 3/h);(2) 每小时实际湿烟气生成量(Nm 3/h);(3) 干烟气及湿烟气组成百分率。
解:(1) 燃烧每千克重油理论需氧量为:1004.22)32O 32S 212H 12C (V 0O 2⨯-+⨯+= 重油kg /Nm 271.21004.22)321.0325.02125.111287(3=⨯-+⨯+=燃烧每千克重油理论需空气量为:重油kg /Nm 813.1021100271.221100V V 30O 0a 2=⨯=⨯= 燃烧每千克重油实际需空气量为:重油kg /Nm 976.12813.102.1V V 30a a =⨯=α=每小时实际空气用量为:h Nm /2.2595976.122003=⨯(2) 燃烧每千克重油产生的理论烟气量为:2179V 1004.22]28N 32S )18M 2H (12C [V V V V V 0O 0N 0SO 0O H 0CO 022222⨯+⨯++++=+++= 2179271.21004.22]288.0325.0)1807.025.11(1287[⨯+⨯++++= 重油kg /Nm 466.113=因为空气系数α=1.2,故燃烧每千克重油产生的实际烟气量为:重油kg /Nm 629.13813.10)12.1(466.11V )1(V V 30a 0=⨯-+=-α+= 则每小时产生的实际烟气量为h Nm /2726629.132003=⨯(3) 燃烧每千克重油产生的烟气中各组成量为:kg /Nm 624.11004.2212871004.2212C V 3CO 2=⨯=⨯= kg /Nm 289.11004.22)1807.025.11(1004.22)18M 2H (V 3O H 2=⨯+=⨯+= kg /Nm 0035.01004.22325.01004.2232S V 3SO 2=⨯=⨯= kg /Nm 258.102179271.22.11004.22288.02179V 1004.2228N V 30O N 22=⨯⨯+⨯=⨯α+⨯= kg /Nm 454.0V )1(V 30O O 22=-α=故干烟气的组成为: CO 2 SO 2 O 2 N 213.16 0.03 3.68 83.13湿烟气的组成为: CO 2 SO 2 O 2 N 2 H 2O11.91 0.03 3.33 75.27 9.464-3 某窑炉使用发生炉煤气为燃料,其组成(%)为:CO 2 CO H 2 CH 4 C 2H 4 O 2 N 2 H 2S H 2O5.6 25.9 12.7 2.5 0.4 0.2 46.9 1.4 4.4燃烧时α=1.1,计算:(1) 燃烧所需实际空气量(Nm 3/Nm 3煤气);(2) 实际生成烟气量(Nm 3/Nm 3煤气);(3) 干烟气及湿烟气组成百分率。
第四章习题及答案(审计学)
4.2.1填空题1.审计准则是人们在长期的审计实践中摸索、总结出来的,它既是一个,又是一个。
2.审计准则是专业审计人员在实施审计工作时必须恪守的最高,它是____的权威性判断标准。
3.审计准则既对____提出要求,也对社会提供——保证。
4.在西方国家,审计准则是20世纪____才开始出现的,美国在就开始研究和制定审计准则。
5.西方国家的审计准则,大多是以____为蓝本加以补充、修正而成的;国际组织制定的审计准则,以国际会计师联合会的____最具代表性。
6.美国的民间审计准则称为____,它主要适用于民间审计所从事的____。
7.国际性组织制定的国际审计准则,目前已取得的主要成果有____和____。
8.中国注册会计师执业准则是由____颁发,并适用于____。
9.我国注册会计师执业准则建设过程主要包括____、____、____和____。
10.我国注册会计师执业准则主要有____和____。
11.审计依据是____、____的客观标准。
12.____解决如何进行审计问题,是审计人员行动的指南和规范;___ _则解决审计人员根据什么标准提出这样或那样的审计意见。
13.审计依据按其来源分类,可分为____制定的审计依据和____制定的审计依据。
14.从法规和规章制度的制定过程来看,的法规、制度不能违反___ _的法规、制度。
15.运用审计依据的具体问题具体分析的原则时,应坚持____、____和国家法规与地方法规发生矛盾时要慎重处理等原则。
4.2.2 判断题(正确的剡“√”,错误的划“×”)1.审计准则是审计理论的重要组成部分,但对审计人员并无制约作用。
( )2.审计准则是通过审计人员执行审计程序体现出来的。
( )3.民间审计人员有了会计准则,对其审计工作提供了方便,因而就不需要审计准则了。
( )4.审计准则的实施使审计人员在从事审计工作时有了规范和指南,便于考核审计工作质量,推动了审计事业的发展。
计算机组成原理第四章课后习题和答案解析[完整版]
第4章存储器1. 解释概念:主存、辅存、Cache、RAM、SRAM、DRAM、ROM、PROM、EPROM、EEPROM、CDROM、Flash Memory。
答:主存:主存储器,用于存放正在执行的程序和数据。
CPU可以直接进行随机读写,访问速度较高。
辅存:辅助存储器,用于存放当前暂不执行的程序和数据,以及一些需要永久保存的信息。
Cache:高速缓冲存储器,介于CPU和主存之间,用于解决CPU和主存之间速度不匹配问题。
RAM:半导体随机存取存储器,主要用作计算机中的主存。
SRAM:静态半导体随机存取存储器。
DRAM:动态半导体随机存取存储器。
ROM:掩膜式半导体只读存储器。
由芯片制造商在制造时写入内容,以后只能读出而不能写入。
PROM:可编程只读存储器,由用户根据需要确定写入内容,只能写入一次。
EPROM:紫外线擦写可编程只读存储器。
需要修改内容时,现将其全部内容擦除,然后再编程。
擦除依靠紫外线使浮动栅极上的电荷泄露而实现。
EEPROM:电擦写可编程只读存储器。
CDROM:只读型光盘。
Flash Memory:闪速存储器。
或称快擦型存储器。
2. 计算机中哪些部件可以用于存储信息?按速度、容量和价格/位排序说明。
答:计算机中寄存器、Cache、主存、硬盘可以用于存储信息。
按速度由高至低排序为:寄存器、Cache、主存、硬盘;按容量由小至大排序为:寄存器、Cache、主存、硬盘;按价格/位由高至低排序为:寄存器、Cache、主存、硬盘。
3. 存储器的层次结构主要体现在什么地方?为什么要分这些层次?计算机如何管理这些层次?答:存储器的层次结构主要体现在Cache-主存和主存-辅存这两个存储层次上。
Cache-主存层次在存储系统中主要对CPU访存起加速作用,即从整体运行的效果分析,CPU访存速度加快,接近于Cache的速度,而寻址空间和位价却接近于主存。
主存-辅存层次在存储系统中主要起扩容作用,即从程序员的角度看,他所使用的存储器其容量和位价接近于辅存,而速度接近于主存。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
11、对外存对换区的管理以( D )为主要目标,对外存文件区 的管理以( B )为主要目标。 A.提高系统吞吐量 B.提高存储空间的利用率 C.降低存储费用 D.提高换入/换出的速度 12、采用分页存储管理使处理器执行指令的速度( B ) A.提高 B.降低 C.不定 D.不受影响 13、分段存储管理中,分段是由用户决定的,因此( B ) A.段内的地址和段间的地址都是连续的 B.段内的地址是连续的,而段间的地址是不连续的 C.段内的地址是不连续的,而段间的地址是连续的 D.段内的地址和段间的地址都不是连续的 14、在请求分页管理中,在页表中增加了若干项,其中状态位 供( C )时参考,修改位供( D )时参考,访问字段供( B ) 时参考,外存地址供( E )时参考。 A.分配页面 B.置换算法 C.程序访问 2019/1/15 4 D.换出页面 E.调入页面
1、采用连续分配方式的动态分区分配,对如图所示的内存分配 情况(其中,阴影部分表示已占用分区,空白部分表示空闲分 区),若要申请一块40K的内存,对于最佳适应算法给出分配 区域的首地址是( C ) A.100KB B.190KB C.330KB D.410KB 2、采用连续分配方式的动态分区分配,在右图所示中,若要申 请一块40KB的内存,使首地址最大的分配算法( C ) 0KB A.首次适应算法 B.最佳适应算法 100KB 80k C.最差适应算法 D.循环首次适应算法 180KB 3、下列算法中最有可能会产生“抖动”现象 190KB 90k 280KB 的是( A )。 330KB 60k A.先进先出页面置换算法 390KB 410KB B.最近最久未使用置换算法 102k 512KB C.最少使用页面置换算法 2019/1/15 1 D.最佳页面置换算法
15、请求分页管理中,缺页中断率与进程所得的内存物理块数, ( B )和( C )等因素有关。 A.页表的位置 B.置换算法 C.页面大小 D.进程调度算法 16、请求分页管理中,页面的大小与可能产生的缺页中断次数 ( B ) A.成正比 B.成反比 C.无关 D.成固定比值 17、下列说法正确的是( B ) A.在段页式系统中,以页为单位管理用户的虚拟空间,以段为 单位管理内存空间。 B.在段页式系统中,以段为单位管理用户的虚拟空间,以页为 单位管理内存空间。 C.为提高请求分页系统中内存的利用率,允许用户使用不同大 小的页面。 D.在虚拟存储器中,为了能让更多的作业同时运行,通常只装 入10%的作业后便运行。
2019/1/15 5
18、在下面的存储管理方案中,可以使用上下界地址寄存器实现 存储保护的是( A )和( B ) A.固定分区存储管理 B.动态分区存储管理 C.分页存储管理 D.分段存储管理 19、虚拟存储器最基本的特征是((1) B ),该特征主要是基于 ((2) E ),实现虚拟存储器最关键的技术是((3) C )。 (1)A.一次性 B.多次性 C.离散性 D.驻留性 (2)A.计算机的高速性 B.大容量内存 C.大容量硬盘 D.循环性原理 E.局部性原理 (3)A.内存分配 B.置换算法 C.请求调页(段) D.对换空间管理 20、碎片最严重的存储管理方式是( A ) A.固定分区 B.动态分区 C.分页管理 D.分段
页号
0 B 4×4KB = 16KB
页号
2 3
起始地址
1×4KB = 4KB 5×4KB = 20KB
7
2、某分段存储管理中采用如下表所示的段表: (1)给定段号2和段内地址90(单位字节),说明分段管理中的地 址变换过程(没有快表的)? (2)计算[0,430],[1,10],[2,500],[3,400],[4,20],[5,100], 的内存地址,其中方括号内的第一元素是段号,第二元素是 段内地址(单位字节)。 (3)说明存取主存中的一条指令或数据至少要访问几次主存。
2019/1/15 6
页号 第四章
物理块号 习题课
1、
0
1
2
4
220
28
(3)假定某分页存储管理的系统中,内存容量为 1MB,被分成256 2 1 块,块号为 0,1,2,… ,255 ,某作业的地址空间占 4 页,其页号为 3 5 0,1,2,3,被分配到内存的第2,4,1,5块中。 20 位来表示。 则有①内存地址应使用________ 220-8=212=4KB ,逻辑地址中的页内 ②作业每一页的长度为______________ 12 地址应用________ 位。 ③把作业中每一页在分到的内存块中的起始地址填入下表:
4、存储管理是对内存中( B )区域进行管理。 A.整个内存 B.供用户使用的 C.供系统使用的 D.供程序使用的 5、下面是关于存储管理功能的论述,正确的论述是( A )和( D ) A.内存分配最基本的任务是为每道程序分配内存空间,其它追 求的主要目标是提高存储空间的利用率。 B.为了提高内存保护的灵活性,内存保护通常由软件实现。 C.对换技术已不是现代操作系统中常用的一种技术。 D.地址映射是指将程序空间中的逻辑地址变为内存空间的物理 地址。 E.虚拟存储器是在物理上扩充内存容量。 6、在下列存储管理方案中,不适用于多道程序的是( A ) A.单一连续分配 B.固定分区分配 C.可重定位分区分配 D.段页式存储分配
2019/1/15 2
7、在固定分区分配中,每个分区的大小是( C ) A.相同的 B.可以不同但作业长度固定 C.可以不同但预先固定 D.根据用户要求而定 8、在固定分区分配中,为了提高内存的利用率,可采用如下 技术( A ) A.按经常出现的作业大小来划分分区 B.划分分区都相同 C.不同请求队列中的作业可以申请相同的分区 D.大作业可以申请多个分区 9、采用固定分区分配的最大缺点是( C ) A.不利于内存的保护 B.分配算法复杂 C.内存的利用率不高 D.零头太多 10、可重定位分区分配采用的地址转换公式是( C ) A.绝对地址=上界寄存器值+逻辑地址 B.绝对地址=下界寄存器值+逻辑地址 C.绝对地址=重定位寄存器值+逻辑地址 2019/1/15 3 D.绝对地址=块号*块长+页内地址