原子吸收光谱分析
原子吸收光谱定量分析方法
原子吸收定量分析方法一、定量分析方法(P145)⑴标准曲线法:配制一系列浓度不同的标准溶液,在相同测定条件下,测定标准系列溶液和待测试样溶液的吸光度,绘制A-c标准曲线,由待测溶液的吸光度值在标准曲线上得到其含量。
(2)标准加入法当试样组成复杂,待测元素含量很低时,应采用标准加入法进行定量分析。
取若干份体积相同的试液(cX),依次按比例加入不同量的待测物的标准溶液(cO):浓度依次为:cX,cX+cO,cX+2cO,cX+3cO,cX+4cO …分别测得吸光度为:AX ,A1 ,A2 ,A3 ,A4 …直线外推法:以对浓度做图得一直线,图中cX点即待测溶液浓度。
(3)稀释法:⑷内标法:在标准试样和被测试样中,分别加入内标元素,测定分析线和内标线的吸光度比,并以吸光度比与被测元素含量或浓度绘制工作曲线。
内标元素的选择:内标元素与被测元素在试样基体内及在原子化过程中具有相似的物理化学性质,样品中不存在,用色谱纯或者已知含量二、灵敏度和检出限(1)灵敏度1、定义:在一定浓度时,测定值(吸光度)的增量(△ A)与相应的待测元素浓度(或质量)的增量(△ c或A m)的比值(即分析校正曲线的斜率)PS:习惯上用特征浓度和特征质量表征灵敏度2、特征浓度定义:能产生1%吸收或产生0.0044吸光度时所对应的被测元素的质量浓度定义为元素的特征浓度3、特征质量定义:能产生1%吸收或产生0.0044吸光度时所对应的被测元素的质量定义为元素的特征质量。
(2)检出限定义:适当置信度下,能检测出的待测元素的最低浓度或最低质量。
用接近于空白的溶液,经若干次重复测定所得吸光度的标准偏差的3倍求得。
(3)测定条件的选择1.分析线的选择每种元素都有几条可供选择使用的吸收线。
一般选待测元素的共振线作为分析线,可以得到最好的灵敏度。
在测量高含量元素时,也可选次灵敏线。
2.单色器光谱通带的选择(调节狭缝宽度)光谱通带的选择以排除光谱干扰和具有一定透光强度为原则。
原子吸收光谱分析
原子吸收光谱分析基本要点:1. 了解影响原子吸收谱线轮廓的因素;2. 理解火焰原子化和高温石墨炉原子化法的基本过程;3. 了解原子吸收分光光度计主要部件及类型;4. 了解原子吸收分光光度法干扰及其抑制方法;5. 掌握原子吸收分光光度法的定量分析方法及实验条件选择原则。
第一节原子吸收光谱分析概述一、原子吸收光谱分析定义:根据物质产生的原子蒸气中待测元素的基态原子对光源特征辐射谱线吸收程度进行定量的分析方法。
二、原子吸收光谱分析的特点:(1 )灵敏度高:其检出限可达10 -9 g /ml (某些元素可更高);2 )选择性好:分析不同元素时,选用不同元素灯,提高分析的选择性;(3 )具有较高的精密度和准确度:试样处理简单。
第二节原子吸收光谱分析基本原理一、原子吸收光谱的产生及共振线在一般情况下,原子处于能量最低状态(最稳定态),称为基态( E 0 = 0 )当原子吸收外界能量被激发时,其最外层电子可能跃迁到较高的不同能级上,原子的这种运动状态称为激发态。
处于激发态。
出于激发态的电子很不稳定,一般在极短的时间(10-8-10 -7s)便跃回基态(或能量较低的激发态),并以电磁波的形式放出能量:A E=En-EO=h=hc/ 入共振发射线:电子从基态跃迁到能量最低的激发态时要吸收一定频率的光,它再跃迁回基态时,则发射出同样频率的光(谱线),这种谱线称为共振发射线共振吸收线:电子从基态跃迁至第一激发态所产生的吸收谱线称为共振吸收线。
共振线:共振发射线和共振吸收线都简称为共振线。
各种元素的原子结构和外层电子排布不同,不同元素的原子从基态激发至第一激发态(或由第一激发态跃迁返回基态)时,吸收(或发射)的能量不同,因而各种元素的共振线不同而各有其特征性,所以这种共振线是元素的特征谱线。
二、谱线轮廓与谱线变宽(一)吸收线轮廓若将一束不同频率,强度为10的平行光透过厚度为1cm的原子蒸汽时,一部分光被吸收,透射光的强度lv仍服从朗伯-比尔定律:式中:Kn——基态原子对频率为的光的吸收系数,它是光源辐射频率的n函数由于外界条件及本身的影响,造成对原子吸收的微扰,使其吸收不可能仅仅对应于一条细线,即原子吸收线并不是一条严格的几何线(单色I ),而是具有一定的宽度、轮廓,即透射光的强度表现为频率分布。
第8章 原子吸收光谱分析
三、引起吸收线变宽的因素 a、自然宽度(natural width) 用Δ ν N 表示。 b、多普勒变宽(Doppler broadening) 用Δ ν D 表示。表达式见图8-3。 c、压力变宽(包括劳伦兹变宽、共振变 宽),它们分别用Δ ν L 和Δ ν R表示。 d、其它因素变宽,如场致变宽、自吸效应等。 它们之间的关系式为:
二、原子吸收光谱分析法及其常规模式
原子吸收光谱分析
是基于物质所产生 的原子蒸气对特定 谱线(待测元素的 特征谱线)的吸收 作用来进行定量分 析的一种方法。 分析模式见示意图。
●原子吸收和原子发射是相互联系的两种相反过程。
Comparison of AAS and AES
因此,AAS和AES法在所使用的仪器和测定方法上有 相似之处,亦有不同点。 ●由于原子的吸收线比发射线的数目少得多,这样 谱线重叠的几率小得多。而且空心阴极灯一般并不 发射那些邻近波长的辐射线,因此其它辐射线干扰 较小。因此,AAS法的选择性高、干扰少且易于克 服。 ●在原子吸收法的实验条件下,原子蒸气中基态原 于数比激发态原子数多得多,所以测定的是大部分 原子。因此,原子吸收具有较高的灵敏度。
(2)冷原子化法
原子化温度为常温。
பைடு நூலகம்
T [ D ( L R N ) ]
2
2 1/ 2
四、积分吸收和峰值吸收
在吸收线轮廓内,吸收系数的值会随吸收光
子的波长变化而变化,要表示原子蒸气吸收的全
部能量,就必须在吸收线所在的波长区间进行积
分运算,所得结果简称为积分吸收值。
从理论上,积分吸收与原子蒸气中吸收辐射
E0 基态能级 E1、E2、E3为激发态能级 因此,A 产生吸收光谱; B 产生发射光谱。 电子从基态跃迁到能量最低 的激发态(第一激发态)时要吸收 一定频率的光(谱线) ,这种谱 线称为共振吸收线;当它再跃迁 回基态时,则发射出同样频率的 光(谱线),这种谱线称为共振发 射线(它们都简称共振线)。
第03章 原子吸收光谱分析
7
• 各种元素的基态至第一激发态跃迁最易发生,吸收最强,最灵 敏线——主共振吸收线。 • 各种元素的原子结构和外层电子排布不同,由基态至第一激发 态跃迁吸收能量不同,共振线不同——具有特征性。
• 利用基态的原子蒸气对光源辐射的特征谱线(共振线)的吸收
可以进行定量分析。 • 光谱位于光谱的紫外区和可见区。
• 准确度高,分析速度快;
• 应用广泛。 • 局限:不能对多元素同时测定(需更换光源)、对难 熔元素测定灵敏度和精密度较低、对于成分复杂样品 干扰较严重、对多数非金属元素不能直接测定。
5
元素周期表中可用原子吸收光谱法分析的元素
6
3.2 原子吸收光谱法的基本原理
3.2.1 原子吸收光谱的产生
• 基态原子吸收其共振辐射,外层电子由基态跃迁至激发态 而产生原子吸收光谱。
收定律,有:
I I 0e
Kvl
• 或
I0 A lg 0.434 K v l I
21
• 采用锐线光源进行测量,则Δv发< < Δv
吸
,在辐射线宽度范围内,Kν可近似
发射线
认为不变,并近似等于峰值时的吸收 系数K0,则:
I0 A lg 0.434 K 0l I
22
• 峰值吸收系数K0与谱线的宽度有关,在通常原子吸收测定条
• 由于原子在空间作无规则热运动所导致的,故也称为热变宽。
2v0 vD c
2(ln 2) RT T 7 7.1610 v0 Ar Ar
• Doppler 变宽随温度升高、谱线频率升高和相对原子质量减小而 变宽。
11
3.压力变宽( 10-3nm)
• 当原子吸收区气体压力变大时,相互碰撞引起的变宽是 不可忽略的。原子之间的相互碰撞导致能级变化,激发 态原子平均寿命缩短,引起谱线变宽。 • 劳伦兹(Lorentz)变宽:待测元素原子和其他粒子碰撞。
(完整word版)原子吸收光谱分析解读
原子吸收光谱分析4。
2.1 概述4。
2。
1。
1 基本概念1)原子光谱根据原子外层电子跃迁所产生的光谱进行分析的方法,称为原子光谱法,包括原子发射光谱法、原子吸收光谱法和原子荧光光谱法。
本章重点介绍应用广泛的原子吸收光谱法。
2)原子吸收光谱原子吸收光谱法,又称原子吸收分光光度法或简称原子吸收法,它是基于测量试样所产生的原子蒸气中基态原子对其特征谱线的吸收,从而定量测定化学元素的方法.4。
2.1。
2 仪器结构和过程图4-21 原子吸收示意图如上图,含Pb溶液将经过预处理-喷射成雾状进人燃烧火焰中,Pb化合物雾滴在火焰温度下,挥发并离解成Pb原子蒸气。
用Pb空心阴极灯作光源,产生Pb的特征谱线,通过Pb原子蒸气时,由于蒸气中基态Pb原子的吸收,Pb的特征谱线强度减弱,通过单色器和检测器测得其减弱程度,即可计算出溶液中Pb的含量。
4。
2。
1。
3 方法特点灵敏度高,10—9g/ml-10—12g/ml。
选择性好,准确度高。
单一元素特征谱线测定,多数情况无干扰。
测量范围广.测定70多种元素。
操作简便,分析速度快。
4。
2.2 原子吸收法基本原理 4。
2。
2.1 共振线和吸收线 1) 基本概念➢ 共振线电子从基态跃迁到能量最低的激发态(称为第一激发态),为共振跃迁,所产生的谱线称为共振吸收线(简称共振线).当电子从第一激发态跃回基态时,则发射出同样频率的谱线,称为共振发射线(也简称共振线)。
对大多数元素来说,共振线是指元素所有谱线中最灵敏的线。
➢ 特征谱线各种元素的原子结构和外层电子排布不同.不同元素的原子从基态激发至第一激发态(或由第一激发态跃回基态)时,吸收(或发射)的能量不同,因此各种元素的共振线不同而有其特征性,这种共振线称为元素的特征谱线。
2) 朗伯原理图4-22 原子吸收法的朗伯定律示意图原理公式:b K e I I νν-=0νK :吸收系数;ν:频率。
吸收线图4-23 吸收线轮廓图 图4—24 吸收线半宽度比较上述两个图,注意图的纵坐标参量的不同。
第七章原子吸收光谱分析法
原子吸收光谱法(也称原子吸收分光光法 )与可 见、紫外分光光度法基本原理相同,都是基于物质 对光选择吸收而建立起来的光学分析法。
2010年1月25日1时53分
组成:阳极(吸气金属)、空心圆筒形(使待测原子集中)阴极(W+ 待测元素)、低压惰性气体(谱线简单、背景小)。
工作过程:高压直流电(300V)---阴极电子---撞击隋性原子---电离(二 次电子维持放电)---正离子---轰击阴极---待测原子溅射----聚集空 心阴极内被激发----待测元素特征共振发射线。
? 自然宽度(约在10-5nm数量级)。
?
?2.多普勒变宽(热变宽):
? 由于多普勒效应而导致的谱线 变宽。由于原子热运动引起的。 其宽度约为 10-3nm数量级。
?3.压力变宽:由于同类原子或 与其它粒子(分子、原子、离子、 电子等)相互碰撞而造成的吸收 谱线变宽。其宽度也约为 10-3nm 数量级。
区别:在可见、紫外分光光度法中,吸光物质 是溶液中被测物质的分子或离子对光的选择吸收, 原子吸收光谱法吸光物质是待测元素的基态原子对 光的选择吸收,这种光是由待测元素制成的空心阴 极灯(称元素灯)作光源。
原子吸收光谱分析的过程:
A元素含量测定----- A元素的空心阴极灯发射特征辐射 --------试样在原子化器中变为气态的基态原子-------吸收空心 阴极灯发射特征辐射---------空心阴极灯发射特征辐射减弱-----产生吸光度------元素定量分析
钨丝灯光源和氘灯,经分光后,光谱通带0.2nm。而原子吸收线
化学反应的原子吸收光谱分析
化学反应的原子吸收光谱分析原子吸收光谱分析,是一种利用原子对特定波长的光发生吸收的现象进行分析的方法。
通过测量样品溶液或气体中吸收光的强度,可准确测定其中的化学元素含量。
在化学反应中,原子吸收光谱分析是一项重要的技术,能够提供关于反应过程中元素浓度和化学物种变化的信息。
本文将详细介绍化学反应的原子吸收光谱分析的原理、应用和优势。
一、原理原子吸收光谱分析基于原子对特定波长光的吸收现象,其原理可以分为两个基本过程:光源激发和吸收现象。
1. 光源激发在原子吸收光谱分析中,常用的光源是空心阴极放电灯或恒流电源。
光源中的电极通电后,电极中的金属元素被激发形成原子或原子离子,并释放出特定波长的光。
2. 吸收现象样品溶液或气体中的化学元素原子或原子离子与光源发出的特定波长的光相互作用,产生吸收现象。
当光经过样品时,如果样品中存在与光源波长相对应的原子或原子离子,这些原子会吸收部分光的能量,使得吸收光的强度减小。
通过测量光的强度变化,可以推断样品中所含的元素及其浓度。
二、应用原子吸收光谱分析在化学反应中的应用广泛,以下是几个常见的应用领域:1. 反应动力学研究原子吸收光谱分析可用于研究化学反应的动力学过程。
通过监测反应物中某种元素的浓度随时间的变化,可以推断反应的速率常数、反应机理等信息。
2. 反应过程监测通过原子吸收光谱分析,可以实时监测反应过程中各种元素的浓度变化。
这对于了解化学反应过程中元素的转化情况、判断反应的进行程度等方面具有重要意义。
3. 催化剂研究原子吸收光谱分析可用于研究催化剂在反应过程中的作用机制。
通过测定反应物中的催化剂元素浓度变化,可以揭示催化剂对反应速率、选择性等方面的影响。
4. 有机合成原子吸收光谱分析在有机合成中的应用越来越广泛。
通过测定反应物和产物中有机元素的浓度,可评估有机合成反应的转化率和产物纯度。
三、优势原子吸收光谱分析具有以下优势:1. 灵敏度高原子吸收光谱分析的灵敏度通常为微克/升量级,可以准确测定样品中微量甚至痕量元素的含量。
第2章原子吸收光谱分析
2.1.2谱线轮廓与谱线宽度 2.1.2谱线轮廓与谱线宽度 谱线轮廓
吸收光谱与发射光谱的关系 共振线与吸收线
从基态 跃迁第一激发态,又回到基 跃迁第一激发态,又回到基 态,发射出光谱线,称共振发射线 态,发射出光谱线,称共振发射线。 共振发射线。 同样从基态跃迁 同样从基态跃迁至第一激发态所产生的吸 共振吸收线(简称为共振线)。 收谱线称为共振吸收线 收谱线称为共振吸收线(简称为共振线)。
第2 章
原子吸收光谱分析
Atomic absorption spectroscopy AAS
2.1.1 一、历史
概述
原子吸收光谱法是一种基于待测基态原子对特征 谱线的吸收而建立的一种分析方法。这一方法的发展 经历了3 经历了3个发展阶段:
1、原子吸收现象的发现
• 1802年Wollaston发现太阳光谱的暗线; 1802年Wollaston发现太阳光谱的暗线; • 1859年Kirchhoff和 Bunson解释了暗线产生的原因; 1859年Kirchhoff和 Bunson解释了暗线产生的原因;
3、电热原子化技术的提出
1959年里沃夫提出电热原子化技术,大大提高了原子吸收的 灵敏度
二、原子吸收光谱法的特点
1、灵敏度高(火焰法:1 ng/ml,石墨炉100-0.01 pg); 2、准确度好(火焰法:RSD <1%,石墨炉 3-5%) 3、选择性高(可测元素达70个,相互干扰很小) 缺点:不能多元素同时分析
火焰原子化条件的选择
火焰类型 燃气-助燃气比例 测量高度
原子化过程
试样 雾化为雾滴 雾滴蒸发成固体颗粒 固体颗粒蒸发产生分子 分子 原子 激发分子 离子
火焰原子化器特点. 火焰原子化器特点.
原子吸收光谱分析
三、原子吸收线
(一)原子吸收线的产生 当通过基态原子的光辐射具有的能量 h 恰好等
于原子由基态 → 激发态所含有的能量ΔE时,基态 原子吸收光辐射产生原子吸收光谱(线)
ΔE=h=hc/ 不同种类的原子有不同的原子结构,由基态 → 激发态所需的能量差不同,吸收的光辐射的频率或 波长不同。 Na(基态)吸收波长为589.0 nm Mg(基态)吸收波长为285.2 nm
❖ 光谱项(spectral term)是描述这些量子能级 的形式。
❖ n2S+1LJ ❖ n:主量子数
表示核外电子分布的层数
❖ S:总自旋量子数 表示价电子自旋量子数的矢量和
❖ L:总角量子数 表示电子轨道形状
❖ J :内量子数
表示价电子组合得到的L与S的矢量和
❖ 2S+1:光谱项的多重性(*****)
+
Kvdv
π e2 mc
N0
f
如果将公式左边求出,即谱线下所围面积测量出(积分吸
收)。即可得到单位体积原子蒸气中吸收辐射的基态原子数
N0。
这是一种绝对测量方法,现在的分光装置无法实现。 △=10-3nm,若取600nm,单色器分辨率R=/△=6×105 钨丝灯光源和氘灯,经分光后,光谱通带0.2nm。而原子吸 收线半宽度:10-3nm。如图:
4.火焰原子化装置
❖ 全消耗型原子化器,将试样 直接喷入火焰
原子吸收光谱分析概述及其优缺点
1原子吸收光谱分析AAS(atomic absorption spectroscopy)概述来源:分析行业原子吸收光谱分析法(AAS)是一种测量特定气态原子对光辐射的吸收的方法。
原子吸收分光光度法和我们以前在分析化学中学过的吸光光度法有很多的相似之处。
这里将通过对比的方式,在简单的复习一般吸光光度法的基础上引入原子吸收分光光度法的概念。
1.1 原子吸收光谱研究的历史人们对光吸收现象的研究始于18世纪初叶。
光吸收现象是指光辐射在通过晶体或液体介质后,其辐射的强度和方式会发生变化的现象。
通过研究这种光辐射吸收现象,人们注意到:原始的光辐射在经过吸收介质后,能量可以分为三个部分:(1)散射的,(2)被吸收的,(3)发射的辐射。
根据粒子从基态到激发态对辐射的吸收原理可以建立各种吸收光谱法,如分子、原子吸收光谱分析;相反,根据粒子从激发态到基态的光能辐射可以建立各种荧光发射光谱分析,只是在测量方向上和光路垂直。
原子吸收光谱法发展经历了这样的几个发展阶段:1.1.1 对原子吸收现象的初步认识因为太阳光是最普通的光源,所以光谱学和吸收光谱法的历史,与对太阳光的观察是紧密相联的。
文献中有记载最早的对原子吸收光谱现象的发现是在1802年,伍朗斯顿(W.H.Wollasto n)在研究太阳连续光谱时,曾指出在太阳连续光谱中存在着许多条的暗线。
几年以后,弗兰霍夫(Fraunhofer)在研究太阳连续光谱时,又独立地再次观察到了这些暗线,并详细地研究了这种现象,所以人们称这些暗线为弗兰霍夫线,但在当时还没有人能阐明产生这种暗线的原因。
1832年,研究其它现象的英国人布鲁斯特(D. Brewster) 首先对弗兰霍夫线产生的原因作了基本上是正确的解释。
在对白光通过一氧化氮时的谱线吸收现象进行了观察后,他认为弗兰霍夫线是由于太阳外围大气圈中比光源温度低的气体吸收了从光源发出的光的缘故。
然而真正对这种吸收现象作出确切解释的还是本生(R. Bu nsen)和克希荷夫(G. Kirchhoff)。
《仪器分析》第十二章_原子吸收光谱法
当采用锐线光源时,测量是在原子吸收线附近一定频 率范围内进行,即
I 0 I d
0
I I 0e
K l
I e
0
K l
d
锐线光源的很小,可以近似用峰值吸收系数K0 来表 示原子对辐射的吸收,因此有吸光度A为:
I0 A lg lg I
质的强谱线。
空心阴极灯光的强度与灯的工作电流有很大关系。增
大灯电流,可以增加发射强度。但是,灯电流过大,会导 致一些不良现象,如阴极溅射增强,产生密度较大的电子 云,灯本身发生自蚀现象;加快内充气体的“消耗”而缩 短寿命;阴极温度过高,使阴极物质熔化;放电不正常,
灯光强度不稳定灯。灯电流太小,灯光强低,稳定性和信
(2)峰值吸收 1955年Walsh提出,在温度不太高的稳定火焰情况下,
峰值吸收系数与被测元素的原子浓度也成正比。通常情况下,
吸收轮廓决定于多普勒变宽,吸收系数为
2 ( 0 ) ln 2 D 2
K K 0e
K0 2 D
D 是多普勒 半宽度
K d mc N
于分析化学的原因。
e 2
0
f
m 是电子质量,f是振子强度,即能被入射 辐射激发的每个原子的平均电子数,正比 于原子对特定波长光的吸收概率。
若能测定积分吸收,则可以求出原子浓度。但是,测定谱 线宽度仅仅10-3nm的积分吸收,需要分辨率很高的色散仪器,
难以做到,这也是100多年前发现原子吸收现象却一直未能用
空心阴极灯工作原理:
当正、负两电极间施加适当的直流电压(300V—500V)
时,便开始放电,阴极发射的电子在电场作用下,高速射
6-原子吸收光谱
二、原子化器:
作用:
原子化器的功能是提供能量,使试样干燥、蒸发并原 子化,产生原子蒸气。 要求: ●原子化效率要高。 ●稳定性要好。雾化后的液滴要均匀、粒细; ●低的干扰水平。背景小,噪声低; ●安全、耐用,操作方便。
火焰原子化系统 原子化系统类型 非火焰原子化系统
1、火焰原子化系统:
火焰原子化系统是由化学火焰热能提供能量。
★ 分析速度快,仪器比较简单,操作方便,应用比较广。
缺点:
1. ★除了一些现成、先进的仪器可以进行多元素的测定外,
目前大多数仪器都不能同时进行多元素的测定; 2. ★由于原子化温度比较低,对于一些易形成稳定化合物的 元素,如W、Ni、Ta等稀土等以及非金属元素,原子化效 率低,检出能力差; 3. ★非火焰的石墨炉原子化器虽然原子化效率高,检测限低 ,但是重现性和准确性较差; 4. 对复杂样品分析干扰也较严重。
宽度(mm)。
四、检测系统
定量分析方法
1.标准曲线法
配制一系列不同浓度的标准试样,由低到高依次分析, 将获得的吸光度A数据对应于浓度作标准曲线,在相同条件下 测定试样的吸光度A数据,在标准曲线上查出对应的浓度值;
应注意的问题:
1. 所配置的标准溶液的浓度,应在吸光度和浓度呈直 线关系的范围内。 2. 由于雾化效率和火焰状态经常变动,标准曲线的斜 率也随之变动,每次测定前应用标准溶液对吸光度 进行检测。 3. 在整个分析过程中操作条件应保持不变。 4. 标准样品与待测试样的组成应保持一致。
(3)压力变宽(劳伦兹变宽,赫鲁兹马克变宽)ΔVL
由于原子相互碰撞使能量发生稍微变化。 劳伦兹(Lorentz)变宽: 待测原子和其他原子碰撞。 赫鲁兹马克(Holtsmark)变宽(共振变宽): 同种原子碰撞。浓度高时起作用,在原子吸收中可忽略 (4)场致变宽 外界电场、带电粒子、离子形成的电场及磁场的作用使 谱线变宽的现象;影响较小; 在一般分析条件下温度变宽和劳伦兹为主
原子吸收光谱分析法
对于物理干扰,最好的消除方法 就是配制与试样溶液组成相似的 标准溶液。也可用标准参加法来 进行测定。
三,测定条件的选择: 1.分析线的选择:一般选用共
振线作分析线。 2.灯电流:保正稳定和适当光
强度输出的条件下,尽量选 用较低的工作电流。
5.狭缝宽度:由于原子吸收光谱法谱 线的重叠较少,一般可用较宽的狭 缝,以增强光的强度。但当存在谱 线干扰和背景吸收较大时,那么宜 选用较小的狭缝宽度。
SCV0.0044(g/1% 吸 收 ) A
式中:S为绝对灵敏度;C为试液 中 待 测 元 素 的 浓 度 〔g能检 出的元素的最低浓度或最小质 量。
定义为:能给出信号强度 等于3倍噪声信号强度标准偏差 时所对应的元素浓度或质量。
当在正负电极上施加适当电 压〔一般为200~500伏〕时,在 正负电极之间便开始放电,这时, 电子从阴极内壁射出,经电场加 速后向阳极运动。
电子在由阴极射向阳极的过程中, 与载气〔惰性气体〕原子碰撞使其 电离成为阳离子。带正电荷的惰性 气体离子在电场加速下,以很快的 速度轰击阴极外表,使阴极内壁的 待测元素的原子溅射出来,在阴极 腔内形成待测元素的原子蒸气云。
三.光学系统: 分光系统一般用光栅来进行分光。
光谱通带: W=D×S×10-3
其中:W为光谱通带〔单位nm〕;D为 光 栅 的 倒 线 色 散 率 〔 单 位 nm/mm-1〕 ; S为狭缝宽度〔单位μm〕。
四.检测系统: 检测系统包括检测器、放大器、
对数转换器、显示器几局部。
原子吸收光谱法的分析过程:
计算式为:D c 3 ( g / m L )
A
或 D g 3 ( g )
A
式 中 D 为 检 出 极 限 〔μg/mL 或 g〕 ; σ 为 对 空 白 溶 液 进 行 不 少 于 10 次 测 量时的标准偏差;A为吸光度;g为 质量〔g〕。
仪器分析第五章原子吸收光谱法
仪器分析第五章原⼦吸收光谱法第五章原⼦吸收光谱法Chapter FiveAtomic Absorption SpectrumFor Short:AAS第⼀节基本原理⼀、原⼦吸收光谱分析概述1、原⼦吸收光谱的起源18世纪初,⼈们便开始观察和研究原⼦吸收光谱-----太阳光谱中的暗线。
1955年,澳⼤利亚物理学家⽡尔西发表了著名论⽂“原⼦吸收光谱在化学分析中的应⽤”,奠定了原⼦吸收光谱分析法的理论基础。
1955年,原⼦吸收光谱作为⼀种分析⽅法开始应⽤。
并在60年代得到迅速发展和普及。
2、什么是原⼦吸收光谱?溶液中的⾦属离⼦化合物在⾼温下能够解离成原⼦蒸⽓,两种形态间存在定量关系。
当光源发射出的特征波长光辐射通过原⼦蒸⽓时,原⼦中的外层电⼦吸收能量,特征谱线的光强度减弱。
光强度的变化符合朗伯-⽐⽿定律,进⾏定量分析。
它是基于物质所产⽣的原⼦蒸⽓对特征谱线的吸收作⽤来进⾏定量分析的⼀种⽅法。
原⼦与分⼦⼀样,吸收特定能量后,产⽣基态→激发态跃迁;产⽣原⼦吸收光谱,即共振吸收。
原⼦由基态→第⼀激发态的跃迁,最易发⽣。
每种原⼦的核外电⼦能级分布不同,当产⽣由基态→第⼀激发态的跃迁时,吸收特定频率的辐射能量。
⼆、共振线:共振吸收线——电⼦从基态跃迁⾄第⼀激发态所产⽣的吸收谱线称为共振吸收线(简称共振线)。
共振发射线——电⼦从第⼀激发态再跃回基态时,则发射出同样频率的辐射,对应的谱线称为共振发射线(也简称共振线)。
原⼦的共振线的吸收共振线称为元素的特征谱线,因为:各种元素的原⼦结构和外层电⼦排布不同。
所以不同元素的原⼦从基态激发成第⼀激发态(或由第⼀激发态跃回基态)时,吸收(或发射)的能量不同,因此各种元素的共振线各有其特征性。
共振线⼜称为元素的灵敏线,因为:这种从基态到第⼀激发态的跃迁最容易发⽣,因此对⼤多数元素来说,共振线是指元素所有谱线中最灵敏的谱线。
在原⼦吸收光度法中,就是利⽤处于基态的待测原⼦蒸⽓对从光源发射的共振发射线的吸收来进⾏分析的。
(完整版)原子吸收光谱的定量分析
(完整版)原子吸收光谱的定量分析
介绍
原子吸收光谱是一种常用的定量分析方法,用于测量样品中特定元素的浓度。
本文档旨在介绍原子吸收光谱的基本原理和定量分析的步骤。
原理
原子吸收光谱利用原子吸收特定波长的光来测量样品中特定元素的浓度。
当光通过样品中的原子气体时,原子会吸收与其原子结构相关的特定波长的光线。
通过测量吸收光的强度,可以确定样品中特定元素的浓度。
步骤
以下是进行原子吸收光谱定量分析的基本步骤:
1. 样品制备:将待分析的样品转化为原子气态。
常用的方法包括火焰法、电感耦合等离子体法等。
2. 选择波长:根据待分析元素的吸收峰进行波长选择。
可以通过参考相关文献或经验来确定。
3. 校准曲线:准备一系列浓度已知的标准溶液,测量它们的吸光度,并绘制校准曲线。
4. 测量样品:将样品引入原子吸收光谱仪器,测量其吸光度。
5. 数据分析:利用校准曲线,计算出样品中特定元素的浓度。
6. 重复测量:进行重复测量,确保结果的准确性和可靠性。
7. 结果报告:将测得的浓度结果整理并报告。
结论
原子吸收光谱是一种可靠的定量分析方法,能够有效测量样品中特定元素的浓度。
正确的样品制备、波长选择和数据分析步骤对于获得准确结果至关重要。
通过遵循上述步骤,可以进行原子吸收光谱的定量分析。
*注意:本文档仅为介绍原子吸收光谱的基本原理和步骤,具体实验细节和参数设置需要根据实际情况进行调整。
*。
物化地分析中的原子吸收光谱分析
物化地分析中的原子吸收光谱分析原子吸收光谱分析是物化地分析领域中常用的一种分析方法。
它利用原子在特定波长的光线照射下吸收光的特性,对样品中的化学元素进行定量检测和分析。
本文将从原子吸收光谱分析的基本原理、仪器设备和应用领域等方面进行论述。
一、原理与机制原子吸收光谱分析的基本原理是利用原子吸收特定波长的光线时的量子能级跃迁现象。
当样品中的化学元素被激发后,在特定波长的光线照射下,原子内部的电子会发生跃迁到高能级的激发态。
然后,激发态的原子会再次退回到基态,释放出特定波长的光信号。
通过测量吸收光强度的变化,可以推断出样品中化学元素的含量。
二、仪器设备原子吸收光谱分析需要使用专门的仪器设备来进行测量和分析。
常用的原子吸收光谱仪主要由光源、样品室、光路系统、检测系统和数据处理系统等部分组成。
光源通常采用中空阴极灯,能够发射特定波长的光线。
样品室用于容纳待测样品并与光源进行光路的连接。
光路系统包括光栅、滤光片等光学元件,用于选择特定波长的光线。
检测系统用于测量光线的强度变化,常见的检测方式有吸收法和发射法。
数据处理系统用于记录和分析测量结果,通常采用计算机进行数据处理。
三、应用领域原子吸收光谱分析在物化地分析中具有广泛的应用领域。
首先,在环境分析方面,原子吸收光谱分析可以用于监测和分析水体、大气和土壤中的污染物。
例如,通过测定水样中重金属的含量,可以评估水质的安全性。
其次,在食品安全领域,原子吸收光谱分析可以用于检测食品中有害金属元素的含量,如铅、镉等。
此外,在生物医药研究和制药工业中,原子吸收光谱分析也广泛应用于药物成分和微量元素的定量分析。
总结起来,物化地分析中的原子吸收光谱分析是一种基于原子能级跃迁的分析方法,通过测量样品中特定波长光线的吸收情况,来确定样品中化学元素的含量。
该方法具有广泛的应用领域,包括环境分析、食品安全和生物医药等领域。
随着科学技术的不断进步,原子吸收光谱分析仪器设备和分析方法也在不断更新,为物化地分析提供了更为准确和高效的工具。
第八章 原子吸收光谱分析.
变宽程度
DVD 7.162107 V0
T M
多普勒变宽与吸收原子自身的相对原子质量的平方根成反比, 与火焰的温度平方根成正比,与谱线频率有关。
3、压力变宽
由于原子相互碰撞使能级发生稍微变化引起的变宽,又称
为碰撞(Collisional broadening)变宽。它是由于碰撞使
激发态寿命变短所致。外加压力越大,浓度越大,变宽越显
仪器分析-原子吸收光谱分析
K0Βιβλιοθήκη 2 lnDvD
2
e2 mc
N0
f
将上式带入朗伯比尔定律中得到
2 π ln 2 e2
A 0.4343K 0L 0.4343 D D mc N0 fL kLN0
由于N0 ∝N∝c
( N0基态原子数,N原子总数,c 待测元素浓度)
所以:A=KLN0=K′LN=K′′c
仪器分析-原子吸收光谱分析
原子吸收光谱分析的常规模式
定 量 分 析
3
仪器分析-原子吸收光谱分析
§8-2 原子吸收光谱分析基本原理
一、共振线
E3
1、共振吸收线
E2
使电子由基态跃迁到
第一激发态所产生的
吸收谱线称为共振吸
E1
收线(也简称共振线)
A
B
E0
A 产生吸收光谱
B 产生发射光谱
E0 基态能级 E1、E2、E3、激发态能级
吸收线的宽度受多种因素影响,一类是由原子性质所决定,另 一类是外界因素。
1、自然宽度 Δ N
无外界因素影响时,谱线固有的宽度叫自然宽度。
自然宽度与激发态原子的平均寿命有关。一般约10-5nm。
照射光具有一定的宽度。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第8章原子吸收光谱分析
一、选择题
1. 空心阴极灯的主要操作参数是灯电流
2.在原子吸收测量中,遇到了光源发射线强度很高,测量噪音很小,但吸收值很低,难以读数的情况下,采取了下列一些措施,指出下列哪种措施对改善该种情况是不适当的改变灯电流B 调节燃烧器高度C 扩展读数标尺D 增加狭缝宽度
3.原子吸收分析对光源进行调制, 主要是为了消除原子化器火焰的干扰
4. 影响原子吸收线宽度的最主要因素是多普勒变宽
5. 原子吸收法测定钙时, 加入EDTA是为了消除下述哪种物质的干扰? 磷酸
6. 空心阴极灯中对发射线半宽度影响最大的因素是灯电流
7. 在原子吸收分析中,如怀疑存在化学干扰,例如采取下列一些补救措施,指出哪种措施不适当A加入释放剂B 加入保护剂C 提高火焰温度改变光谱通带
8.在原子吸收法中, 能够导致谱线峰值产生位移和轮廓不对称的变宽应是压力变宽
9. 在原子吸收光谱分析中,若组分较复杂且被测组分含量较低时,为了简便准确地进行分析,最好选择何种方法进行分析?标准加入法
10.石墨炉原子化的升温程序如下:干燥、灰化、原子化和净化
11. 原子吸收光谱法测定试样中的钾元素含量,通常需加入适量的钠盐, 这里钠盐被称为消电离剂
12. 空心阴极灯内充的气体是少量的氖或氩等惰性气体
13. 在火焰原子吸收光谱法中, 测定下述哪种元素需采用乙炔--氧化亚氮火焰钽
14. 在原子吸收光谱法分析中, 能使吸光度值增加而产生正误差的干扰因素是背景干扰
15. 原子吸收分光光度计中常用的检测器是光电倍增管
第3章高效液相色谱分析
一、选择题
1.液相色谱适宜的分析对象是高沸点大分子有机化合物
2.在液相色谱中,梯度洗脱适用于分离极性变化范围宽的试样
3.吸附作用在下面哪种色谱方法中起主要作用液一固色谱法
4.在液相色谱中,提高色谱柱柱效的最有效途径是减小填料粒度
5.液相色谱中通用型检测器是示差折光检测器
6.高压、高效、高速是现代液相色谱的特点,采用高压主要是由于采用了细粒度固定相所致
7.在液相色谱中,下列检测器可在获得色谱流出曲线的基础上,同时获得被分离组分的三维彩色图形的光电二极管阵列检测器
8.液相色谱中不影响色谱峰扩展的因素是涡流扩散项、分子扩散、项传质扩散项、柱压效应
9.在液相色谱中,常用作固定相又可用作键合相基体的物质是硅胶
10.样品中各组分的出柱顺序与流动相的性质无关的色谱是凝胶色谱
11.在液相色谱中,固体吸附剂适用于分离异构体
12.水在下述色谱中,洗脱能力最弱(作为底剂)的是反相色谱法
13.在下列方法中,组分的纵向扩散可忽略不计的是高效液相色谱法
14. 下列用于高效液相色谱的检测器示差折光检测器检测器不能使用梯度洗脱。
15. 高效液相色谱仪与气相色谱仪比较增加了梯度淋洗装置
第2章气相色谱分析
1.在气相色谱分析中, 用于定性分析的参数是保留值
2. 在气相色谱分析中, 用于定量分析的参数是峰面积
3. 使用热导池检测器时, 应选用下列哪种气体作载气, 其效果最好H2
4. 热导池检测器是一种浓度型检测器
5. 使用氢火焰离子化检测器, 选用下列哪种气体作载气最合适N2
6、色谱法分离混合物的可能性决定于试样混合物在固定相中()的差分配系数。
7、选择固定液时,一般根据()原则。
相似相溶,
8、相对保留值是指某组分2与某组分1的()。
调整保留值之比,
9、气相色谱定量分析时()要求进样量特别准确。
外标法;
10、理论塔板数反映了柱的效能。
11、下列气相色谱仪的检测器中,属于质量型检测器的是火焰光度和氢焰离子化检测器;
12、在气-液色谱中,为了改变色谱柱的选择性,主要可进行如下哪种(些)操作?(改变固定相的种类、改变载气的种类和流速改变色谱柱的柱温
13、进行色谱分析时,进样时间过长会导致半峰宽变宽,
14、在气液色谱中,色谱柱的使用上限温度取决于固定液的最高使用温度
15、分配系数与下列哪些因素有关与组分、固定液的热力学性质有关。
1、测定溶液pH时,先用pH=6.84的标准缓冲溶液对仪器“定位”,然后调节“斜率”。
3、摩尔吸光系数与吸光物质的性质、入射光波长、溶液的温度和溶剂等因素有关,而与溶液浓度及液层厚度无关。
4、分光光度分析中,当吸光度A=0.434 时,测量的相对误差最小。
5、原子吸收光谱法中的物理干扰可用标准加入法方法消除。
6、产生1%吸收时对应的待测元素的浓度称为特征浓度
7、气相色谱常用检测器中,属于质量敏感型检测器的有FID和FPD。
8、影响热导检测器灵敏度的最主要因素是桥电流
9、每次新安装了色谱柱后,为了使固定液牢固及除去固定液中易挥发的成分应对色谱柱进行老化处理。
10、反相键合相色谱法常用的流动相主体是水。
11、梯度洗脱可分为高压梯度和低压梯度。
12、正相分配色谱可用于分析极性化合物样品,被分离组分分子极性越强,在柱中停留的时间越长
1、荧光分析法和磷光分析法的灵敏度比吸收光度法的灵敏度高
2、三种原子光谱(发射、吸收与荧光)分析法在应用方面的主要共同点用于测定无机元素
3、物质的紫外-可见吸收光谱的产生是由于原子核外层电子的跃迁
4、可见-紫外分光度法的适合检测波长范围是200-760nm
(二)多选题
1 检验可见及紫外分光光度计波长正确性时,应分别绘制的吸收曲线是(BC)。
A 甲苯蒸汽
B 苯蒸汽
C 镨钕滤光片
D 重铬酸钾溶液
2 分光光度法中判断出测得的吸光度有问题,可能的原因包括(ABCD)。
A比色皿没有放正位置B比色皿配套性不好C 比色皿毛面放于透光位置D比色皿润洗不到位
3 参比溶液的种类有(ABCD)。
A 溶剂参比
B 试剂参比
C 试液参比
D 褪色参比
4 原子吸收分光光度计的主要部件是(ABD)。
A 单色器
B 检测器
C 高压泵
D 光源
5 下列关于空心阴极灯使用描述正确的是(ABD)。
A 空心阴极灯发光强度与工作电流有关
B 增大工作电流可增加发光强度
C 工作电流越大越好
D 工作电流过小,会导致稳定性下降
6 下列哪种光源不能作为原子吸收分光光度计的光源(ABC)。
A 钨灯
B 氘灯
C 直流电弧
D 空心阴极灯
7 在下列措施中,(CD)不能消除物理干扰。
A 配制与试液具有相同物理性质的标准溶液
B 采用标准加入法测定
C 适当降低火焰温度
D 利用多通道原子吸收分光光度计
8 在原子吸收光谱法测定条件的选择过程中,下列操作正确的是(AD)。
A 在保证稳定和合适光强输出的情况下,尽量选用较低的灯电流
B 使用较宽的狭缝宽度
C 尽量提高原子化温度
D 调整燃烧器的高度,使测量光束从基态原子浓度最大的火焰区通过
9 用相关电对的电位可判断氧化还原反应的一些情况,它可以判断(ABC)。
A 氧化还原反应的方向
B 氧化还原反应进行的程度
C 氧化还原反应突跃的大小
D 氧化还原反应的速度
10 膜电位的建立是由于(AD)。
A 溶液中离子与电极膜上离子之间发生交换作用的结果
B 溶液中离子与内参比溶液离子之间发生交换作用的结果
C 内参比溶液中离子与电极膜上离子之间发生交换作用的结果
D 溶液中离子与电极膜水化层中离子之间发生交换作用的结果
11 电位滴定确定终点的方法(ABD)。
A E-V曲线法
B △E/△V-V曲线法
C 标准曲线法
D 二级微商法
12 气相色谱法中一般选择汽化室温度(AB)。
A 比柱温高30~70℃
B 比样品组分中最高沸点高30~50℃
C 比柱温高30~50℃
D 比样品组分中最高沸点高30~70℃
13 气相色谱仪器的色谱检测系统是由检测器及其控制组件组成。
常用检测器有(ABCD)。
A 氢焰检测器
B 热导池检测器
C 火焰光度检测器
D 电子捕获检测器
14 使用相对保留值定性分析依据时,选择参照物(S)应注意(BC)。
A参照物峰位置与待测物相近 B 参照物与样品各组分完全分离
C 参照物应当是容易得到的纯品D参照物保留时间越小越好
15 气相色谱分析中使用归一化法定量的前提是(ABD)。
A 所有的组分都要被分离开
B 所有的组分都要能流出色谱柱
C 组分必须是有机物
D 检测器必须对所有组分产生响应。