函数基础知识知识点

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
60x+90(x﹣6)=450,解得x=6.6,
∴乙车从出发到与甲车返回时相遇所用的时间是6.6小时.
故选项B不合题意;
∵甲车的速度为90千米/时.
故选项C符合题意;
点M的纵坐标为:90×5﹣60×6=90,故选项D不合题意.
故选:C.
【点睛】
本题主要考查根据函数图象的信息,解决实际问题,理解x,y的实际意义,根据函数图象上点的坐标的实际意义,求出甲,乙车的速度和A,B两地之间的距离是解题的关键.
8.一个装有进水管和出水管的容器,从某时刻开始的4分钟内只进水不出水,在随后的8分钟内既进水又出水,接着关闭进水管直到容器内的水放完 假设每分钟的进水量和出水量是两个常数,容器内的水量 (单位:升)与时间 (单位:分钟)之间的部分关系如图象所示 从开始进水到把水放完需要多少分钟.()
A.20B.24C.18D.16
2.如图,在 中,点 为 边中点,动点 从点 出发,沿着 的路径以每秒1个单位长度的速度运动到 点,在此过程中线段 的长度 随着运动时间 的函数关系如图2所示,则 的长为( )
A. B. C. D.
【答案】C
【解析】
【分析】
根据图象和图形的对应关系即可求出CD的长,从而求出AD和AC,然后根据图象和图形的对应关系和垂线段最短即可求出CP⊥AB时AP的长,然后证出△APC∽△ACB,列出比例式即可求出AB,最后用勾股定理即可求出BC.
【答案】B
【解析】
试题分析:根据图表数据可得,弹簧的长度随所挂重物的质量的变化而变化,并且质量每增加1千克,弹簧的长度增加0.5cm,然后对各选项分析判断后利用排除法.
解:A、x与y都是变量,且x是自变量,y是因变量,正确,不符合题意;
B、弹簧不挂重物时的长度为10cm,错误,符合题意;
C、在弹性范围内,所挂物体质量为7千克时,弹簧长度为10+0.5×7=13.5,正确,不符合题意;
∴从开始进水到把水放完需要12+8=20分钟,
故选:A.
【点睛】
本题考查从函数的图象获取信息和用一元一次方程解决实际问题,正确理解函数图象横纵坐标表示的意义,理解问题的过程,能够通过图象列出算式和方程是解题的关键.
9.如图,在直角三角形 中, , , ,动点 从点 开始沿 以 的速度运动至 点停止;动点 从点 同时出发沿 以 的速度运动至 点停止,连接 .设运动时间为 (单位: ), 去掉 后剩余部分的面积为 (单位: ),则能大致反映 与 的函数关系的图象是()
B.乙车从出发到与甲车返回时相遇所用的时间是6.6小时
C.甲车的速度是80千米/时
D.点M的坐标是(6,90)
【答案】C
【解析】
【分析】
A.仔细观察图象可知:两车行驶5小时后,两车相距150千米,据此可得两车的速度差,进而得出甲车的速度,从而得出A、B两地之间的距离;
B.根据路程,时间与速度的关系解答即可;
【答案】B
【解析】
【分析】
结合函数图像中的(a, )可知OB=OA=a,S△AOB= ,由此可求得a的值,再利用弧长公式进而求得b的值即可.
【详解】
解:由图像可知,当点P到达点A时,OB=OA=a,S△AOB= ,
过点A作AD⊥OB交OB于点D,
则∠AOD=90°,
∴在Rt△AOD中,sin∠AOD= ,
【答案】B
【解析】
【分析】
先根据图形,得到上坡、下坡的时间和距离,然后分别求出上、下坡的速度,最后计算返回家的时间
【详解】
根据图形得,从家到学校:上坡距离为1km,用时5min,下坡距离为2km,用时为4min
故上坡速度 (km/min),下坡速度 (km/min)
从学校返回家的过程中,原来的上下坡刚好颠倒过来,即上坡2km,下坡1km
A. B.
C. D.
【答案】D
【解析】
【分析】
根据函数图像的横坐标确定时间,纵坐标确定离家距离,然后进行判断即可解答.
【详解】
解:0分钟到报亭离家的距离随时间的增加而增加,看报10分钟,离家的距离不变;15分钟回家离家的距离岁时间的增加而减少,故D符合题意.
故答案为D.
【点睛】
本题考查了函数图像的应用,根据图像确定出时间与离家距离的关系是解答本题的关键.
【答案】A
【解析】
【分析】
先根据函数图象求出进水管每分钟的进水量和出水管每分钟的出水量,然后再求出关闭进水管后出水管放完水的时间即可解决问题.
【详Biblioteka Baidu】
解:由函数图象得:进水管每分钟的进水量为:20÷4=5升,
设出水管每分钟的出水量为a升,
由函数图象,得: ,
解得:a= ,
∴关闭进水管后出水管放完水的时间为:30÷ =8分钟,
【详解】
如图,连接DE与AC交于点M,
则当点F运动到点M处时,三角形△BEF的周长y最小,且AM>MC.
过分析动点F的运动轨迹可知,y是x的二次函数且有最低点,利用排除法可知图象大致为:
故选B.
【点睛】
解决有关动点问题的函数图象类习题时,关键是要根据条件找到所给的两个变量之间的变化关系,尤其是在几何问题中,更要注意基本性质的掌握和灵活运用.
∴y2<y1<y3.
故选:B.
【点睛】
本题考查了比较函数值大小的问题,掌握二次函数的性质、代入法是解题的关键.
5.如图1,在扇形 中, ,点 从点 出发,沿 以1 的速度匀速运动到点 ,图2是点 运动过程中, 的面积 随时间 变化的图象,则 , 的值分别为()
图1 图2
A.4, B.4, C. , D. ,
∵∠AOB=60°,
∴sin60°= ,
∴AD= ,
∵S△AOB= ,
∴ ,
∴a=4(舍负),
∴弧AB的长为: ,
∴ .
故选:B.
【点睛】
本题是动点函数图象问题,考查了扇形弧长、解直角三角形等相关知识,解答时注意数形结合思想的应用.
6.弹簧挂上物体后会伸长,现测得一弹簧的长度y(厘米)与所挂物体的质量x(千克)之间有如下关系:
D、在弹性范围内,所挂物体质量每增加1千克弹簧长度增加0.5厘米,正确,不符合题意.
故选B.
点评:本题考查了函数关系的确认,常量与变量的确定,读懂图表数据,并从表格数据得出正确结论是解题的关键,是基础题,难度不大.
7.父亲节当天,学校“文苑”栏登出了某同学回忆父亲的小诗:“同辞家门赴车站,别时叮咛语千万,学子满载信心去,老父怀抱希望还.”如果用纵轴y表示父亲和学子在行进中离家的距离,横轴t表示离家的时间,下面与上述诗意大致相吻合的图像是()
函数 的取值范围: ,所以 .
故选:C
【点睛】
考核知识点:自变量求值范围.理解二次根式有意义的条件.
4.若A(﹣3,y1)、B(0,y2)、C(2,y3)为二次函数y=(x+1)2+1的图象上的三点,则y1、y2、y3的大小关系是()
A.y1<y2<y3B.y2<y1<y3C.y3<y1<y2D.y1<y3<y2
物体质量x/千克0 1 2 3 4 5 …
弹簧长度y/厘米10 10.5 11 11.5 12 12.5 …
下列说法不正确的是()
A.x与y都是变量,其中x是自变量,y是因变量
B.弹簧不挂重物时的长度为0厘米
C.在弹性范围内,所挂物体质量为7千克时,弹簧长度为13.5厘米
D.在弹性范围内,所挂物体质量每增加1千克弹簧长度增加0.5厘米
【详解】
解:当点D在DC上运动时,DP=x,所以S△APD= AD•DP= •2•x=x(0<x≤2);
当点P在CB上运动时,如图,PC=x﹣4,所以S△APD= AD•DC= •2•2=2(2<x≤4).
故选:D.
【点睛】
此题考查动点问题的函数图象,解题关键在于掌握分类讨论的思想、函数的知识、正方形的性质和三角形的面积公式.注意自变量的取值范围.
故上坡时间 =10(min),下坡时间 =2(min)
∴总用时为:10+2=12(min)
故选:B
【点睛】
本题考查从函数图象获取信息,解题关键是将函数图像中的数据与生活实际一一对应
11.小亮的奶奶出去散步,从家走了20分钟到一个离家900米的报亭,奶奶看了10分钟报纸后,用了15分钟返回家,下面图中的哪一幅能表示奶奶离家的时间与距离之间的关系()
C.由A的解答过程可得结论;
D.根据题意列式计算即可得出点M的纵坐标..
【详解】
∵根据题意,观察图象可知5小时后两车相距150千米,故甲车比乙车每小时多走30千米,∴甲车的速度为90千米/时;
∴A、B两地之间的距离为:90×5=450千米.
故选项A不合题意;
设乙车从出发到与甲车返回时相遇所用的时间是x小时,根据题意得:
【答案】B
【解析】
【分析】
把三个点的坐标代入二次函数解析式分别计算出则y1、y2、y3的值,然后进行大小比较.
【详解】
解:∵A(﹣3,y1)、B(0,y2)、C(2,y3)为二次函数y=(x+1)2+1的图象上的三点,
∴y1=(﹣3+1)2+1=5,y2=(0+1)2+1=2,y3=(2+1)2+1=10,
∴△APC∽△ACB


解得:AB=
在Rt△ABC中,BC=
故选C.
【点睛】
此题考查的是根据函数图象解决问题,掌握图象和图形的对应关系、相似三角形的判定及性质和勾股定理是解决此题的关键.
3.函数 的取值范围()
A. B. C. D.
【答案】C
【解析】
【分析】
根据二次根式中,被开方数是非负数可得.
【详解】
【详解】
解:∵动点 从点 出发,线段 的长度为 ,运动时间为 的,根据图象可知,当 =0时,y=2
∴CD=2
∵点 为 边中点,
∴AD=CD=2,CA=2CD=4
由图象可知,当运动时间x= 时,y最小,即CP最小
根据垂线段最短
∴此时CP⊥AB,如下图所示,此时点P运动的路程DA+AP=
所以此时AP=
∵∠A=∠A,∠APC=∠ACB=90°
函数基础知识知识点
一、选择题
1.甲、乙两车同时从A地出发,各自都以自己的速度匀速向B地行驶,甲车先到B地,停车1小时后按原速匀速返回,直到两车相遇.已知,乙车的速度是60千米/时,如图是两车之间的距离y(千米)与乙车行驶的时间x(小时)之间的函数图象,则下列说法不正确的是( )
A.A、B两地之间的距离是450千米
14.如图,正方形ABCD中,AB=4cm,点E、F同时从C点出发,以1cm/s的速度分别沿CB﹣BA、CD﹣DA运动,到点A时停止运动.设运动时间为t(s),△AEF的面积为S(cm2),则S(cm2)与t(s)的函数关系可用图象表示为( )
A. B.
C. D.
【答案】D
【解析】
试题分析:分类讨论:当0≤t≤4时,利用S=S正方形ABCD﹣S△ADF﹣S△ABE﹣S△CEF可得S=﹣ t2+4t,配成顶点式得S=﹣ (t﹣4)2+8,此时抛物线的开口向下,顶点坐标为(4,8);当4<t≤8时,直接根据三角形面积公式得到S= (8﹣t)2= (t﹣8)2,此时抛物线开口向上,顶点坐标为(8,0),于是根据这些特征可对四个选项进行判断.
A. B. C. D.
【答案】B
【解析】
【分析】
根据已知题意写出函数关系,y为 去掉 后剩余部分的面积,注意1.5秒时点E运动到C点,而点F则继续运动,因此y的变化应分为两个阶段.
【详解】
解: ,
当 时, . ;
当 时, , ,
由此可知当 时,函数为二次函数,当 时,函数为一次函数.
故选B.
【点睛】
13.在正方形ABCD中,点E为BC边的中点,点F在对角线AC上,连接FB、FE.当点F在AC上运动时,设AF=x,△BEF的周长为y,下列图象中,能表示y与x的函数关系的图象大致是( )
A. B.
C. D.
【答案】B
【解析】
【分析】
先根据正方形的对称性找到y的最小值,可知图象有最低点,再根据距离最低点x的值的大小(AM>MC)可判断正确的图形.
本题主要考查了动点问题与函数图像相结合,解题的关键在于根据运动过程写出函数关系,要注意自变量的取值范围,以及是否为分段函数.
10.小明从家骑车上学,先匀速上坡到达 地后再匀速下坡到达学校,所用的时间与路程如图所示,如果返回时,上、下坡速度仍然保持不变,那么他从学校回到家需要的时间是()
A.9分钟B.12分钟C.8分钟D.10分钟
A. B. C. D.
【答案】B
【解析】
【分析】
正确理解函数图象即可得出答案.
【详解】
解:同辞家门赴车站,父亲和学子的函数图象在一开始的时候应该一样,当学子离开车站出发,离家的距离越来越远,父亲离开车站回家,离家越来越近.
故选B.
【点睛】
首先应理解函数图象的横轴和纵轴表示的量,再根据实际情况来判断函数图象.
12.如图,正方形ABCD的边长为2,动点P从点D出发,沿折线D→C→B作匀速运动,则△APD的面积S与点P运动的路程x之间的函数图象大致是( )
A. B.
C. D.
【答案】D
【解析】
【分析】
分类讨论:当点D在DC上运动时,DP=x,根据三角形面积公式得到S△APD=x,自变量x的取值范围为0<x≤2;当点P在CB上运动时,S△APD为定值2,自变量x的取值范围为2<x≤4,然后根据两个解析式对各选项中的图象进行判断即可.
相关文档
最新文档