七年级数学下册方程组练习题

合集下载

人教版七年级下册数学 二元一次方程组 分配问题训练(word 含答案)

人教版七年级下册数学 二元一次方程组  分配问题训练(word 含答案)

人教版七年级下册数学8.3 二元一次方程组---分配问题训练一、单选题1.某车间有60名工人生产太阳镜,1名工人每天可生产镜片200片或镜架50个.应如何分配工人生产镜片和镜架,才能使产品配套?设安排x名工人生产镜片,y名工人生产镜架,则可列方程组()A.60200250x yx y+=⎧⎨=⨯⎩B.6020050x yx y+=⎧⎨=⎩C.6050200x yx y+=⎧⎨=⎩D.60220050x yx y+=⎧⎨⨯=⎩2.用白铁皮做罐头盒,每张铁皮可制盒身10个或制盒底16个,一个盒身与两个盒底配成一套罐头盒,现有18张白铁皮,设用x张制作盒身,y张制作盒底,可以使盒身和盒底正好配套,则所列方程组正确的是()A.181016x yx y+=⎧⎨=⎩B.1821016x yx y+=⎧⎨⨯=⎩C.1810216x yx y+=⎧⎨=⨯⎩D.181610x yx y+=⎧⎨=⎩3.某工厂有22名工人,一个工人每天可加工3个螺栓或10个螺帽,1个螺栓与4个螺帽配套,现要求工人每天加工的螺栓和螺帽完整配套且没有剩余.若设安排x个工人加工螺栓,y个工人加工螺帽,则列出正确的二元一次方程组为().A.2212100x yx y+=⎧⎨-=⎩B.223400x yx y+=⎧⎨-=⎩C.2224100x yx y+=⎧⎨-=⎩D.2212400x yx y+=⎧⎨-=⎩4.游泳池中有一群小朋友,男孩戴蓝色游泳帽,女孩戴红色游泳帽.每位男孩看到蓝色与红色的游泳帽一样多,而每位女孩看到蓝色的游泳帽是红色游泳帽的2倍.设男孩有x人,女孩有y人,则下列方程组正确的是()A.12(1)x yx y+=⎧⎨=-⎩B.2x yx y=⎧⎨=⎩C.12x yx y-=⎧⎨=⎩D.12(1)x yx y-=⎧⎨=-⎩5.刘刚同学买了两种不同的贺卡共8张,单价分别是1元和2元,共用10元.设刘刚买的两种贺卡分别为x张、y张,则下面的方程组正确的是()A.1028yxx y⎧+=⎪⎨⎪+=⎩B.128210x yx y⎧+=⎪⎨⎪+=⎩C.1028x yx y+=⎧⎨+=⎩D.8210x yx y+=⎧⎨+=⎩6.3月12日植树节,某校七年级1班参加义务植树活动,规则是女生每2人用1根竹杠挑1棵树,男生每人用1根竹杠挑2棵树,现有竹杠30根,树种50棵.如果设有x个女生,y个男生,则可列方程组是()A.+250230x yx y=⎧⎨+=⎩B.2502302yxxy⎧+=⎪⎪⎨⎪+=⎪⎩C.+2502230xyx y⎧=⎪⎨⎪+=⎩D.+2502302xyxy⎧=⎪⎪⎨⎪+=⎪⎩7.七年级学生在会议室开会,每排座位坐12人,则有11人没有座位;每排座位坐14人,则余1人独坐一排,则这间会议室的座位排数是()A.14B.13C.12D.158.用白铁皮做罐头盒.每张铁皮可制盒身16个,或制盒底48个,一个盒身与两个盒底配成一套罐头盒.现有15张白铁皮,用制盒身和盒底,可以刚好配多少套?()A.144套B.9套C.6套D.15套二、填空题9.某旅馆的客房有三人间和两人间两种,三人间每间每天60元,两人间每间每天50元,一个50人的旅游团到该旅馆住宿,租住了若干客房,且每个客房正好住满,一天共花去住宿费1100元,则三人间客房租了______间;10.现用190张铁皮做盒,一张可以做8个盒身或22个盒底,1个盒身与2个盒底配一个盒子,问用多少张铁皮制盒身、多少张铁皮制盒底,可制成一批完整的盒子?若设用x张铁皮制盒身,y张铁皮制盒底,列方程组为__________11.某中学七(2)班学生去劳动实践基地开展实践劳动,在劳动前需要分成x组,若每组11人,则余下一人,若每组12人,则有一组少4人,若每组分配7人,则该班可分成_____组.12.四川5•12大地震后,灾区急需帐篷.某企业急灾区所急,准备捐助甲、乙两种型号的帐篷共2000顶,其中甲种帐篷每顶安置6人,乙种帐篷每顶安置4人,共安置9000人.设该企业捐助甲种帐篷x顶、乙种帐篷y顶,可列方程组为_____.13.要把一张面值为20元的人民币换成零钱,现有足够的面值为1元、5元的人民币,那么共有______种换法.14.把一张面值20元的纸币换成1元和5元的两种纸币,则共有________种换法. 15.用1块A型钢板可制成4件甲种产品和1件乙种产品;用1块B型钢板可制成3件甲种产品和2件乙种产品;要生产甲种产品37件,乙种产品18件,则恰好需用A、B两种型号的钢板共______块.16.我国古典数学文献《增删算法统宗•六均输》中有这样一道题:甲、乙两人一同放牧,两人暗地里在数羊的数量.如果乙给甲9只羊,则甲的羊数量为乙的两倍;如果甲给乙9只羊,则两人的羊数量相同.则甲的羊数量为______只.三、解答题17.亚洲文明对话大会召开期间,大批的大学生志愿者参与服务工作.某大学计划组织本校只调配22座新能源客车,则用车数量将增加4辆,并空出2个座位.(1)计划调配36座新能源客车多少辆?该大学共有多少名志愿者?(2)若同时调配36座和22座两种车型,既保证每人有座,又保证每车不空座,则两种车型各需多少辆?18.有大小两种货车,2辆大货车与3辆小货车一次可以运货12吨,5辆大货车与6辆小货车一次可以运货27吨.(1)3辆大货车和5辆小货车一次可以运货多少吨?(2)现有17吨货物需要运输,欲租用这两种货车运送,要求全部货物一次运完且每辆车必须装满,请列出所有的运输方案.19.一张方桌由1个桌面,4条桌腿组成,如果1m3木料可以做方桌的桌面50个或做桌腿300条,现有10m3木料,那么用多少立方米的木料做桌面,多少立方米的木料做桌腿,做出的桌面与桌腿,恰好能配成方桌?20.2022北京冬奥会期间,大学生志愿者参与服务工作,某大学计划组织本校全体志愿者统一乘车去会场,若单独调配40座新能源客车若干辆,则有8人没有座位;若只调配25座新能源客车,则用车数量将增加3辆,并空出7个座位.计划调配40座新能源客车多少辆?该大学共有多少名志愿者?参考答案:1.A2.B3.A4.D5.D6.D7.C8.A9.1010.190 2822 x yx y+=⎧⎨⨯=⎩11.812.x y2000 6x4y9000+=⎧⎨+=⎩13.514.315.1116.6317.(1)计划调配36座新能源客车6辆,该大学共有218名志愿者(2)需调配36座客车3辆,22座客车5辆18.(1)3辆大货车与5辆小货车一次可以运货19吨(2)租1辆甲种货车和7辆乙种货车,或租3辆甲种货车和4辆乙种货车,或租5辆甲种货车和1辆乙种货车19.用6 m3的木料做桌面,4 m3的木料做桌腿,恰好能配成方桌300张20.计划调配40座新能源客车4辆,该大学共有168名志愿者。

人教版七年级下册数学第八章《二元一次方程组》单元练习题(含答案)

人教版七年级下册数学第八章《二元一次方程组》单元练习题(含答案)

人教版七年级下册数学第八章《二元一次方程组》单元练习题(含答案)一、单选题 1.方程组的解是( )A .B .C .D .2.甲,乙,丙三人共解出100道题,每人都解对其中的60道题,将其中只有1人解出的题叫做难题,2人解出叫做中等题,3人都解出的题叫做容易题,试问:难题和容易题谁多,多几题( ) A .容易题比难题多20题 B .难题比容易题多20题 C .一样多D .无法确定3.已知(2x -3y +1)2与|4x -3y -1|互为相反数,则x ,y 的值分别是( ) A .-1,1B .1,-1C .-1,-1D .1,14.若21a b +-与()224a b ++互为相反数,则+a b 的值为( ) A .1-B .0C .1D .25.下列方程组中不是二元一次方程组的是( ) .A .215x y y +=⎧⎨=⎩B .23x y =⎧⎨=⎩C .21214x y y ⎧-=⎪⎨⎪+=⎩D .220x y y x -=⎧⎨-=⎩6.某果园现有桃树和杏树共500棵,计划一年后桃树增加3%,杏树增加4%,这样果园里这两种果树将增加3.6%,如果设该果园现有桃树和杏树分别为x 棵,y 棵,可列方程组为( )A .500(13%)(14%)500 3.6%x y x y +=⎧⎨+++=⨯⎩B .5003%4%500 3.6%x y x y +=⎧⎨+=⨯⎩C .500(13%)(14%)500 3.6%x y x y +=⎧⎨-+-=⨯⎩D .5003%4%500(1 3.6%)x y x y +=⎧⎨+=+⎩7.一套数学题集共有100道题,甲、乙和丙三人分别作答,每道题至少有一人解对,且每人都解对了其中的60道.如果将其中只有1人解对的题称作难题,2人解对的题称作中档题,3人都解对的题称作容易题,那么下列判断一定正确的是()A.容易题和中档题共60道B.难题比容易题多20道C.难题比中档题多10道D.中档题比容易题多15道8.若方程组23133530.9a ba b-=⎧⎨+=⎩的解是8.31.2ab=⎧⎨=⎩,则方程组2(2)3(1)133(2)5(1)30.9x yx y+--=⎧⎨++-=⎩的解是()A.6.32.2xy=⎧⎨=⎩B.8.31.2xy=⎧⎨=⎩C.10.32.2xy=⎧⎨=⎩D.10.30.2xy=⎧⎨=⎩9.下列是二元一次方程的是()A.3x-6=x B.3x=2y C.5x+ 2y=3z D.2x-3y=xy 10.已知方程组中的,互为相反数,则的值为()A.B.C.D.11.我国古代问题:以绳测井,若将绳三折测之(注:绳儿折即把绳平均分成几等分),绳多四尺;若将绳四折测之,绳多一尺,绳长、井深各几何?( )A.36,8 B.28,6 C.28,8 D.13,312.《九章算术》中有一道“盈不足术”的问题,原文为:今有人共买物,人出八,盈三;人出七,不足四,问人数,物价各几何?意思是:“现有几个人共同购买一件物品,每人出8钱,则多3钱;每人出7钱,则差4钱,求物品的价格和共同购买该物品的人数.设该物品的价格是x钱,共同购买该物品的有y人,则根据题意,列出的方程组是()A.8374y xy x-=⎧⎨-=⎩B.8374y xy x-=⎧⎨-=-⎩C.8374y xy x-=-⎧⎨-=-⎩D.8374y xy x-=⎧⎨-=⎩二、填空题13.若x a y b=⎧⎨=⎩是方程20x y -=的解,则362a b -+=_______________________.14.已知235m n -=,则用n 的代数式表示m 为________________15.关于x,y 的方程组03x my x y +=⎧⎨+=⎩的解是1x y =⎧⎨=⊗⎩,其中y 的值被盖住了.不过仍能求出m ,则m 的值是___.16.一个自行车轮胎,若把它安装在前轮,则自行车行驶5000 km 后报废;若把它安装在后轮,则自行车行驶3000km 后报废,行驶一定路程后可以交换前、后轮胎.如果交换前、后轮胎,要使一辆自行车的一对新轮胎同时报废,那么这辆车将能行驶___km .17.已知方程8mx ny +=的两个解是32x y =⎧⎨=⎩,12x y =⎧⎨=-⎩,则m =___________,n =___________18.学校团委组织志愿者到图书馆整理一批新进的图书.若男生每人整理30本,女生每人整理20本,共能整理680本;若男生每人整理50本,女生每人整理40本,共能整理1 240本,则男生志愿者有___人 ,女生志愿者有___人.19.在平面直角坐标系xOy 中,对于点() A x y ,,若点B 的坐标为() ax y x ay ++,,则称点B 是点A 的“a a -演化点”.例如,点()26A -,的“1122-演化点”为()11262622B ⎛⎫⨯-+-+⨯ ⎪⎝⎭,,即()51B ,.(1)已知点(15)P -,的“33-演化点”是1P ,则1P 的坐标为________; (2)已知点()60T ,,且点Q 的“22-演化点”是()148Q ,,则1QTQ ∆的面积1QTQ S ∆为__________;(3)己知()00O ,,() 0 8A , ,() 50C ,,() 38D ,,且点()1K k -,的“k k -演化点”为1K ,当11K AD K OC S S ∆∆=时,k =___________.20.某旅馆的客房有三人间和二人间两种,三人间每人每天80元,二人间每人每天110元,一个40人的旅游团到该旅馆住宿,租住了若干房间,且每个客房正好住满,一天共花去住宿费3680元.求两种客房各租住了多少间?若设租住了三人间x 间,二人间y 间,则根据题意可列方程组为____.三、解答题21.解二元一次方程组34 3.4 64 5.2 x yx y+=-⎧⎨-=⎩22.已知二元一次方程组3521ax yx by+=⎧⎨-=⎩的解为121xy⎧=⎪⎨⎪=-⎩,求a与b的值.23.由于近期出现新冠肺炎疫情,口罩出现热卖.某药店用8000元购进甲、乙两种口罩,销售完后宫获利2800元.进价和售价如下表:求该药店购进甲、乙两种口罩各多少盒?24.用消元法解方程组35432x yx y-=⎧⎨-=⎩①②时,两位同学的解法如下:解法一:由①-②,得33x =解法二:由②,得()332x x y +-=③ 把①代入③,得352x +=()1反思:上述两个解题过程中有无计算错误?若有误,哪种方法有错误? ()2请选择一种你喜欢的方法,完成解答.25.某种水果的价格如表:购买的质量(千克) 不超过10千克 超过10千克 每千克价格6元5元张欣两次共购买了25千克这种水果(第二次多于第一次),共付款132元.问张欣第一次、第二次分别购买了多少千克这种水果?26.某一天,蔬菜经营户老李用了145元从蔬菜批发市场批发一些黄瓜和茄子,到菜市场去卖,黄瓜和茄子当天的批发价与零售价如下表所示:当天他卖完这些黄瓜和茄子共赚了90元,这天他批发黄瓜和茄子分别多少千克?27.在等式y=kx+b中,当x=2时,y=-3;当x=4时,y=-7,求k,b的值.28.已知方程|2a+3b+1|+(3a-b-1)2=0,求a2+2ab+b2的值.29.本学期学校开展以“感受中华传统美德”为主题的研学活动,组织150名学生参观历史博物馆和民俗展觉馆,每一名学只能参加其中一项活动,共支付票款2000元,票价信息如下:请问参观历史博物馆和民俗展难馆的人数各是多少人?参考答案1.A2.B3.D4.A5.C6.A7.B8.A9.B10.D11.A12.B13.214.532n m+ =15.1 2 -16.375017.4 -2 18.12 1619.(2,14) 2020.3240 38021103680 x yx y+⎧⎨⨯+⨯⎩==.21.0.21 xy=⎧⎨=-⎩22.该药店购进甲种口罩200盒,乙种口罩160盒.23.a=16,b=0.24.(1)解法一有误;(2)12 xy=-⎧⎨=-⎩25.张欣第一次、第二次购买这种水果的质量分别为7千克、18千克.26.这天他批发黄瓜15 kg,茄子25 kg.27.21 kb=-⎧⎨=⎩28.由已知得解得∴29.参观历史博物馆的有100人,参观民俗博物馆的有50人.。

人教版七年级数学下册《二元一次方程组》专项练习题-附含答案

人教版七年级数学下册《二元一次方程组》专项练习题-附含答案

人教版七年级数学下册《二元一次方程组》专项练习题-附含答案知识点1-1 二元一次方程(组)1)二元一次方程:含有两个未知数 且 所含未知数的次数项的次数都是1的方程。

注:所有未知数项的次数必须是1 例: 不是 2x -3xy =2 不是 2)将几个相同未知数的一次方程联合起来 就组成了二元一次方程组。

注:①在方程组中 相同未知数必须代表同一未知量。

②二元一次方程组不一定都是二元一次方程组合而成 方程个数也不一定是两个。

例: 是 3)判断二元一次方程组的方法:①方程组中是否一共有两个未知数;②含未知数的项的次数是否都是1;③是否含有多个方程组成.例1.(2021·湖南·衡阳市华新实验中学七年级月考)下列方程中 ①;②;③;④ 是二元一次方程的有( ) A .1个 B .2个C .3个D .4个【答案】A【分析】根据二元一次方程的定义:含有两个未知数 并且含有未知数的项的次数都是1的整式方程叫做二元一次方程 即可判断出答案.【详解】解:①根据二元一次方程定义可知是二元一次方程 此项正确; ②化简后为 不符合定义 此项错误; ③含有三个未知数不符合定义 此项错误;④不符合定义 此项错误;所以只有①是二元一次方程 故选:A .【点睛】本题考二元一次方程 解题的关键是熟练运用二元一次方程的定义 本题属于基础题型.变式1.(2022·山东济南·八年级期末)下列方程中 为二元一次方程的是( ) A .2x +3=0 B .3x -y =2zC .x 2=3D .2x -y =5【答案】D【分析】根据二元一次方程的定义 从二元一次方程的未知数的个数和次数方面辨别. 【详解】解:A .是一元一次方程 故本选项不合题意; B .含有三个未知数 不是二元一次方程 故本选项不合题意;C .只含有一个未知数 且未知数的最高次数是2 不是二元一次方程 故本选项不合题意;D .符合二元一次方程的定义 故本选项符合题意.故选:D .20x y-=3235x y x y -=⎧⎨+=⎩6x y +=()16x y +=31x y z +=+7mn m +=6x y +=()16x y +=6xy x +=31x y z +=+7mn m +=【点睛】此题考查了二元一次方程的定义 含有两个未知数 并且含有未知数的项的次数都是1 像这样的整式方程叫做二元一次方程.例2.(2021·湖南·衡阳市华新实验中学七年级月考)已知是关于 的二元一次方程 则______. 【答案】4【分析】根据二元一次方程的定义 可得方程组 解得m 、n 的值 代入代数式即可.【详解】解:由题意得 解得: ∴ 4 故填:4. 【点睛】本题考查二元一次方程的定义 属于基础题型. 变式2.(2021·天津一中七年级期中)若是关于 的二元一次方程 则( )A .B .C .D .【答案】D【分析】二元一次方程满足的条件:含有2个未知数 未知数的项的次数是1的整式方程. 【详解】解:是关于的二元一次方程解得: .故选:D . 【点睛】此题主要考查了二元一次方程的定义 关键是掌握二元一次方程需满足三个条件:①首先是整式方程.②方程中共含有两个未知数.③所有未知项的次数都是一次.不符合上述任何一个条件的都不叫二元一次方程.例3.(2021·河南淇县·七年级期中)下列方程组中 是二元一次方程组的是( )A .B .C .D .【答案】C【分析】根据二元一次方程的定义 含有两个未知数 并且含有未知数的项的次数为1的整式方程对个选项进行一一排查即可.【详解】解:A. 第二个方程中的是二次的 故本选项错误;B.方程组中含有3个未知数 故本选项错误;C. 符合二元一次方程组的定义 故本选项正确;D. 第二个方程中的xy 是二次的 故本选项错误.故选C .3211203n m x y -+-=x y n m +=31211n m -=⎧⎨+=⎩31211n m -=⎧⎨+=⎩40n m =⎧⎨=⎩n m +=20193(2020)(4)2021m n m x n y---++=x y 2020m =±4n =±2020m =-4n =-2020m =4n =2020m =-4n =()()20193202042021m n m x n y ---++=x y ∴2019120200m m ⎧-=⎨-≠⎩3140n n ⎧-=⎨+≠⎩2020m =-4n =2214x y x +=⎧⎨=⎩1236x y y z ⎧-=⎪⎨⎪-=⎩225x y x y +=-⎧⎨-=⎩213xy y y +=⎧⎨=-⎩2x【点睛】:根据组成二元一次方程组的两个方程应共含有两个未知数 且未知数的项最高次数都应是一次的整式方程 判断各选项即可.变式3.(2021·上海市建平中学西校期末)下列方程组 是二元一次方程组的是( ).A .B .C .D . 【答案】B【详解】A 选项:在中最高次数为2 故为二元二次方程组 不合题意;B 选项:为二元一次方程组 符合题意;C 选项:在中 共有3个未知数 为三元一次方程组 不合题意;D 选项:在中最高次数为2 故为二元二次方程组 不合题意.故选B . 【点睛】本题考查了二元一次方程的概念 掌握二元一次方程的概念(含有两个未知数 并且含有未知数的项的次数都是1的方程叫做二元一次方程)是解题关键.例4.(2021·日照市新营中学七年级期中)若方程组是二元一次方程组 则a 的值为________. 【答案】-3【分析】根据二元一次方程组的定义得到|a |-2=1且a -3≠0 然后解方程与不等式即可得到满足条件的a 的值.【详解】解:∵方程组是二元一次方程组 ∴|a |-2=1且a -3≠0 ∴a =-3 故答案为:-3. 【点睛】本题考查了二元一次方程组的定义:把具有相同未知数的两个二元一次方程合在一起 就组成了一个二元一次方程组.变式4.(2021·全国·七年级课时练习)若是关于 的二元一次方程组 则__ __ __. 【答案】 3或2【分析】二元一次方程组的定义:(1)含有两个未知数;(2)含有未知数的项的次数都是1 据此列式即可求解. 【详解】解:是关于 的二元一次方程组 或0 解得:或2 答案:3或2223xy x y =⎧⎨=⎩231x y y -=⎧⎨=⎩2425x y x z -=-⎧⎨+=⎩227x y y x-+=⎧⎨=⎩223xy x y=⎧⎨=⎩231x y y -=⎧⎨=⎩2425x y x z -=-⎧⎨+=⎩227x y y x -+=⎧⎨=⎩()20390a x ya x -⎧+=⎪⎨-+=⎪⎩23(3)34a b x c xy x y -+-+=⎧⎨+=⎩x y =a b =c =2-3-23(3)34a b x c xy x y -+-+=⎧⎨+=⎩x y 30c ∴+=21a -=31b +=3a =2b =-3c =-2-【点睛】本题主要考查了二元一次方程组的定义 利用它的定义即可求出代数式的解.知识点1-2 二元一次方程(组)的解1)二元一次方程的解:使二元一次方程两边的值相等的两个未知数的值(有序数对) 例:x+y=10 (1 9) (2 8) (3 7)等。

2022-2023学年人教版七年级数学下册期末章节练习题《二元一次方程组》-试卷

2022-2023学年人教版七年级数学下册期末章节练习题《二元一次方程组》-试卷

2022-2023学年人教版七年级数学下册 期末章节练习题 《二元一次方程组》一、选择题(本大题共10道小题)1. 下列方程组是二元一次方程组的是( )A.⎩⎨⎧=+=+5x z 3y xB.⎪⎩⎪⎨⎧==+5y 5y x 2C.⎩⎨⎧==+2xy 3y xD.⎪⎩⎪⎨⎧+=+=22xy 2x -x 11y x 2. 已知⎩⎨⎧=+=+8y 3x 12y 3x 那么x+y 的值是( ) A.0 B.5 C.1- D.13. 已知-47y 2m-5x n +1与35x m +2y n-2是同类项,则m-n 等于( ) A.-1 B.1 C.-7 D.74. 若方程6kx-2y=8有一组解⎩⎨⎧==2y -3x ,则k 的值等于( ) A.-61 B.61 C.32 D.-32 5. 下列方程组中,是二元一次方程组的是( ) A.3235x y x y -=⎧⎨+=⎩ B.2024x y x y k ++=⎧⎨-=⎩ C.3010x y xy -+=⎧⎨+=⎩ D.2135x y x y +=⎧⎪⎨+=⎪⎩6. 以方程组⎩⎨⎧+-=+=1x y 1x y 的解为坐标的点位于( )A.x 轴的正半轴B.x 轴的负半轴C.y 轴的正半轴D.y 轴的负半轴7. 已知二元一次方程2x +3y-2=0,当x,y 互为相反数时,x,y 的值分别为( )A.2,-2B.-2,2C.3,-3D.-3,38. 将一张面值50元的人民币,兑换成5元和2元的零钱,兑换方案有( )A.4种B.5种C.6种D.7种9. 中国清代算书《御制数理精蕴》中有这样一题:“马四匹、牛六头,共价四十八两(我国古代货币单位);马三匹、牛五头,共价三十八两.问马、牛各价几何?”设马每匹x 两,牛每头y两,根据题意可列方程组为( )A.46383548x y x y +=⎧⎨+=⎩B.46483538y x y x +=⎧⎨+=⎩C.46485338x y x y +=⎧⎨+=⎩D.46483538x y x y +=⎧⎨+=⎩10. 《九章算术》是中国古代重要的数学著作,其中“盈不足”记载:今有共买鸡,人出九,盈十一;人出六,不足十六.问人数、鸡价各几何.译文:今有人合伙买鸡,每人出9钱,会多出11钱;每人出6钱,又差16钱.问人数、买鸡的钱数各是多少.设人数为x,买鸡的钱数为y,可列方程组为( )A.⎩⎨⎧=+=+y 16x 6y 119xB.⎩⎨⎧=-=-y 16x 6y 119xC.⎩⎨⎧=-=+y 16x 6y 119x D.⎩⎨⎧=+=-y 16x 6y 119x 二、填空题(本大题共8道小题)11. 已知方程2x+3y-4=0,用含x 的代数式表示y 为:y=_______;用含y 的代数式表示x 为:x=________.12. 若(m ﹣1)x |m|+2y =6是关于x,y 的二元一次方程,则m 的值是 .13. 已知x+2y=3-m,且2x+y=-m+4,则x-y 的值是 .14. 以方程组⎩⎪⎨⎪⎧x +3y =7,y -x =1 的解为坐标的点(x,y)在平面直角坐标系的第_____象限 15. 若关于x,y 的二元一次方程组⎩⎨⎧-=+=+22y x 1-3k y 2x 的解满足x+y=2,则k=____. 16. 一商贩第一天卖出鲤鱼30千克,草鱼50千克,共获毛利润310元,第二天卖出鲤鱼25千克,草鱼45千克,共获毛利润267元,若该商贩某个月卖出鲤鱼700千克,草鱼1200千克,则共能获毛利润 元.17. 小敏不小心将墨水溅在同桌小娟的作业本上,结果二元一次方程组⎩⎨⎧=+=+-22y x 11y 3x □□中第一个方程y 的系数和第二个方程x 的系数看不到了.若该方程组的正确的解是⎩⎨⎧==2y 1x 则原来的方程组为 .18. 陕北的放羊娃隔着沟峁唱着信天游,比他们养的羊数.一个唱到:“你羊没有我羊多,你若给我一只羊,我的是你的两倍”,另一个随声唱到:“没那事,你要给我给一只,咱俩的羊儿一样多”.听了他们的对唱,你能知道他们各有多少只羊吗?答:________________.三、解答题(本大题共6道小题)19. 已知关于x,y 的二元一次方程组325x y a x y a -=-⎧⎨+=⎩(a 为实数),若方程组的解始终满足x+y=7,求a 的值.20. 两位同学在解方程组278ax by cx y +=⎧⎨-=⎩时,甲同学正确的得出解为32x y =⎧⎨=-⎩,乙同学因看错了C 得到错解22x y =-⎧⎨=⎩,求a 、b 、c 的值.21. 某寄宿制学校有大、小两种类型的学生宿舍共50间,大宿舍每间可住8人,小宿舍每间可住6人.该校360名住宿生恰好住满这50间宿舍.求大、小宿舍各有多少间.22. 小王购买了一套经济适用房,他准备将地面铺上地砖,地面结构如图所示.根据图中的数据(单位:m),解答下列问题:(1)用含x,y的式子表示地面总面积;(2)已知客厅面积比卫生间面积多21 m2,且地面总面积是卫生间面积的15倍.若铺1 m2地砖的平均费用为80元,那么铺地砖的总费用为多少元?23. 某中学库存一批旧桌凳,准备修理后捐助贫困山区学校.现有甲、乙两个木工小组都想承揽这项业务,经协商得知:甲小组单独修理这批桌凳比乙小组多用20天,乙小组每天比甲小组多修8套,甲小组每天修16套桌凳;学校每天需付甲小组修理费80元,付乙小组120元.(1)求甲、乙两个木工小组单独修理这批桌凳各需多少天.(2)在修理桌凳的过程中,学校要委派一名维修工进行质量监督,并由学校负担他每天10元的生活补助.现有下面三种修理方案供选择:①由甲小组单独修理;②由乙小组单独修理;③由甲、乙两小组合作修理.你认为哪种方案既省时又省钱?试比较说明.24. 5·12汶川大地震引起山体滑坡堵塞河谷后,形成了许多堰塞湖. 据中央电视台报道:唐家山堰塞湖危险性最大. 为了尽快排除险情,决定在堵塞体表面开挖一条泄流槽, 经计算需挖出土石方13.4万立方米,开挖2天后,为了加快施工进度,又增调了大量的人员和设备,每天挖的土石方比原来的2倍还多1万立方米,结果共用5天完成任务,比计划时间大大提前.根据以上信息,求原计划每天挖土石方多少万立方米?增调人员和设备后每天挖土石方多少万立方米?。

七年级下册数学二元一次方程组题

七年级下册数学二元一次方程组题

七年级下册数学二元一次方程组题一、基础题型。

1. 已知方程2x + y = 5,当x = 2时,求y的值。

- 解析:将x = 2代入方程2x+y = 5中,得到2×2 + y=5,即4 + y = 5,解得y = 5 - 4=1。

2. 解方程组x + y = 3 x - y = 1- 解析:将两个方程相加,可得(x + y)+(x - y)=3 + 1,即2x=4,解得x = 2。

把x = 2代入x + y = 3中,得到2+y = 3,解得y = 1。

所以方程组的解为x = 2 y = 1。

3. 若x = 1 y = - 1是方程ax - 2y = 3的解,则a的值是多少?- 解析:将x = 1,y=-1代入方程ax-2y = 3中,得到a×1-2×(-1)=3,即a + 2 = 3,解得a=1。

4. 解方程组2x+3y = 8 3x - 2y=-1- 解析:给第一个方程乘以2,第二个方程乘以3,得到4x + 6y = 16 9x-6y=-3。

将这两个新方程相加,可得(4x + 6y)+(9x - 6y)=16+( - 3),即13x = 13,解得x = 1。

把x = 1代入2x+3y = 8中,得到2 + 3y = 8,解得3y = 6,y = 2。

所以方程组的解为x = 1 y = 2。

5. 已知x = 2m y = 3m满足方程2x + y = 14,求m的值。

- 解析:将x = 2m,y = 3m代入方程2x + y = 14中,得到2×2m+3m = 14,即4m+3m = 14,7m = 14,解得m = 2。

二、应用题类型。

6. 一个长方形的周长是40,长比宽多4,设长为x,宽为y,求这个长方形的长和宽。

- 解析:根据长方形周长公式C = 2(x + y),已知周长C = 40,可得方程2(x + y)=40,即x + y = 20。

又因为长比宽多4,所以x-y = 4。

人教版七年级数学下册 第八章 二元一次方程组 8.2.2 用加减法解二元一次方程组 同步练习题 含答案

人教版七年级数学下册 第八章  二元一次方程组  8.2.2  用加减法解二元一次方程组  同步练习题 含答案

第八章 二元一次方程组 8.2.2 用加减法解二元一次方程组1. 若二元一次方程组的解为则a-b 等于( ) A. B. C. 3 D. 12. 方程组⎩⎪⎨⎪⎧8x -3y =9,8x +4y =-5消去x 得到的方程是( ) A .y =4 B .7y =-14 C .7y =4 D .y =143. 二元一次方程组⎩⎪⎨⎪⎧x +y =6,x -3y =-2的解是( ) A.⎩⎪⎨⎪⎧x =5y =1 B. ⎩⎪⎨⎪⎧x =-5y =-1 C. ⎩⎪⎨⎪⎧x =4y =2 D.⎩⎪⎨⎪⎧x =-4y =-2 4. 若方程组的解满足x+y=0,则k 的值为( )A. -1B. 1C. 0D. 不能确定5. 用加减法解方程组⎩⎪⎨⎪⎧2a +2b =3,①3a +b =4,②最简单的方法是( ) A .①×3-②×2 B .①×3+②×2 C .①+②×2 D .①-②×26.解方程组⎩⎪⎨⎪⎧0.2x -0.3y =2,0.5x -0.7y =-1.5最合适的方法是( ) A .试值法 B .加减消元法 C .代入消元法 D .无法确定7. 某校运动员分组训练,若每组7人,余3人;若每组8人,则缺5人.设运动员人数为x 人,组数为y 组,则列方程组为( )A.⎩⎪⎨⎪⎧7y =x -38y =x +5B.⎩⎪⎨⎪⎧7y =x +38y =x -5C.⎩⎪⎨⎪⎧7y =x +38y +5=xD.⎩⎪⎨⎪⎧7y =x +38y =x +5 8. 对于非零的两个实数a,b,规定a ⊕b=am-bn,若3⊕(-5)=15,4⊕(-7)=28,则(-1)⊕2的值为( )A. -13B. 13C. 2D. -29. 已知则= .10. 二元一次方程组x +y 2=2x -y 3=x +2的解是________.11. 观察下列两方程组的特征:①⎩⎪⎨⎪⎧4x -3y =5,4x +6y =4; ②⎩⎪⎨⎪⎧y =3x +4,3x +5y =0. 其中方程组①采用______消元法较简单,而方程组②采用____消元法较简单.12. 已知方程组⎩⎪⎨⎪⎧2x -3y =4,①3x +2y =1,②用加减法消去x 的方法是_____________;用加减法消去y 的方法是______________.13. 根据图中的信息可知,一件上衣的价格是____元,一条短裤的价格是____元.14. 解下列方程组:(1)⎩⎪⎨⎪⎧x -3y =1,x +2y =6;(2)⎩⎪⎨⎪⎧3x +y =7,2x -y =3.15. 用加减法解下列方程组:(1)⎩⎪⎨⎪⎧x +y =5,2x +3y =11;(2)⎩⎪⎨⎪⎧3x +2y =4,4x -3y =11;(3)⎩⎪⎨⎪⎧3(x +y )-5(x -y )=16,2(x +y )+(x -y )=15.16. 甲、乙两人同求方程ax -by =7的整数解,甲正确地求出一组解为⎩⎪⎨⎪⎧x =1,y =-1,乙把ax -by =7看成ax -by =1,求得一组解为⎩⎪⎨⎪⎧x =1,y =2,求a 2-2ab +b 2的值.17. 小丽购买了6支水彩笔和3本练习本共用了21元;小明购买了同样的12支水彩笔和5本练习本共用了39元.已知水彩笔与练习本的单价不同.(1)求水彩笔与练习本的单价;(2)小刚要买4支水彩笔和4本练习本,共需多少钱?18. A,B两地相距20 km,甲从A地向B地前进,同时乙从B地向A地前进,2 h 后两人在途中相遇,相遇后,甲返回A地,乙仍然向A地前进,甲回到A地时,乙离A地还有2 km,求甲、乙两人的速度.19. 某种水果的价格如表:张欣两次共购买了25 kg这种水果(第二次多于第一次),共付款132元.问张欣第一次、第二次分别购买了多少千克这种水果?答案:1---8 ABCBD BAA9. -310. ⎩⎪⎨⎪⎧x =-5y =-111. 加减 代入12. ①×3-②×2 ①×2+②×313. 40 2014. 解:(1)⎩⎪⎨⎪⎧x =4,y =1. (2)⎩⎪⎨⎪⎧x =2,y =1. 15. (1) 解:⎩⎪⎨⎪⎧x +y =5,①2x +3y =11,②①×3-②,得x =4,把x =4代入①,得y =1, ∴方程组的解为⎩⎪⎨⎪⎧x =4,y =1.(2) 解:⎩⎪⎨⎪⎧3x +2y =4,①4x -3y =11,②①×3+②×2,得17x =34,解得x =2, 把x =2代入①,得6+2y =4,解得y =-1,∴方程组的解为⎩⎪⎨⎪⎧x =2,y =-1.(3) 解:⎩⎪⎨⎪⎧3(x +y )-5(x -y )=16,①2(x +y )+(x -y )=15,②①+②×5,得13(x +y)=91,解得x +y =7,把x +y =7代入①,得x -y =1.解方程组⎩⎪⎨⎪⎧x +y =7,x -y =1, 得⎩⎪⎨⎪⎧x =4,y =3,∴方程组的解为⎩⎪⎨⎪⎧x =4,y =3. 16. 解:由题意,得⎩⎪⎨⎪⎧a +b =7,a -2b =1,解得⎩⎪⎨⎪⎧a =5,b =2. ∴a 2-2ab +b 2=52-2×5×2+22=9.17. 解:(1)设水彩笔与练习本的单价分别为x 元和y 元,由题意, 得⎩⎪⎨⎪⎧6x +3y =21,12x +5y =39,解得⎩⎪⎨⎪⎧x =2,y =3. 则水彩笔与练习本的单价分别为2元和3元.(2)小刚买4支水彩笔和4本练习本共需2×4+3×4=20(元).18. 解:设甲的速度为x km/h ,乙的速度为y km/h ,由题意, 得⎩⎪⎨⎪⎧2x +2y =20,(2+2)y +2=20,解得⎩⎪⎨⎪⎧x =5.5,y =4.5. 则甲的速度为5.5 km/h ,乙的速度为4.5 km/h.19. 解:设张欣第一次、第二次分别购买了这种水果x kg ,y kg , 因为第二次购买多于第一次,则x<12.5<y.①当x ≤10时,⎩⎪⎨⎪⎧x +y =25,6x +5y =132,解得⎩⎪⎨⎪⎧x =7,y =18. ②当10<x<12.5时,⎩⎪⎨⎪⎧x +y =25,5x +5y =132,此方程组无解, ∴张欣第一次、第二次分别购买了这种水果7 kg ,18 kg.。

人教版七年级数学下册-第8章-二元一次方程组--单元提优测试题(Word版附答案)

人教版七年级数学下册-第8章-二元一次方程组--单元提优测试题(Word版附答案)

人教版七年级数学 第8章《二元一次方程组》单元提优测试题完成时间:120分钟 满分:150分姓名 成绩10小题,每小题4分,共40分。

每小题给出的四个选项中,只有一个选项是符合题意的,请将该选项的标号填入表格内)1.已知x2m-1+3y4-2n=-7是关于x ,y 的二元一次方程,则m ,n 的值是( )A. ⎩⎨⎧m =2n =1 B. ⎩⎪⎨⎪⎧m =1n =-32 C. ⎩⎪⎨⎪⎧m =1n =52 D. ⎩⎪⎨⎪⎧m =1n =322.小明到商店购买“五四青年节”活动奖品,购买20只铅笔和10本笔记本共需110元,购买30支铅笔和5本笔记本共需85元.设每支铅笔x 元,每本笔记本y 元,则可列方程组( ) A. ⎩⎨⎧20x +30y =11010x +5y =85 B. ⎩⎨⎧20x +10y =11030x +5y =85 C. ⎩⎨⎧20x +5y =11030x +10y =85 D. ⎩⎨⎧5x +20y =11010x +30y =85 3.若34x 2a+b y 3及34x 6y a-b的和是单项式,则a +b =( ) A. -3 B. 0 C. 3 D. 6 4.已知|a +b -1|+2a +b -2=0,则(a -b)2 017的值为( )A. 1B. -1C. 2 017D. -2 017 5.若方程mx +ny =6的两个解是⎩⎨⎧x =1,y =1,⎩⎨⎧x =2,y =-1,则m ,n 的值为( ) A. 4,2 B. 2,4 C. -4,-2 D. -2,-46.我国古代数学名著《孙子算经》中记载了一道题,大意是:100匹马恰好拉了100片瓦,已知1匹大马能拉3片瓦,3匹小马拉1片瓦,问有多少匹大马,多少匹小马?若设大马有x 匹,小马有y 匹,那么可列方程组为( )A. ⎩⎨⎧x +y =1003x +3y =100 B. ⎩⎪⎨⎪⎧x +y =100x +13y =100 C. ⎩⎪⎨⎪⎧x +y =1003x +13y =100 D. ⎩⎨⎧x +y =1003x +y =100 7.父子二人并排垂直站立于游泳池中时,爸爸露出水面的高度是他自身身高的13,儿子露出水面的高度是他自身身高的17,父子二人的身高之和为3.2米.若设爸爸的身高为x 米,儿子的身高为y 米,则可列方程组为( ) A. ⎩⎪⎨⎪⎧x +y =3.2(1+17)x =(1+13)y B. ⎩⎪⎨⎪⎧x +y =3.2(1-17)x =(1-13)y C. ⎩⎪⎨⎪⎧x +y =3.213x =17y D. ⎩⎪⎨⎪⎧x +y =3.2(1-13)x =(1-17)y 8.端午节前夕,某超市用1 680元购进A ,B 两种商品共60件,其中A 型商品每件24元,B 型商品每件36元.设购买A 型商品x 件,B 型商品y 件,依题意列方程组正确的是( )A. ⎩⎨⎧x +y =6036x +24y =1 680B. ⎩⎨⎧x +y =6024x +36y =1 680C. ⎩⎨⎧36x +24y =60x +y =1 680D. ⎩⎨⎧24x +36y =60x +y =1 6809.某车间有90名工人,每人每天平均能生产螺栓15个或螺帽24个,已知一个螺栓配两个螺帽,应该如何分配工人才能使生产的螺栓和螺帽刚好配套?则生产螺栓和生产螺帽的人数分别为( ) A. 50人,40人 B. 30人,60人 C. 40人,50人 D. 60人,30人10.通讯员要在规定时间内到达某地,若每小时走15千米,则可提前24分钟到达某地;若每小时走12千米,则要迟到15分钟.设通讯员到达某地的路程是x 千米,原定的时间为y 小时,则可列方程组为( ) A. ⎩⎨⎧x 15-15=y x 12+12=y B. ⎩⎨⎧x 15+15=y x 12-12=y C. ⎩⎨⎧x 15-2460=y x 12-1560=y D. ⎩⎨⎧x 15+2460=y x 12-1560=y二、填空题(每题5分,共20分)11.小刚解出了方程组⎩⎨⎧3x -y =3,2x +y =▲,解为⎩⎨⎧x =4,y =◆,因不小心滴上了两滴墨水,刚好盖住了方程组中的一个数和解中的一个数,则▲= ,◆= .12.《孙子算经》中有一道题:“今有木,不知长短,引绳度之,余绳四尺五寸;屈绳量之,不足一尺,木长几何?”译文大致是:“用一根绳子去量一根木条,绳子剩余4.5尺;将绳子对折再量木条,木条剩余1尺,问木条长多少尺?”如果设木条长x 尺,绳子长y 尺,可列方程组为 .13.小林、小芳和小亮三人玩飞镖游戏,各投5支飞镖,规定在同一圆环内得分相同,中靶和得分情况如图,则小亮的得分是 分.14.一个两位数的十位数字及个位数字的和为8,若把这个两位数加上18,正好等于将这个两位数的十位数字及个位数字对调后所组成的新两位数,则原来的两位数为三、解答题(共90分)15.(8分)解下列二元一次方程组:(1)⎩⎨⎧3x +2y =19,①2x -y =1.② (2)⎩⎨⎧4x +3y =14,①3x +2y =22;②16.(8分)“六一”前夕,市关工委准备为希望小学购进图书和文具若干套,已知1套文具和3套图书需104元,3套文具和2套图书需116元,求1套文具和1套图书各需多少元? 17.(8分)已知⎩⎨⎧x =2,y =-1是方程组⎩⎨⎧ax +y =b ,4x -by =a +5的解,求a ,b 的值.18.(8分)甲、乙两人共同解方程组⎩⎨⎧ax +5y =15,①4x -by =-2,②由于甲看错了方程①中的a ,得到方程组的解为⎩⎨⎧x =-3,y =-1;乙看错了方程②中的b ,得到方程组的解为⎩⎨⎧x =5,y =4.试计算a2017+(-110b)2 018的值. 19.(10分)甲、乙两位同学一起解方程组⎩⎨⎧ax +by =2,cx -3y =-2,甲正确地解得⎩⎨⎧x =1,y =-1,乙仅因抄错了题中的c ,解得⎩⎨⎧x =2,y =-6,求原方程组中a ,b ,c 的值.20.(10分)随着“互联网+”时代的到来,一种新型打车方式受到大众欢迎,该打车方式的总费用由里程费和耗时费组成,其中里程费按p 元/公里计算,耗时费按q 元/分钟计算(总费用不足9元按9元计价).小明、小刚两人用该打车方式出行,按上述计价规则,其打车总费用、行驶里程数及车速如表:(1)求p ,q 的值;(2)如果小华也用该打车方式,车速55公里/时,行驶了11公里,那么小华的打车总费用为多少? 21.(12分)学校“百变魔方”社团准备购买A ,B 两种魔方,已知 购买2个A 种魔方和6个B 种魔方共需130元,购买3个A 种魔 方和4个B 种魔方所需款数相同.(1)求这两种魔方的单价;(2)结合社员们的需求,社团决定购买A ,B 两种魔方共100个.某商店有两种优惠活动,如图所示.请根据以上信息,购进A 种魔方多少个时,两种活动费用相同?22.(12分)某景点的门票价格如下表:某校七年级(1)、(2)两班计划去游览该景点,其中(1)班人数少于50人,(2)班人数多于50人且少于100人.如果两班都以班为单位单独购票,那么一共支付1 118元,如果两班联合起来作为一个团体购票,那么只需花费816元. (1)两个班各有多少名学生?(2)团体购票及单独购票相比较,两个班各节约了多少钱?23.(14分)“五一”期间,步步高超市进行兑换活动,亮亮妈妈的积分卡里有7 000 分,她看了看兑换方法后(见表),兑换了两种礼品共5件并刚好用完积分,请你求出亮 亮妈妈的兑换方法.人教版七年级数学 第8章《二元一次方程组》单元提优测试题参 考 答 案1.已知x2m-1+3y4-2n=-7是关于x ,y 的二元一次方程,则m ,n 的值是( D )A. ⎩⎨⎧m =2n =1 B. ⎩⎪⎨⎪⎧m =1n =-32 C. ⎩⎪⎨⎪⎧m =1n =52 D. ⎩⎪⎨⎪⎧m =1n =322.小明到商店购买“五四青年节”活动奖品,购买20只铅笔和10本笔记本共需110元,购买30支铅笔和5本笔记本共需85元.设每支铅笔x 元,每本笔记本y 元,则可列方程组( B )A. ⎩⎨⎧20x +30y =11010x +5y =85B. ⎩⎨⎧20x +10y =11030x +5y =85C. ⎩⎨⎧20x +5y =11030x +10y =85D. ⎩⎨⎧5x +20y =11010x +30y =85 3.若34x 2a+b y 3及34x 6y a-b的和是单项式,则a +b =( C ) A. -3 B. 0 C. 3 D. 6 4.已知|a +b -1|+2a +b -2=0,则(a -b)2 017的值为( A )A. 1B. -1C. 2 017D. -2 017 5.若方程mx +ny =6的两个解是⎩⎨⎧x =1,y =1,⎩⎨⎧x =2,y =-1,则m ,n 的值为( A ) A. 4,2 B. 2,4 C. -4,-2 D. -2,-46.我国古代数学名著《孙子算经》中记载了一道题,大意是:100匹马恰好拉了100片瓦,已知1匹大马能拉3片瓦,3匹小马拉1片瓦,问有多少匹大马,多少匹小马?若设大马有x 匹,小马有y 匹,那么可列方程组为( C ) A. ⎩⎨⎧x +y =1003x +3y =100 B. ⎩⎪⎨⎪⎧x +y =100x +13y =100C. ⎩⎪⎨⎪⎧x +y =1003x +13y =100 D. ⎩⎨⎧x +y =1003x +y =100 7.父子二人并排垂直站立于游泳池中时,爸爸露出水面的高度是他自身身高的13,儿子露出水面的高度是他自身身高的17,父子二人的身高之和为3.2米.若设爸爸的身高为x 米,儿子的身高为y 米,则可列方程组为( D ) A. ⎩⎪⎨⎪⎧x +y =3.2(1+17)x =(1+13)y B. ⎩⎪⎨⎪⎧x +y =3.2(1-17)x =(1-13)y C. ⎩⎪⎨⎪⎧x +y =3.213x =17y D. ⎩⎪⎨⎪⎧x +y =3.2(1-13)x =(1-17)y 8.端午节前夕,某超市用1 680元购进A ,B 两种商品共60件,其中A 型商品每件24元,B 型商品每件36元.设购买A 型商品x 件,B 型商品y 件,依题意列方程组正确的是( B )A. ⎩⎨⎧x +y =6036x +24y =1 680B. ⎩⎨⎧x +y =6024x +36y =1 680C. ⎩⎨⎧36x +24y =60x +y =1 680D. ⎩⎨⎧24x +36y =60x +y =1 6809.某车间有90名工人,每人每天平均能生产螺栓15个或螺帽24个,已知一个螺栓配两个螺帽,应该如何分配工人才能使生产的螺栓和螺帽刚好配套?则生产螺栓和生产螺帽的人数分别为( C )A. 50人,40人B. 30人,60人C. 40人,50人D. 60人,30人10.通讯员要在规定时间内到达某地,若每小时走15千米,则可提前24分钟到达某地;若每小时走12千米,则要迟到15分钟.设通讯员到达某地的路程是x 千米,原定的时间为y 小时,则可列方程组为( D ) A. ⎩⎨⎧x 15-15=y x 12+12=y B. ⎩⎨⎧x 15+15=y x 12-12=y C. ⎩⎨⎧x 15-2460=y x 12-1560=y D. ⎩⎨⎧x 15+2460=y x 12-1560=y二、填空题(每题5分,共20分)11.小刚解出了方程组⎩⎨⎧3x -y =3,2x +y =▲,解为⎩⎨⎧x =4,y =◆,因不小心滴上了两滴墨水,刚好盖住了方程组中的一个数和解中的一个数,则▲= 17 ,◆= 9 .12.《孙子算经》中有一道题:“今有木,不知长短,引绳度之,余绳四尺五寸;屈绳量之,不足一尺,木长几何?”译文大致是:“用一根绳子去量一根木条,绳子剩余4.5尺;将绳子对折再量木条,木条剩余1尺,问木条长多少尺?”如果设木条长x 尺,绳子长y 尺,可列方程组为 ⎩⎪⎨⎪⎧y -x =4.5y 2=x -1 .13.小林、小芳和小亮三人玩飞镖游戏,各投5支飞镖,规定在同一圆环内得分相同,中靶和得分情况如图,则小亮的得分是 21 分.14.一个两位数的十位数字及个位数字的和为8,若把这个两位数加上18,正好等于将这个两位数的十位数字及个位数字对调后所组成的新两位数,则原来的两位数为 35. 三、解答题(共90分)15.(8分)解下列二元一次方程组:(1)⎩⎨⎧3x +2y =19,①2x -y =1.② (2)⎩⎨⎧4x +3y =14,①3x +2y =22;② 解:由②,得y =2x -1.③ 将③代入①,得3x +4x -2=19. 解得x =3.将x =3代入③,得y =5. ∴原方程组的解为⎩⎨⎧x =3,y =5.16.(8分)“六一”前夕,市关工委准备为希望小学购进图书和文具若干套,已知1套文具和3套图书需104元,3套文具和2套图书需116元,求1套文具和1套图书各需多少元? 解:设1套文具的价格为x 元,一套图书的价格为y 元,根据题意,得⎩⎨⎧x +3y =104,3x +2y =116, 解得⎩⎨⎧x =20,y =28.答:1套文具和1套图书各需20元、28元.17.(8分)已知⎩⎨⎧x =2,y =-1是方程组⎩⎨⎧ax +y =b ,4x -by =a +5的解,求a ,b 的值.解:把⎩⎨⎧x =2,y =-1代入⎩⎨⎧ax +y =b ,4x -by =a +5得⎩⎨⎧2a -1=b ,①8+b =a +5.②把①代入②,得8+(2a -1)=a +5. 解得a =-2.把a =-2代入①,得2×(-2)-1=b. 解得b =-5. ∴a =-2,b =-5.18.(8分)甲、乙两人共同解方程组⎩⎨⎧ax +5y =15,①4x -by =-2,②由于甲看错了方程①中的a ,得到方程组的解为⎩⎨⎧x =-3,y =-1;乙看错了方程②中的b ,得到方程组的解为⎩⎨⎧x =5,y =4.试计算a2017+(-110b)2 018的值. 解:把⎩⎨⎧x =-3,y =-1代入方程②中,得4×(-3)-b×(-1)=-2,解得b =10. 把⎩⎨⎧x =5,y =4代入方程①中,得 5a +5×4=15,解得a =-1. ∴a2 017+(-110b)2 018=(-1)2 017+(-110×10)2 018=(-1)+1=0. 19.(10分)甲、乙两位同学一起解方程组⎩⎨⎧ax +by =2,cx -3y =-2,甲正确地解得⎩⎨⎧x =1,y =-1,乙仅因抄错了题中的c ,解得⎩⎨⎧x =2,y =-6,求原方程组中a ,b ,c 的值.解:把⎩⎨⎧x =1,y =-1代入⎩⎨⎧ax +by =2,cx -3y =2中,得⎩⎨⎧a -b =2,c +3=-2,∴⎩⎨⎧a -b =2,c =-5.由题意知:⎩⎨⎧x =2,y =-6是方程ax +by =2的解,∴2a -6b =2,即a -3b =1. 联立⎩⎨⎧a -b =2,a -3b =1,解得⎩⎨⎧a =52,b =12.故a =52,b =12,c =-5. 20.(10分)随着“互联网+”时代的到来,一种新型打车方式受到大众欢迎,该打车方式的总费用由里程费和耗时费组成,其中里程费按p 元/公里计算,耗时费按q 元/分钟计算(总费用不足9元按9元计价).小明、小刚两人用该打车方式出行,按上述计价规则,其打车总费用、行驶里程数及车速如表:(1)求p ,q 的值;(2)如果小华也用该打车方式,车速55公里/时,行驶了11公里,那么小华的打车总费用为多少? 解:(1)由题意,得⎩⎨⎧8p +8q =12,10p +12q =16. 解得⎩⎪⎨⎪⎧p =1,q =12.(2)小华的里程数是11 km ,时间为12 min. 则总费用是:11p +12q =17(元).答:总费用是17元.21.(12分)学校“百变魔方”社团准备购买A ,B 两种魔方,已知购买2个A 种魔方 和6个B 种魔方共需130元,购买3个A 种魔方和4个B 种魔方所需款数相同. (1)求这两种魔方的单价;(2)结合社员们的需求,社团决定购买A ,B 两种魔方共100个. 某商店有两种优惠活动,如图所示.请根据以上信息,购进A 种 魔方多少个时,两种活动费用相同?解:(1)设A 种魔方的单价为x 元/个,B 种魔方的单价为y 元/个,根据题意,得⎩⎨⎧2x +6y =130,3x =4y , 解得⎩⎨⎧x =20,y =15.答:A 种魔方的单价为20元/个,B 种魔方的单价为15元/个. (2)设购进A 种魔方m 个,则购进B 种魔方(100-m)个,根据题意,得0.8×20m +0.4×15(100-m)=20m +15(100-m -m),解得m =45. 答:购进A 种魔方45个时,两种活动费用相同. 22.(12分)某景点的门票价格如下表:购票人数/人 1~50 51~100 100以上 每人门票价/元12108某校七年级(1)、(2)两班计划去游览该景点,其中(1)班人数少于50人,(2)班人数多于50人且少于100人.如果两班都以班为单位单独购票,那么一共支付 1 118元,如果两班联合起来作为一个团体购票,那么只需花费816元.(1)两个班各有多少名学生?(2)团体购票及单独购票相比较,两个班各节约了多少钱? 解:(1)设七年级(1)班有x 名学生,七年级(2)班有y 名学生. ①若两班人数多于50人且少于100人,则⎩⎨⎧12x +10y =1 118,10(x +y )=816.解得⎩⎨⎧x =151,y =-69.4.不合题意,舍去;②若两班人数多于100人,则⎩⎨⎧12x +10y =1 118,8(x +y )=816. 解得⎩⎨⎧x =49,y =53.答:七年级(1)班有49名学生,七年级(2)班有53名学生. (2)∵49×(12-8)=196,53×(10-8)=106,∴团体购票及单独购票相比较,七年级(1)班节约了196元,七年级(2)班节约了106元. 23.(14分)“五一”期间,步步高超市进行兑换活动,亮亮妈妈的积分卡里有7 000 分,她看了看兑换方法后(见表),兑换了两种礼品共5件并刚好用完积分,请你求出亮 亮妈妈的兑换方法.礼品表兑换礼品 积分 榨汁机一个 3 000分 电茶壶一个 2 000分 书包一个1 000分解:①设亮亮妈妈兑换了x 个电茶壶和y 个书包,由题意,得⎩⎨⎧2 000x +1 000y =7 000,x +y =5, 解得⎩⎨⎧x =2,y =3.②设亮亮妈妈兑换了x 个榨汁机和y 个书包,由题意,得⎩⎨⎧3 000x +1 000y =7 000,x +y =5, 解得⎩⎨⎧x =1,y =4.③设亮亮妈妈兑换x 个榨汁机和y 个电茶壶,由题意,得⎩⎨⎧3 000x +2 000y =7 000,x +y =5,解得⎩⎨⎧x =-3,y =8.不合题意,舍去.答:亮亮妈妈兑换了2个电茶壶和3个书包或1个榨汁机和4个书包.。

七年级数学下册二元一次方程组练习题

七年级数学下册二元一次方程组练习题

七年级数学下册二元一次方程组练习题(含答案解析)学校:___________姓名:___________班级:___________考号:___________一、填空题1.请写出一个以21x y =⎧⎨=-⎩为解的二元一次方程:______ . 2.下列式子各表示什么意义?(1)(x +y )2:________;(2)5x =12y ﹣15:__________;(3)12(x +23x )=24:________. 3.已知12x y =⎧⎨=⎩是方程ax +by =3的解,则代数式2a +4b ﹣5的值为 _____. 4.若关于,x y 的方程组2x ny m x my n --=⎧⎨+=⎩的解是21x y =⎧⎨=⎩,则|2|m n -=_______. 5.如果关于x 的方程()42022a x -=有解,那么实数a 的取值范围是__.6.把方程2340x y --=改写成用含x 的式子表示y ,则y =_______.二、单选题7.若关于x ,y 的方程215m n x y +--=是二元一次方程,则m n +的值为( )A .1B .1-C .3D .3-8.下列说法中,正确的是( )A .392x y xy -=⎧⎨=⎩是二元一次方程组 B .31x y =⎧⎨=-⎩是方程组4233x y x y -=⎧⎨+=⎩的解C .方程36x y +=的解是31x y =⎧⎨=⎩ D .方程23x y -=的解必是方程组2331x y x y -=⎧⎨+=⎩的解 9.若21x y =⎧⎨=-⎩是下列某二元一次方程组的解,则这个方程组为( ) A .351x y x y +=⎧⎨+=⎩ B .251x y x y -=⎧⎨+=⎩C .231x y x y =⎧⎨=+⎩D .325x y y x =-⎧⎨+=⎩ 10.若12x y =⎧⎨=-⎩是方程3x +ay =5的解,则a 的值是( ) A .1 B .﹣1 C .4 D .﹣411.下列可以是二元一次方程x +3y =2的解的是( )A .42x y =-⎧⎨=⎩B .27x y =⎧⎨=⎩C .11x y =⎧⎨=-⎩D .03x y =⎧⎨=⎩12.已知关于x ,y 的方程组2464x y a x y a +=-⎧⎨-=⎩,给出下列结论:①62x y =⎧⎨=-⎩是原方程组的一个解;①当a =-2时,x ,y 的值互为相反数;①当a =1时,方程组的解也是方程x +y =4-a 的解;①x ,y 间的数量关系是22153x y +=.其中正确的是( ) A .①①① B .①①① C .①①① D .①①①①13.如果13xa +2y 3与-3x 3y 2b -a 是同类项,那么a ,b 的值分别是( ) A .1,2 B .0,2 C .2,1 D .1,1三、解答题14.蒙城黄花梨名扬全国,今年篱笆梨园喜获丰收,个体商贩张杰准备租车把一批梨子运往外地去销售,经租车公司负责人介绍,用2辆甲型车和3辆乙型车装满梨子一次可运货17吨;用3辆甲型车和4辆乙型车装满梨了一次可运货24吨,现有30吨梨子,计划同时租用甲型车m 辆,乙型车n 辆,一次运完,且恰好每辆车都装满梨子,根据以上信息,解答下列问题:(1)1辆甲型车和1辆乙型车都装满梨子一次可分别运货多少吨?(2)请你帮个体商贩张杰设计共有多少种租车方案?(3)若1辆甲型车需租金180元/次,1辆乙型车需租金150元/次,请选出费用最少的租车方案,并求出最少租车费.15.已知()2120a b ++-=,求()()20202019a b a b --++的值.参考答案:1.1x y +=(答案不唯一)【分析】根据二元一次方程定义:ax by c +=,令,,a b c 为常数,把21x y =⎧⎨=-⎩代入,解出c 即可. 【详解】①本题答案不唯一,只要写出的二元一次方程的解为21x y =⎧⎨=-⎩即可 ①令1a =,1b =,得x y c +=①把21x y =⎧⎨=-⎩代入方程x y c += 解出1c =①1x y +=故答案是:1x y +=.【点睛】本题考查解二元一次方程的逆过程、不定方程的定义,灵活掌握二元一次方程定义是解题的关键. 2. x ,y 的和的平方 x 的5倍比y 的一半小15 x 与它的23的和的一半等于24【分析】根据题意以及题中的式子直接写出代数式和方程所表示什么意义即可.【详解】解:(1)(x +y )2表示x ,y 的和的平方;(2)5x =12y ﹣15表示x 的5倍比y 的一半小15;(3)12(x +23x )=24表示x 与它的23的和的一半等于24.故答案为:x ,y 的和的平方;x 的5倍比y 的一半小15;x 与它的23的和的一半等于24.【点睛】本题主要考查代数式的定义和方程的定义,属于基础题,熟练掌握代数式的定义和方程的定义是解决本题的关键.3.1 【分析】把12x y =⎧⎨=⎩代入ax +by =3可得23a b +=,而2a +4b ﹣5225a b ,再整体代入求值即可.【详解】解:把12x y =⎧⎨=⎩代入ax +by =3可得: 23a b +=,∴ 2a +4b ﹣5225a b2351.故答案为:1【点睛】本题考查的是二元一次方程的解,利用整体代入法求解代数式的值,掌握“方程的解的含义及整体代入的方法”是解本题的关键.4.1【分析】将方程组的解代入原方程组,然后利用加减消元法解方程组,然后代入代数式求解.【详解】解:将21x y =⎧⎨=⎩代入方程组2x ny m x my n --=⎧⎨+=⎩可得:42n m m n --=⎧⎨+=⎩ 解得:31m n =-⎧⎨=-⎩①()|2|3211m n -=--⨯-=故答案为:1.【点睛】本题考查方程组的解及解二元一次方程组,掌握解方程的计算步骤和法则正确计算是解题关键. 5.4a ≠【分析】根据一元一次方程有意义的条件得40a -≠,进行计算即可得.【详解】解:①(a −4)x =2022有解①40a -≠故答案为:4a ≠.【点睛】本题考查了一元一次方程有意义的条件,解题的关键是掌握一元一次方程有意义的条件. 6.243x - 【分析】将方程中含x 的项和常数项移到等号右边即可求解.【详解】解:2340x y --=,变形可得324y x =-, ①243x y -= 故答案为:243x -. 【点睛】本题主要考查二元一次方程的变形,解决本题的关键熟练掌握二元一次方程的变形方法. 7.A【分析】根据二元一次方程的定义列出关于m ,n 的等式,求出m 和n 的值,即可求出m n +的值.【详解】解:①关于x ,y 的方程215m n x y +--=是二元一次方程,①21,11,m n +=⎧⎨-=⎩解得:1,2m n =-⎧⎨=⎩. ①121m n +=-+=.故选:A .【点睛】本题考查了二元一次方程的定义,熟练掌握该知识点是解题关键.8.B【分析】根据二元一次方程组的定义、二元一次方程组的解的定义、二元一次方程的解的定义逐一分析判断即可.【详解】A 、方程组是二元二次方程组,不是二元一次方程组,故本选项不符合题意;B 、31x y =⎧⎨=-⎩是方程组4233x y x y -=⎧⎨+=⎩的解,故本选项符合题意; C 、方程36x y +=的一组解是31x y =⎧⎨=⎩,还有很多组解,如:02x y =⎧⎨=⎩也方程36x y +=的解,故本选项不符合D 、方程23x y -=有无数组解,但不一定都是方程组2331x y x y -=⎧⎨+=⎩的解,故本选项不符合题意; 故选:B .【点睛】本题考查了二元一次方程组的定义、二元一次方程组的解的定义、二元一次方程的解的定义等知识点,能理解知识点的内容是解题的关键.9.B【分析】运用代入排除法进行选择或分别解每一个方程组求解.【详解】A .x =2,y =﹣1不是方程x +3y =5的解,故该选项错误;B .x =2,y =﹣1适合方程组中的每一个方程,故该选项正确.C .x =2,y =﹣1不是方程组中每一个方程的解,故该选项错误;D .x =2,y =﹣1不是方程组中每一个方程的解,故该选项错误.故选B .【点睛】本题考查了方程组的解的定义,即适合方程组的每一个方程的解是方程组的解.10.B【分析】知道了方程的解,可以把这对数值代入方程,得到一个含有未知数a 的一元一次方程,从而可以求出a 的值.【详解】把=12x y ⎧⎨=-⎩代入方程35x ay +=得: 325a -= ,①1a =-,故选:B .【点睛】此题考查的知识点是二元一次方程组的解,解题关键是把方程的解代入原方程,使原方程转化为以a 为未知数的方程,一组数是方程的解,那么它一定满足这个方程,利用方程的解的定义可以求方程中其他字母的值.11.A【分析】分别把每个选项的数值代入x +3y ,计算即可得答案.【详解】A.当x =-4,y =2时,x +3y =2,故该选项符合题意,B.当x =2,y =7时,x +3y =23,故该选项不符合题意,C.当x =1,y =-1时,x +3y =-2,故该选项不符合题意,D.当x=0,y=3时,x+3y=9,故该选项不符合题意,故选:A.【点睛】本题考查的是二元一次方程的解,掌握方程的解的含义是解题的关键.12.A【分析】①将x=6,y=-2代入检验即可做出判断;①将a=-2代入方程组求出方程组的解即可做出判断;①将a=1代入方程组求出方程组的解,代入方程中检验即可;①消去a得到关于x与y的方程,即可做出判断.【详解】①将x=5,y=-1代入方程组得:12866(2)4aa-=-⎧⎨--=⎩,解得:a=2,本选项正确;①将a=-2代入方程组得:246(2)4(2)x yx y+=--⎧⎨-=⨯-⎩,解得:44xy=-⎧⎨=⎩,则x与y互为相反数,本选项正确;①将a=1代入方程组得:246141x yx y+=-⎧⎨-=⨯⎩,解得:7212xy⎧=⎪⎪⎨⎪=-⎪⎩,将7212xy⎧=⎪⎪⎨⎪=-⎪⎩代入方程x+y=4-1得:3=3,是方程x+y=3的解,本选项正确;①2464x y ax y a+=-⎧⎨-=⎩①②,由①得:a=6-2x-4y,代入①得:x-y=4(6-2x-4y),整理得:35188x y+=,本选项错误,则正确的选项为①①①.故选:A.【点睛】此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程成立的未知数的值.13.A【分析】根据同类项的定义(所含字母相同,相同字母的指数相同)列出方程,求出a ,b 的值.【详解】解:根据题意得:a +2=3,3=2b -a ,解得:a =1,b =2,故选:A .【点睛】本题考查同类项的定义,所含字母相同,相同字母的指数相同,理解定义是关键.14.(1)4,3;(2)共有2种租车方案,方案一:3辆甲型车,6辆乙型车;方案二:6辆甲型车,2辆乙型车;(3)当租6辆甲型车,2辆乙型车时费用最少,最少费用为1380元.【分析】(1)设1辆甲型车装满梨子一次可运货x 吨,1辆乙型车装满梨子一次可运货y 吨,根据题意可得到关于x ,y 的二元一次方程组,解出答案即可;(2)根据一次可运货物的重量=每辆车的承载量⨯租车数量,即可得出关于m ,n 的二元一次方程,再结合m ,n 均为正整数,即可得出租车方案;(3)根据租车总费用=每辆车的租金⨯租车数量,分别求出上一问中两种方案的费用,比较后即可得出答案.【详解】解:(1)设1辆甲型车装满梨子一次可运货x 吨,1辆乙型车装满梨子一次可运货y 吨,依题意,得:23173424x y x y +=⎧⎨+=⎩, 解得:43x y =⎧⎨=⎩, 答:1辆甲型车装满梨子一次可运货4吨,1辆乙型车装满梨子一次可运货3吨;故答案为:4,3.(2)依题意,得:4330m n +=, ∴4103n m =-, m 、n 均为正整数,∴当3m =时,6n =;当6m =时,2n =;∴共有2种租车方案,方案一:3辆甲型车,6辆乙型车;方案二:6辆甲型车,2辆乙型车.(3)方案一:当3m =时,6n =,租车费用:180315061440⨯+⨯=(元);方案二:当6m =时,2n =,租车费用:180615021380⨯+⨯=(元),14401380>,∴方案二省钱,∴当租6辆甲型车,2辆乙型车时费用最少,最少费用为1380元.【点睛】本题考查了二元一次方程组的应用以及二元一次方程的应用,找准等量关系列出方程及方程组是解题的关键.15.2【分析】根据非负数的性质列式求出a 、b 的值,然后代入代数式进行计算即可求解.【详解】解:①()2120a b ++-=,①a +1=0,b ﹣2=0,解得a =﹣1,b =2,①(﹣a ﹣b )2020+(a +b )2019=(1﹣2)2020+(﹣1+2)2019=1+1=2.【点睛】本题考查了非负数的性质①几个非负数的和为0时,这几个非负数都为0,掌握非负数的性质是解题的关键.。

人教版七年级下册数学第八章《二元一次方程组》单元练习题含答案

人教版七年级下册数学第八章《二元一次方程组》单元练习题含答案

七年级下册数学第八章《二元一次方程组》单元练习题一、单选题 1.已知,那么x+y 的值是( )A .0B .5C .﹣1D .12.已知单项式 23x m y -- 与 2323n m nx y - 是同类项,那么m ,n 的值分别是A .31m n =⎧⎨=-⎩B .31m n =⎧⎨=⎩C .31m n =-⎧⎨=⎩D .31m n =-⎧⎨=-⎩3.某体育场的环行跑道长400米,甲、乙同时从同一起点分别以一定的速度练习长跑和骑自行车.如果反向而行,那么他们每隔30秒相遇一次.如果同向而行,那么每隔80秒乙就追上甲一次.甲、乙的速度分别是多少? 设甲的速度是x 米/秒,乙的速度是y 米/秒.则列出的方程组是( )A .30()40080()400x y y x +=⎧⎨-=⎩B .30()40080()400y x x y -=⎧⎨+=⎩C .30()40080()400x y x y +=⎧⎨-=⎩D .30()40080()400x y x y -=⎧⎨+=⎩4.《孙子算经》是中国古代重要的数学著作,其中第三卷中记载一题:今有兽,六首四足;禽,二首二足,上有七十六首,下有四十六足,问:禽、兽各几何?译文:今有一只怪兽,有6个头4只脚,一只怪鸟,有2个头2只脚,现在上面有76个头,下面有46只脚,问怪兽、怪鸟各有多少?设怪兽为x 只,怪鸟为y 只,可列方程组为( ).A .62464276x y x y +=⎧⎨+=⎩B .64762246x y x y +=⎧⎨+=⎩C .62764246x y x y +=⎧⎨+=⎩D .22766246x y x y +=⎧⎨+=⎩5.甲、乙二人同时同地出发,都以不变的速度在300米环形跑道上奔跑.若反向而行,每隔20s 相遇一次,若同向而行,则每隔300s 相遇一次,已知甲比乙跑得快,设甲每秒跑x 米,乙每秒跑y 米,则可列方程为( )A .30020x y x y +=⎧⎨-=⎩B .20300x y x y +=⎧⎨-=⎩C .2020300300300300x y x y +=⎧⎨-=⎩D .2030030030020300x y x y +=⎧⎨-=⎩6.已知|2x+y+3|+(x-y+3)2=0,则(x+y )2019等于( ) A .2019B .-1C .1D .-20197.把方程7215x y =-写成用含x 的代数式表示y 的形式,得( ) A .2517x y -=B .1527yx +=C .7152x y -=D .1572xy -=8.在一个古代文献里记录了一个“鸡免同笼”问题,翻译内容如下:在一个笼子里混装有鸡和兔子若干只,已知共有头45个,脚160个,设鸡x 只,兔子y 只,根据题意可列出方程组( )A .4524160x y x y +=⎧⎨+=⎩B .4522160x y x y +=⎧⎨+=⎩C .452160x y x y -=⎧⎨+=⎩D .4524160x y x y +=⎧⎨-=⎩9.如果│x+y -1│和2(2x+y -3)2互为相反数,那么x ,y 的值为( )A .12x y =⎧⎨=⎩B .12x y =-⎧⎨=-⎩C .21x y =⎧⎨=-⎩D .21x y =-⎧⎨=-⎩10.如果方程x ﹣y =3与下面的方程组成的方程组的解为47x y =-⎧⎨=-⎩,那么这一个方程可以是( )A .2(x ﹣y )=6yB .3x ﹣4y =16C .1x 2y 54+=D .1x 3y 82+=二、填空题11.二元一次方程3x +2y =15共有_______组正整数解.... 12.已知24280x x y -++-=,则()2019x y -=_____________.13.已知关于x ,y 的二元一次方程组3522x y k x y k +=⎧⎨+=-⎩的解互为相反数,则k 的值是_______14.方程组26{0x y x y -=+=的解是 . 15.某商店新进一批衬衣和数对暖瓶(一对为2件),暖瓶的对数正好是衬衣件数的一半,每件衬衣的进价是40元,每对暖瓶的进价是60元(暖瓶成对出售),商店将这批物品以高出进价10%的价格售出,最后留下了17件物品未卖出,这时,商店发现卖出物品的总售价等于所有货物总进价的90%,则最初购进这批暖瓶_____对.16.已知关于 x ,y 的二元一次方程组2122x y k x y k -=+⎧⎨-=-+⎩,则 x ﹣y 的值是_____17.《九章算术》是我国东汉年间编订的一部数学经典著作,其中有一个问题是:“今有三人公车,二车空;二人公车,九人步.问:人与车各几何?”其大意如下:有若干人要坐车,若每3人坐一辆车,则有2辆空车;若每2人坐一辆车,则有9人需要步行,问人与车各多少?设共有x 人,y 辆车,则可列方程组为_________.18.若7353x y x y +=⎧⎨-=-⎩,则5x ﹣3y 的值是_____.三、解答题19.(1)阅读下列材料并填空:对于二元一次方程组4354{336x y x y +=+=,我们可以将x ,y 的系数和相应的常数项排成一个数表4354()1336,求得的一次方程组的解{x ay b== ,用数表可表示为10)01ab(.用数表可以简化表达解一次方程组的过程如下,请补全其中的空白:从而得到该方程组的解为x= ,y= .(2)仿照(1)中数表的书写格式写出解方程组236{2x y x y +=+=的过程.20.如果264(1)(2)12x x A B Cx x x x x x +-=++-+-+,求A,B,C 的值.21.甲、乙两车将一批抗疫物资从A 地运往B 地,两车各自的速度都保持匀速行驶.甲出发0.5h 后乙开始出发,结果比甲早0.5h 到达B 地.甲、乙两车离A 地的路程1s ()km 、2s ()km 与甲车行驶时间行驶的时间()t h 之间的函数关系如图所示.(1)求2s ()km 与t ()h 之间的函数关系式; (2)图中a =_______;b =______;(3)若甲、乙两车之间的路程不小于20km ,则t 的取值范围是________.(直接写出答案)22.对于两个不相等的实数a 、b ,我们规定符号max{a ,b}表示a 、b 中的较大值,min{a ,b}表示a 、b 中的较小值.如:max{2,4}=4,min{2,4}=2.按照这个规定:解方程组:{}{}1max ,3min 39,3114x x y x x y ⎧-=⎪⎨⎪++=⎩23.已知关于x ,y 的方程组3+5223x y m x y m =+⎧⎨+=⎩的解满足x +y =-10,求式子m 2-2m +1的值.24.学完二元一次方程组的应用之后,老师写出了一个方程组如下:254340x y x y -=⎧⎨+=⎩,要求把这个方程组赋予实际情境. 小军说出了一个情境:学校有两个课外小组,书法组和美术组,其中书法组的人数的二倍比美术组多5人,书法组平均每人完成了4幅书法作品,美术组平均每人完成了3幅美术作品,两个小组共完成了40幅作品,问书法组和美术组各有多少人?小明通过验证后发现小军赋予的情境有问题,请找出问题在哪?25.对于实数a ,b ,定义关于“⊕”的一种运算:a ⊕b=2a+b ,例如3⊕4=2×3+4=10.若x ⊕(-y )=2,(2y)⊕x=1,求x+y 的平方根.26.开学初,小芳和小亮去学校商店购买学习用品,小芳用17元钱买了1支钢笔和3本笔记本;小亮用31元买了同样的钢笔2支和笔记本5本.求每支钢笔和每本笔记本的价格.27.某班将举行“庆祝建党90周年知识竞赛”活动,班长安排小明购买奖品,下面两图是小明买回奖品时与班长的对话情境:请根据上面的信息,试计算两种笔记本各买了多少本?答案1.B2.B3.A4.C5.C6.B7.C8.A9.C10.B 11.2 12.1- 13.4 14.2{2x y ==- 15.22. 16.117.()3229y x y x ⎧-=⎨+=⎩18.1119.(1) 6,10;(2)02x y =⎧⎨=⎩。

七年级数学下册 二元一次方程组经典练习题+答案解析100道 人教新课标

七年级数学下册 二元一次方程组经典练习题+答案解析100道  人教新课标

二元一次方程组练习题100道(卷一)(范围:代数: 二元一次方程组) 一、判断1、⎪⎩⎪⎨⎧-==312y x 是方程组⎪⎪⎩⎪⎪⎨⎧=-=-910326523y x y x 的解 …………( )2、方程组⎩⎨⎧=+-=5231y x x y 的解是方程3x-2y=13的一个解( )3、由两个二元一次方程组成方程组一定是二元一次方程组( )4、方程组⎪⎪⎩⎪⎪⎨⎧=-++=+++25323473523y x y x ,可以转化为⎩⎨⎧-=--=+27651223y x y x ( )5、若(a2-1)x2+(a-1)x+(2a-3)y=0是二元一次方程,则a 的值为±1( )6、若x+y=0,且|x|=2,则y 的值为2 …………( )7、方程组⎩⎨⎧=+-=+81043y x x m my mx 有唯一的解,那么m 的值为m ≠-5 …………( )8、方程组⎪⎩⎪⎨⎧=+=+623131y x y x 有无数多个解 …………( )9、x+y=5且x ,y 的绝对值都小于5的整数解共有5组 …………( )10、方程组⎩⎨⎧=+=-3513y x y x 的解是方程x+5y=3的解,反过来方程x+5y=3的解也是方程组⎩⎨⎧=+=-3513y x y x 的解 ………( )11、若|a+5|=5,a+b=1则32-的值为ba ………()12、在方程4x-3y=7里,如果用x 的代数式表示y ,则437yx +=( )二、选择:13、任何一个二元一次方程都有( )(A )一个解; (B )两个解; (C )三个解; (D )无数多个解;14、一个两位数,它的个位数字与十位数字之和为6,那么符合条件的两位数的个数有( )(A )5个 (B )6个 (C )7个 (D )8个15、如果⎩⎨⎧=+=-423y x a y x 的解都是正数,那么a 的取值范围是( )(A )a<2; (B )34->a ; (C )342<<-a ;(D )34-<a ;16、关于x 、y 的方程组⎩⎨⎧=-=+my x m y x 932的解是方程3x+2y=34的一组解,那么m 的值是( )(A )2; (B )-1; (C )1; (D )-2;17、在下列方程中,只有一个解的是( )(A )⎩⎨⎧=+=+0331y x y x (B )⎩⎨⎧-=+=+2330y x y x(C )⎩⎨⎧=-=+4331y x y x (D )⎩⎨⎧=+=+3331y x y x18、与已知二元一次方程5x-y=2组成的方程组有无数多个解的方程是( ) (A )15x-3y=6 (B )4x-y=7 (C )10x+2y=4 (D )20x-4y=3 19、下列方程组中,是二元一次方程组的是( ) (A )⎪⎩⎪⎨⎧=+=+9114y x y x(B )⎩⎨⎧=+=+75z y y x(C )⎩⎨⎧=-=6231y x x(D )⎩⎨⎧=-=-1y x xyy x20、已知方程组⎩⎨⎧-=+=-135b y ax y x 有无数多个解,则a 、b 的值等于( )(A )a=-3,b=-14 (B )a=3,b=-7 (C )a=-1,b=9(D )a=-3,b=14 21、若5x-6y=0,且xy ≠0,则y x yx 3545--的值等于( )(A )32 (B )23(C )1 (D )-1 22、若x 、y 均为非负数,则方程6x=-7y 的解的情况是( )(A )无解 (B )有唯一一个解 (C )有无数多个解 (D )不能确定23、若|3x+y+5|+|2x-2y-2|=0,则2x2-3xy 的值是( )(A )14 (B )-4 (C )-12 (D )1224、已知⎩⎨⎧-==24y x 与⎩⎨⎧-=-=52y x 都是方程y=kx+b 的解,则k 与b 的值为( ) (A )21=k ,b=-4 (B )21-=k ,b=4 (C )21=k ,b=4(D )21-=k ,b=-4 三、填空:25、在方程3x+4y=16中,当x=3时,y=________,当y=-2时,x=_______ 若x 、y 都是正整数,那么这个方程的解为___________; 26、方程2x+3y=10中,当3x-6=0时,y=_________;27、如果0.4x-0.5y=1.2,那么用含有y 的代数式表示的代数式是_____________;28、若⎩⎨⎧-==11y x 是方程组⎩⎨⎧-=-=+1242a y x b y ax 的解,则⎩⎨⎧==______________b a ;29、方程|a|+|b|=2的自然数解是_____________; 30、如果x=1,y=2满足方程141=+y ax ,那么a=____________;31、已知方程组⎩⎨⎧-=+=+my x ay x 26432有无数多解,则a=______,m=______;32、若方程x-2y+3z=0,且当x=1时,y=2,则z=______;33、若4x+3y+5=0,则3(8y-x)-5(x+6y-2)的值等于_________;34、若x+y=a ,x-y=1同时成立,且x 、y 都是正整数,则a 的值为________;35、从方程组)0(030334≠⎩⎨⎧=+-=--xyz z y x z y x 中可以知道,x:z=_______;y:z=________;36、已知a-3b=2a+b-15=1,则代数式a2-4ab+b2+3的值为__________;四、解方程组□x +5y =13 ① 4x -□y =-2 ②37、⎪⎪⎩⎪⎪⎨⎧=-=-1332343n m nm ; 38、)(6441125为已知数a a y x a y x ⎩⎨⎧=-=+; 39、⎪⎪⎩⎪⎪⎨⎧=++=+125432y x yx y x ; 40、⎪⎩⎪⎨⎧=--+=-++0)1(2)1()1(2x y x x x y y x ; 41、⎪⎪⎩⎪⎪⎨⎧++=++=+=+6253)23(22)32(32523233y x y x y x y x ; 42、⎪⎪⎩⎪⎪⎨⎧=-++=-++1213222132y x y x ;43、⎪⎩⎪⎨⎧=-+-=-+=-+3113y x z x z y z y x ; 44、⎪⎩⎪⎨⎧=+=+=+101216x z z y y x ;45、⎪⎩⎪⎨⎧=-+=+-=-+35351343z y x z y x z y x ; 46、⎪⎩⎪⎨⎧=+-==30325:3:7:4:z y x z x y x ;五、解答题:47、甲、乙两人在解方程组 时,甲看错了①式中的x 的系数,解得⎪⎪⎩⎪⎪⎨⎧==475847107y x ;乙看错了方程②中的y 的系数,解得⎪⎪⎩⎪⎪⎨⎧==19177681y x ,若两人的计算都准确无误,请写出这个方程组,并求出此方程组的解;48、使x+4y=|a|成立的x 、y 的值,满足(2x+y-1)2+|3y-x|=0,又|a|+a=0,求a 的值; 49、代数式ax2+bx+c 中,当x=1时的值是0,在x=2时的值是3,在x=3时的值是28,试求出这个代数式;50、要使下列三个方程组成的方程组有解,求常数a 的值。

人教版 七年级数学下册 第8章 二元一次方程组 单元训练(含答案)

人教版 七年级数学下册 第8章 二元一次方程组 单元训练(含答案)

8. 【答案】A 【解析】根据大小桶所盛酒的数量列方程组即可. ∵5 个大桶加上 1 个小桶可以盛酒 3 斛,∴5x+y=3, ∵1 个大桶加上 5 个小桶可以盛酒 2 斛,∴x+5y=2,
∴得到方程组
5x x 5
y y
3 2
,故选:A.
二、填空题 x=3
9. 【答案】y=1 【解析】由于两方程中 y 的系数互为相反数,用加减消元法先 消 y,相加得 4x=12,解得 x=3,把 x=3 代入 x+2y=5 中,得 3+2y=5,解 得 y=1,因此该方程组的解为xy==13.
17. 【答案】
解:(1)设 A 型商品有 x 件,B 型商品有 y 件.
由题意可得
解得
答:A 型商品有 5 件,B 型商品有 8 件. (2)①若按车收费:10.5÷3.5=3(辆), 但车辆的容积为 6×3=18<20(m3), 所以 3 辆货车不够,需要 4 辆车. 故需运费 4×600=2400(元).
3a-2b=3 ①
14.【答案】-8
【解析】y=-2是方程组bx+ay=-7的解,即3b-2a=-7
, ②
①+②得 a+b=-4,①-②得 5a-5b=10,则 a-b=2,∴(a+b)(a-b)=-4×2 =-8.
三、解答题
15. 【答案】
解:这天萝卜的单价是 x 元/斤,排骨的单价是 y 元/斤.根据题意,得 3x+2y=45, 1+350%x+1+220%y=36.
费按行车的实际里程计算;时长费按行车的实际时间计算;
远途费的收取方式为:行车里程 7 公里以内(含 7 公里)不收 远途费,超过 7 公里的,超出部分每公里收 0.8 元.
小王与小张各自乘坐滴滴快车,行车里程分别为 6 公里与 8.5 公里,如果下车时

(必考题)初中七年级数学下册第八单元《二元一次方程组》经典练习题(含答案解析)

(必考题)初中七年级数学下册第八单元《二元一次方程组》经典练习题(含答案解析)

一、选择题1.甲、乙两人分别从相距40km 的两地同时出发,若同向而行,则5h 后,快者追上慢者;若相向而行,则2h 后,两人相遇,那么快者速度和慢者速度(单位:km/h)分别是( )A .14和6B .24和16C .28和12D .30和1A 解析:A【分析】设快者的速度是/xkm h ,慢者的速度是/ykm h ,根据追及问题和相遇问题的求解方法列二元一次方程组求解.【详解】解:设快者的速度是/xkm h ,慢者的速度是/ykm h ,列式()()540240x y x y ⎧-=⎪⎨+=⎪⎩,解得146x y =⎧⎨=⎩. 故选:A .【点睛】本题考查二元一次方程组的应用,解题的关键是根据题意列出二元一次方程组.2.若关于x 、y 的方程组228x y ax y +=⎧⎨+=⎩的解为整数,则满足条件的所有a 的值的和为( )A .6B .9C .12D .16C 解析:C【分析】先把a 看作已知数求出42x a =-,然后结合方程组的解为整数即可求出a 的值,进而可得答案.【详解】解:对方程组2{28x y ax y +=+=①②,②-①×2,得()24a x -=,∴42x a =-, ∵关于x 、y 的方程组228x y ax y +=⎧⎨+=⎩的解为整数, ∴21,2,4a -=±±±,即a =﹣2、0、1、3、4、6,∴满足条件的所有a 的值的和为﹣2+0+1+3+4+6=12.故选:C .【点睛】本题考查了二元一次方程组的解法,正确理解题意、熟练掌握解二元一次方程组的方法是解题关键.3.如图,在两个形状、大小完全相同的大长方形内,分别互不重叠地放入四个如图③的小长方形后得图①、图②,已知大长方形的长为2a ,两个大长方形未被覆盖部分分别用阴影表示,则图①阴影部分周长与图②阴影部分周长的差是( )(用a 的代数式表示)A .﹣aB .aC .12aD .﹣12a A 解析:A【分析】 设图③小长方形的长为m ,宽为n ,则由已知可以求得m 、n 关于a 的表达式,从而可以用a 表示出图①阴影部分周长与图②阴影部分周长,然后即可算得二者之差.【详解】解:设图③小长方形的长为m ,宽为n ,则由图①得m=2n ,m+2n=2a , ∴2a m a n ==,, ∴图①阴影部分周长=22245a n a a a ⨯+=+=,图②阴影部分周长=()2322126n n n n a ++==,∴图①阴影部分周长与图②阴影部分周长的差是:5a-6a=-a ,故选A .【点睛】本题考查二元一次方程组的几何应用,设图③小长方形的长为m ,宽为n ,并用a 表示出m 和n 是解题关键.4.下列方程中是二元一次方程的是( )A .(2)(3)0x y +-=B .-1x y =C .132x y=+ D .5xy = B 解析:B【分析】含有两个未知数,并且含有未知数的项的次数都是1的整式方程叫做二元一次方程.【详解】解:(2)(3)0x y +-=化简得3260xy x y -+-=,最高次是2次,故A 选项错误; -1x y =是二元一次方程,故B 选项正确;132x y=+不是整式方程,故C 选项错误;5xy =最高次是2次,故D 选项错误.故选:B【点睛】本题主要考查的是二元一次方程的概念,正确的掌握二元一次方程的概念是解题的关键. 5.如图,长方形ABCD 被分割成3个正方形和2个长方形后仍是中心对称图形,设长方形ABCD 的周长为l ,若图中3个正方形和2个长方形的周长之和为94l ,则标号为①正方形的边长为( )A .112l B .116l C .516l D .118l B 解析:B 【分析】 设两个大正方形边长为x ,小正方形的边长为y ,由图可知周长和列方程和方程组,解答即可.【详解】解:长方形ABCD 被分成3个正方形和2个长方形后仍是中心对称图形,∴两个大正方形相同、2个长方形相同.设小正方形边长为x ,大正方形的边长为y ,∴小长方形的边长分别为()y x -、()x y +,大长方形边长为()2y z -、()2y x +.长方形周长l =,即:()()222y x y x l -++⎤⎣⎦=⎡, 8y l ∴=,18y l ∴=. 3个正方形和2个长方形的周长和为94l , ()()9244224y x x y y x l ∴⨯++⨯⨯+⎤⎣⎦=⎡+-,91644y x l ∴+=, 116x l ∴=. ∴标号为①的正方形的边长116l .故选:B.【点睛】此题主要考查了二元一次方程组的应用,关键是正确理解题意,要明确中心对称的性质,找出题目中的等量关系,列出方程组.注意各个正方形的边长之间的数量关系.6.方程组2824x yx y⎧+=⎪⎨+=⎪⎩的解的个数为()A.1 B.2 C.3 D.4A解析:A【分析】分类讨论x与y的正负,利用绝对值的代数意义化简,求出方程组的解,即可做出判断.【详解】解:根据x、y的正负分4种情况讨论:①当x>0,y>0时,方程组变形得:2824x yx y+=⎧⎨+=⎩,无解;②当x>0,y<0时,方程组变形得:28 24 x yx y+=⎧⎨-=⎩,解得x=3,y=2>0,则方程组无解;③当x<0,y>0时,方程组变形得:28 24x yx y-+=⎧⎨+=⎩,此时方程组的解为16xy=-⎧⎨=⎩;④当x<0,y<0时,方程组变形得:2824x yx y-+=⎧⎨-=⎩,无解,综上所述,方程组的解个数是1.故选:A.【点睛】本题考查了解二元一次方程组,利用了分类讨论的思想,熟练掌握运算法则是解本题的关键.7.已知:关于x、y的方程组2423x y ax y a+=-+⎧⎨+=-⎩,则x-y的值为( )A.-1 B.a-1 C.0 D.1D 解析:D【解析】分析:由x、y系数的特点和所求式子的关系,可确定让①-②即可求解.详解:2423x y ax y a+=-+⎧⎨+=-⎩①②,①−②,得x−y=−a+4−3+a=1.故选:D.点睛:此题考查了解二元一次方程组,一般解法是用含有a 的代数式表示x 、y ,再计算,但也要注意能简便的则简便.此题中注意整体思想的渗透.8.《九章算术》是我国东汉初年编订的一部数学经典著作.在它的“方程”一章里,一次方程组是由算筹布置而成的.《九章算术》中的算筹图是竖排的,为看图方便,我们把它改为横排,如图1、图2.图中各行从左到右列出的算筹数分别表示未知数x ,y 的系数与相应的常数项.把图1所示的算筹图用我们现在所熟悉的方程组形式表述出来,就是32=19423x y x y +⎧⎨+=⎩,在图2所示的算筹图所表示的方程组是( )A .2114327x y x y +=⎧⎨+=⎩B .21437x y x y +=⎧⎨+=⎩C .2274311x y x y +=⎧⎨+=⎩D .2114327y x y x +=⎧⎨+=⎩A 解析:A【分析】图2中,第一个方程x 的系数为2,y 的系数为1,相加为11;第二个方程x 的系数为4,y 的系数为3,相加为27,据此解答即可.【详解】解:图2所示的算筹图所表示的方程组是2114327x y x y +=⎧⎨+=⎩. 故选:A .【点睛】本题考查了二元一次方程组的应用,读懂题意、明确图1表示方程组的方法是解题关键. 9.已知关于x ,y 的二元一次方程组323223x y m x y m+=-⎧⎨+=⎩的解适合方程x-y=4,则m 的值为( )A .1B .2C .3D .4C 解析:C【分析】通过观察方程组可知第一个方程减去第二个方程可得22x y m -=-,再结合4x y -=即可求得答案.【详解】解:∵323223x y m x y m +=-⎧⎨+=⎩①② ①-②得,22x y m -=-∵4x y -=∴224m -=∴3m =.故选:C【点睛】本题考查了根据二元一次方程组的解满足一定的条件求参数问题,能根据题目特点灵活运用加减消元法、代入消元法是解题的关键.10.方程组320x y x y +=⎧⎨-=⎩的解是( ) A .11x y =⎧⎨=⎩ B .12x y =⎧⎨=⎩ C .21x y =⎧⎨=⎩ D .30x y =⎧⎨=⎩B 解析:B【分析】二元一次方程组的求解方法有两种:(1)加减消元法;(2)代入消元法,此题用加减消元法求解更为简便;【详解】∵320x y x y +=⎧⎨-=⎩①② ,①+②得:3x=3,即x=1,把x=1代入①得:y=2,则方程组的解为12x y =⎧⎨=⎩ , 故选:B .【点睛】本题考查了二元一次方程组的解法,正确利用加减消元法求解是解题的关键. 二、填空题11.若方程x |m|-2+(m+3)y 2m-n =6是关于x 、y 的二元一次方程,则m+n=_____8【分析】根据二元一次方程满足的条件:含有2个未知数未知数的项的次数是1的整式方程可得|m|-2=12m-n=1解出mn 的值可得答案【详解】解:由题意知|m|-2=12m-n=1且m+3≠0解得m=解析:8【分析】根据二元一次方程满足的条件:含有2个未知数,未知数的项的次数是1的整式方程可得|m|-2=1,2m-n=1,解出m 、n 的值可得答案.【详解】解:由题意,知|m|-2=1,2m-n=1且m+3≠0.解得m=3,n=5.所以m+n=3+5=8.故答案是:8.【点睛】主要考查二元一次方程的概念,要求熟悉二元一次方程的形式及其特点:含有2个未知数,未知数的项的次数是1的整式方程.12.甲、乙两筐苹果各有若干千克,从甲筐拿出20%到乙筐后,又从乙筐拿出25%到甲筐,这时甲、乙两筐苹果的质量相等,则原来乙筐的苹果质量是甲筐的__________ % .140【分析】设甲乙两筐苹果各有先求出从甲筐拿出20到乙筐后甲乙两筐分别为再求出从乙筐拿出25到甲筐后甲乙两筐分别为:列方程求出x 与y 的关系即可【详解】设甲乙两筐苹果各有从甲筐拿出20到乙筐后甲乙两 解析:140【分析】设甲、乙两筐苹果各有x 、kg y ,先求出从甲筐拿出20%到乙筐后,甲、乙两筐分别为80%x ,20%y x +,再求出从乙筐拿出25%到甲筐后,甲、乙两筐分别为:171204x y +,33420y x +,列方程17133204420x y y x +=+,求出x 与y 的关系即可. 【详解】设甲、乙两筐苹果各有x 、kg y ,从甲筐拿出20%到乙筐后,甲、乙两筐分别为80%x ,20%y x +,从乙筐拿出25%到甲筐后,甲、乙两筐分别为:()17180%25%20%204x y x x y +⨯+=+, ()3375%20%420y x y x ⨯+=+, 由题可得:17133204420x y y x +=+, 解得75y x =, 75y x =, 则原来乙筐苹果质量为甲筐的:7100%100%140%5y x ⨯=⨯=. 故答案为:140.【点睛】本题考查循环倒液类型问题,掌握循环倒液类型问题的解法,抓住经过两次循环两者质量相等构造等式(或方程)解决问题是关键.13.如图,5个大小形状完全相同的长方形纸片,在直角坐标系中摆成如图图案,已知()8,5B -,则点A 的坐标为__________.(-36)【分析】设长方形纸片的长为a 宽为b 由B 点坐标可以得到关于ab 的二元一次方程组解方程组可以得到a 和b 再根据纸片的摆放可以得到A 点坐标【详解】解:设长方形纸片的长为a 宽为b 由B 点坐标可以得到:解析:(-3,6)【分析】设长方形纸片的长为a ,宽为b ,由B 点坐标可以得到关于a 、b 的二元一次方程组,解方程组可以得到a 和b ,再根据纸片的摆放可以得到A 点坐标.【详解】解:设长方形纸片的长为a ,宽为b ,由B 点坐标可以得到:285a a b -=-⎧⎨+=⎩,解之可得: 41a b =⎧⎨=⎩, ∴根据A 点位置可得其坐标为:()326x a b y a b ⎧=--=-⎨=+=⎩, 故答案为(-3,6).【点睛】本题考查点的坐标表示与长方形的综合运用,根据点的坐标及长方形的摆放位置求出长方形的长和宽后再根据长方形的摆放位置求出新的点坐标 .14.鼠年新春佳节将至,小瑞准备去超市买些棒棒糖,送一份“甜蜜礼物”给他的好朋友.有甲、乙、丙三种类型的棒棒糖,若甲种买2包,乙种买1包,丙种买3包共23元;若甲种买1包,乙种买4包,丙种买5包共36元.则甲种买1包,乙种买2包,丙种买3包,共______元.22【分析】首先设买1包甲乙丙三种糖各abc元根据买甲种糖2包和乙种1包丙种3包共23元列出方程2a+3c+b=23;根据买甲种1包乙4包丙种5包共36元列出方程a+4b+5c=36通过加减消元法求解析:22【分析】首先设买1包甲,乙,丙三种糖各a,b,c元.根据买甲种糖2包和乙种1包,丙种3包共23元,列出方程2a+3c+b=23;根据买甲种1包,乙4包,丙种5包,共36元,列出方程a+4b+5c=36.通过加减消元法求得b+c,a+c的值.题目所求买甲种1包,乙种2包,丙种3包,共需a+2b+3c=(a+c)+2(b+c),因而将b+c、a+c的值直接代入即求得本题的解.【详解】解:设买1包甲,乙,丙三种糖各a,b,c元.由题意得23234536 a b ca b c++=⎧⎨++=⎩①②由②×2−①得:b+c=7③,由③代入①得:a+c=8④,由④+2×③得:a+2b+3c=(a+c)+2(b+c)=8+14=22.故答案为:22.【点睛】根据系数特点,通过加减消元法,得到b+c、a+c的值,再将其做为一个整体,代入求解.15.某商场在“迎新年”搞促销活动,刘海的家长准备用2000元在活动中购买价格分别为160元和240元的两种商品,在钱都用尽的情况下,可供刘海的家长选择的购买方案有_______种.4【分析】设购买160元的商品数量为x购买240元的商品数量为y 根据总费用是2000元列出方程求得正整数xy的值即可【详解】解:设购买80元的商品数量为x购买120元的商品数量为y依题意得:160x解析:4【分析】设购买160元的商品数量为x,购买240元的商品数量为y,根据总费用是2000元列出方程,求得正整数x、y的值即可.【详解】解:设购买80元的商品数量为x,购买120元的商品数量为y,依题意得:160x+240y=2000,整理,得y=2523x-.因为x是正整数,所以当x=2时,y=7.当x=5时,y=5.当x=8时,y=3.当x=11时,y=1.即有4种购买方案.故答案为:4.【点睛】本题考查了二元一次方程的应用.对于此类问题,挖掘题目中的关系,找出等量关系,列出二元一次方程.然后根据未知数的实际意义求其整数解.16.设 a 、b 是有理数,且满足等式2321a b ++=-则a+b=___________.1或﹣11【分析】根据实数相等的条件可求出ab 的值然后代入所求式子计算即可【详解】解:∵ab 是有理数且满足等式∴解得:当a=6b=﹣5时a+b=6-5=1;当a=﹣6b=﹣5时a+b=﹣6-5=﹣1解析:1或﹣11【分析】根据实数相等的条件可求出a 、b 的值,然后代入所求式子计算即可.【详解】解:∵a 、b 是有理数,且满足等式2321a b ++=-∴2321,5a b b +==-,解得:5,6b a =-=±,当a =6,b =﹣5时,a +b =6-5=1;当a =﹣6,b =﹣5时,a +b =﹣6-5=﹣11;故答案为:1或﹣11.【点睛】本题考查了实数的相关知识,正确理解题意、得到关于a 、b 的方程组是解题的关键. 17.某水稻种植中心培育了甲、乙、丙三种水稻,将这三种水稻分别种植于三块大小各不相同的试验田里.去年,三种水稻的平均亩产量分别为300kg ,500kg ,400kg ,总平均亩产量为450kg ,且丙种水稻的的总产量是甲种水稻总产量的4倍,今年初,研究人员改良了水稻种子,仍按去年的方式种植,三种水稻的平均亩产量都增加了.总平均亩产量增长了40%,甲、丙两种水稻的总产量增长了30%,则乙种水稻平均亩产量的增长率为_______.45【分析】设甲乙丙三种水稻各种植了a 亩b 亩c 亩乙种水稻平均亩产量的增长率为x 根据题意列出方程组进行解答便可【详解】解:设甲乙丙三种水稻各种植了a 亩b 亩c 亩乙种水稻平均亩产量的增长率为x 根据题意得化 解析:45%【分析】设甲、乙、丙三种水稻各种植了a 亩,b 亩,c 亩,乙种水稻平均亩产量的增长率为x ,根据题意列出方程组进行解答便可.【详解】解:设甲、乙、丙三种水稻各种植了a 亩,b 亩,c 亩,乙种水稻平均亩产量的增长率为x ,根据题意得,300500400450()4003004300(130%)500(1)400(130%)450()(140%)a b c a b c c a a b x c a b c ++=++⎧⎪=⨯⎨⎪+++++=+++⎩化简整理得:30350241311a b c c a bx a b c -+=⎧⎪=⎨⎪=++⎩, 解得:0.4545%x ==;故答案为:45%.【点睛】本题主要考查了方程组解应用题,关键是读懂题意正确列出方程组.18.为减轻“新冠”带来的影响,西城天街商场决定在国庆期间开展促销活动,方案如下:在负二楼兑奖区旁放置一个不透明的箱子,箱子里有大小、形状、质地等完全相同的黑、白、红球各一个,顾客购买的商品达到一定金额可获得一次摸球机会,摸中黑、白、红三种颜色的球可分别返还现金100元、60元、20元.商场分上午、下午和晚上三个时间段统计摸球次数和返现金额,汇总统计结果如下:下午摸到黑球次数为上午的3倍,摸到白球次数为上午的2倍,摸到红球次数为上午的4倍;晚上摸到黑球次数与上午相同,摸到白球次数为上午的4倍,摸到红球次数为上午的2倍,三个时间段返现总金额共为5020元,晚上返现金额比上午多840元,则下午返现金额为_______元.【分析】根据题意表示出上午下午晚上摸到黑白红的次数列数返现的金额式子确定出abc 的值代入计算即可;【详解】设上午黑白红摸到的次数分别是abc 则下午摸到黑白红的次数是3a2b4c 晚上摸到黑白红的次数是解析:2460【分析】根据题意表示出上午、下午、晚上摸到黑、白、红的次数,列数返现的金额式子,确定出a ,b ,c 的值代入计算即可;【详解】设上午黑、白、红摸到的次数分别是a ,b ,c ,则下午摸到黑、白、红的次数是3a ,2b ,4c ,晚上摸到黑、白、红的次数是a ,4b ,2c ,晚上返现金额比上午多840,∴36020840b c ⨯+⨯=,∴18020840b c +=,总返现为:5004201405020a b c ++=,根据题意:a ,b ,c 是大于零的正整数,当4b =时满足条件a ,b ,c 为正整数,∴4b =,6c =,5a =,即下午返现的金额为1510086024202460⨯+⨯+⨯=元;故答案是2460.【点睛】本题主要考查了概率公式的应用,准确分析计算是解题的关键.19.已知方程组32223x y m x y m +=+⎧⎨+=⎩的解适合8x y +=,则m =_______.19【分析】将m 看做已知数表示出x 与y 代入x+y=8中计算即可求出m 的值【详解】解:得5x=m+6即得:-5y=4-m 即代入x+y=8中得:去分母得:2m+2=40解得:m=19故答案为:19【点睛解析:19【分析】将m 看做已知数表示出x 与y ,代入x+y=8中计算即可求出m 的值.【详解】解:32223x y m x y m ++⎧⎨+⎩=①=② 32⨯-⨯①②得5x=m+6,即65m x += 23⨯-⨯①②得:-5y=4-m ,即45m y -=代入x+y=8中,得:64855m m +-+= 去分母得:2m+2=40,解得:m=19.故答案为:19【点睛】此题考查了二元一次方程组的解,以及二元一次方程的解,熟练掌握运算法则是解本题的关键.20.明代的程大位创作了《算法统宗》,它是一本通俗实用的数学书,将枯燥的数学问题化成了美妙的诗歌,读来朗朗上口,是将数字入诗的代表作.例如,其中有一首饮酒数学诗:“肆中饮客乱纷纷,薄酒名釂厚酒醇.醇酒一瓶醉三客,薄酒三瓶醉一人,共同饮了一十九,三十三客醉颜生.试问高明能算士,几多酶酒几多醇?”这首诗是说:“好酒一瓶,可以醉倒3位客人;薄酒三瓶,可以醉倒1位客人,如今33位客人醉倒了,他们总共饮下19瓶酒.试问其中好酒、薄酒分别是多少瓶?”请你根据题意,求出好酒是有_____瓶.10【分析】根据好酒数量+薄酒数量=19和喝好酒醉倒人数+喝薄酒醉倒人数=33可列方程组解之即可【详解】解:设有好酒x 瓶薄酒y 瓶根据题意可列方程组为解得:∴好酒是有10瓶故答案为:10【点睛】本题主解析:10根据“好酒数量+薄酒数量=19和喝好酒醉倒人数+喝薄酒醉倒人数=33”可列方程组,解之即可.【详解】解:设有好酒x 瓶,薄酒y 瓶.根据题意,可列方程组为193333x y y x +=⎧⎪⎨+=⎪⎩,解得:109x y =⎧⎨=⎩, ∴好酒是有10瓶,故答案为:10.【点睛】本题主要考查由实际问题抽象出二元一次方程组,解题的关键是掌握理解题意,找到题目蕴含的相等关系.三、解答题21.今年11月份,某商场用22200元购进长虹取暖器和格力取暖器共400台,已知长虹取暖器每台进价为50元,售价为70元,格力取暖器每台进价为60元,售价为90元. (1)求11月份两种取暖器各购进多少台?(2)在将11月份购买的两种取暖器从厂家运往商场的过程中,长虹取暖器出现13的损坏(损坏后的产品只能为废品,不能再进行销售),而格力取暖器完好无损,商场决定对这两种取暖器的售价进行调整,使这次购进的取暖器全部售完后,商场可获利35%,已知格力取暖器在原售价基础上提高5%,问长虹取暖器调整后的每台售价比原售价多多少元? (3)今年重庆的天气比往年寒冷了许多,进入12月份,格力取暖器的需求量增大,商场在筹备“双十二”促销活动时,决定去甲、乙两个生产厂家都只购进格力取暖器,甲、乙生产厂家给出了不同的优惠措施:甲生产厂家:格力取暖器出厂价为每台60元,折扣数如下表所示:金.支付9700元,若将在两个生产厂家购买格力取暖器的总量改由在乙生产厂家一次性购买,则商场可节约多少元?解析:(1)长虹取暖器购进180台,格力取暖器购进220台;(2)6.5元;(3)1064元【分析】(1)长虹取暖器和格力取暖器的总量是400,两种日光灯的总价是22200,可得方程组,即可得解;(2)设长虹取暖器调整后的每台售价比原售价多m 元根据题意可得:长虹取暖器销售额×(1-13)+格力取暖器销售额=总销售额,根据等量关系列出等式即可; (3)通过已知条件计算出乙生产厂家一次性购买的总支出,然后,在甲乙两家购买总支出-乙生产厂家一次性购买的总支出=节约金额,注意分类讨论,在乙厂家支付的9700元的原价是否小于10000元.【详解】解:(1)设长虹取暖器购进x 台,则格力取暖器购进y 台.由题意得:506022200400x y x y +=⎧⎨+=⎩解得:180y 220x =⎧⎨=⎩ 答:长虹取暖器购进180台,格力取暖器购进220台.(2)设长虹取暖器调整后的每台售价比原售价多m 元, 由题意得:()()()11801m 702209015%22200135%3⎛⎫⨯-++⨯⨯+=⨯+ ⎪⎝⎭解得:m 65=.答:长虹取暖器调整后的每台售价比原售价多6.5元.(3)当购买甲厂家150台,共支付150600.981008610⨯⨯=<.设在甲厂家购买了z 台,则()8100150600.858610z +-⨯⨯=.解得:160z =.若在乙厂家支付的9700元的原价小于10000元,则可节约()()861097001605097002000.982961064+-⨯++⨯-=⎡⎤⎣⎦元.若在乙厂家支付的9700元的原价大于10000元,则可节约()970029686109700160500.982967700.98⎡+⎤⎛⎫+-⨯+⨯-= ⎪⎢⎥⎝⎭⎣⎦元. 答:商场可节约1064元或770元.【点睛】本题主要是考查二元一次方程组的应用,在应用中结合实际情况考虑物品的损耗和最终利润问题,切记:单价×数量=总价,(售价-进价)•数量=利润,利用公式解决问题. 22.对于平面直角坐标系xoy 中的点(),P a b ,若点P'的坐标为(),a kb ka b ++(其中k 为常数,0k ≠)则称点P'为点P 的“k 属派生点”,例如:()1,4P 的“2属派生点”为()'124,214P +⨯⨯+,即()'9,6P .(1)点()2,3P -的“3属派生点”的坐标为________;(2)若点P 的“5属派生点”的坐标为()3,9-,求点P 的坐标.解析:(1)(7,-3);(2)点P 的坐标为(-2,1)【分析】(1)根据公式直接代入计算即可;(2)设点P 的坐标为(a ,b ),根据题意列得5359a b a b +=⎧⎨+=-⎩,求解即可. 【详解】(1)由题意得点()2,3P -的“3属派生点”的横坐标为233-+⨯=7,点()2,3P -的“3属派生点”的纵坐标为3(2)3⨯-+=-3,点()2,3P -的“3属派生点”的坐标为(7,-3),故答案为:(7,-3);(2)设点P 的坐标为(a ,b ),由题意得5359a b a b +=⎧⎨+=-⎩,解得21a b =-⎧⎨=⎩, ∴点P 的坐标为(-2,1).【点睛】此题考查新定义,列方程组解决实际问题,有理数的混合运算,正确理解题中的计算公式是解题的关键.23.如图,线段AB 上有一点C ,D 为线段BC 的中点,E 为线段AC 上一点,EC =4AE , AB =25(1)若AD =20,求AE 的长;(2)若DE =14,求BC 的长解析:(1)AE=3;(2)BC=20【分析】(1)设AE =a ,CD =b ,根据线段的和差倍数关系即可求解;(2)设AE =a ,CD =b ,根据线段的和差倍数关系即可求解;【详解】解:(1)设AE =a ,CD =b ,∵EC =4AE ,D 为线段BC 的中点,∴CE =4a ,AC =AE +CE =5a ,BC =2b ,∵AD =20,AB =25∴AC +CD =5a +b =20AC +BC =5a +2b =25解得:a =3,b =5即AE =a =3;(2)设AE =a ,CD =b ,∵EC =4AE ,D 为线段BC 的中点,∴CE =4a ,BC =2b ,∵DE =CE +CD =4a +b =14AB =AE +CE +BC =5a +2b =25解得:a =1,b =10即BC =2b =20.【点睛】本题考查两点间的距离和二元一次方程组,解题的关键是熟练掌握线段中点的性质及线段的和差倍数.24.一个电器超市购进A 、B 两种型号的电风扇进行销售,已知购进2台A 型号和3台B 型号共用910元,购进3台A 型号比购进2台B 型号多用260元.(1)求A 、B 两种型号的电风扇每台进价分别是多少元?(2)超市根据市场需求,决定购进这两种型号的电风扇共30台进行销售,A 种型号电风扇每台售价260元,B 种型号电风扇每件售价190元,若超市购进的两种电风扇全部售出后,总获利是1400元,求该超市本次购进A 、B 两种型号的电风扇各多少台?解析:(1)A 、B 两种型号的电风扇每台进价分别是200元和170元;(2)该超市本次购进A 、B 两种型号的电风扇各是20台和10台【分析】(1)设A 、B 两种型号的电风扇每台进价分别是x 元、y 元,进而利用购进2台A 型号和3台B 型号共用910元,购进3台A 型号比购进2台B 型号多用260元,列出二元一次方程组求出答案;(2)首先设购进A 种型号的电风扇a 台,则设购进B 种型号的电风扇(30-a )台,直接利用本次购进的两种电风扇全部售出后,总获利为1400元,列方程求出答案.【详解】解:(1)设A 、B 两种型号的电风扇每台进价分别是x 元、y 元,依题意,得2391032260x y x y +=⎧⎨-=⎩,解得200170x y =⎧⎨=⎩, 答:A 、B 两种型号的电风扇每台进价分别是200元和170元.(2)设购进A 种型号的电风扇a 台,则设购进B 种型号的电风扇(30)a -台, 依题意,得:(260200)(190170)(30)1400a a -+--=,解得:20a =,则3010a -=.答:该超市本次购进A 、B 两种型号的电风扇各是20台和10台.【点睛】此题主要考查了二元一次方程的应用,正确根据题目间等量关系列方程组进行计算求解是解题关键.25.阅读感悟:有些关于方程组的问题,需要求的结果不是每一个未知数的值,而是关于未知数的代数式的值,如以下问题:已知实数x ,y 满足35x y -=①,237x y +=②,求4x y -和75x y +的值.本题常规思路是将①②两式联立组成方程组,解得x ,y 的值再代入欲求值的代数式得到答案,常规思路运算量比较大.其实,仔细观察两个方程未知数的系数之间的关系,本题还可以通过适当变形整体求得代数式的值,如由①-②可得42x y -=-,由①+②×2可得7519x y +=.这样的解题思想就是通常所说的“整体思想”.解决问题:(1)已知二元一次方程组23173213x y x y +=⎧⎨+=⎩,则x y -= ,x y += ; (2)“战疫情,我们在一起”,某公益组织计划为老年公寓捐赠一批防疫物资.已知购买20瓶消毒液、3支测温枪、2套防护服共需1180元;购买30瓶消毒液、2支测温枪、8套防护服共需2170元,若该公益组织实际捐赠了100瓶消毒液、10支测温枪、20套防护服,则购买这批防疫物资共需多少元?(3)对于实数x ,y ,定义新运算:x y ax by c *=-+,其中a ,b ,c 是常数,等式右边是通常的加法和乘法运算.已知3515*=,4728*=,求11*的值.解析:(1)﹣4;6;(2)购买这批防疫物资共需6700元;(3)11=11*-.【分析】(1)直接把两个方程相加或相减,即可求出答案;(2)根据题意,列出方程组,然后利用整体思想代入计算,即可得到答案;(3)根据题意,利用新定义进行计算,然后利用整体的思想即可求出11*的值.【详解】解:(1)23173213x y x y +=⎧⎨+=⎩①② 由①+②,得5530x y +=,∴6x y +=;由②-①,得4x y -=-;故答案为:﹣4;6.(2)设的消毒液单价为m 元,测温枪的单价为n 元,防护服的单价为p 元, 依题意,得: 2032118030282170m n p m n p ++=⎧⎨++=⎩①②, 由①+②可得505103350m n p ++=,∴1001020335026700m n p ++=⨯=.答:购买这批防疫物资共需6700元.(3)依题意,得: 35154728a b c a b c -+=⎧⎨-+=⎩①②, 由3×①﹣2×②可得:11a b c -+=-,∴1111a b c *=-+=-.【点睛】本题考查了二元一次方程组的应用,解二元一次方程的方法,以及利用整体的思想进行解题,解题的关键是熟练掌握利用整体思想进行解题.26.萱萱家为方便她上学,在黄冈小河中学旁边购买了一套经济适用房.她家准备将地面铺上地砖,地面结构如图所示.根据图中的数据(单位:m ),解答下列问题: (1)写出用含x 、y 的整式表示地面总面积;(2)已知客厅面积是厨房面积的4倍,且地面总面积是卫生间面积的15倍,铺1m 2地砖的平均费用为80元,求铺地砖的总费用为多少元?解析:(1)6218x y ++;(2)3600元【分析】(1)根据长方形的面积=长×宽,表示各部分的面积,于是可表示出总面积.(2)根据已知客厅面积是厨房面积的4倍,且地面总面积是卫生间面积的15倍,列出方程组求解,可求出总面积,再根据单价可求出铺地砖的总费用.【详解】解:(1)卧室的长=2+2=4,厨房的长=6-3=3,∴地面的总面积为:3×4+2y+2×3+6x=6x+2y+18.(2)由题意得64236218152x x y y =⨯⨯⎧⎨++=⨯⎩解得:41.5x y =⎧⎨=⎩∴地面总面积为:S=6x+2y+18=45(m 2),∴铺地砖的总费用为:45×80=3600(元).答:那么铺地砖的总费用为3600元.【点睛】本题考查二元一次方程组的应用,关键是能根据等量关系列出方程组.27.在新冠疫情期间,为支援武汉,现将我市大米运往武汉.有大小两种货车,2辆大货车与3辆小货车一次可以运货15.5吨,5辆大货车与6辆小货车一次可以运货35吨.那么3辆大货车与5辆小货车一次可以运货多少吨.。

人教版 七年级数学下册 第8章 二元一次方程组 综合练习(包含答案)

人教版 七年级数学下册 第8章 二元一次方程组 综合练习(包含答案)

人教版 七年级数学下册 第8章 二元一次方程组综合练习(含答案)一、单选题(共有8道小题) 1.若方程6mx ny += 的两个解是12,11x x y y ==⎧⎧⎨⎨==-⎩⎩,则m,n 的值为( )A.4,2B.2,4C.-4,-2D.-2,-42.方程529x y +=-与下列方程构成的方程组的解为2,12x y =-⎧⎪⎨=⎪⎩的解是( )A.21x y +=B.328x y +=-C.543x y +=-D.348x y -=-3.某单位组织34人分别到井冈山和瑞金进行革命传统教育,到井冈山的人数是瑞金的人数的2倍多1人,求到两地的人数各是多少?设到井冈山的人数为x 人,到瑞金的人数为y 人.下面所列的方程组正确的是( )A.3412x y x y +=⎧⎨+=⎩B.3421x y x y +=⎧⎨=+⎩C.3421x y x y +=⎧⎨=+⎩D.23421x y x y +=⎧⎨=+⎩4.若方程mx +ny =6的两个解是11x y =⎧⎨=⎩,⎩⎨⎧-==12y x ,则m ,n 的值为( )A .4,2B .2,4C .-4,-2D .-2,-45.已知()230x y -+=,则x y +的值为()A .0B .-1C .1D .5 6.若0125=+-+++b a b a ,则()2015b a -= ( )A .1-B .1C .20155D .20155-7.如果将满足方程的一对x ,y 值叫做方程的一组解,那么34x y +=的解的组数是( ).A .1组B .2组C .无数组D .没有解8.为推进课改,王老师把班级里40名学生分成若干小组,没小组只能是5人或6人,则有( )种分组方案A.4B.3C.2D.19.已知x ,y 满足方程组2523x y x y -=⎧⎨+=-⎩,则224x y -的值为 .10.方程组02x y x y +=⎧⎨-=⎩的解为_____.11.二元一次方程组7413563x y x y -=⎧⎨-=⎩的解________x y =⎧⎨=⎩.12.今年“五一”节,A 、B 两人到商场购物,A 购3件甲商品和2件乙商品共支付16元,B 购5件甲商品和3件乙商品共支付25元,求一件甲商品和一件乙商品各售多少元.设甲商品售价x 元/件,乙商品售价y 元/件,则可列出方程组 . 13.已知21x y =⎧⎨=⎩是二元一次方程组71mx ny nx my +=⎧⎨-=⎩的解,则3m n +的立方根为 。

七年级数学下册 专题 解二元一次方程组(计算题50题)(解析版)

七年级数学下册 专题 解二元一次方程组(计算题50题)(解析版)

七年级下册数学《第八章二元一次方程组》专题解二元一次方程组(计算题50题)1.用代入法解下列方程组:(1)−=4,3+=16;(2)−=2,3+5=14.【分析】(1)−=4①3+=16②,由①得:x=y+4,代入②得:3(y+4)+y=16,即可求出y的值,则x的值也就迎刃而解了;(2)−=4①3+5=14②,由①得:y=x﹣2,代入②得:3x+5(x﹣2)=14,即可求出x的值,则y的值也就可以求出了.【解答】解:(1)−=4①3+=16②,由①得:x=y+4,代入②得:3(y+4)+y=16,解得y=1.将y=1代入x=y+4中得x=5,故方程组的解为:=5=1;(2)−=4①3+5=14②,由①得:y=x﹣2,代入②得:3x+5(x﹣2)=14,解得x=3.将x=3代入y=x﹣2,得y=1.故方程组的解为:=3=1.【点评】本题主要考查了二元一次方程组的解法,解题的关键是掌握代入法解方程.2.用代入法解下列方程组:(1)2−=33+2=8;(2)+=103−2=5.【分析】两方程组利用代入消元法求出解即可.【解答】解:(1)2−=3①3+2=8②,由①得:y=2x﹣3③,把③代入②得:3x+2(2x﹣3)=8,解得:x=2,把x=2代入③得:y=4﹣3=1,则方程组的解为=2=1;(2)+=10①3−2=5②,由①得:u=10﹣v③,把③代入②得:3(10﹣v)﹣2v=5,解得:v=5,把v=5代入①得:5+u=10,解得:u=5,则方程组的解为=5=5.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.3.用代入法解下列方程组:(1)3−=2,9+8=17;(2)3−4=10+3=12.【分析】(1)由①得出y =3x ﹣2③,把③代入②得出9x +8(3x ﹣2)=17,求出x ,再把x =1代入③求出y 即可;(2)由②得出x =12﹣3y ③,把③代入①得出3(12﹣3y )﹣4y =10,求出y ,再把y =2代入③求出x 即可.【解答】解:(1)3−=2①9+8=17②,由①,得y =3x ﹣2③,把③代入②,得9x +8(3x ﹣2)=17,解得:x =1,把x =1代入③,得y =3×1﹣2,即y =1,所以原方程组的解是=1=1;(2)3−4=10①+3=12②,由②,得x =12﹣3y ③,把③代入①,得3(12﹣3y )﹣4y =10,解得:y =2,把y =2代入③,得x =12﹣3×2,即x =6,所以原方程组的解是=6=2.【点评】本题考查了解二元一次方程组,能把二元一次方程组转化成一元一次方程是解此题的关键.4.用代入法解下列方程组.(1)+2=4=2−3;(2)−=44+2=−2.【分析】(1)方程组利用代入消元法求出解即可;(2)方程组利用加减消元法求出解即可.【解答】解:(1)+2=4①=2−3②,把②代入①得:x +2(2x ﹣3)=4,解得:x =2,把x =2代入②得:y =4﹣3=1,则方程组的解为=2=1;(2)方程组整理得:−=4①2+=−1②,①+②得:3x =3,解得:x =1,把x =1代入①得:1﹣y =4,解得:y =﹣3,则方程组的解为=1=−3.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.5.用代入法解下列方程组:(1)5+4=−1.52−3=4(2)4−3−10=03−2=0【分析】(1)方程组利用代入消元法求出解即可;(2)方程组利用代入消元法求出解即可.【解答】解:(1)5+4=−1.5①2−3=4②,由②得:x =3r42③,把③代入①得:15r202+4y =﹣1.5,去分母得:15y +20+8y =﹣3,移项合并得:23y =﹣23,解得:y =﹣1,把y =﹣1代入③得:x =12,则方程组的解为=12=−1;(2)方程组整理得:4−3−10=0①=23t ,把②代入①得:83y ﹣3y ﹣10=0,去分母得:8y ﹣9y ﹣30=0,解得:y=﹣30,把y=﹣30代入②得:x=﹣20,则方程组的解为=−20=−30.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.6.用代入法解下列方程组:(1)−=42+=5;(2)3−=29+8=17;(3)3+2=−86−3=−9.【分析】各方程组利用代入消元法求出解即可.【解答】解:(1)−=4①2+=5②,由①得:x=y+4③,把③代入②得:2(y+4)+y=5,解得:y=﹣1,把y=﹣1代入③得:x=﹣1+4=3,则方程组的解为=3=−1;(2)3−=2①9+8=17②,由①得:y=3x﹣2③,把③代入②得:9x+8(3x﹣2)=17,解得:33x=33,解得:x=1,把x=1代入③得:y=3﹣2=1,则方程组的解为=1=1;(3)3+2=−8①2−=−3②,由②得:y=2x+3③,把③代入①得:3x+2(2x+3)=﹣8,解得:x=﹣2,把x=﹣2代入②得:﹣4﹣y=﹣3,解得:y=﹣1,则方程组的解为=−2=−1.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.7.用代入法解下列方程组:(1)3+2=11,①=+3,②(2)4−3=36,①+5=7,②(3)2−3=1,①3+2=8,②【分析】(1)将方程②代入方程①进行求解;(2)将方程②变形为y=﹣5x+7,再代入方程①进行求解;(3)将方程①变形为y=2K13,再代入方程②进行求解.【解答】解:(1)将方程②代入方程①得,3(y+3)+2y=11,解得y=25,把y=25代入②得,x=175,∴该方程组的解为=175=25;(2)将方程②变形为y=﹣5x+7③,把③代入①得,4x﹣3(﹣5x+7)=36,解得x=3,将x=3代入③得,y=﹣5×3+7,解得y=﹣8,∴该方程组的解为=3=−8;(3)将方程①变形为y=2K13③,把③代入②得,3x+2×2K13=8,解得x=2,将x =2代入③得,y =2×2−13,解得y =1,∴该方程组的解为=2=1.【点评】此题考查了利用代入法解二元一次方程组的能力,关键是能直接或将某方程变式后进行代入消元求解.8.用代入法解下列方程组:(1)5+2=15①8+3=−1②;(2)3(−2)=−172(−1)=5−8.【分析】(1)用代入消元法解二元一次方程组即可;(2)用代入消元法解二元一次方程组即可.【解答】解:(1)5+2=15①8+3=−1②,由①得,y =15−52③,将③代入②得,8x +15−52×3=﹣1,解得,x =﹣47,将x =﹣47代入①得,y =125,∴方程组的解为=−47=125;(2)3(−2)=−172(−1)=5−8,整理得,3−=−11①2−5=−6②,由①得,x =3y +11③,将③代入②得,y =﹣28,将y =﹣28代入①得,x =﹣73,∴方程组的解为=−73=−28.【点评】本题考查二元一次方程组的解,熟练掌握代入消元法和加减消元法解二元一次方程组是解题的关键.9.用代入法解下列方程组:(1)=6−53−6=4(2)5+2=15+=6(3)3+4=22−=5(4)2+3=73−5=1【分析】(1)用代入消元法解方程组即可.(2)用代入消元法解方程组即可.(3)用代入消元法解方程组即可.(4)用代入消元法解方程组即可.【解答】解:(1)=6−5s3−6=4②,把①代入②得3(6﹣5y)﹣6y=4,解得y=23,∴x=6−5×23=83,所以方程组的解为=83=23;(2)5+2=15①+=6②,由②得x=6﹣y③,把③代入①,得y=5,∴x=6﹣5=1,所以原方程组的解为=1=5;(3)3+4=2①2−=5②,由②得y=2x﹣5③,把③代入①得,解得x=2,∴y=2×2﹣5=﹣1,所以原方程组的解为=2=−1;(4)2+3=7①3−5=1②,由①得x=7−32③,把③代入②得解得y=1,∴x=7−3×12=2,所以原方程组的解为=2=1.【点评】本题考查二元一次方程组的解法,解题关键是熟知代入消元法解方程组的步骤.10.用代入法解下列方程组:(1)2+=3+2=−6;(2)+5=43−6=5;(3)2−=63+2=2;(4)5+2=113−=−9;【分析】(1)用代入消元法解方程组即可.(2)用代入消元法解方程组即可.(3)用代入消元法解方程组即可.(4)用代入消元法解方程组即可.【解答】解:(1)2+=3①+2=−6②,由①得y=3﹣2x,把y=3﹣2x代入②得x+2(3﹣2x)=﹣6,解得x=4,∴y=3﹣2×4=﹣5.∴方程组的解为=4=−5.(2)+5=4①3−6=5②,由①得x=4﹣5y,把x=4﹣5y代入②得3(4﹣5y)﹣6y=5,解得y=13,∴x=4﹣5×13=73.∴方程组的解为=73=13.(3)2−=6①3+2=2②,由①得y=2x﹣6,把y=2x﹣6代入②得3x+2(2x﹣6)=2,解得x=2,∴y=2x﹣6=2×2﹣6=﹣2.方程组的解为=2=−2.(4)5+2=11①3−=−9②,由②得x=3y+9,把x=3y+9代入①得5(3y+9)+2y=11,解得y=﹣2,∴x=3×(﹣2)+9=3.∴方程组的解为=3=−2.【点评】本题考查二元一次方程组的解法,解题关键是熟知代入消元法解方程组的步骤.1.用加减法解下列方程组:(1)4−=143+=7(2−2=7−3=−8【分析】(1)方程组利用加减消元法求出解即可;(2)方程组利用加减消元法求出解即可.【解答】解:(1)4−=14①3+=7②,①+②得:7x=21,解得:x=3,把x=3代入②得:y=﹣2,则方程组的解为=3=−2;(2−2=7①−3=−8②,①﹣②得:y=15,把y=15代入①得:x=74,则方程组的解为=74=15.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.2.用加减法解下列方程组:(1)2+7=53+=−2(2)5=123=−2(37=127=13【分析】(1)由②得出n=﹣2﹣3m③,把③代入①得出2m+7(﹣2﹣3m)=5,求出m,把m=﹣1代入③求出n即可;(2)②﹣①×2得出13v=﹣26,求出v,把v=﹣2代入①求出u即可;(3)整理后①+②得出28x=35,求出x,②﹣①求出y即可.【解答】解:(1)2+7=5①3+=−2②由②得:n=﹣2﹣3m③,把③代入①得:2m+7(﹣2﹣3m)=5,解得:m=﹣1,把m=﹣1代入③得:n=1,所以原方程组的解是:=−1=1;(2)2−5=12①4+3=−2②②﹣①×2得:13v=﹣26,解得:v=﹣2,把v=﹣2代入①得:2u+10=12,解得:u=1,所以原方程组的解是:=1=−2;(3)整理得:14−6=21①14+6=14②,①+②得:28x=35,解得:x=54,②﹣①得:12y=﹣7,解得:y=−712,所以原方程组的解是:=54=−712.【点评】本题考查了解二元一次方程组,能把二元一次方程组转化成一元一次方程是解此题的关键.3.用加减法解下列方程组:(1)−=53+4=−1.2+=4;(2)−2=3【分析】(1)方程组利用加减消元法求出解即可;(2)方程组利用加减消元法求出解即可.【解答】解:(1)−=5①2+=4②,①+②得:3x =9,解得:x =3,把x =3代入①得:3﹣y =5,解得:y =﹣2,则方程组的解为=3=−2;(2)−2=3①3+4=−1②,①×2+②得:5x =5,解得:x =1,把x =1代入①得:1﹣2y =3,解得:y =﹣1,则方程组的解为=1=−1.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.4.用加减法解下列方程组:(1)4−3=11,2+=13;(2)−=3,2+3(−p =11【分析】(1)方程组利用加减消元法求出解即可;(2)方程组整理后,利用加减消元法求出解即可.【解答】解:(1)4−3=11①2+=13②,①+②×3得:10x =50,解得:x =5,把x =5代入①得:20﹣3y =11,解得:y =3,所以方程组的解为=5=3;(2)方程组整理得:−=3①3−=11②,②﹣①得:2x =8,解得:x =4,把x=4代入①得:4﹣y=3,解得:y=1,所以方程组的解为=4=1.【点评】此题考查了解二元一次方程组,解方程组利用了消元的思想,消元的方法有:代入消元法与加减消元法.5.用加减法解下列方程组:(1)3+2=76−2=11(2)2+=33+=4.【分析】各个方程组利用加减消元法求出解即可.【解答】解:(1)3+2=7①6−2=11②,①+②得:9μ=18,即μ=2,把μ=2代入①得:6+2t=7,解得:t=12,则方程组的解为=2=12;(2)2+=3①3+=4②,②﹣①得:a=1,把a=1代入①得:2+b=3,解得:b=1,则方程组的解为=1=1.【点评】此题考查了解二元一次方程组,熟练掌握运算法则是解本题的关键.6.(2023•市北区校级开学)用加减法解下列方程组:(1)3−4=04+=8;(2+=3−32=−1.【分析】(1)方程组利用加减消元法求出解即可;(2)方程组整理后,利用加减消元法求出解即可.【解答】解:(1)3−4=0①4+=8②,①+②得:4y=8,解得:y=2,把y=2代入②得:4x+2=8,解得:x=32,则方程组的解为=32=2;(2)方程组整理得:2+=3①−3=−2②,①×3+②得:7x=7,解得:x=1,把x=1代入①得:2+y=3,解得:y=1,则方程组的解为=1=1.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法是代入消元法与加减消元法.7.(2022秋•陕西期末)用加减法解下列方程组:(1)−=33−8=14;(2+2=10=1+r13.【分析】(1)根据加减消元法解二元一次方程组即可求解;(2)将第二个方程去分母化简,然后根据加减消元法解二元一次方程组即可求解.【解答】解:(1)−=3①3−8=14②,①×3﹣②得:﹣3y+8y=9﹣14,解得:y=﹣1,将y=﹣1代入①得:x+1=3,解得:x=2,∴原方程组的解为:=2=−1;(2+2=10①=1+r13②,由②得3x=6+2(y+1),即3x﹣2y③,①﹣③得:4y=2,解得:=12,①+③得:6x=18,解得:x=3,∴原方程组的解为:=3=12.【点评】本题考查了加减消元法解二元一次方程组,掌握解二元一次方程组的方法是解题的关键.8.用加减法解下列方程组:(1)+3=,2(+1)−=6;(2)+=2800,96%+64%=2800×92%.【分析】(1)先用第二个方程减去第一个方程即可得到x 的值,然后将x 的值代入任意一个方程,解方程即可得到y 的值;(2)先对方程组进行化简可得+=2800①3+2=8050②,易得两个方程中y 的系数存在2倍关系,故只需用方程②减去方程①乘2的积即可得到关于x 的方程,解方程即可.【解答】解:(1)+3=,①2(+1)−=6.②②﹣①,得x ﹣1=6,∴x =7,x =7代入①得y =10,所以原方程组的解为=7=10.(2)原方程化简得+=2800,①3+2=8050.②②﹣①×2,得﹣x =﹣2450,∴x =2450,将x =2450代入①得:y =350,∴原方程组的解为:=2450=350.【点评】本题考查二元一次方程组的解法,利用正确的方法求解是本题的关键.9.用加减法解下列方程组:(1)−=5,①2+=4;②(2)−2=1,①+3=6;②(3)2−=5,①−1=12(2−1).②【分析】(1)利用加减消元法解答即可;(2)利用加减消元法解答即可;(3)利用加减消元法解答即可.【解答】解:(1)−=5①2+=4②,①+②得:3x=9,解得:x=3,把x=3代入①得:3﹣y=5,解得:y=﹣2,所以方程组的解为:=3=−2;(2)−2=1①+3=6②,②﹣①得:5y=5,解得:y=1,把y=1代入①得:x﹣2=1,解得:x=3,所以方程组的解为:=3=1;(3)2−=5①−1=12(2−1)②,由②得:2x﹣2y=1③,①﹣③得:y=4,把y=4代入①得:2x﹣4=5,解得:x=92,所以方程组的解为:=92=4.【点评】此题考查了解二元一次方程组,以及解一元一次方程,熟练掌握运算法则是解本题的关键.10.用加减法解下列方程组:(1)+3=62−3=3(2)7+8=−57−=4(3)−1=3(−2)+4=2(+1)(4+4=1−3=−1.【分析】各方程组整理后,利用加减消元法求出解即可.【解答】解:(1)+3=6①2−3=3②,①+②得:3x=9,即x=3,把x=3代入①得:y=1,则方程组的解为=3=1;(2)7+8=−5①7−=4②,①﹣②得:9y=﹣9,即y=﹣1,把y=﹣1代入①得:x=37,则方程组的解为=37=−1;(3)方程组整理得:3−=5①2−=2②,①﹣②得:x=3,把x=3代入①得:y=4,则方程组的解为=3=4;(4)方程组整理得:4+3=12①3−2=−6②,①×2+②×3得:17x=6,即x=617,①×3﹣②×4得:17y=60,即y=6017,则方程组的解为=617=6017.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.1.(2022春•新田县期中)用指定的方法解下列方程组:(1)2−5=14①3+5=16②(加减法).=−t(代入法);(2)2+3=9①【分析】(1)方程组利用代入消元法求出解即可;(2)方程组利用加减消元法求出解即可.【解答】解:(1)把②代入①得:2x+5x=14,解得:x=2,把x=2代入②,得:y=﹣2,则原方程组的解是=2=−2;(2)①×3得:6x+9y=27③,②×2得:6x+10y=32④,④﹣③得:y=5,把y=5代入①得:2x+15=9,解得:x=﹣3,则原方程组的解是=−3=5.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.2.(2022春•安岳县校级月考)解下列方程组:(1)3−=75+2=8(用代入法);(23=104=5(用加减法).【分析】(1)方程组利用代入消元法求出解即可;(2)方程组利用加减消元法求出解即可.【解答】解:(1)3−=7①5+2=8②,由①得:y=3x﹣7③,把③代入②得:5x+2(3x﹣7)=22,解得:x=2,把x=2代入①得:6﹣y=7,解得:y=﹣1,则方程组的解为=2=−1;(2)方程组整理得:3+4=120①4−3=60②,①×3+②×4得:25m=600,解得:m=24,把m=24代入①得:72+4n=120,解得:n=12,则方程组的解为=24=12.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.3.(2022春•大连期中)用指定的方法解下列方程组:(1)−3=42+=13(代入法);(2)5+2=4+4=−6(加减法).【分析】(1)利用代入法解方程组;(2)利用加减消元法解方程组.【解答】解:(1)−3=4①2+=13②,由①得x =3y +4③,把③代入②,得2(3y +4)+y =13,解得y =57,∴x =3×57+4=617,∴方程组的解为=617=57;(2)5+2=4①+4=−6②,①×2﹣②,得9x =14,解得x =149,把x =149代入②,得149+4y =﹣6,解得y =−179.∴方程组的解为=149=−179.【点评】本题考查了解二元一次方程组,做题的关键是掌握加减消元法,和代入消元法解二元一次方程组.4.(2022春•宁远县月考)请用指定的方法解下列方程组(1)5−=113+=7(代入消元法);(2)2−5=245+2=31(加减消元法).【分析】(1)由方程①,得b =5a ﹣11,再代入方程②求出未知数a ,进而得出未知数b ;(2)用方程①×2﹣②×5,可消去未知数y ,求出未知数x ,进而得出y 的值.【解答】解:(1)5−=11①3+=7②,由①,得b =5a ﹣11③,把③代入②,得3a +5a ﹣11=7,解得a =94,把a=94代入③,得b=14,故方程组的解为=94=14;(2)2−5=24①5+2=31②,①×2﹣②×5,得29x=203,解得x=7,把x=7代入①,得y=﹣2,故方程组的解为=7=−2.【点评】本题考查了解二元一次方程组,掌握加减消元法和代入消元法是解答本题的关键.5.(2021秋•蒲城县期末)请用指定的方法解下列方程组:(1)2+3=11①=+3②(代入消元法);(2)3−2=2①4+=10②(加减消元法).【分析】(1)利用代入消元法进行求解即可;(2)利用加减消元法进行求解即可.【解答】解:(1)2+3=11①=+3②,把②代入①得:2(y+3)+3y=11,解得y=1,把y=1代入②得:x=1+3=4,故原方程组的解是:=4=1;(2)3−2=2①4+=10②,②×2得:8x+2y=20③,①+③得:11x=22,解得x=2,把x=2代入②得:8+y=10,解得y=2,故原方程组的解是:=2=2.【点评】本题主要考查解二元一次方程组,解答的关键是对解二元一次方程组的方法的掌握.6.(2022秋•历下区期中)请用指定的方法解下列方程组:(1)−2=22+3=12(代入法);(2)6−5=36+=−15(加减法).【分析】(1)整理后由①得出n =2m ﹣4③,把③代入②得出2m +3(2m ﹣4)=12,求出m ,再把m =3代入③求出n 即可;(2)②﹣①得出6t =﹣18,求出t ,再把t =﹣3代入①求出s 即可.【解答】解:(1)整理得:2−=4①2+3=12②,由①,得n =2m ﹣4③,把③代入②,得2m +3(2m ﹣4)=12,解得:m =3,把m =3代入③,得n =2×3﹣4=6﹣4=2,所以原方程组的解是=3=2;(2)6−5=3①6+=−15②,②﹣①,得6t =﹣18,解得:t =﹣3,把t =﹣3代入①,得6s +15=3,解得:s =﹣2,所以原方程组的解是=−2=−3.【点评】本题考查了解二元一次方程组,能把二元一次方程组转化成一元一次方程是解此题的关键,解二元一次方程组的方法有代入消元法和加减消元法两种.7.(2022春•泰安期中)用指定的方法解下列方程组(1)3+4=19−=4(代入消元法);(2)2+3=−53−2=12(加减消元法);(3−9)=6(−2)r13=2.【分析】(1)方程组利用代入消元法求出解即可;(2)方程组利用加减消元法求出解即可;(3)方程组整理后,利用加减消元法求出解即可.【解答】解:(1)3+4=19①−=4②,由②得:x =y +4③,把③代入①得:3(y +4)+4y =19,解得:y=1,把y=1代入③得:x=1+4=5,则方程组的解为=5=1;(2)2+3=−5①3−2=12②,①×2+②×3得:13x=26,解得:x=2,把x=2代入①得:4+3y=﹣5,解得:y=﹣3,则方程组的解为=2=−3;(3)方程组整理得:5−6=33①3−4=28②,①×2﹣②×3得:x=﹣18,把x=﹣18代入①得:﹣90﹣6y=33,解得:y=−412,则方程组的解为=−18=−412.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.8.(2021秋•历下区期中)请用指定的方法解下列方程组:(1)3+2=143+4=17.(加减法)=+3;(代入法)(2)2+3=12【分析】(1)用代入消元法解方程组即可;(2)用加减消元法解方程组即可.【解答】解:(1)3+2=14①=+3②,将②代入①,得3y+9+2y=14,解得y=1,将y=1代入②得x=4,∴方程组的解为=4=1;(2)2+3=12①3+4=17②,①×3得,6x+9y=36③,②×2得,6x+8y=34④,③﹣④,得y=2,将y=2代入①得,x=3,∴方程组的解为=3=2.【点评】本题考查二元一次方程组的解,熟练掌握代入消元法和加减消元法解二元一次方程组的方法是解题的关键.9.(2021春•沙河口区期末)用指定的方法解下列方程组:(1)=2−33+2=8(代入法);(2)3+4=165−6=33(加减法).【分析】(1)把①代入②得出x的值,再把x的值代入①求出y的值,从而得出方程组的解;(2)①×3+②×2得出19x=114,求出x,把x=6代入①求出y即可.【解答】解:(1)=2−3①3+2=8②,把①代入②得:3x+2(2x﹣3)=8,解得:x=2,把x=2代入①得:y=1,则原方程组的解是:=2=1.(2)3+4=16①5−6=33②,①×3+②×2得:19x=114,解得:x=6,把x=6代入①得:18+4y=16,解得:y=−12,所以方程组的解=6=−12.【点评】本题考查了解二元一次方程组,能把二元一次方程组转化成一元一次方程是解此题的关键.10.用指定的方法解下列方程组:(1)3+4=19−=4(代入法);(2)2+3=−53−2=12(加减法).【分析】(1)由②得出x=4+y③,把③代入①得出3(4+y)+4y=19,求出y,把y =1代入③求出x即可;(2)①×2+②×3得出13x=26,求出x,把x=2代入①求出y即可.【解答】解:(1)3+4=19①−=4②,由②得:x=4+y③,把③代入①得:3(4+y)+4y=19,解得:y=1,把y=1代入③得:x=4+1=5,所以方程组的解是=5=1;(2)2+3=−5①3−2=12②,①×2+②×3得:13x=26,解得:x=2,把x=2代入①得:4+3y=﹣5,解得:y=﹣3,所以方程组的解=2=−3.【点评】本题考查了解二元一次方程组,能把二元一次方程组转化成一元一次方程是解此题的关键.1.(2022•苏州模拟)用适当的方法解下列方程组.(1)+2=9−3=1;(2−34=1−p−(−4p=4.【分析】(1)利用加减消元法,方程组可化为:7y=28,解得:y=4,将y=4代入①得:x=1;(2)先将方程组化为:8−9=12①8−5=4②,利用加减消元法解得:y=﹣2,将y=﹣2代入①得:=−34.【解答】解:(1)+2=9①−3=1②①×3+②得:7y=28,解得:y=4,将y=4代入①得:x=1,即方程的解为:=1=4;(2)原方程组可化为:8−9=12①8−5=4②,①﹣②得:﹣4y=8,解得:y=﹣2,将y=﹣2代入①得:=−34,即方程的解为:=−34=−2.【点评】本题主要考查的是二元一次方程组的解法,利用合适的方法解方程组即可.2.(2022秋•锦江区校级期末)用适当的方法解下列方程组.(1)=2−14+3=7;(2)3+2=22+3=28,.【分析】(1)方程组利用代入消元法求解即可;(2)用方程①×3﹣②×2,可消去未知数y,求出未知数x,进而得出y的值.【解答】解:(1)=2−1①4+3=7②,把①代入②,得4(2y﹣1)+3y=7,解得y=1,把y=1代入①,得x=1,故原方程组的解为=1=1;(2)3+2=2①2+3=28②,①×3﹣②×2,得5x=﹣50,解得x=﹣10,把x=﹣10代入①,得y=16,故原方程组的解为=−10=16.【点评】本题考查了解二元一次方程组,掌握加减消元法和代入消元法是解答本题的关键.3.用适当的方法解下列方程组:(1)+2=0,3+4=6;(2=21)−=11(3)+0.4=40,0.5+0.7=35;(4K4=−14,5(r1)12=2.【分析】(1)由x+2y=0可用y表示x,利用代入消元法求第一个方程组的解.同理解(2)(3)利用加减消元法求方程组的解.(4)对于关于m、n的方程,将其化为整系数方程时,给第一个方程两边同时乘12,给第二个方程两边同时乘12.利用加减消元法求方程组的解.【解答】解:(1)+2=0,①3+4=6;②由①,得x=﹣2y,③把③代入②,得﹣6y+4y=6,解得y=﹣3,把y=﹣3代入①,得x=6.∴原方程组的解为=6=−3;(2=2s1)−=11②由①,得x+1=6y,③把③代入②,得12y﹣y=11,解得y=1.把y=1代入③,得x+1=6,解得x=5.∴原方程组的解为=5=1;(3)+0.4=40,①0.5+0.7=35;②②×2,得x+1.4y=70,③③﹣①,得y=30.把y=30代入①,得x+0.4×30=40,解得x=28.∴原方程组的解为=28=30;(4K4=−14,5(r1)12=2,原方程组化为:+7=−3,①2−5=13,②,①×2﹣②,得19n=﹣19,解得n=﹣1.把n=﹣1代入①,得m﹣7=﹣3,解得m=4.∴原方程组的解为=4=−1.【点评】此题主要考查了解二元一次方程组的方法,灵活运用代入消元法和加减消元法是解题的关键.4.(2022•天津模拟)用适当的方法解下列方程组:(1)+=52−=4;(2=r24−K33=112.【分析】(1)应用代入消元法,求出方程组的解即可.(2)应用加减消元法,求出方程组的解即可.【解答】解:(1)+=5①2−=4②,由①,可得:x=5﹣y③,③代入②,可得:2(5﹣y)﹣y=4,解得y=2,把y=2代入③,可得:x=5﹣2=3,∴原方程组的解是=3=2.(2=r24①−K33=112②,由①,可得:4x﹣3y=2③,由②,可得:3x﹣4y=﹣2④,③×4﹣④×3,可得7x=14,解得x=2,把x=2代入③,可得:4×2﹣3y=2,解得y=2,∴原方程组的解是=2=2.【点评】此题主要考查了解二元一次方程组的方法,注意代入消元法和加减消元法的应用.5.(2021•越城区校级开学)用适当的方法解下列方程组:(1)2−3=7−3=7.(2)0.3+0.4=40.2+2=0.9.【分析】(1)利用加减法消元法解二元一次方程组即可;(2)先整理方程,再利用加减消元法解二元一次方程组即可.【解答】解:(1)2−3=7①−3=7②,①﹣②得x =0,把x =0代入②得0﹣3y =7,解得y =−73,∴方程组的解为=0=−73;(2)整理原方程组得3+4=40①2−9=−20②,①×2﹣②×3得35q =140,q =4,把q =4代入②得2p ﹣36=﹣20,解得p =8,∴方程组的解为=8=4.【点评】本题考查了解二元一次方程组,做题关键是掌握加减消元法和代入消元法解二元一次方程组.6.(2022春•东城区校级月考)用适当的方法解下列方程组(1)+=52+=8;(2)2+3=73−2=4.【分析】(1)应用代入消元法,求出方程组的解是多少即可.(2)应用加减消元法,求出方程组的解是多少即可.【解答】解:(1)+=5①2+=8②,由①,可得:x =5﹣y ③,③代入②,可得:2(5﹣y )+y =8,解得y =2,把y =2代入③,解得x =3,∴原方程组的解是=3=2.(2)2+3=7①3−2=4②,①×2+②×3,可得13x=26,解得x=2,把x=2代入①,解得y=1,∴原方程组的解是=2=1.【点评】此题主要考查了解二元一次方程组的方法,注意代入消元法和加减消元法的应用.7.(2021春•哈尔滨期末)用适当的方法解下列方程组(1)+2=93−2=−1(2)2−=53+4=2【分析】(1)利用加减消元法进行求解即可;(2)利用加减消元法进行求解即可.【解答】解:(1)+2=9①3−2=−1②,①+②得:4x=8,解得:x=2,把x=2代入①得:2+2y=9,解得:y=72,故原方程组的解是:=2=72;(2)2−=5①3+4=2②,①×4得:8x﹣4y=20③,②+③得:11x=22,解得:x=2,把x=2代入①得:4﹣y=5,解得:y=﹣1,故原方程组的解是:=2=−1.【点评】本题主要考查解二元一次方程组,解答的关键是熟练掌握解二元一次方程组的方法.8.(2022春•椒江区校级期中)用适当的方法解下列方程组:(1)2+3=16①+4=13②;(2)2r3=3K28=3.【分析】(1)②×2﹣①得出5y=10,求出y,再把y=2代入②求出x即可;(2)整理后得出得2+=9①3−2=24②,①×2+②得出7s=42,求出s,再把s=6代入①求出t即可.【解答】解:(1)2+3=16①+4=13②,②×2﹣①,得5y=10,解得:y=2,把y=2代入②,得x+8=13,解得:x=5,所以方程组的解为=5=2;(2)整理方程组,得2+=9①3−2=24②,①×2+②,得7s=42,解得:s=6,把s=6代入①,得12+t=9,解得:t=﹣3,所以方程组的解为=6=−3.【点评】本题考查了解二元一次方程组,能把二元一次方程组转化成一元一次方程是解此题的关键.9.(2022春•诸暨市期中)用适当的方法解下列方程组:(1)=2−1+2=−7(2+3=7+2=8【分析】(1)用代入消元解二元一次方程组即可;(2)用加减消元解二元一次方程组即可;【解答】解:(1)=2−1①+2=−7②,把①代入②得,x+2(2x﹣1)=﹣7,解得x=﹣1,将x=﹣1代入①得y=﹣3,∴方程组的解为=−1=−3.(2)整理得3+4=84①2+3=48②,①×2﹣②×3得,﹣y=24,解得y=﹣24,将y=﹣24代入②得x=60,∴方程组的解为=60=−24.【点评】本题考查二元一次方程组的解,熟练掌握加减消元法和代入消元法解二元一次方程组是解题的关键.10.(2021春•南湖区校级期中)用适当的方法解下列方程组:(1)3+2=9−=8;(2=r25=7.【分析】(1)由②可得x=8+y③,再把③代入①,可得y的值,然后把y的值代入③求出x的值即可;(2)方程组整理后可得+5=0①2−5=7②,利用①+②可得x的值,然后把x的值代入①求出y的值即可.【解答】解:(1)3+2=9①−=8②,由②得,x=8+y③,将③代入①得,3(8+y)+2y=9,解得,y=﹣3,把y=﹣3代入③得,x=5,则方程组的解为=5=−3;(2)方程组整理得:+5=0①2−5=7②,①+②得:3x=7,解得:x=73,把x=73代入①得:y=−715,则方程组的解为=73=−715.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.1.先阅读材料,然后解方程组:材料:解方程组+=4①3(+p+=14②在本题中,先将x+y看作一个整体,将①整体代入②,得3×4+y=14,解得y=2.把y=2代入①得x=2,所以=2=2这种解法称为“整体代入法”,你若留心观察,有很多方程组可采用此法解答,请用这种方法解方程组−−1=0①4(−p−=5②.【分析】根据阅读材料中的方法求出方程组的解即可.【解答】解:由①得:x﹣y=1③,把③代入②得:4﹣y=5,即y=﹣1,把y=﹣1代入③得:x=0,则方程组的解为=0=−1.【点评】此题考查了解二元一次方程组,熟练掌握运算法则是解本题的关键.2.(2021秋•乐平市期末)解方程组3−2=8⋯⋯⋯①3(3−2p+4=20⋯.②时,可把①代入②得:3×8+4y=20,求得y=﹣1,从而进一步求得=2=−1这种解法为“整体代入法“,请用这样的方法解下列方程组2−3=123(2−3p+5=26.【分析】利用整体代入法的求解方法进行解答即可.【解答】解:2−3=12①3(2−3p+5=26②,把①代入②得:3×12+5y=26,解得y=﹣2,把y=﹣2代入①得:2x+6=12,解得x =3,故原方程组的解是:=3=−2.【点评】本题主要考查解二元一次方程组,解答的关键是对解二元一次方程组的方法的掌握与运用.3.先阅读,然后解方程组.解方程组−−1=0①4(−p −=5②时,可由①得x ﹣y =1.③,然后再将③代入②得4×1﹣y =5,求得y =﹣1,从而进一步求得=0=−1这种方法被称为“整体代入法”,请用这5=0=2+1.【分析】利用整体代入法解方程组即可.5=0①=2+1②,由①得,2x ﹣3y =﹣5,③,把③代入②得,10+37=2y +1,解得,y =37,把y =37代入③得,x =−137,则方程组的解为:=−137=37.【点评】本题考查的是二元一次方程组的解法,掌握整体代入法解方程组的一般步骤是解题的关键.4.(2022春•太和县期末)先阅读,然后解方程组.解方程组−−1=0①4(−p −=5②时,可由①得x ﹣y =1,③然后再将③代入②得4×1﹣y =5,求得y =﹣1,从而进一步求得=0①=−1②这种方法被称为“整体代入法”,2=02=9.【分析】仿照所给的题例先把①变形,再代入②中求出y 的值,进一步求出方程组的解即可.2=0①+2=9②,由①得,2x﹣3y=2③,代入②得2+57+2y=9,解得y=4,把y=4代入③得,2x﹣3×4=2,解得x=7.故原方程组的解为=7=4.【点评】本题考查的是在解二元一次方程组时整体思想的应用,利用整体思想可简化计算.5.先阅读,然后解方程组.解方程组−−1=0①4(−p−=5②时,可由①得x﹣y=1③,然后再将③代入②得4×1﹣y=5,求得y=﹣1,从而进一步求得x这种方法被称为“整体代入法”,请用这样的方法解下列方程组:2−3−2=03(2−3p+=7.【分析】把2x﹣3y看作一个整体,代入第二个方程求出y的值,进而求出x的值即可.【解答】解:2−3−2=0①3(2−3p+=7②,把①变形得:2x﹣3y=2③,③代入②得:6+y=7,即y=1,把y=1代入③得:x=2.5,则方程组的解为=2.5=1.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元方法与加减消元法.1.用换元法解下列方程组+2=12−1=34【分析】方程组利用换元法求出解即可.【解答】解:设1=a,1=b,方程组变形为2+2=12①5−=34②,①+②×2得:12a=2,解得:a=16,把a=16代入②得:b=112,则方程组的解为=16=112,即=6=12.【点评】此题考查了解二元一次方程组,熟练掌握运算法则是解本题的关键.2.用换元法解下列方程组:(1)3(p+2(−p=36(−4(−p=−16(2+r53=2−(+5p=5.【分析】(1)令x+y=m、x﹣y=n得关于m、n的方程组,解得m、n的值,从而可得关于x、y的方程组,求解可得;(2)令x﹣4y=a、x+5y=b得关于a、b的方程组,解该方程组可得a、b的值,从而可得关于x、y的方程组,求解可得.【解答】解:(1)令x+y=m,x﹣y=n,则原方程组可化为:3+2=36−4=−16,解得:=8=6,即+=8−=6,解得:=7=1;(2)令x﹣4y=a,x+5y=b,+3=2−=5,解得:=6=−3,即:−4=6+5=−3,解得:=2=−1.【点评】本题主要考查换元法解方程组的能力,熟练而准确地解方程组是基础,正确找到共同的整体加以换元是关键.3.(2022春•云阳县期中)阅读探索:解方程组(−1)+2(+2)=62(−1)+(+2)=6解:设a﹣1=x,b+2=y原方程组可以化为+2=62+=6,解得=2=2,即:−1=2+2=2∴=3=0,此种解方程组的方法叫换元法.(1)拓展提高运用上述方法解下列方程组(4−1)+2(5+2)=102(4−1)+(5+2)=11;(2)能力运用已知关于x,y的方程组1+1=12+2=2的解为=6=7,求关于m、n的方程组1(−2)+1(+3)=12(−2)+2(+3)=2的解.【分析】(1)仿照“阅读探索“的思路,利用换元法进行计算即可解答;(2)仿照“阅读探索“的思路,利用换元法进行计算即可解答.【解答】解:(1)设4−1=x,5+2=y,∴原方程组可变为:+2=102+=11,解这个方程组得:=4=3,−1=45+2=3,所以:=20=5;(2)设−2=+3=,可得:−2=6+3=7,解得:=8=4.【点评】本题考查了解二元一次方程组,二元一次方程组的解,理解并掌握例题的换元法是解题的关键.4.在学过了二元一次方程组的解法后,+K10=3①−K10=−1②,你会解这个方程组吗?小明、小刚、小芳争论了一会儿,他们分别写出了一种方法:小明:把原方程组整理得8+2=90③2+8=−30④④×4﹣③得30y=﹣210,所以y=﹣7把y=﹣7代入③得8x=104,所以x=13,即=13=−7小刚:设r6=m,K10=n,则+=3③−=−1④③+④得m=1,③﹣④得m=2,=1=2,所以+=6−=20,所以=13=−7.小芳:①+②得2(rp6=2,即x+y=6.③①﹣②得2(Kp10=4,即x﹣y=20.④③④组成方程组得x=13③﹣④得y=﹣7,即=13=−7.老师看过后,非常高兴,特别是小刚的方法独特,像小刚的这种方法叫做换元法,你能用换元法解下列方程组吗?+2r37=1−2r37=5.【分析】设3K26=m,2r37=n,方程组整理后求出m与n的值,即可确定出x与y 的值.【解答】解:设3K26=m,2r37=n,方程组整理得:+=1①−=5②,①+②得:2m=6,即m=3,①﹣②得:2n=﹣4,即n=﹣2,=32r3=−2,整理得:3−2=182+3=−14,解得:=2=−6.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.5.(2022春•卧龙区校级月考)阅读探索(1)知识积累解方程组(−1)+2(+2)=62(−1)+(+2)=6.解:设a﹣1=x,b+2=y.原方程组可变为+2=62+=6,解这个方程组得=2=2,即−1=2+2=2,所以=3=0,这种解方程组的方法叫换元法.(2)拓展提高运用上述方法解下列方程组:(3−1)+2(5+2)=43(3−1)−(5+2)=5.(3)能力运用已知关于x,y的方程组1+1=12+2=2的解为=3=4,请直接写出关于m、n的方程组1(+2)−1=12(+2)−2=2的解是.【分析】(2)仿照(1)的思路,利用换元法进行计算即可解答;(3)仿照前两个题的思路,利用换元法进行计算即可解答.【解答】解:(2)设3−1=x,5+2=y,∴原方程组可变为:+2=43−=5,解这个方程组得:=2=1,−1=25+2=1,所以:=9=−5;(3)设+2=−=,可得:+2=3−=4,解得:=1=−4.。

七年级下册数学列二元一次方程组解应用题专项训练

七年级下册数学列二元一次方程组解应用题专项训练

第八章列二元一次方程组解应用题专项训练1、一名学生问老师:“您今年多大”老师风趣地说:“我像您这样大时,您才出生;您到我这么大时,我已经37岁了;”请问老师、学生今年多大年龄了呢2、某长方形的周长是44cm,若宽的3倍比长多6cm,则该长方形的长和宽各是多少3、已知梯形的高是7,面积是56cm2,又它的上底比下底的三分之一还多4cm,求该梯形的上底和下底的长度是多少4、某校初一年级一班、二班共104人到博物馆参观,一班人数不足50人,二班人数超过50人,已知博物馆门票规定如下:1~50人购票,票价为每人13元;51~100人购票为每人11元,100人以上购票为每人9元1若分班购票,则共应付1240元,求两班各有多少名学生2请您计算一下,若两班合起来购票,能节省多少元钱3若两班人数均等,您认为是分班购票合算还是集体购票合算5、某中学组织初一学生春游,原计划租用45座汽车若干辆,但有15人没有座位:若租用同样数量的60座汽车,则多出一辆,且其余客车恰好坐满;已知45座客车每日租金每辆220元,60座客车每日租金为每辆300元;1初一年级人数是多少原计划租用45座汽车多少辆2若租用同一种车,要使每个学生都有座位,怎样租用更合算6、某酒店的客房有三人间和两人间两种,三人间每人每天25元,两人间每人每天 35元,一个50人的旅游团到了该酒店住宿,租了若干间客房,且每间客房恰好住满,一天共花去1510元,求两种客房各租了多少间7、某中学新建了一栋4层的教学大楼,每层楼有8间教室,进出这栋大楼共有4道门,其中两道正门大小相同,两道侧门大小相同,安全检查中,对4道门进行了测试:当同时开启正门和两道侧门时,2分钟可以通过560名学生,当同时开启一道正门和一道侧门时,4分钟可以通过800名学生;1求平均每分钟一道正门和一道侧门各可以通过多少名学生2检查中发现,紧急情况下时因学生拥挤,出门的效率将降低20%,安全检查规定,在紧急情况下全大楼的学生应在5分钟内通过这4道门安全撤离,假设这栋教学大楼每间教室最多有45名学生,问通过的这4道门是否符合安全规定请说明理由;8、现有190张铁皮做盒子,每张铁皮做8个盒身或做22个盒底,一个盒身与两个盒底配成一个完整盒子,问用多少张铁皮制成盒身,多少张铁皮制成盒底,可以正好制成一批完整的盒子9、一条船顺水行驶36千米和逆水行驶24千米的时间都是3小时,求船在静水中的速度与水流的速度;10、已知一铁路桥长1000米,现有一列火车从桥上通过,测得火车从开始上桥到车身过完桥共用1分钟,整列火车完全在桥上的时间为40秒,求火车的速度及火车的长度;11、为了保护生态环境,我省某山区县响应国家“退耕还林”号召,将该县某地一部分耕地改为林地,改变后,林地面积和耕地面积共有180平方千米,耕地面积是林地面积的25%,求改变后林地面积和耕地各为多少平方千米12、王大伯承包了25亩土地,今年春季改种茄子和西红柿两种大棚蔬菜,用去了44000元,其中种茄子每亩用去了1700元,获纯利2600元;种西红柿每亩用去了1800元,获纯利2600元,问王大伯一共获纯利多少元13、某蔬菜公司收购到某种蔬菜140吨,准备加工后上市销售,该公司的加工能力是:每天精加工6吨或者粗加工16吨,现计划用15天完成加工任务,该公司应安排几天粗加工,几天精加工,才能按期完成任务如果每吨蔬菜粗加工后的利润为1000元,精加工后为2000元,那么该公司出售这些加工后的蔬菜共可获利多少元14、在一次足球选拔赛中,有12支球队参加选拔,每一队都要与另外的球队比赛一次,记分规则为胜一场记3分,平一场记1分,负一场记0分;比赛结束时,某球队所胜场数是所负的场数的2倍,共得20分,问这支球队胜、负各几场15、某个体户向银行申请了甲、乙两种贷款,共计136万元,每一年需付利息16.84万元,甲种贷款的年利率是12%,乙种贷款的年利率是13%,问这两种贷款的数额各是多少16、李明以两种形式分别储蓄了2000元各1000元,一年后全部取出,扣除利息所得税可得利息43.92,已知两种储蓄年利率的和为3.24%,问这两种储蓄的年利率各是百分之几注:公民应交利息所得税=利息金额×20%;17、已知甲、乙两种商品的原单价和为100元,因市场变化,甲商品降价10%,乙商品提价5%,调价后,甲、乙两种商品的单价和比原单价和提高了2%,求甲、乙两种商品的原单价各是多少元18、“五一”期间,某商场搞优惠促销,决定由顾客抽奖确定折扣,某顾客购买甲、乙两种商品,分别抽到七折按售价的70%销售和九折按售价的90%销售,共付款386元,这两种商品原售价之和为500元,问这两种商品的原销售价分别为多少元19、某市场购进甲、乙两种商品共50件,甲种商品进价每件35元,利润率是20%,乙种商品进价每件20元,利润率是15%,共获利278元,问甲、乙两种商品各购进了多少件20、某商场按定价销售某种电器时,每台可获利48元 ,按定价的九折销售该电器6台与将定价降低30元销售该电器9台所获得的利润相等;求该电器每台的进价、定价各是多少元21、甲、乙两件服装的成本共500元,商店老板为获取利润,决定将甲服装按50﹪的利润定价,乙服装按40﹪的利润定价;在实际出售时,应顾客要求,两件服装均按9折出售,这样商店共获利157元,求甲、乙两件服装的成本各是多少元22、某工厂去年的利润总产值——总支出为200万元,今年总产值比去年增加了20%,总支出比去年减少了10%,今年的利润为780万元,问去年的总产值、总支出各是多少万元小红家去年结余5000元,估计今年可结余9500元,并且今年收入比去年高15%,支出比去年低10%,求去年的收入和支出各是多少23、某校2004年秋季初一年级和高一年级招生总数为500人,计划2005年秋季期初一年级招生数增加20%;高一年级招生数增加15%,这样2005年秋季初一、高一年级招生总数比2004年将增加18%,求2005年秋季初一年级、高一年级的计划招生数是多少24、在社会实践活动中,某校甲、乙、丙三位同学一同调查了高峰时段北京的二环路、三环路、四环路的车流量每小时通过观测点的汽车车辆数,三位同学汇报高峰时段的车量情况下如下:甲同学说:“二环路车流量为每小时1000辆”;乙同学说:“四环路比三环路车流量每小时多2000辆”;丙同学说:“三环路车流量的3倍与四环路车流量的差是二环路车流量的2倍”;请您根据他们所提供的信息,求出高峰时段三环路、四环路的车流量各是多少25、初三2班的一个综合实践活动小组去A,B两个超市调查去年和今年“五一节”期间的销售情况,下图是调查后小敏与其他两位同学交流的情况.根据他们的对话,请你分别求出A,B两个超市今年“五一节”期间的销售额.26、根据下图给出的信息,求每件T恤衫和每瓶矿泉水的价格;27、某同学在A、B两家超市发现他看中的随身听的单价相同,书包单价也相同,随身听和书包单价之和是452元,且随身听的单价比书包单价的4倍少8元;1求该同学看中的随身听和书包单价各是多少元2某一天该同学上街,恰好赶上商家促销,超市A所有商品打八折销售,超市B全场购物满100元返购物券30元销售不足100元不返券,购物券全场通用,但他只带了400元钱,如果他只在一家超市购买看中的这两样物品,你能说明他可以选择哪一家购买吗若两家都可以选择,在哪一家购买更省钱28、“利海”通讯器材商场,计划用60000元从厂家购进若干部新型手机,以满足市场需求,已知该厂家生产三种不同型号的手机,出厂价分别为甲种型号手机每部1800元,乙种型号手机每部600元,丙种型号手机每部1200元.1若商场同时购进其中两种不同型号的手机共40部,并将60000元恰好用完.请你帮助商场计算一下如何购买.2若商场同时购进三种不同型号的手机共40部,并将60000元恰好用完,并且要求乙种型号手机的购买数量不少于6部且不多于8部,请你求出商场每种型号手机的购买数量.29、 列一段文字,然后解答问题.修建润扬大桥,途经镇江某地,需搬迁一批农户,为了节约土地资源和保护环境,政府决定统一规划建房小区,并且投资一部分资金用于小区建设和补偿到政府规划小区建房的搬迁农户.建房小区除建房占地外,其余部分政府每平方米投资100元进行小区建设;搬迁农户在建房小区建房,每户占地100 平方米,政府每户补偿4万元,此项政策,吸引了搬迁农户到政府规划小区建房,这时建房占地面积占政府规划小区总面积的20%.政府又鼓励非搬迁户到规划小区建房,每户建房占地120平方米,但每户需向政府交纳土地使用费2.8万元,这样又有20户非搬迁户申请加入.此项政策,政府不但可以收取土地使用费,同时还可以增加小区建房占地面积,从而减少小区建设的投资费用.若这20户非搬迁户到政府规划小区建房后,此时建房占地面积占政府规划规划小区总面积的40%. 1设到政府规划小区建房的搬迁农户为x 户,政府规划小区总面积为y 平方米. 可得方程组解得 2在20户非搬迁户加入建房前,请测算政府共需投资 __________万元;在20户非搬迁户加入建房后,请测算政府将收取的土地使用费投入后,还需投资__________万元.3设非搬迁户申请加入建房并被政府批准的有z 户,政府将收取的土地使用费投入后,还需投资p 万元.①用含z 的代数式表示p ;②当p 不高于140万元,而又使建房占地面积不超过规划小区总面积的35%时,那么政府可以批准多少户非搬迁户加入建房29、某山区有23名中、小学生因贫困失学需要捐助.资助一名中学生的学习费用需要a , , x =y =元,一名小学生的学习费用需要b元.某校学生积极捐助,初中各年级学生捐款数额与用其恰好捐助贫困中学生和小学生人数的部分情况如下表:1 求a、b的值;2 初三年级学生的捐款解决了其余..贫困中小学生的学习费用,请将初三学生年级学生可捐助的贫困中、小学生人数直接填入表中.不需写出计算过程30、某玩具工厂广告称:“本厂工人工作时间:每天工作8小时,每月工作25天;待遇:熟练工人按计件付工资,多劳多得,计件工资不少于800元,每月另加福利工资100元,按月结算;……”该厂只生产两种玩具:小狗和小汽车;熟练工人晓云元月份领工资900多元,她记录了如下表的一些数据:元月份作小狗和小汽车的数目没有限制,从二月分开始,厂方从销售方面考虑逐月调整为:k 月份每个工人每月生产的小狗的个数不少于生产的小汽车的个数的k 倍k =2,3,4,……,12,假设晓云的工作效率不变,且服从工厂的安排,请运用所学数学知识说明厂家广告是否有欺诈行为参考答案:12.解:21. 解:设甲服装的成本是x 元,乙服装的成本是y 元,依题意得;⎩⎨⎧+=+++=+157500%90]%)401(%)501[(500y x y x 解得x=300,y=200 答:甲、乙两件服装的成本分别为300元、200元25.解: 设去年A 超市销售额为x 万元,B 超市销售额为y 万元,由题意得()()⎩⎨⎧=+++=+,170%101%151,150y x y x 解得⎩⎨⎧==.50,100y x 1001+15%=115万元,501+10%=55万元.答:A,B 两个超市今年“五一节” 期间的销售额分别为115万元,27. 解:1解法一:设书包的单价为x 元,则随身听的单价为()48x -元根据题意,得48452x x-+=解这个方程,得答:该同学看中的随身听单价为360元,书包单价为92元; 解法二:设书包的单价为x元,随身听的单价为y元根据题意,得x yy x+==-⎧⎨⎩45248解这个方程组,得xy==⎧⎨⎩92360答:该同学看中的随身听单价为360元,书包单价为92元;2在超市A购买随身听与书包各一件需花费现金:45280%3616⨯=.元因为3616400.<,所以可以选择超市A购买;在超市B可先花费现金360元购买随身听,再利用得到的90元返券,加上2元现金购买书包,总计共花费现金:3602362+=元因为362400<,所以也可以选择在超市B购买; ……4分因为3623616>.,所以在超市A购买更省钱; ……5分30.解: 设制作一个小狗用时间t1分钟,可得工资x元,制作一辆小汽车用时间t2分钟,可得工资y 元;依题意得解得:4.175.0 20t 1521===y x t ,,=,就二月份来讲,设二月份生产汽车玩具a 件,则生产小狗2a 件,此时可得工资: M =a a a 9.2100100275.04.1+=+⨯+又因为工人每月工作8×25×60=12000分钟,所以二月份可生产玩具汽车 20a +15×2a =12000 解得 a =240件;故二月份可领工资796元,小于计件工资的最低额,所以说厂家的广告有欺诈行为;。

七年级数学下册《第八章 二元一次方程组》单元测试卷及答案解析-人教版

七年级数学下册《第八章 二元一次方程组》单元测试卷及答案解析-人教版

七年级数学下册《第八章 二元一次方程组》单元测试卷及答案解析-人教版一、单选题1.如果21x y =⎧⎨=-⎩是关于x 、y 的二元一次方程ax+y=1的解,那么a 的值为( )A .-2B .-1C .0D .I2.已知二元一次方程组 522048x y x y +=⎧⎨-=⎩①②,若用加减法消去y ,则正确的是( )A .①×1+②×1B .①×1+②×2C .①×1-②×1D .①×1-②×23.七年级学生在会议室开会,每排座位坐12人,则有11人没有座位;每排座位坐14人,则余1人独坐一排,则这间会议室的座位排数是( ) A .14B .13C .12D .154.方程组24x y x y -=⎧⎨-=⎩的解为2x y =-⎧⎨=⎩▽则被△和△遮盖的两个数分别为(,)A .-10,6B .2,-6C .2,6D .10,-65.已知13x y =⎧⎨=⎩是关于x ,y 的二元一次方程2x y m -=的一个解,则m 的值是( )A .5B .2C .-5D .-26.关于x ,y 的二元一次方程组538y x x y =-⎧⎨-=⎩,用代入法消去y ,得到的方程是( )A .3583x x --=B .358x x +-=C .358x x ++=D .358x x -+=7.已知24328a b a b +=⎧⎨+=⎩,则2a+2b 的值为()A .3B .4C .6D .78.小明计划用100元钱在京东商城购买价格分别为6元和8元的两种商品,则在钱全部用完的前提下,可供小明选择的方案有( ) A .3种B .4种C .5种D .6种9.举办“书香文化节”的活动中,将x 本图书分给了y 名学生,若每人分6本,则剩余40本;若每人分8本,则还缺50本,下列方程组正确的是( )A .640850y x y x -=⎧⎨+=⎩B .640850y xy x +=⎧⎨-=⎩C .640850x y x y +=⎧⎨-=⎩D .640850y xy x -=⎧⎨-=⎩10.若方程组41233x by z x by z -+=⎧⎨-+=⎩ 的解是1x ay z c=⎧⎪=⎨⎪=⎩,则6a b c ++的值是( )A .-3B .0C .3D .6二、填空题11.已知二元一次方程x -2y =10,用含x 的代数式表示y ,则y = . 12.已知x 、y 满足方程组3202132022x y x y +=⎧⎨+=⎩,则x y -= .13.若273330x y y z z x +=⎧⎪+=⎨⎪+=⎩,则代数式x+y+z 的值为 .14.小明家准备装修一套新房,若甲、乙两家装修公司合作需6周完成,装修费用为5.2万元;若甲公司单独做4周,剩下的由乙公司做,还需9周完成,此时装修费用为4.8万元.若小明只选甲公司单独完成,则他需要付给甲公司装修费用 万元.三、计算题15.解方程组:(1){y =2x3x +2y =7 (2){4x −y =112x +y =1316.解方程组: 4223327x y z x y z x y z +-=⎧⎪-+=-⎨⎪+-=⎩四、解答题17.解方程组 64ax by x cy +=⎧⎨+=⎩ 时甲同学因看错 a 符号,从而求得解为32x y =⎧⎨=⎩ ,乙因看漏 c ,从而求得解为 62x y =⎧⎨=-⎩ ,试求 a , b , c 的值.18.已知方程组31313x y mx y m +=-+⎧⎨-=+⎩的解满足x 为非正数,y 为负数,求m 的取值范围.19. 2021年下半年,新冠疫情在全球新一波蔓延,接种新冠疫苗是当前抗击疫情最有效的手段.某县注射的疫苗有两种,一种是2针剂的灭活疫苗,另种是3针剂的重组蛋白疫苗.某校120名教职工全部完成其中一种疫苗的注射,共注射了325针,注射2针剂和3针剂疫苗的教职工各有多少人?五、综合题20.已知二元一次方程20ax y b +-=(a ,b 均为常数,且a≠0).(1)当a =3,b =﹣4时用x 的代数式表示y ;(2)若()2212x a by b b =-⎧⎪⎨=+⎪⎩是该二元一次方程的一个解 ①探索a 与b 关系,并说明理由;②无论a 、b 取何值,该方程有一组固定解,请求出这组解.21.下面是马小虎同学解二元一次方程组的过程,请认真阅读并完成相应的任务.解方程组:{3x −y =4 ①6x −3y =10 ②解:①×2,得628x y -=……③ 第一步 ②-③,得2y -= 第二步=2y -. 第三步将=2y -代入①,得2x =.第四步所以,原方程组的解为22x y =⎧⎨=-⎩第五步(1)这种求解二元一次方程组的方法叫做 法,以上求解步骤中,马小虎同学第 步开始出现错误.(2)请写出此题正确的解答过程.22.目前,新型冠状病毒在我国虽可控可防,但不可松懈.建兰中学欲购置规格分别为200mL 和500mL 的甲、乙两种免洗手消毒液若干瓶,已知购买3瓶甲和2瓶乙免洗手消毒液需要80元,购买1瓶甲和4瓶乙免洗手消毒液需要110元. (1)求甲、乙两种免洗手消毒液的单价.(2)该校在校师生共1000人,平均每人每天都需使用10mL 的免洗手消毒液,若校方采购甲、乙两种免洗手消毒液共花费2500元,则这批消毒液可使用多少天?(3)为节约成本,该校购买散装免洗手消毒液进行分装,现需将8.4L 的免洗手消毒液全部装入最大容量分别为200mL 和500mL 的两种空瓶中(每瓶均装满),若分装时平均每瓶需损耗10mL ,请问如何分装能使总损耗最小,求出此时需要的两种空瓶的数量.参考答案与解析1.【答案】D【解析】【解答】解:将 21x y =⎧⎨=-⎩ 代入ax+y=1得2a-1=1 解得a=1. 故答案为:D.【分析】根据方程根的概念,将x=2与y=-1代入ax+y=1可得关于字母a 的方程,求解即可得出a 的值.2.【答案】B【解析】【解答】解: ACD 、既不能消去x ,也不能消去y ,错误;B 、能消去y ,正确; 故答案为:B.【分析】观察两方程中y 的系数,找出两系数的最小公倍数,结合系数的符号,即可判断.3.【答案】C【解析】【解答】解:设这间会议室的座位排数是x 排,人数是y 人.根据题意,得()12111411x y x y+=⎧⎨-+=⎩解得12155x y =⎧⎨=⎩. 故答案为:C .【分析】本题中有两个等量关系:1、每排坐12人,则有11人没有座位;2、每排坐14 人,则余1人独坐一排. 这样设每排的座位数为x ,总人数为y ,列出二元一次方程组即可.4.【答案】B【解析】【解答】解:∵方程组24x y x y -=⎧⎨-=⎩①②的解为2x y =-⎧⎨=⎩▽ 424y y --=⎧⎨--=⎩①②解之:y=-6, △=2【分析】将x=-2代入第二个方程,可求出△的值,再将x ,y 的值代入第一个方程,可求出△的值.5.【答案】C【解析】【解答】解:13x y =⎧⎨=⎩是关于x ,y 的二元一次方程2x y m -=的一个解123m ∴-⨯=5m ∴=-故答案为:C.【分析】将x=1、y=3代入方程中进行计算可得m 的值.6.【答案】D【解析】【解答】解:方程:{y =x −5①3x −y =8②把①式代入②式,可得:()358x x --=整理,可得:358x x -+= 故答案为:D.【分析】将第一个方程代入第二个方程中可得3x-(x-5)=8,然后化简即可.7.【答案】C【解析】【解答】解:24328a b a b +=⎧⎨+=⎩①② ①+②,可得: 4a +4b =12 ∴2a +2b =12÷2=6. 故答案为:C .【分析】两方程组中两方程相加即可求解.8.【答案】B【解析】【解答】设购买价格为6元的商品x 件,价格为8元的商品y 件依题意得:68100x y +=5034xy -∴=又x ,y 均为正整数解得211x y =⎧⎨=⎩或68x y =⎧⎨=⎩或105x y =⎧⎨=⎩或142x y =⎧⎨=⎩因此可供小明选择的方案有4种.【分析】设购买价格为6元的商品x 件,价格为8元的商品y 件, 根据购买价格分别为6元和8元的两种商品共花费100元,列出二元一次方程,再求出其正整数解即可.9.【答案】B【解析】【解答】解:由题意得: 640850y xy x +=⎧⎨-=⎩故答案为:B.【分析】根据“ 每人分6本,则剩余40本”得方程6y-40=x ;根据“每人分8本,则还缺50本”得方程8y-50=x ,依此列出二元一次方程组,即可解答.10.【答案】A【解析】【解答】解:∵方程组41233x by z x by z -+=⎧⎨-+=⎩ 的解是1x a y z c=⎧⎪=⎨⎪=⎩∴41233a b c a b c -+=⎧⎨-+=⎩①② 由①-②得:2b c +=- ∴2b c =--把2b c =--代入①,得:()241a c c ---+=∴51a c +=-∴65123a b c a c b c ++=+++=--=-. 故答案为:A.【分析】由题意把x 、y 、z 的值代入方程组可得关于a 、b 、c 的方程组,将c 作为常数,用含c 的式子表示出a 、b ,整体代换计算即可求解.11.【答案】x 102- 【解析】【解答】解:x -2y =102y=x-10 解之:y=x 102-. 故答案为x 102-【分析】先移项,再将y的系数化为1,可求出y.12.【答案】1 2 -【解析】【解答】解:3202132022 x yx y+=⎧⎨+=⎩①②①-②得,2x-2y=﹣1两边同除以2得,x-y=1 2 -故答案为1 2 -.【分析】将①式和②式整体相减得出2x-2y=﹣1,然后根据等式的性质两边同除以2,即可解答. 13.【答案】45【解析】【解答】解:273330x yy zz x+=⎧⎪+=⎨⎪+=⎩①②③①+②+③得:2x+2y+2z=90整理得:x+y+z=45.故答案为:45.【分析】将方程组中的三个方程相加并化简可得x+y+z的值. 14.【答案】6【解析】【解答】解:设甲公司的工作效率为x,乙公司的工作效率为y.依题意列方程组,得661 491 x yx y+=⎧⎨+=⎩解这个方程组,得110115 xy⎧=⎪⎪⎨⎪=⎪⎩所以,甲公司单独做需10周,乙公司单独做需15周;设甲一周的装修费是m万元,乙一周的装修费是n万元.依题意列方程组,得66 5.2 49 4.8 m nm n+=⎧⎨+=⎩解这个方程组,得35415 mn⎧=⎪⎪⎨⎪=⎪⎩甲单独做的装修费:35×10=6(万元)故答案为:6.【分析】设甲公司的工作效率为x,乙公司的工作效率为y,根据相等关系“ 甲装修公司6周完成的工作量+乙装修公司6周完成的工作量=1,甲装修公司4周完成的工作量+乙装修公司9周完成的工作量=1”可得关于x、y的方程组,解之求出x、y的值;设甲一周的装修费是m万元,乙一周的装修费是n万元,根据相等关系“ 甲装修公司6周所需费用+乙装修公司6周完成所需费用=1,甲装修公司4周所需费用+乙装修公司9周所需费用=1”可得关于m、n的方程组,解之可求解.15.【答案】(1)解:{y=2x①3x+2y=7②将①代入②得3x+4x=7解得x=1将x=1代入①得y=2∴12 xy=⎧⎨=⎩(2)解:{4x−y=11①2x+y=13②①+②得6x=24解得x=4将x=4代入②得8+y=13解得y=5∴45 xy=⎧⎨=⎩【解析】【分析】(1)将①方程直接代入②方程可求出x的值,再将x的值代入①方程可求出y的值,从而即可得出方程组的解;(2)将方程组中的两个方程相加可求出x的值,再将x的值代入②方程可求出y的值,从而即可得出方程组的解.16.【答案】解:4 223 327x y zx y zx y z+-=⎧⎪-+=-⎨⎪+-=⎩①②③解:①+②得, 31x y -=④ ②×2+③得, 731x y -=⑤④与⑤组成方程组得 31731x y x y -=⎧⎨-=⎩解方程组得, 12x y =⎧⎨=⎩把 12x y =⎧⎨=⎩ 代入①得, 124z +-=解得, 1z =-∴原方程组的解为: 121x y z =⎧⎪=⎨⎪=-⎩【解析】【分析】利用第一个方程加上第二个方程可得3x-y=1,利用第二个方程的2倍加上第三个方程可得7x-3y=1,联立求解可得x 、y 的值,然后将x 、y 的值代入第一个方程中求出z 的值,据此可得方程组的解.17.【答案】解:甲同学因看错 a 符号∴ 把 3x = , 2y = 代入 4x cy +=解得 12c =326a b -+= .乙因看漏 c∴ 把 6x = , 2y =- 代入 6ax by +=得 626a b -= 得 326626a b a b -+=⎧⎨-=⎩解得, a=4 , b=9【解析】【分析】甲同学看错a 的负号,把x=3,y=2代入x+cy=4,求出c 值,因看错a 的符号,得-3a+2b=6,再由乙看漏c ,把x=6,y=-2代入ax+by=6,得6a-2b=6,联立方程组解方程组得a 、b 的值,即可解决问题.18.【答案】解:解方程组31313x y m x y m +=-+⎧⎨-=+⎩,得324x m y m =-⎧⎨=--⎩ ∵x 为非正数,y 为负数∴30240m m -≤⎧⎨--<⎩解得-2<m≤3【解析】【分析】先求出方程组的解324x m y m =-⎧⎨=--⎩,再根据题意列出不等式组30240m m -≤⎧⎨--<⎩,最后求出m 的取值范围即可。

七年级数学下册第八章《二元一次方程组》综合测试卷-人教版(含答案)

七年级数学下册第八章《二元一次方程组》综合测试卷-人教版(含答案)

七年级数学下册第八章《二元一次方程组》综合测试卷-人教版(含答案)一、选择题(本大题共10小题,共30分)1. 二元一次方程x −2y =1有无数多个解,下列四组值中不是该方程的解的是( )A. {x =0y =−12B. {x =1y =1C. {x =1y =0D. {x =−1y =−12. 若(k -2)x |k|−1-3y =2是关于x ,y 的二元一次方程,则k 2-3k -2的值为( )A. 8B. 8或−4C. −8D. −43. 方程组{2x +y =4,x −y =−1的解是( )A. {x =1y =2B. {x =−3y =−2C. {x =2y =0D. {x =3y =−14. 《九章算术》中记载“今有共买羊,人出五,不足四十五;人出七,不足三,问人数、羊价各几何?”其大意是:今有人合伙买羊,若每人出5钱,还差45钱;若每人出7钱,还差3钱,问合伙人数、羊价各是多少?此问题中羊价为( )A. 160钱B. 155钱C. 150钱D. 145钱5. 我市在落实国家“精准扶贫”政策的过程中,为某村修建一条长为400米的公路,由甲、乙两个工程队负责施工.甲工程队独立施工2天后,乙工程队加入,两工程队联合施工3天后,还剩50米的工程.已知甲工程队每天比乙工程队多施工2米,求甲、乙工程队每天各施工多少米?设甲工程队每天施工x 米,乙工程队每天施工y 米.根据题意,所列方程组正确的是( )A. {x =y −22x +3y =400 B. {x =y −22x +3(x +y)=400−50 C. {x =y +22x +3y =400−50D. {x =y +22x +3(x +y)=400−506. 用代入法解方程组时,比较容易的变形是( )A. 由 ①,得x =y+12B. 由 ①,得y =2x −1C. 由 ②,得y =3x+56D. 由 ②,得x =6y−537. 为做好防疫消毒工作,某单位制作日常消毒液.将浓度分别为90%和60%的甲、乙两种酒精溶液,配制成浓度是75%的消毒酒精溶液500g ,设甲种酒精溶液为xg ,乙种酒精溶液为yg ,则()A. {x =300y =200B. {x =250y =200C. {x =250y =250D. {x =200y =3008. 在3×3方格上做填字游戏,要求每行每列及对角线上三个方格中的数字和都相等,若填在图中的数字如图,则x ,y 的值是( )A. x =1,y =−1B. x =−1,y =1C. x =2,y =−1D. x =−2,y =19. 两位同学在解方程组时,甲同学由{ax +by =2,cx −y =−4正确地解出{x =3,y =−2;乙同学因把c 写错了解得{x =−2,y =2,则a +b +c 的值为( )A. 3B. 0C. 1D. 710. 若点P (x ,y )的坐标满足方程组{x +y =k,x −y =6−3k,则点P 不可能在( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限二、填空题(本大题共4小题,共12分)11. 已知方程组{3x +2y =m −22x +3y =m的解适合x +y =2,则m 的值为______.12. 当m ,n 满足关系 时,关于x ,y 的方程组{x −5y =2m,2x +3y =m −n 的解互为相反数.13. 已知乙组人数是甲组人数的一半,若将乙组人数的13调入甲组,则甲组比乙组多15人,甲、乙两组的人数分别为__________.14. 已知2x -y -z =0,3x +4y -2z =0,则x−y+zx+y+z =________________.三、计算题(本大题共2小题,共12分) 15. 解方程组:(1{3x −2y +20=0,2x +15y −3=0;(2){1.5(20x +10y)=15000,1.2(110x +120y)=97200.16. 若方程组{ax +by =32ax +by =4与方程组{2x +y =3x −y =0有相同的解,求a 、b 的值.四、解答题(本大题共5小题,共46分)17. 某两位数,两个数位上的数之和为11.这个两位数加上45,得到的两位数恰好等于原两位数的两个数字交换位置所表示的数,求原两位数. (1)列一元一次方程求解.(2)如果设原两位数的十位数字为x ,个位数字为y ,列二元一次方程组. (3)检验(1)中求得的结果是否满足(2)中的方程组.18. 一艘轮船在相距90千米的甲、乙两地之间匀速航行,从甲地到乙地顺流航行用6小时,逆流航行比顺流航行多用4小时.(1)求该轮船在静水中的速度和水流速度;(2)若在甲、乙两地之间建立丙码头,使该轮船从甲地到丙地和从乙地到丙地所用的航行时间相同,问甲、丙两地相距多少干米?19.某新长途客运站准备在国庆前建成营运.后期工程若请甲乙两个工程队同时施工,8天可以完工,需付两工程队施工费用7040元;若先请甲工程队单独施工6天,再请乙工程队单独施工12天也可以完工,需付两工程队施工费用6960元.问甲、乙两工程队施工一天,应各付施工费用多少元?20.已知用2辆A型车和1辆B型车装满货物一次可运货10吨;用1辆A型车和2辆B型车装满货物一次可运货11吨.某物流公司现有31吨货物,计划同时租用A型车a辆,B型车b辆,一次运完,且恰好每辆车都装满货物.根据以上信息,解答下列问题:(1)1辆A型车和1辆B型车都装满货物一次可分别运货多少吨?(2)请你帮该物流公司设计租车方案(即A、B两种型号的车各租几辆,有几种租车方案).21. 先阅读材料,然后解方程组.材料:解方程组{x −y −1=0,①4(x −y)−y =5.②由①,得x -y =1.③把③代入②,得4×1-y =5,解得y =-1. 把y =-1代入③,得x =0. ∴原方程组的解为{x =0,y =−1. 这种方法称为“整体代入法”.你若留心观察,有很多方程组可采用此方法解答,请用整体代入法解方程组:{2x −3y −2=0,①2x−3y+57+2y =9.②参考答案1.【答案】B【解析】 【分析】本题考查二元一次方程的解的定义,要求理解什么是二元一次方程的解,并会把x ,y 的值代入原方程验证二元一次方程的解.将x 、y 的值分别代入x -2y 中,看结果是否等于1,判断x 、y 的值是否为方程x -2y =1的解. 【解答】解:A 、当x =0,y =-12时,x -2y =0-2×(-12)=1,是方程的解; B 、当x =1,y =1时,x -2y =1-2×1=-1,不是方程的解; C 、当x =1,y =0时,x -2y =1-2×0=1,是方程的解; D 、当x =-1,y =-1时,x -2y =-1-2×(-1)=1,是方程的解. 故选B .2.【答案】A【解析】 【分析】本题主要考查了二元一次方程的概念,代数式求值,要求熟悉二元一次方程的形式及其特点:含有2个未知数,未知数的项的次数是1的整式方程; 根据二元一次方程满足的条件列式求出k 的值,即可得解. 【解答】解:根据题意得:{k −2≠0|k |−1=1,解得:k =-2,∴k 2-3k -2=(-2)2-3×(-2)-2=4+6-2=8. 故选:A .3.【答案】A【解析】 【分析】本题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.方程组利用加减消元法求出解即可. 【解答】 解:,①+②得:3x =3, 解得:x =1,把x =1代入①得:y =2, 则方程组的解为{x =1y =2.故选:A .4.【答案】C【解析】解:设共有x 人合伙买羊,羊价为y 钱, 依题意,得:{5x +45=y7x +3=y ,解得:{x =21y =150.故选:C .设共有x 人合伙买羊,羊价为y 钱,根据“若每人出5钱,还差45钱;若每人出7钱,还差3钱”,即可得出关于x ,y 的二元一次方程组,解之即可得出结论.本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.5.【答案】D【解析】解:由题意可得, {x =y +22x +3(x +y)=400−50, 故选:D .根据甲工程队独立施工2天后,乙工程队加入,两工程队联合施工3天后,还剩50米的工程和甲工程队每天比乙工程队多施工2米,可以列出相应的二元一次方程组,本题得以解决. 本题考查由实际问题抽象出二元一次方程组,解答本题的关键是明确题意,列出相应的方程组.6.【答案】B【解析】观察方程组的特点可知,B 中的变形比较容易,7.【答案】C【解析】根据题意,得{x +y =500,90%x +60%y =500×75%,解得{x =250,y =250,故选C .8.【答案】B【解析】 【分析】本题考查了二元一次方程组的应用,解答本题的关键是仔细审题,根据题意列出方程组,难度一般. 根据每行每列及对角线上三个方格中的数字和都相等,可得出方程组,解出即可. 【解答】解:由题意,得{2x +3+2=2−3+4y,2−3+4y =2x +y +4y, 解得{x =−1,y =1. 故选B .9.【答案】D【解析】把{x =3,y =−2代入方程组得把{x =−2,y =2代入ax +by =2得-2a +2b =2,即-a +b =1,联立得{3a −2b =2,−a +b =1,解得{a =4,b =5,由得c =-2,则a +b +c =4+5-2=7.故选D .10.【答案】C【解析】略11.【答案】6【解析】解:两个方程相加,得 5x +5y =2m -2, 即5(x +y )=2m -2, 即x +y =2m−25=2.解得m =6.方程组中的两个方程相加,即可用m 表示出x +y ,即可解得m 的值.注意到两个方程的系数之间的关系,而采用方程相加的方法解决本题是解题的关键.12.【答案】m =34n【解析】由题可知x =-y ,代入方程组,得{−6y =2m,y =m −n,则-6m +6n =2m ,所以m =34n .13.【答案】甲组18人,乙组9人【解析】 【分析】此题主要考查了二元一次方程组的应用,找准等量关系是解决应用题的关键,特别注意第二个等量关系的理解.等量关系有:①乙组人数是甲组人数的一半;②乙组人数的三分之一调入甲组,即甲组现有(x +13y)人,乙组现有人数23y 人,此时甲组比乙组多15人,据此列方程组求解即可. 【解答】解:设甲组有x 人,乙组有y 人,根据乙组人数是甲组人数的一半,则y =12x ; 根据乙组人数的三分之一调入甲组时甲组比乙组多15人,得方程x +13y =23y +15, 可列方程组为:{y =12x x +13y =23y +15, 解得:{ x =18 y =9.所以甲组人数为18人,乙组人数为9人, 故答案是甲组18人,乙组9人.14.【答案】89【解析】【分析】此题考查的是解三元一次方程组,需将三元一次方程组中的一个未知数当做已知数来处理,转化为二元一次方程组来解.将x 、y 写成用z 表示的代数式然后代入即可得到答案. 【解答】 解:{2x −y −z =0①3x +4y −2z =0②①×4+②得, 11x −4z −2z =0, 解得x =6z11,将x =6z 11代入①得,12z11−y −z =0, 解得y =z11, ∴原式=6z 11−z 11+z 6z 11+z 11+z =1618=89.故答案为89.15.【答案】(1)方程组整理得×15+×2得49x =-294,解得x =-6,把x =-6代入得-12+15y =3,解得y =1, ∴方程组的解为{x =−6,y =1.(2)方程组整理得 ×12-得13x =3900,解得x =300,把x =300代入得600+y =1000,解得y =400, ∴方程组的解为{x =300,y =400.【解析】略16.【答案】解:,解得该方程组的解为{x =1y =1,由题意该方程组的解也是方程组{ax +by =32ax +by =4的解,代入ax +by =3可得a +b =3③,代入2ax +by =4可得2a +b =4④,④-③可得a =1,代入③可得b =2,∴a =1,b =2.【解析】先求出第二个方程组的解,再代入第一个方程组即可求出a 、b 的值.本题主要考查二元一次方程组的解,解答此题的关键是要弄清题意,正确求出第二个方程组的解.17.【答案】解:(1)设原两位数的个位数字为m ,则十位数字为(11-m ),依题意,得:10×(11-m )+m +45=10m +(11-m ),解得:m =8,∴11-m =3.答:原两位数为38.(2)设原两位数的十位数字为x ,个位数字为y ,依题意,得:{x +y =1110x +y +45=10y +x. (3)结合(1),可知:x =3,y =8,∴x +y =11,10x +y +45=83=10y +x ,∴(1)中求得的结果满足(2)中的方程组.【解析】(1)设原两位数的个位数字为m ,则十位数字为(11-m ),根据原两位数+45等于原两位数的两个数字交换位置所表示的数,即可得出关于m 的一元一次方程,解之即可得出结论;(2)设原两位数的十位数字为x ,个位数字为y ,根据原两位数两个数位上的数之和为11及原两位数+45等于原两位数的两个数字交换位置所表示的数,即可得出关于x ,y 的二元一次方程组,此问得解;(3)由(1)的结论可得出x ,y 的值,再将其代入(2)的方程组中验证后即可得出结论. 本题考查了一元一次方程的应用以及由实际问题抽象出二元一次方程组,解题的关键是:(1)找准等量关系,正确列出一元一次方程;(2)找准等量关系,正确列出二元一次方程组;(3)将(1)的结论代入方程组中验证方程组是否正确.18.【答案】解:(1)设该轮船在静水中的速度是x 千米/小时,水流速度是y 千米/小时,依题意,得:{6(x +y)=90(6+4)(x −y)=90,解得:{x =12y =3. 答:该轮船在静水中的速度是12千米/小时,水流速度是3千米/小时;(2)设甲、丙两地相距a 千米,则乙、丙两地相距(90-a )千米,依题意,得:a 12+3=90−a 12−3,解得:a =2254.答:甲、丙两地相距2254千米.【解析】本题考查了二元一次方程组的应用以及一元一次方程的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)找准等量关系,正确列出一元一次方程. (1)设该轮船在静水中的速度是x 千米/小时,水流速度是y 千米/小时,根据路程=速度×时间,即可得出关于x ,y 的二元一次方程组,解之即可得出结论;(2)设甲、丙两地相距a 千米,则乙、丙两地相距(90-a )千米,根据时间=路程÷速度,即可得出关于a 的一元一次方程,解之即可得出结论.19.【答案】解:设甲工程队每天需费用x 元,乙工程队每天需费用y 元,由题意得,{8x +8y =70406x +12y =6960, 解得:{x =600y =280. 答:甲工程队每天需费用600元,乙工程队每天需费用280元.【解析】设甲工程队每天需费用x 元,乙工程队每天需费用y 元,根据题意可得:甲乙合作8天完工,需付两工程队施工费用7040元;甲队单独施工6天,再请乙工程队单独施工12天完工,需付两工程队施工费用6960元,列方程组求解.本题考查了二元一次方程组的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程组求解.20.【答案】解:(1)设1辆A 型车和1辆B 型车都装满货物一次可分别运货x 吨,y 吨,根据题意得:{2x +y =10x +2y =11, 解得:{x =3y =4. 答:1辆A 型车和1辆B 型车都装满货物一次可分别运货3吨,4吨.(2)由题意可得:3a +4b =31,∴b =31−3a 4.∵a ,b 均为正整数,∴有{a =1b =7、{a =5b =4和{a =9b =1三种情况. 故共有三种租车方案,分别为:①A 型车1辆,B 型车7辆;②A 型车5辆,B 型车4辆;③A 型车9辆,B 型车1辆.【解析】本题考查了二元一次方程组的应用以及二元一次方程的应用,解题的关键是:(1)根据等量关系,列出关于x 、y 的二元一次方程组;(2)由(1)的结论结合共运货31吨,找出3a +4b =31.(1)设1辆A 型车和1辆B 型车都装满货物一次可分别运货x 吨,y 吨,根据“用2辆A 型车和1辆B 型车装满货物一次可运货10吨;用1辆A 型车和2辆B 型车装满货物一次可运货11吨”,即可得出关于x 、y 的二元一次方程组,解之即可得出结论;(2)由(1)的结论结合某物流公司现有31吨货物,即可得出3a +4b =31,即b =31−3a 4,由a 、b 均为正整数即可得出各租车方案.21.【答案】解:由①,得2x -3y =2.③把③代入②,得2+57+2y =9,解得y =4.把y =4代入③,得2x -3×4=2, 解得x =7.∴原方程组的解为{x =7,y =4.【解析】略。

七年级数学(下)第八章《实际问题与二元一次方程组》练习题含答案

七年级数学(下)第八章《实际问题与二元一次方程组》练习题含答案

七年级数学(下)第八章《实际问题与二元一次方程组》练习题一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知甲、乙两数之和是42,甲数的3倍等于乙数的4倍,求甲、乙两数.若设甲数为x,乙数为y,由题意得方程组A.4243x yx y+=⎧⎨=⎩B.4234x yx y+=⎧⎨=⎩C.421134x yx y-=⎧⎪⎨=⎪⎩D.4243y xx y+=⎧⎨=⎩【答案】B【解析】设甲数为x,乙数为y,由题意得:4234x yx y+=⎧⎨=⎩,故选B.2.小强到体育用品商店购买羽毛球球拍和乒乓球球拍,已知购买1副羽毛球球拍和1副乒乓球球拍共需50元,小强一共用320元购买了6副同样的羽毛球拍和10副同样的乒乓球拍.若设每副羽毛球拍为x元,每副乒乓球拍为y元,根据题意,下面所列方程组正确的是A.5010()320x yx y+=⎧⎨+=⎩B.50610320x yx y+=⎧⎨+=⎩C.506320x yx y+=⎧⎨+=⎩D.50106320x yx y+=⎧⎨+=⎩【答案】B【解析】每幅羽毛球拍为x元,每幅乒乓球拍为y元,由题意得,50610320x yx y+=⎧⎨+=⎩,故选B.3.甲、乙两人练习跑步,若乙先跑10米,则甲跑5秒就可以追上乙;如果乙先跑2秒,甲跑4秒就可以追上乙.设甲的速度为x米/秒,乙的速度为y米/秒,根据题意,下列选项中所列方程组正确的是A.5510424x yx y y-=⎧⎨=+⎩B.5510424x yx y-=⎧⎨-=⎩C.5510424x yx x y-=⎧⎨-=⎩D.5105424x yx y+=⎧⎨-=⎩【答案】A4.哥哥与弟弟的年龄和是18岁,弟弟对哥哥说“当我的年龄是你现在年龄的时候,你就是18岁”.如果现在弟弟的年龄是x岁,哥哥的年龄是y岁,下列方程组正确的是A.1818x yy x x=-⎧⎨-=-⎩B.1818y xx y y-=⎧⎨-=+⎩C.1818x yy x y+=⎧⎨-=+⎩D.1818y xy y x=-⎧⎨-=-⎩【答案】D【解析】设现在弟弟的年龄是x岁,哥哥的年龄是y岁,由题意得1818y xy y x=-⎧⎨-=-⎩.故选D.5.如图,10块相同的小长方形墙砖拼成一个长方形,设小长方形墙砖的长和宽分别为x厘米和y厘米,则依题意列方程正确的是A.2753x yy x+=⎧⎨=⎩B.2753x yx y+=⎧⎨=⎩C.2753x yy x+=⎧⎨=⎩D.2753x yx y+=⎧⎨=⎩【答案】B【解析】根据图示可得:长方形的长可以表示为x+2y,长又是75厘米,故x+2y=75,长方形的宽可以表示为2x,或x+3y,故2x=3y+x,整理得x=3y,联立两个方程可得2753x yx y+=⎧⎨=⎩,故选B.6.某校七年级一班40名同学为“希望工程”捐款,共捐款100元,捐款情况如表:捐款/元 1 2 3 4人数 6 ▅▅7表格中捐款2元和3元的人数不小心被墨水污染已看不清楚,若设捐款2元的有x名同学,捐款3元的有y名同学,根据题意,可列方程组A .272366x y x y +=⎧⎨+=⎩B .2723100x y x y +=⎧⎨+=⎩C .273266x y y x +=⎧⎨+=⎩D .2732100x y y x +=⎧⎨+=⎩【答案】A【解析】根据九(2)班共有40名同学,可列方程x +y +6+7=40,即x +y =27; 根据共捐款100元,可列方程2x +3y +6+4×7=100,即2x +3y =66, 故可列方程组为:272366x y x y +=⎧⎨+=⎩,故选A .二、填空题:请将答案填在题中横线上.7.学生问老师:“您今年多大?”老师风趣地说:“我像你这么大时,你才出生;你到我这么大时,我已经37岁了.”老师今年__________岁. 【答案】25【解析】设学生现在年龄是x 岁,老师现在年龄是y 岁,根据题意列方程组得:137y x x x y x -=-⎧⎨-=-⎩,解得1325x y =⎧⎨=⎩.即老师今年25岁.故答案为:25. 8.如图所示,点O 在直线AB 上,OC 为射线,∠1比∠2的3倍少20°,则∠1的度数为__________.【答案】130°【解析】根据题意,得1218013220∠+∠=︒⎧⎨∠=∠-︒⎩,解得∠1=130°,∠2=50°,故答案为:130°.9.根据下图给出的信息,则每件T 恤价格和每瓶矿泉水的价格分别为__________.【答案】20元和2元【解析】设每件T 恤价格和每瓶矿泉水的价格分别为x 元和y 元,根据题意可列方程组2244326x y x y +=⎧⎨+=⎩,解得202xy=⎧⎨=⎩,所以每件T恤价格和每瓶矿泉水的价格分别为20元和2元.故答案为:20元和2元.10.某宾馆有单人间和双人间两种房间,入住3个单人间和6个双人间共需1020元,入住1个单人间和5个双人间共需700元,则入住单人间和双人间各5个共需__________元.【答案】1100故答案为:1100.三、解答题:解答应写出文字说明、证明过程或演算步骤.11.油漆厂用白铁皮做圆柱形油漆小桶,一张铁皮可做侧面32个,或底面160个,现有铁皮140张,用多少张做侧面,多少张做底面,可以正好制成配套的油漆小桶?【解析】设x张做侧面,y张做底面,根据现有铁皮140张,根据题意可得,1401321602x yx y+=⎧⎪⎨=⨯⎪⎩,解得10040xy=⎧⎨=⎩,答:100张做侧面,40张做底面.12.某电器商场销售A、B两种型号计算器,两种计算器的进货价格分别为每台30元,40元,商场销售5台A型号和1台B型号计算器,可获利润76元;销售6台A型号和3台B 型号计算器,可获利润120元.求商场销售A、B两种型号计算器的销售价格分别是多少元?(利润=销售价格﹣进货价格)【解析】设A种型号计算器的销售价格是x元,B种型号计算器的销售价格是y元,由题意得,5(30)(40)766(30)3(40)120x yx y-+-=⎧⎨-+-=⎩,解得4256 xy=⎧⎨=⎩,答:A种型号计算器的销售价格是42元,B种型号计算器的销售价格是56元.13.目前节能灯在城市已基本普及,今年云南省面向县级及农村地区推广,为相应号召,某商场计划用3800元购进节能灯120只,这两种节能灯的进价、售价如下表:(1)求甲、乙两种节能灯各进多少只?(2)全部售完120只节能灯后,该商场获利润多少元?答:全部售完120只节能灯后,该商场获利润1000元.14.仔细观察下图,认真阅读对话:根据以上对话内容,可知小明买5元邮票多少张?【解析】设小明买2元邮票x张,1元邮票2x张,5元邮票y张,则根据题意得21822535x x yx x y++=⎧⎨++=⎩,解得53xy=⎧⎨=⎩.答:小明买5元邮票3张.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档