2013年全国各地高考文科数学试题分类汇编11:概率与统计

合集下载

2013全国高考理科数学分类汇编11:概率和统计

2013全国高考理科数学分类汇编11:概率和统计

2013年全国高考理科数学试题分类汇编11:概率与统计一、选择题1 .(2013年普通高等学校招生统一考试辽宁数学(理)试题(WORD 版))某学校组织学生参加英语测试,成绩的频率分布直方图如图,数据的分组一次为[)[)20,40,40,60,[)[)60,80,820,100.若低于60分的人数是15人,则该班的学生人数是( )A .45B .50C .55D .60【答案】B2 .(2013年高考陕西卷(理))某单位有840名职工, 现采用系统抽样方法, 抽取42人做问卷调查, 将840人按1, 2, , 840随机编号, 则抽取的42人中, 编号落入区间[481, 720]的人数为 ( )A .11B .12C .13D .14 【答案】B3 .(2013年普通高等学校招生统一考试安徽数学(理)试题(纯WORD 版))某班级有50名学生,其中有30名男生和20名女生,随机询问了该班五名男生和五名女生在某次数学测验中的成绩,五名男生的成绩分别为86,94,88,92,90,五名女生的成绩分别为88,93,93,88,93.下列说法一定正确的是 ( ) A .这种抽样方法是一种分层抽样 B .这种抽样方法是一种系统抽样C .这五名男生成绩的方差大于这五名女生成绩的方差D .该班级男生成绩的平均数小于该班女生成绩的平均数 【答案】C4 .(2013年高考湖南卷(理))某学校有男、女学生各500名.为了解男女学生在学习兴趣与业余爱好方面是否存在显著差异,拟从全体学生中抽取100名学生进行调查,则宜采用的抽样方法是 ( )A .抽签法B .随机数法C .系统抽样法D .分层抽样法 【答案】D5 .(2013年高考陕西卷(理))如图, 在矩形区域ABCD 的A , C 两点处各有一个通信基站, 假设其信号覆盖范围分别是扇形区域ADE 和扇形区域CBF (该矩形区域内无其他信号来源, 基站工作正常). 若在该矩形区域内随机地选一地点, 则该地点无.信号的概率是( )A .14π-B .12π-C .22π-D .4π 【答案】A6 .(2013年高考四川卷(理))节日里某家前的树上挂了两串彩灯,这两串彩灯的第一次闪亮相互独立,若接通电后的4秒内任一时刻等可能发生,然后每串彩灯在内4秒为间隔闪亮,那么这两串彩灯同时通电后,它们第一次闪亮的时刻相差不超过2秒的概率是 ( ) A .14B .12C .34D .78【答案】C7 .(2013年普通高等学校招生统一考试福建数学(理)试题(纯WORD 版))某校从高一年级学生中随机抽取部分学生,将他们的模块测试成绩分为6组:[40,50), [50,60), [60,70), [70,80), [80,90),[90,100)加以统计,得到如图所示的频率分布直方图,已知高一年级共有学生600名,据此估计,该模块测试成绩不少于60分的学生人数为 ( ) A .588 B .480 C .450 D .120【答案】B8 .(2013年高考江西卷(理))总体有编号为01,02,…,19,20的20个个体组成。

全国高考文科数学试题分类汇编概率与统计

全国高考文科数学试题分类汇编概率与统计

2013年全国高考文科数学试题分类汇编:概率与统计一、选择题1 .(2013年高考安徽(文))若某公司从五位大学毕业生甲、乙、丙、丁、戌中录用三人,这五人被录用的机会均等,则甲或乙被 录用的概率为( ) A .23B .25C .35D .910【答案】D2 .(2013年高考重庆卷(文))下图是某公司10个销售店某月销售某产品数量(单位:台)的茎叶图,则数据落在区间[20,30)内的概率为( )A .0.2B .0.4C .0.5D .0.6【答案】B3 .(2013年高考湖南(文))已知事件“在矩形ABCD 的边CD 上随机取一点P,使△APB 的最大边是AB”发生的概率为.21,则AD AB =( )A .12 B .14C D 【答案】D4 .(2013年高考江西卷(文))集合A={2,3},B={1,2,3},从A,B 中各取任意一个数,则这两数之和等于4的概率是( ) A .23B .13C .12D .16【答案】C5 .(2013年高考湖南(文))某工厂甲、乙、丙三个车间生产了同一种产品,数量分别为120件,80件,60件.为了解它们的产品质量是否存在显着差异,用分层抽样方法抽取了一个容量为n 的样本进行调查,其中从丙车间的产品中抽取了3件,则n=( ) A .9 B .10C .12D .13【答案】D6 .(2013年高考山东卷(文))将某选手的9个得分去掉1个最高分,去掉1个最低分,7个剩余分数的平均分为91,现场做的9个分数的茎叶图后来有一个数据模糊,无法辨认,在图中以x 表示:则7个剩余分数的方差为( ) A .1169B .367C .36 D【答案】B7 .(2013年高考四川卷(文))某学校随机抽取20个班,调查各班中有网上购物经历的人数,所得数据的茎叶图如图所示.以组距为5将数据分组成[0,5),[5,10),,[30,35),[35,40]时,所作的频率分布直方图是 【答案】A8 .(2013年高考课标Ⅰ卷(文))从1,2,3,4中任取2个不同的数,则取出的2个数之差的绝对值为2的概率是( ) A .12B .13C .14 D .16【答案】B9 .(2013年高考陕西卷(文))对一批产品的长度(单位: mm )进行抽样检测, 下图喂检测结果的频率分布直方图. 根据标准, 产品长度在区间[20,25)上的为一等品, 在区间[15,20)和区间[25,30)上的为二等品, 在区间[10,15)和[30,35)上的为三等品. 用频率估计概率, 现从该批产品中随机抽取一件, 则其为二等品的概率为( )A .0.09B .0.20C .0.25D .0.45【答案】D10.(2013年高考江西卷(文))总体编号为01,02,19,20的20个个体组成.利用下面的随机数表选取5个个体,选取方法是从随机数表第1行的第5列和第6列数字开始由左到右依次选取两个数字,则选出来的第5个个体的编号为( )A .08B .07C .02D .01【答案】D8 7 79 4 0 1 0 9 1x11.(2013年高考辽宁卷(文))某学校组织学生参加英语测试,成绩的频率分布直方图如图,数据的分组一次为[)[)20,40,40,60,[)[)60,80,820,100,若低于60分的人数是15人,则该班的学生人数是( )A .45B .50C .55D .60【答案】B [来源:学科网]12.四名同学根据各自的样本数据研究变量,x y 之间的相关关系,并求得回归直线方程,分 别得到以下四个结论:① y 与x 负相关且 2.347 6.423y x =-; ② y 与x 负相关且 3.476 5.648y x =-+; ③ y 与x 正相关且 5.4378.493y x =+; ④ y 与x 正相关且 4.326 4.578y x =--.其中一定不正确...的结论的序号是 A.①②B.②③C.③④D. ①④【答案】D13.已知x 与y 之间的几组数据如下表: 假设根据上表数据所得线性回归直线方程为a x b yˆˆˆ+=.若某同学根据上表中前两组数据)0,1(和)2,2(求得的直线方程为a x b y '+'=,则以下结论正确的是( )A.a a b b'>'>ˆ,ˆ B.a a b b '<'>ˆ,ˆ C.a a b b '>'<ˆ,ˆ D.a a b b '<'<ˆ,ˆ 【答案】C 二、填空题14.(2013年高考浙江卷(文))从三男三女6名学生中任选2名(每名同学被选中的机会相等),则2名都是女同学的概率等于_________.【答案】1515.(2013年高考湖北卷(文))在区间[2,4]-上随机地取一个数x ,若x 满足||x m ≤的概率为56,则m =__________. 【答案】316.(2013年高考福建卷(文))利用计算机产生1~0之间的均匀随机数a ,则事件“013<-a ”发生的概率为_______【答案】3117.(2013年高考重庆卷(文))若甲、乙、丙三人随机地站成一排,则甲、乙两人相邻而站的概率为____________. 【答案】2318.(2013年高考辽宁卷(文))为了考察某校各班参加课外书法小组的人数,在全校随机抽取5个班级,把每个班级参加该小组的认为作为样本数据.已知样本平均数为7,样本方差为4,且样本数据互相不相同,则样本数据中的最大值为____________. 【答案】1019.(2013年上海高考数学试题(文科))某学校高一年级男生人数占该年级学生人数的40%.在一次考试中,男、女生平均分数分别为75、80,则这次考试该年级学生平均分数为________. 【答案】7820.(2013年高考湖北卷(文))某学员在一次射击测试中射靶10次,命中环数如下:7,8,7,9,5,4,9,10,7,4则(Ⅰ)平均命中环数为__________; (Ⅱ)命中环数的标准差为__________. 【答案】(Ⅰ)7 (Ⅱ)221.(2013年高考课标Ⅱ卷(文))从1,2,3,4,5中任意取出两个不同的数,其和为5的概率是________.【答案】1522.(2013年上海高考数学试题(文科))盒子中装有编号为1,2,3,4,5,6,7的七个球,从中任意取出两个,则这两个球的编号之积为偶数的概率是_______(结果用最简分数表示). 【答案】57三、解答题23.(2013年高考江西卷(文))小波已游戏方式决定是去打球、唱歌还是去下棋.游戏规则为以O 为起点,再从A 1,A 2,A 3,A 4,A 5,A 6(如图)这6个点中任取两点分别为终点得到两个向量,记住这两个向量的数量积为X,若X>0就去打球,若X=0就去唱歌,若X<0就去下棋.(1) 写出数量积X 的所有可能取值 (2) 分别求小波去下棋的概率和不.去唱歌的概率 【答案】解:(1) x 的所有可能取值为-2 ,-1 ,0, 1. (2)数量积为-2的只有25OA OA ∙一种数量积为-1的有15OA OA ∙,1624263435,,,,OA OA OA OA OA OA OA OA OA OA ∙∙∙∙∙六种 数量积为0的有13143646,,,OA OA OA OA OA OA OA OA ∙∙∙∙四种 数量积为1的有12234556,,,OA OA OA OA OA OA OA OA ∙∙∙∙四种 故所有可能的情况共有15种. 所以小波去下棋的概率为1715p =因为去唱歌的概率为2415p =,所以小波不去唱歌的概率2411111515p p =-=-= 24.(2013年高考陕西卷(文))有7位歌手(1至7号)参加一场歌唱比赛, 由500名大众评委现场投票决定歌手名次, 根据年龄将大众评委分为5组, 各组的人数如下:(Ⅰ) 为了调查评委对7位歌手的支持状况, 现用分层抽样方法从各组中抽取若干评委, 其中从B 组中抽取了6人. 请将其余各组抽取的人数填入下表.(Ⅱ) 在(Ⅰ)中, 若, 两组被抽到的评委中各有2人支持1号歌手, 现从这两组被抽到的评委中分别任选1人, 求这2人都支持1号歌手的概率. 【答案】解: (Ⅰ) 按相同的比例从不同的组中抽取人数.从B 组100人中抽取6人,即从50人中抽取3人,从100人中抽取6人,从100人中抽取9人. (Ⅱ) A 组抽取的3人中有2人支持1号歌手,则从3人中任选1人,支持支持1号歌手的概率为32· B 组抽取的6人中有2人支持1号歌手,则从6人中任选1人,支持支持1号歌手的概率为62· 现从抽样评委A 组3人,B 组6人中各自任选一人,则这2人都支持1号歌手的概率926232=⋅=P .所以,从A,B 两组抽样评委中,各自任选一人,则这2人都支持1号歌手的概率为92.25.(2013年高考四川卷(文))某算法的程序框图如图所示,其中输入的变量x 在24,,3,2,1 这24个整数中等可能随机产生.(Ⅰ)分别求出按程序框图正确编程运行时输出y 的值为i 的概率(1,2,3)i P i =;(Ⅱ)甲、乙两同学依据自己对程序框图的理解,各自编写程序重复运行n 次后,统计记录了输出y 的值为(1,2,3)i i =的频数.以下是甲、乙所作频数统计表的部分数据.当2100n =时,根据表中的数据,分别写出甲、乙所编程序各自输出y 的值为(1,2,3)i i =的频率(用分数表示),并判断两位同学中哪一位所编写程序符合算法要求的可能性较大.【答案】解:(Ⅰ)变量x 是在24,,3,2,1 这24个整数中等可能随机产生的一个数,共有24种可能. 当x 从23,21,19,17,15,13,11,9,7,5,3,1这12个数中产生时,输出y 的值为1,故211=P ; 当x 从22,20,16,14,10,8,4,2这8个数中产生时,输出y 的值为2,故312=P ;当x 从24,18,12,6这4个数中产生时,输出y 的值为3,故613=P . 所以输出y 的值为1的概率为21,输出y 的值为2的概率为31,输出y 的值为3的概率为61.(Ⅱ)当2100n =时,甲、乙所编程序各自输出y 的值为(1,2,3)i i =的频率如下, 比较频率趋势与概率,可得乙同学所编写程序符合算法要求的可能性较大.26.(2013年高考辽宁卷(文))现有6道题,其中4道甲类题,2道乙类题,张同学从中任取3道题解答.试求:(I)所取的2道题都是甲类题的概率; (II)所取的2道题不是同一类题的概率. 【答案】27.(2013年高考天津卷(文))某产品的三个质量指标分别为x , y , z , 用综合指标S = x + y + z 评价该产品的等级. 若S ≤4, 则该产品为一等品. 先从一批该产品中, 随机抽取10件产品作为样本, 其质量指标列表如下:(Ⅰ) 利用上表提供的样本数据估计该批产品的一等品率; (Ⅱ) 在该样品的一等品中, 随机抽取两件产品,(⒈) 用产品编号列出所有可能的结果;(⒉) 设事件B 为 “在取出的2件产品中, 每件产品的综合指标S 都等于4”, 求事件B 发生的概率. 【答案】28.(2013年高考湖南(文))某人在如图3所示的直角边长为4米的三角形地块的每个格点(指纵、横直线的交叉点以及三角形的顶点)处都种了一株相同品种的作物.根据历年的种植经验,一株该种作物的年收货量Y (单位:kg)与它的“相近”作物株数X 之间的关系如下表所示: 这里,两株作物“相近”是指它们之间的直线距离不超过1米. (Ⅰ)完成下表,并求所种作物的平均年收获量;(Ⅱ)在所种作物中随机选取一株,求它的年收获量至少为48kg 的概率. 【答案】解: (Ⅰ) 由图知,三角形中共有15个格点,与周围格点的距离不超过1米的格点数都是1个的格点有2个,坐标分别为(4,0),(0,4).与周围格点的距离不超过1米的格点数都是2个的格点有4个,坐标分别为(0,0), (1,3), (2,2),(3,1). 与周围格点的距离不超过1米的格点数都是3个的格点有6个,坐标分别为(1,0), (2,0), (3,0),(0,1,) ,(0,2),(0,3,).与周围格点的距离不超过1米的格点数都是4个的格点有3个,坐标分别为(1,1), (1,2), (2,1).如下表所示:平均年收获量4615==u .(Ⅱ)在15株中,年收获量至少为48kg 的作物共有2+4=6个. 所以,15株中任选一个,它的年收获量至少为48k 的概率P=4.0156=. 29.(2013年高考安徽(文)) 为调查甲、乙两校高三年级学生某次联考数学成绩情况,用简单随机抽样,从这两校中各抽取30名高三年级学生,以他们的数学成绩(百分制)作为样本,样本数据的茎叶图如下:甲 乙 7 4 55 3 3 2 5 3 3 85 5 4 3 3 3 1 0 06 0 6 9 1 1 2 2 3 3 5 8 6 6 2 2 1 1 0 07 0 0 2 2 2 3 3 6 6 9 7 5 4 4 28 1 1 5 5 8 2 09 0(Ⅰ)若甲校高三年级每位学生被抽取的概率为0.05,求甲校高三年级学生总人数,并估计甲校高三年级这次联考数学成绩的及格率(60分及60分以上为及格);(Ⅱ)设甲、乙两校高三年级学生这次联考数学平均成绩分别为12,x x ,估计12x x -的值.【答案】解:(1)30300.056000.05n n =⇒== (2)174013504246092670922805290230x +++⨯++⨯++⨯++⨯++⨯==208430 =20693030.(2013年高考课标Ⅱ卷(文))经销商经销某种农产品,在一个销售季度内,每售出1t 该产品获利润500元,未售出的产品,每1t 亏损300元.根据历史资料,得到销售季度内市场需求量的频率分布直图,如右图所示.经销商为下一个销售季度购进了130t 该农产品.以X(单位:t≤100≤X≤150)表示下一个销售季度内的市场需求量,T(单位:元)表示下一个销售季度内经销该农产品的利润. (Ⅰ)将T 表示为X 的函数;(Ⅱ)根据直方图估计利润T 不少于57000元的概率. 【答案】31.(2013年高考广东卷(文))从一批苹果中,随机抽取50个,其重量(单位:克)的频数分布表如下:(1) 根据频数分布表计算苹果的重量在[90,95)的频率;(2) 用分层抽样的方法从重量在[80,85)和[95,100)的苹果中共抽取4个,其中重量在[80,85)的有几个?(3) 在(2)中抽出的4个苹果中,任取2个,求重量在[80,85)和[95,100)中各有1个的概率. 【答案】(1)重量在[)90,95的频率200.450==; (2)若采用分层抽样的方法从重量在[)80,85和[)95,100的苹果中共抽取4个,则重量在[)80,85的个数541515=⨯=+; (3)设在[)80,85中抽取的一个苹果为x ,在[)95,100中抽取的三个苹果分别为,,a b c ,从抽出的4个苹果中,任取2个共有(,),(,),(,),(,),(,),(,x a x b x c a b a c b c 6种情况,其中符合“重量在[)80,85和[)95,100中各有一个”的情况共有(,),(,),(,)x a x b x c 种;设“抽出的4个苹果中,任取2个,求重量在[)80,85和[)95,100中各有一个”为事件A ,则事件A 的概率31()62P A ==;32.(2013年高考山东卷(文))某小组共有A B C D E 、、、、五位同学,他们的身高(单位:米)以及体重指标(单位:千克/米2) 如下表所示:(Ⅰ)从该小组身高低于1.80的同学中任选2人,求选到的2人身高都在1.78以下的概率(Ⅱ)从该小组同学中任选2人,求选到的2人的身高都在1.70以上且体重指标都在[18.5,23.9)中的概率 【答案】33.(2013年高考北京卷(文))下图是某市3月1日至14日的空气质量指数趋势图,空气质量指数小于100表示空气质量优良,空气质量指数大于200表示空气重度污染,某人随机选择3月1日至3月13日中的某一天到达该市,并停留2天.(Ⅰ)求此人到达当日空气质量优良的概率;(Ⅱ)求此人在该市停留期间只有1天空气重度污染的概率;(Ⅲ)由图判断从哪天开始连续三天的空气质量指数方差最大?(结论不要求证明)【答案】解:(I)在3月1日至3月13日这13天中,1日.2日.3日.7日.12日.13日共6天的空气质量优良,所以此人到达当日空气质量优良的概率是613. (II)根据题意,事件“此人在该市停留期间只有1天空气重度污染”等价于“此人到达该市的日期是4日,或5日,或7日,或8日”.所以此人在该市停留期间只有1天空气质量重度污染的概率为413. (III)从3月5日开始连续三天的空气质量指数方差最大.34.(2013年高考福建卷(文))某工厂有25周岁以上(含25周岁)工人300名,25周岁以下工人200名.为研究工人的日平均生产量是否与年龄有关.现采用分层抽样的方法,从中抽取了100名工人,先统计了他们某月的日平均生产件数,然后按工人年龄在“25周岁以上(含25周岁)”和“25周岁以下”分为两组,在将两组工人的日平均生产件数分成5组:[50,60),[60,70),[70,80),[80,90),[90,100)分别加以统计,得到如图所示的频率分布直方图.(1)从样本中日平均生产件数不足60件的工人中随机抽取2人,求至少抽到一名“25周岁以下组”工人的频率.(2)规定日平均生产件数不少于80件者为“生产能手”,请你根据已知条件完成22⨯的列联表,并判断是否有90%的把握认为“生产能手与工人所在的年龄组有关”? 附表:【答案】解:(Ⅰ)由已知得,样本中有25周岁以上组工人60名,25周岁以下组工人40名 所以,样本中日平均生产件数不足60件的工人中,25周岁以上组工人有600.053⨯=(人), 记为1A ,2A ,3A ;25周岁以下组工人有400.052⨯=(人),记为1B ,2B 从中随机抽取2名工人,所有可能的结果共有10种,他们是:12(,)A A ,13(,)A A ,23(,)A A ,11(,)A B ,12(,)A B ,21(,)A B ,22(,)A B ,31(,)A B ,32(,)A B ,12(,)B B 其中,至少有名“25周岁以下组”工人的可能结果共有7种,它们是:11(,)A B ,12(,)A B ,21(,)A B ,22(,)A B ,31(,)A B ,32(,)A B ,12(,)B B .故所求的概率:710P =(Ⅱ)由频率分布直方图可知,在抽取的100名工人中,“25周岁以上组”中的生产能手:所以得:222()100(15251545)251.79()()()()6040307014n ad bc K a b c d a c b d -⨯⨯-⨯===≈++++⨯⨯⨯因为1.79 2.706<,所以没有90%的把握认为“生产能手与工人所在的年龄组有关”35.(2013年高考大纲卷(文))甲、乙、丙三人进行羽毛球练习赛,其中两人比赛,另一人当裁判,每局比赛结束时,负的一方在下一局当裁判,设各局中双方获胜的概率均为1,2各局比赛的结果都相互独立,第1局甲当裁判.(I)求第4局甲当裁判的概率;(II)求前4局中乙恰好当1次裁判概率. 【答案】(Ⅰ)记1A 表示事件“第2局结果为甲胜”,2A 表示事件“第3局甲参加比赛时,结果为甲负”,A 表示事件“第4局甲当裁判”.则12=A A A ∙.12121()=P()()()4P A A A P A P A ∙==. (Ⅱ)记1B 表示事件“第1局结果为乙胜”,2B 表示事件“第2局乙参加比赛时,结果为乙胜”,3B 表示事件“第3局乙参加比赛时,结果为乙胜”,B 表示事件“前4局中恰好当1次裁判”. 则1312312B B B B B B B B =∙+∙∙+∙.58=. 36.(2013年高考课标Ⅰ卷(文))(本小题满分共12分)为了比较两种治疗失眠症的药(分别称为A 药,B 药)的疗效,随机地选取20位患者服用A 药,20位患者服用B 药,这40位患者服用一段时间后,记录他们日平均增加的睡眠时间(单位:h ),试验的观测结果如下:服用A 药的20位患者日平均增加的睡眠时间:0.6 1.2 2.7 1.5 2.8 1.8 2.2 2.3 3.2 3.5 2.5 2.6 1.2 2.7 1.5 2.9 3.0 3.1 2.3 2.4 服用B 药的20位患者日平均增加的睡眠时间:3.2 1.7 1.9 0.8 0.9 2.4 1.2 2.6 1.3 1.4 1.6 0.5 1.8 0.6 2.1 1.1 2.5 1.2 2.7 0.5 (1)分别计算两组数据的平均数,从计算结果看,哪种药的疗效更好? (3)根据两组数据完成下面茎叶图,从茎叶图看,哪种药的疗效更好? 【答案】(本小题满分共12分)(1) 设A 药观测数据的平均数为 ,B 药观测数据的平均数为 ,又观测结果可得120x=(0.6+1.2+1.2+1.5+1.5+1.8+2.2+2.3+2.3+2.4+2.5+2.6+2.7+2.7+2.8+3.0+3.1+3.2+3.5)=2.3, 由以上计算结果可得x>y,因此可看出A 药的疗效更好(2)由观测结果可绘制如下茎叶图: 3 2 从以上茎叶图可以看出,A 药疗效的试验结果有的叶集中在茎2.3上,而B 药疗效的试验结果有10的叶集中在茎0,1上,由此可看出A 药的疗效更好.37.(本小题满分13分,(Ⅰ)小问9分,(Ⅱ)、(Ⅲ)小问各2分) 从某居民区随机抽取10个家庭,获得第i 个家庭的月收入i x (单位:千元)与月储蓄i y (单位:千元)的数据资料,算得10180i i x==∑,10120i i y ==∑,101184i i i x y ==∑,1021720i i x ==∑. (Ⅰ)求家庭的月储蓄y 对月收入x 的线性回归方程y bx a =+; (Ⅱ)判断变量x 与y 之间是正相关还是负相关;(Ⅲ)若该居民区某家庭月收入为7千元,预测该家庭的月储蓄. 附:线性回归方程y bx a =+中,1221n i ii n i i x y nx y b xnx ==-=-∑∑,a y bx =-, 其中x ,y 为样本平均值,线性回归方程也可写为y bx a =+.。

2013年全国高考理科数学试题分类汇编11:概率与统计_学生版

2013年全国高考理科数学试题分类汇编11:概率与统计_学生版

一、选择题1 .(2013年普通高等学校招生统一考试辽宁数学(理)试题)某学校组织学生参加英语测试,成绩的频率分布直方图如图,数据的分组一次为[)[)20,40,40,60,[)[)60,80,820,100.若低于60分的人数是15人,则该班的学生人数是 ( )A .45B .50C .55D .602 .(2013年高考陕西卷(理))某单位有840名职工, 现采用系统抽样方法, 抽取42人做问卷调查, 将840人按1, 2, , 840随机编号, 则抽取的42人中, 编号落入区间[481, 720]的人数为 ( )A .11B .12C .13D .143 .(2013年普通高等学校招生统一考试安徽数学(理)试题)某班级有50名学生,其中有30名男生和20名女生,随机询问了该班五名男生和五名女生在某次数学测验中的成绩,五名男生的成绩分别为86,94,88,92,90,五名女生的成绩分别为88,93,93,88,93.下列说法一定正确的是 ( )A .这种抽样方法是一种分层抽样B .这种抽样方法是一种系统抽样C .这五名男生成绩的方差大于这五名女生成绩的方差D .该班级男生成绩的平均数小于该班女生成绩的平均数4 .(2013年高考湖南卷(理))某学校有男、女学生各500名.为了解男女学生在学习兴趣与业余爱好方面是否存在显著差异,拟从全体学生中抽取100名学生进行调查,则宜采用的抽样方法是 ( )A .抽签法B .随机数法C .系统抽样法D .分层抽样法5 .(2013年高考陕西卷(理))如图, 在矩形区域ABCD 的A , C 两点处各有一个通信基站, 假设其信号覆盖范围分别是扇形区域ADE 和扇形区域CBF (该矩形区域内无其他信号来源, 基站工作正常). 若在该矩形区域内随机地选一地点, 则该地点无.信号的概率是A .14π-B .12π-C .22π-D .4π6 .(2013年高考四川卷(理))节日里某家前的树上挂了两串彩灯,这两串彩灯的第一次闪亮相互独立,若接通电后的4秒内任一时刻等可能发生,然后每串彩灯在内4秒为间隔闪亮,那么这两串彩灯同时通电后,它们第一次闪亮的时刻相差不超过2秒的概率是( )A.14B.12C.34D.787 .某校从高一年级学生中随机抽取部分学生,将他们的模块测试成绩分为6组:[40,50), [50,60), [60,70),[70,80), [80,90), [90,100)加以统计,得到如图所示的频率分布直方图,已知高一年级共有学生600名,据此估计,该模块测试成绩不少于60分的学生人数为()A.588 B.480 C.450 D.1208 .(2013年高考江西卷(理))总体有编号为01,02,…,19,20的20个个体组成。

2013年全国各地高考文科数学试题分类汇编11:概率与统计

2013年全国各地高考文科数学试题分类汇编11:概率与统计

概率与统计一、选择题错误!未指定书签。

. 若某公司从五位大学毕业生甲、乙、丙、丁、戌中录用三人 , 这五人被录用的机会均等 , 则甲或乙被录用的概率为 (A . 23B .25C .35D . 9 10错误!未指定书签。

. 下图是某公司 10个销售店某月销售某产品数量 (单位 :台的茎叶图 , 则数据落在区间 [20,30内的概率为(A . 0.2B . 0.4C . 0.5D . 0.6错误!未指定书签。

. 集合 A={2,3},B={1,2,3},从 A,B 中各取任意一个数 , 则这两数之和等于 4的概率是 (A . 23B .13错误!未找到引用源。

C .12D .16错误! 未找到引用源。

错误!未指定书签。

. 某学校随机抽取 20个班 , 调查各班中有网上购物经历的人数 , 所得数据的茎叶图如图所示 . 以组距为 5将数据分组成 [0,5, [5,10,, [30,35, [35,40]时 , 所作的频率分布直方图是(B(A(C(D错误!未指定书签。

. 从 1, 2,3, 4中任取 2个不同的数 , 则取出的 2个数之差的绝对值为 2的概率是 (A . 错误!未找到引用源。

B . 错误!未找到引用源。

C . 1 4错误!未找到引用源。

D . 1 6错误!未指定书签。

. 对一批产品的长度 (单位 : mm 进行抽样检测 , 下图喂检测结果的频率分布直方图 . 根据标准 , 产品长度在区间 [20,25上的为一等品 , 在区间 [15,20和区间 [25,30上的为二等品 , 在区间 [10,15和 [30,35上的为三等品 . 用频率估计概率 , 现从该批产品中随机抽取一件 , 则其为二等品的概率为(A . 0.09B . 0.20C . 0.25D . 0.45错误!未指定书签。

. (2013年高考辽宁卷(文某学校组织学生参加英语测试 , 成绩的频率分布直方图如图 ,数据的分组一次为 [[20,40, 40,60, [[60,80,820,100, 若低于 60分的人数是 15人 , 则该班的学生人数是(A . 45B . 50C . 55D . 60二、填空题错误!未指定书签。

2013高考数学各省题目分类整理:概率统计基础

2013高考数学各省题目分类整理:概率统计基础

2013高考:概率统计基础【2013高考题组】(一)计数原理问题1、(2013北京,理12)将序号为1,2,3,4,5的5张参观券全部分给4人,每人至少一张,如果分给同一个人两张参观券连号,那么不同的分法种数是 。

2、(2013全国大纲,文14)从进入决赛的6名选手中决出1名一等奖,2名二等奖,3名三等奖,则可能的决赛结果共有 种。

(用数字作答)3、(2013全国大纲,理14)6个人排成一排,其中甲、乙两人不相邻的不同排法共有 种。

(用数字作答)4、(2013山东,理10)用0,1,…,9十个数字,可以组成没有重复数字的三位数的个数为( )A 、243B 、252C 、261D 、2795、(2013浙江,理14)将A 、B 、C 、D 、E 、F 六个字母排成一排,且A 、B 均在C 的同侧,则不同的排法共有 种。

(用数字作答)6、(2013福建,理5)满足,{1,0,1,2}a b ∈-,且关于x 的方程220ax x b ++=有实数解的有序数对(,)a b 的个数为( )A 、14B 、13C 、12D 、10答案:1、962、603、4804、B5、4806、B(二)概率问题1、(2013全国课标I ,文3)从1,2,3,4中任取2个不同的数,则取出的2个数之差的绝对值等于2的概率为( )A 、12B 、13C 、14D 、162、(2013全国课标II ,文13)从1,2,3,4,5中任意取出两个不同的数字,其和为5的概率是 。

3、(2013全国课标II ,理14)从n 个正整数1,2,…,n 中任意取出两个不同的数字,若取出的两数之和等于5的概率是114,则n = 。

4、(2013山东,理14)在区间[3,3]-上随机取一个数x ,使得不等式121x x +--≥成立的概率是。

5、(2013江苏,7)现有某类病毒记作m n X Y ,其中正整数m ,n (7m ≤,9n ≤)可以任意选取,则m ,n 都取到奇数的概率为 。

2013年全国各地高考文科数学试题分类汇编11:概率与统计含答案

2013年全国各地高考文科数学试题分类汇编11:概率与统计含答案

2013年全国各地高考文科数学试题分类汇编11:概率与统计一、选择题1 .(2013年高考安徽(文))若某公司从五位大学毕业生甲、乙、丙、丁、戌中录用三人,这五人被录用的机会均等,则甲或乙被录用的概率为()A.23B.25C.35D.910【答案】D2 .(2013年高考重庆卷(文))下图是某公司10个销售店某月销售某产品数量(单位:台)的茎叶图,则数据落在区间[20,30)内的概率为()A.0.2 B.0。

4 C.0。

5 D.0.6【答案】B3 .(2013年高考湖南(文))已知事件“在矩形ABCD的边CD上随机取一点P,使△APB的最大边是AB"发生的概率为.21,则ADAB=____ ( )A.12B.14C32D74【答案】D4 .(2013年高考江西卷(文))集合A={2,3},B={1,2,3},从A,B中各取任意一个数,则这两数之和等于4的概率是()A .23B .13C . 12D .16【答案】C5 .(2013年高考湖南(文))某工厂甲、乙、丙三个车间生产了同一种产品,数量分别为120件,80件,60件.为了解它们的产品质量是否存在显著差异,用分层抽样方法抽取了一个容量为n 的样本进行调查,其中从丙车间的产品中抽取了3件,则n=___ D .____ ( ) A .9B .10C .12D .13【答案】D6 .(2013年高考山东卷(文))将某选手的9个得分去掉1个最高分,去掉1个最低分,7个剩余分数的平均分为91,现场做的9个分数的茎叶图后来有一个数据模糊,无法辨认,在图中以x 表示:则7个剩余分数的方差为 ( )A .1169B .367C .36D【答案】B7 .(2013年高考四川卷(文))某学校随机抽取20个班,调查各班中有网上购物经历的人数,所得数据的茎叶图如图所示。

以组距为5将数据分组成[0,5),[5,10),,[30,35),[35,40]时,所作的频率分布直方图是8 7 79 4 0 1 0 9 1x0.04组距频率0.05组距频率0.04组距频率0.04组距频率0人数0.010.020.0351015202530354000.010.020.030.04510152025303540人数0人数0.010.020.031020304000.010.020.0310203040人数(B)(A)(C)(D)【答案】A8 .(2013年高考课标Ⅰ卷(文))从1,2,3,4中任取2个不同的数,则取出的2个数之差的绝对值为2的概率是 ( ) A .12B .13C .14D .16【答案】B9 .(2013年高考陕西卷(文))对一批产品的长度(单位: mm )进行抽样检测, 下图喂检测结果的频率分布直方图。

2013年、2012年、2011年高考题分类汇编之概率与统计

2013年、2012年、2011年高考题分类汇编之概率与统计

1 1 1 3 + × = . 2 2 2 4
解析:∵p1=1-(
99 10 98 5 C2 5 ) ,p2=1-( 299 ) =1-( ), 100 100 C100
∴p1<p2.故选 B. 答案:B 4.(2012 年江苏卷,6)现有 10 个数,它们能构成一个以 1 为首项,-3 为公比的等比数列,若从这 10 个数中随 机抽取一个数,则它小于 8 的概率是 3) ,(-3) ,(-3) ,(-3) ,(-3) , 所以它小于 8 的概率等于 答案:
C +C 3 = . 2 5 C5
2 3 2 2
3 5
(结果用最简分数表示).
7.(2010 年上海卷,理 9)从一副混合后的扑克牌(52 张)中随机抽取 1 张,事件 A 为“抽得红桃 K”,事件 B 为 “抽得为黑桃”,则概率 P(A∪B)= 解析:52 张中抽一张的基本事件为 52 种,事件 A 为 1 种,事件 B 为 13 种,并且 A 与 B 互斥, 所以 P(A∪B)=P(A)+P(B)= 答案:
.
解析:由于事件“中国队夺得女子乒乓球单打冠军”包括事件“甲夺得冠军”和“乙夺得冠军”,但这两个事件不可 能同时发生,即彼此互斥,所以可按互斥事件概率的加法公式进行计算,即中国队夺得女子乒乓球单打冠军 的概率为 答案:
3 1 19 + = . 7 4 28
19 28
第二节
古典概型与几何概型
高考试题
考点一
2 . 9
1 . 12
1 12
4.(2012 安庆质检)在圆周上有 10 个等分点,以这些点为顶点,每 3 个点可以构成一个三角形,如果随机选择 3 个点,则刚好构成直角三角形的概率为 解析:∵直角三角形的斜边是圆的直径, 而圆周上的 10 个等分点能组成 5 条直径, ∴直角三角形的个数为 5 C1 8 =40 个.

2013备考各地试题解析分类汇编(二)文科数学:11统计与概率.

2013备考各地试题解析分类汇编(二)文科数学:11统计与概率.

各地解析分类汇编(二)系列:统计与概率1.【云南师大附中2013届高三高考适应性月考卷(四)文】甲、乙两名运动员在某项测试中的6次成绩的茎叶图如图2所示,1x ,2x 分别表示甲乙两名运动员这项测试成绩的平均数,12,s s 分别表示甲乙两名运动员这项测试成绩的标准差,则有A .1212,x x s s ><B .1212,x x s s ==C .1212,x x s s =<D .1212,x x s s =>【答案】C【解析】由样本中数据可知115x =,215x =,由茎叶图得12s s <,所以选C.2.【贵州省六校联盟2013届高三第一次联考 文】某同学学业水平考试的9科成绩如茎叶图4所示,则根据茎叶图可知该同学的平均分为 .【答案】80 【解析】1720(6872737828189292)8099+++⨯++⨯+==. 3.【山东省青岛一中2013届高三1月调研考试数学文】某班级有50名学生,现要采取系统抽样的方法在这50名学生中抽出10名学生,将这50名学生随机编号1—50号,并分组,第一组1—5号,第二组6—10号,……,第十组46—50号,若在第三组中抽得号码为12的学生,则在第八组中抽得号码为___ 的学生. 【答案】37【解析】因为12522=⨯+,即第三组抽出的是第二个同学,所以每一组都相应抽出第二个同学。

所以第8组中抽出的号码为57237⨯+=号。

4.【北京市丰台区2013届高三上学期期末考试数学文】某高中共有学生900人,其中高一年级240人,高二年级260人,为做某项调查,拟采用分层抽样法抽取容量为45的样本,则在高三年级抽取的人数是 ______.【答案】20【解析】高三的人数为400人,所以高三抽出的人数为4540020900⨯=人。

5.【云南省昆明一中2013届高三第二次高中新课程双基检测数学文】某学校想要调查全校同学是否知道迄今为止获得过诺贝尔物理奖的6位华人的姓名,为此出了一份考卷。

2013年高考概率与统计部分汇编

2013年高考概率与统计部分汇编

2013年高考概率与统计部分汇编一、选择题 1、(2013年广东卷) 已知离散型随机变量的分布列为则的数学期望 ( )A .B .C .D .2、(2013年重庆理卷)以下茎叶图记录了甲、乙两组各五名学生在一次英语听力测试中的成绩(单位:分)已知甲组数据的中位数为15,乙组数据的平均数为16.8,则,x y 的值分别为( ) A 、2,5 B 、5,5 C 、5,8 D 、8,83、(2013年新课标1理)为了解某地区的中小学生视力情况, 拟从该地区的中小学生中抽取部分学 生进行调查,事先已了解到该地区小学、初中、高中三个学段学生的视力情况有较大差异,而男女生视力情况差异不大,在下面的抽样方法中,最合理的抽样方法是 ( ) A 、简单随机抽样 B 、按性别分层抽样 C 、按学段分层抽样 D 、系统抽样4、(2013年四川卷)节日前夕,小李在家门前的树上挂了两串彩灯,这两串彩灯的第一次闪亮相互独立,且都在通电后的4秒内任一时刻等可能发生,然后每串彩灯以4秒为间隔闪亮。

那么这两串彩灯同时通电后,它们第一次闪亮的时刻相差不超过2秒的概率是( )(A )14 (B )12 (C )34 (D )785、(2013年安徽卷) 某班级有50名学生,其中有30名男生和20名女生,随机询问了该班五名男生和五名女生在某次数学测验中的成绩,五名男生的成绩分别为86,94,88,92,90,五名女生的成绩分别为88,93,93,88,93.下列说法一定正确的是 (A )这种抽样方法是一种分层抽样 (B )这种抽样方法是一种系统抽样(C )这五名男生成绩的方差大于这五名女生成绩的方差 (D )该班级男生成绩的平均数小于该班女生成绩的平均数 6、(2013年湖北卷) 如图,将一个各面都涂了油漆的正方体,切割成125 个同样大小的小正方体。

经过搅拌后,从中随机取出一个小正方体,记它 的涂油漆面数为X ,则X 的均值为()E X = A.126125 B. 65 C. 168125 D. 757、(2013年陕西卷)某单位有840名职工, 现采用系统抽样方法, 抽取42人做问卷调查, 将840人 X X 123P 35310110X EX =3225238、(2013年陕西卷)如图, 在矩形区域ABCD 的A , C 两点处各有一个通信基站, 假设其信号覆盖范围分别是扇形区域ADE 和扇形区域CBF (该矩形区域内无其他信号来源, 基站工作正常). 若在该矩形区域内随机地选一地点, 则该地点无.信号的概率是(A)14π- (B)12π- (C) 22π- (D) 4π9、(2013年辽宁卷) 某学校组织学生参加英语测试,成绩的频率分布直方图如图,数据的分组一次[)[)[)[)20,40,40,60,60,80,820,100.若低于60分的人数是15人,则该班的学生人数是 (A )45 (B )50 (C )55 (D )60 二、填空题10、(2013年新课标2理)从n 个正整数1,2,…,n 中任意取出两个不同的数,若取出的两数之和等于5的概率为114,则n =________. 11、(2013年山东卷)在区间[-3,3]上随机取一个数x ,使得 |x+1 |- |x-2 |≥1成立的概率为 12、(2013年湖北卷) 从某小区抽取100户居民进行月用电量调查,发现其用电量都在50到350度之间,频率分布直方图所示。

2013年全国高考理科数学试题分类汇编11:概率与统计

2013年全国高考理科数学试题分类汇编11:概率与统计

2013年全国高考理科数学试题分类汇编11:概率与统计一、选择题1 .(2013年普通高等学校招生统一考试辽宁数学(理)试题(WORD 版))某学校组织学生参加英语测试,成绩的频率分布直方图如图,数据的分组一次为[)[)20,40,40,60,[)[)60,80,820,100.若低于60分的人数是15人,则该班的学生人数是( )A .45B .50C .55D .60【答案】B2 .(2013年高考陕西卷(理))某单位有840名职工, 现采用系统抽样方法, 抽取42人做问卷调查, 将840人按1, 2, , 840随机编号, 则抽取的42人中, 编号落入区间[481, 720]的人数为 ( )A .11B .12C .13D .14 【答案】B3 .(2013年普通高等学校招生统一考试安徽数学(理)试题(纯WORD 版))某班级有50名学生,其中有30名男生和20名女生,随机询问了该班五名男生和五名女生在某次数学测验中的成绩,五名男生的成绩分别为86,94,88,92,90,五名女生的成绩分别为88,93,93,88,93.下列说法一定正确的是 ( ) A .这种抽样方法是一种分层抽样[来源:学|科|网Z|X|X|K] B .这种抽样方法是一种系统抽样C .这五名男生成绩的方差大于这五名女生成绩的方差D .该班级男生成绩的平均数小于该班女生成绩的平均数 【答案】C4 .(2013年高考湖南卷(理))某学校有男、女学生各500名.为了解男女学生在学习兴趣与业余爱好方面是否存在显著差异,拟从全体学生中抽取100名学生进行调查,则宜采用的抽样方法是 ( )A .抽签法B .随机数法C .系统抽样法D .分层抽样法 【答案】D5 .(2013年高考陕西卷(理))如图, 在矩形区域ABCD 的A , C 两点处各有一个通信基站, 假设其信号覆盖范围分别是扇形区域ADE 和扇形区域CBF (该矩形区域内无其他信号来源, 基站工作正常). 若在该矩形区域内随机地选一地点, 则该地点无.信号的概率是( )A .14π-B .12π-C .22π-D .4π 【答案】A6 .(2013年高考四川卷(理))节日里某家前的树上挂了两串彩灯,这两串彩灯的第一次闪亮相互独立,若接通电后的4秒内任一时刻等可能发生,然后每串彩灯在内4秒为间隔闪亮,那么这两串彩灯同时通电后,它们第一次闪亮的时刻相差不超过2秒的概率是 ( ) A .14B .12C .34D .78【答案】C7 .(2013年普通高等学校招生统一考试福建数学(理)试题(纯WORD 版))某校从高一年级学生中随机抽取部分学生,将他们的模块测试成绩分为6组:[40,50), [50,60), [60,70), [70,80), [80,90),[90,100)加以统计,得到如图所示的频率分布直方图,已知高一年级共有学生600名,据此估计,该模块测试成绩不少于60分的学生人数为 ( ) A .588 B .480 C .450 D .120【答案】B8 .(2013年高考江西卷(理))总体有编号为01,02,…,19,20的20个个体组成。

2013年全国高考理科数学试题分类汇编11:概率与统计Word版含答案

2013年全国高考理科数学试题分类汇编11:概率与统计Word版含答案

2013 年全国高考理科数学试题分类汇编11:概率与统计一、选择题1 .( 2013 年一般高等学校招生一致考试辽宁数学(理)试题(WORD版))某学校组织学生参加英语测试, 成绩的频次散布直方图如图, 数据的分组一次为20,40 , 40,60 , 60,80 ,8 20,100 . 若低于60分的人数是15人,则该班的学生人数是()A.45B.50C.55D.60【答案】B2 .( 2013 年高考陕西卷(理))某单位有840 名员工 ,现采纳系统抽样方法,抽取42人做问卷检查 ,将840人按1, 2, , 840随机编,则抽取的42 人中 ,编落入区间[481,720]的人数为()A. 11B. 12C. 13D. 14【答案】B50 名学3 .( 2013 年一般高等学校招生一致考试安徽数学(理)试题(纯WORD版))某班级有生, 此中有 30 名男生和 20 名女生 , 随机咨询了该班五名男生和五名女生在某次数学测试中的成绩, 五名男生的成绩分别为86,94,88,92,90,五名女生的成绩分别为88,93,93,88,93.以下说法必定正确的选项是()A.这类抽样方法是一种分层抽样B.这类抽样方法是一种系统抽样C.这五名男生成绩的方差大于这五名女生成绩的方差D.该班级男生成绩的均匀数小于该班女生成绩的均匀数【答案】 C4.( 2013 年高考湖南卷(理))某学校有男、女学生各500名 . 为认识男女学生在学习兴趣与业余喜好方面能否存在明显差别, 拟从全体学生中抽取100 名学生进行检查 , 则宜采用的抽样方法是()A.抽签法B.随机数法C.系统抽样法D.分层抽样法【答案】 D5.( 2013 年高考陕西卷(理))如图,在矩形地区的 ,两点处各有一个通讯基站,假ABCD A C设其信覆盖范围分别是扇形地区ADE和扇形地区 CBF(该矩形地区内无其余信根源,基站工作正常 ).若在该矩形地区内随机地选一地址, 则该地址无.信的概率是DF C1EA2B()A . 1B .1C . 2D .4224【答案】 A6 .( 2013 年高考四川卷(理) ) 日里某家前的 上挂了两串彩灯 , 两串彩灯的第一次亮相互独立 , 若接通 后的 4 秒内任一 刻等可能 生 , 而后每串彩灯在内 4 秒 隔亮, 那么 两串彩灯同 通 后 , 它 第一次 亮的 刻相差不超2 秒的概率是()A .1B .1C .3D .7424 8【答案】 C7 .( 2013 年一般高等学校招生一致考试福建数学(理)试题(纯 WORD 版)) 某校从高一年学生中随机抽取部分学生, 将他 的模 成 分 6 :[40,50), [50,60),[60,70), [70,80), [80,90), [90,100) 加以 , 获取如 所示的 率散布直方 , 已知高一年 共有学生600 名 , 据此估 , 模 成 许多于 60 分的学生人数 ()A . 588B . 480C . 450D . 120【答案】 B8 .( 2013 年高考江西卷(理) ) 体有 01,02, ⋯,19,20的 20 个个体 成。

2013年高考试题分类汇编(统计与概率)

2013年高考试题分类汇编(统计与概率)
2.706
3.841
6.635
10.828
A. B. C. D.
4.(2013·山东卷·理科)在区间 上随机取一个数 ,使得 成立的概率为.
5.(2013·重庆卷·理科)从 名骨科、 名脑外科和 名内科医生中选派 人组成一个抗震救灾医疗小组,则骨科、脑外科和内科医生都至少有 人的选派方法种数是(用数字作答).
考点2统计
1.(2013·福建卷·理科)某校从高一年级学生中随机抽取部分学生,将他们的模块测试成绩分成 组: , , , , , ,加以统计,得到如图所示的频率分布直方图.已知高一年级共有学生 名,据此估计,该模块测试成绩不少于 分的学生人数为
A. B. C. D.
2.(2013·辽宁卷·文理科)某学校组织学生参加英语测试,成绩的频率分布直方图如图,数据的分组依次为 , , , ,若低于 分的人数是 人,则该班的学生人数是
A. B. C. D.
3.(2013·陕西卷·文科)对一批产品的长度(单位: )进行抽样检测,下图为检测结果的频率分布直方图.根据标准,产品长度在区间 上的为一等品,在区间 和区间 上的为二等品,在区间 和 上的为三等品,用频率估计概率,现从该批产品中随机抽取一件,则其为二等品的概率为
(Ⅰ)求家庭的月储蓄 对月收入 的线性回归方程 ;
(Ⅱ)判断变量 与 之间是正相关还是负相关;
(Ⅲ)若该居民区某家庭月收入为7千元,预测该家庭的月储蓄.
附:线性回归方程 中, , ,其中 , 为样本平均值,线性回归方程也可写为 .
考点5独立性检验
1.(2013·福建卷·文科)某工厂有 周岁以上(含 周岁)工人 名, 周岁以下工人 名.为研究工人的日平均生产量是否与年龄有关,现采用分层抽样的方法,从中抽取了 名工人,先统计了他们某月的日平均生产件数,然后按工人年龄在“ 周岁以上(含 周岁)”和“ 周岁以下”分为两组,再将两组工人的日平均生产件数分为 组: , , , , ,分别加以统计,得到如图所示的频率分布直方图.

2013备考各地试题解析分类汇编(二)文科数学:11统计与概率

2013备考各地试题解析分类汇编(二)文科数学:11统计与概率

各地解析分类汇编(二)系列:统计与概率1.【云南师大附中2013届高三高考适应性月考卷(四)文】甲、乙两名运动员在某项测试中的6次成绩的茎叶图如图2所示,1x ,2x 分别表示甲乙两名运动员这项测试成绩的平均数,12,s s 分别表示甲乙两名运动员这项测试成绩的标准差,则有A .1212,x x s s ><B .1212,x x s s ==C .1212,x x s s =<D .1212,x x s s =>【答案】C【解析】由样本中数据可知115x =,215x =,由茎叶图得12s s <,所以选C.2.【贵州省六校联盟2013届高三第一次联考 文】某同学学业水平考试的9科成绩如茎叶图4所示,则根据茎叶图可知该同学的平均分为 .【答案】80 【解析】1720(6872737828189292)8099+++⨯++⨯+==. 3.【山东省青岛一中2013届高三1月调研考试数学文】某班级有50名学生,现要采取系统抽样的方法在这50名学生中抽出10名学生,将这50名学生随机编号1—50号,并分组,第一组1—5号,第二组6—10号,……,第十组46—50号,若在第三组中抽得号码为12的学生,则在第八组中抽得号码为___ 的学生. 【答案】37【解析】因为12522=⨯+,即第三组抽出的是第二个同学,所以每一组都相应抽出第二个同学。

所以第8组中抽出的号码为57237⨯+=号。

4.【北京市丰台区2013届高三上学期期末考试数学文】某高中共有学生900人,其中高一年级240人,高二年级260人,为做某项调查,拟采用分层抽样法抽取容量为45的样本,则在高三年级抽取的人数是 ______.【答案】20【解析】高三的人数为400人,所以高三抽出的人数为4540020 900⨯=人。

5.【云南省昆明一中2013届高三第二次高中新课程双基检测数学文】某学校想要调查全校同学是否知道迄今为止获得过诺贝尔物理奖的6位华人的姓名,为此出了一份考卷。

2013年高考试题汇编.概率与统计

2013年高考试题汇编.概率与统计

某人在如图4所示的直角边长为4米的三角形地块的每个格点(指纵、横的交叉点记忆三角形的顶点)处都种了一株相同品种的作物。

根据历年的种植经验,一株该种作物的年收获量Y(单位:kg)与它的“相近”作物株数X之间的关系如下表所示:X 1 2 3 4Y 51 48 45 42这里,两株作物“相近”是指它们之间的直线距离不超过1米。

(I)从三角形地块的内部和边界上分别随机选取一株作物,求它们恰好“相近”的概率;(II)从所种作物中随机选取一株,求它的年收获量的分布列与数学期望。

某超市为了解顾客的购物量及结算时间等信息,安排一名员工随机收集了在该超市购物的100位顾客的相关数据,如下表所示。

已知这100位顾客中的一次购物量超过8件的顾客占55%。

(Ⅰ)确定x,y的值,并求顾客一次购物的结算时间X的分布列与数学期望;(Ⅱ)若某顾客到达收银台时前面恰有2位顾客需结算,且各顾客的结算相互独立,求该顾客结算前的等候时间不超过...2.5分钟的概率。

(注:将频率视为概率)(2011湖南)18.某商店试销某种商品20天,获得如下数据:日销售量(件)0 1 2 3频数 1 5 9 5试销结束后(假设该商品的日销售量的分布规律不变),设某天开始营业时有该商品3件,当天营业结束后检查存货,若发现存货少于2件,则当天进货补充..至3件,否则不进货...,将频率视为概率。

(Ⅰ)求当天商品不进货...的概率;(Ⅱ)记X为第二天开始营业时该商品的件数,求X的分布列和数学期望。

(2010湖南)17.(本小题满分12分)图4是某城市通过抽样得到的居民某年的月均用水量(单位:吨)的频率分布直方图.(I)求直方图中x的值;(II)若将频率视为概率,从这个城市随机抽取3位居民(看作有放回的抽样),求月均用水量在3至4吨的居民数X的分布列和数学期望.(2013山东)(19)本小题满分12分甲、乙两支排球队进行比赛,约定先胜3局者获得比赛的胜利,比赛随即结束.除第五局甲队获胜的概率是12外,其余每局比赛甲队获胜的概率是23.假设每局比赛结果互相独立.(1)分别求甲队以3:0,3:1,3:2胜利的概率(2)若比赛结果为3:0或3:1,则胜利方得3分,对方得0分;若比赛结果为3:2,则胜利方得2分、对方得1分,求乙队得分x的分布列及数学期望. (2013陕西)19. (本小题满分12分)在一场娱乐晚会上, 有5位民间歌手(1至5号)登台演唱, 由现场数百名观众投票选出最受欢迎歌手. 各位观众须彼此独立地在选票上选3名歌手, 其中观众甲是1号歌手的歌迷, 他必选1号, 不选2号, 另在3至5号中随机选2名. 观众乙和丙对5位歌手的演唱没有偏爱, 因此在1至5号中随机选3名歌手.(Ⅰ) 求观众甲选中3号歌手且观众乙未选中3号歌手的概率;(Ⅱ) X表示3号歌手得到观众甲、乙、丙的票数之和, 求X的分布列和数学期望.(2013重庆)18、某商场举行的“三色球”购物摸奖活动规定:在一次摸奖中,摸奖者先从装有3个红球与4个白球的袋中任意摸出3个球,再从装有1个蓝球与2个白球的袋中任意摸出1个球,根据摸出4个球中红球与蓝球的个数,设一、二、三等奖如下:奖级摸出红、蓝球个数获奖金额一等奖3红1蓝200元二等奖3红0蓝50元三等奖2红1蓝10元其余情况无奖且每次摸奖最多只能获得一个奖级。

2013年高考数学试题分类汇编:11概率与统计(理)

2013年高考数学试题分类汇编:11概率与统计(理)

2013年高考数学试题分类汇编:11概率与统计(理)D1 .(2013年普通高等学校招生统一考试福建数学(理)试题(纯WORD版))某校从高一年级学生中随机抽取部分学生,将他们的模块测试成绩分为6组:[40,50), [50,60),[60,70), [70,80), [80,90), [90,100)加以统计,得到如图所示的频率分布直方图,已知高一年级共有学生600名,据此估计,该模块测试成绩不少于60分的学生人数为()A.588 B.480 C.450 D.120【答案】B2 .(2013年高考江西卷(理))总体有编号为01,02,…,19,20的20个个体组成。

利用下面的随机数表选取5个个体,选取方法是从随机数表第1行的第5列和第6列数字开始由左到右依次选取两个数字,则选出来的第5个个体的编号为7816 6572 0802 63140702 4369 9728 0198()A.08 B.07 C.02 D.01【答案】D3 .(2013年高考新课标1(理))为了解某地区的中小学生视力情况,拟从该地区的中小学生中抽取部分学生进行调查,事先已了解到该地区小学.初中.高中三个学段学生的视力情况有较大差异,而男女生视力情况差异不大,在下面的抽样方法中,最合理的抽样方法是()A.简单随机抽样B.按性别分层抽样C.按学段【答案】C.4.(2013年普通高等学校招生统一考试重庆数学(理)试题(含答案))以下茎叶图记录了甲.乙两组各五名学生在一次英语听力测试中的成绩(单位:分)87 4 2 4已知甲组数据的中位数为15,乙组数据的平均数为16.8,则,x y的值分别为()A.2,5B.5,5C.5,8D.8,8【答案】C5.(2013年普通高等学校招生统一考试广东省数学(理)卷(纯WORD版))已知离散型随机变量X的分布列为X123P 35310110则X的数学期望EX=()A.32B.2C.52D.3【答案】A6.(2013年高考湖北卷(理))如图,将一个各面都涂了油漆的正方体,切割成125个同样大小的小正方体.经过搅拌后,从中随机取出一个小正方体,记它的涂油漆面数为X,则X的均值为()E X=()A.126125B.65C.168125D.75【答案】B二、填空题7.(2013年高考上海卷(理))盒子中装有编号为1,2,3,4,5,6,7,8,9的九个球,从中任意取出两个,则这两个球的编号之积为偶数的概率是___________(结果用最简分数表示).【答案】13188.(2013年高考湖北卷(理))从某小区抽取100户居民进行月用电量调查,发现其用电量都在50到350度之间,频率分布直方图所示.(I)直方图中x的值为___________;(II)在这些用户中,用电量落在区间[)100,250内的户数为_____________.【答案】0.0044;709.(2013年普通高等学校招生全国统一招生考试江苏卷(数学)(已校对纯WORD版含附加题))抽样统计甲、乙两位设计运动员的5此训练成绩(单位:环),结果如下:运动员第1次第2次第3次第4次第5次甲879198993乙899918892则成绩较为稳定(方差较小)的那位运动员成绩的方差为_____________.【答案】210.(2013年普通高等学校招生统一考试福建数学(理)试题(纯WORD版))利用计算机产生0~1之间的均匀随机数a,则时间“310a ->”发生的概率为________ 【答案】2311.(2013年普通高等学校招生统一考试新课标Ⅱ卷数学(理)(纯WORD 版含答案))从n 个正整数1,2,n …中任意取出两个不同的数,若取出的两数之和等于5的概率为114,则n =________.【答案】812.(2013年普通高等学校招生统一考试辽宁数学(理)试题(WORD 版))为了考察某校各班参加课外书法小组的人数,在全校随机抽取5个班级,把每个班级参加该小组的认为作为样本数据.已知样本平均数为7,样本方差为4,且样本数据互相不相同,则样本数据中的最大值为____________. 【答案】1013.(2013年高考上海卷(理))设非零常数d是等差数列12319,,,,x x x x 的公差,随机变量ξ等可能地取值12319,,,,x x x x ,则方差_______D ξ=【答案】|D d ξ=.14.(2013年普通高等学校招生统一考试山东数学(理)试题(含答案))在区间[]3,3-上随机取一个数x ,使得121x x +--≥成立的概率为______.15.(2013年普通高等学校招生全国统一招生考试江苏卷(数学)(已校对纯WORD 版含附加题))现在某类病毒记作nm YX,其中正整数m,n (7≤m ,9≤n )可以任意选取,则n m ,都取到奇数的概率为____________. 【答案】2063. 三、解答题 16.(2013年普通高等学校招生统一考试广东省数学(理)卷(纯WORD 版))某车间共有12名工人,随机抽取6名,他们某日加工零件个数的茎叶图如图所示,其中茎为十位数,叶为个位数.(Ⅰ) 根据茎叶图计算样本均值;1 7 92 0 1 53 0 第17题图(Ⅱ) 日加工零件个数大于样本均值的工人为优秀工人,根据茎叶图推断该车间12名工人中有几名优秀工人;(Ⅲ) 从该车间12名工人中,任取2人,求恰有1名优秀工人的概率.【答案】解:(1)由题意可知,样本均值171920212530226x +++++==(2)样本6名个人中日加工零件个数大于样本均值的工人共有2名,∴可以推断该车间12名工人中优秀工人的人数为:21246⨯=(3)从该车间12名工人中,任取2人有21266C =种方法,而恰有1名优秀工人有1110220CC =∴所求的概率为:1110221220106633C C P C ===17.(2013年高考北京卷(理))下图是某市3月1日至14日的空气质量指数趋势图,空气质量指数小于100表示空气质量优良,空气质量指数大于200表示空气重度污染,某人随机选择3月1日至3月13日中的某一天到达该市,并停留2天.(Ⅰ)求此人到达当日空气重度污染的概率; (Ⅱ)设X 是此人停留期间空气质量优良的天数,求X 的分布列与数学期望;(Ⅲ)由图判断从哪天开始连续三天的空气质量指数方差最大?(结论不要求证明)【答案】解:设iA 表示事件“此人于3月i 日到达该市”( i =1,2,,13).根据题意, 1()13iP A =,且()ij AA i j =∅≠.(I)设B 为事件“此人到达当日空气重度污染”,则58B A A =,所以58582()()()()13P B P AA P A P A ==+=.(II)由题意可知,X 的所有可能取值为0,1,2,且P(X=1)=P(A 3∪A 6∪A 7∪A 11)=P(A 3)+P(A 6)+P(A 7)+P(A 11)= 413,P(X=2)=P(A 1∪A 2∪A 12∪A 13)=P(A 1)+P(A 2)+P(A 12)+P(A 13)= 413, P(X=0)=1-P(X=1)-P(X=2)= 513,所以X 的分布列为:012544131313X P故X 的期望5441201213131313EX =⨯+⨯+⨯=. (III)从3月5日开始连续三天的空气质量指数方差最大.18.(2013年普通高等学校招生统一考试福建数学(理)试题(纯WORD 版))某联欢晚会举行抽奖活动,举办方设置了甲.乙两种抽奖方案,方案甲的中奖率为23,中将可以获得2分;方案乙的中奖率为25,中将可以得3分;未中奖则不得分.每人有且只有一次抽奖机会,每次抽奖中将与否互不影响,晚会结束后凭分数兑换奖品.(1)若小明选择方案甲抽奖,小红选择方案乙抽奖,记他们的累计得分为,X Y ,求3X ≤的概率;(2)若小明.小红两人都选择方案甲或方案乙进行抽奖,问:他们选择何种方案抽奖,累计的得分的数学期望较大?【答案】解:(Ⅰ)由已知得:小明中奖的概率为23,小红中奖的概率为25,两人中奖与否互不影响,记“这2人的累计得分3≤X ”的事件为A,则A 事件的对立事件为“5=X ”,224(5)3515==⨯=P X ,11()1(5)15∴=-==P A P X∴这两人的累计得分3≤X 的概率为1115.(Ⅱ)设小明.小红都选择方案甲抽奖中奖的次数为1X ,都选择方案乙抽奖中奖的次数为2X ,则这两人选择方案甲抽奖累计得分的数学期望为1(2)E X ,选择方案乙抽奖累计得分的数学期望为2(3)E X由已知:12~(2,)3XB ,22~(2,)5XB124()233∴=⨯=E X ,224()255=⨯=E X118(2)2()3∴==E X E X ,2212(3)3()5==E XE X12(2)(3)>E X E X∴他们都在选择方案甲进行抽奖时,累计得分的数学期望最大.19.(2013年普通高等学校招生统一考试天津数学(理)试题(含答案))一个盒子里装有7张卡片, 其中有红色卡片4张, 编号分别为1, 2, 3, 4; 白色卡片3张, 编号分别为2, 3, 4. 从盒子中任取4张卡片 (假设取到任何一张卡片的可能性相同). (Ⅰ) 求取出的4张卡片中, 含有编号为3的卡片的概率.(Ⅱ) 再取出的4张卡片中, 红色卡片编号的最大值设为X , 求随机变量X 的分布列和数学期望.【答案】20.(2013年普通高等学校招生统一考试大纲版数学(理)WORD版含答案(已校对))甲、乙、丙三人进行羽毛球练习赛,其中两人比赛,另一人当裁判,每局比赛结束时,负的一方在下一局当裁判,设各局中双方获胜的概各局比赛的结果相互独立,第1局甲率均为1,2当裁判.(I)求第4局甲当裁判的概率;(II)X表示前4局中乙当裁判的次数,求X的数学期望.【答案】21.(2013年普通高等学校招生统一考试辽宁数学(理)试题(WORD版))现有10道题,其中6道甲类题,4道乙类题,张同学从中任取3道题解答.(I)求张同学至少取到1道乙类题的概率;(II)已知所取的3道题中有2道甲类题,1道乙类题.设张同学答对甲类题的概率都是3 5,答对每道乙类题的概率都是45,且各题答对与否相互独立.用X表示张同学答对题的个数,求X的分布列和数学期望.【答案】1.(2013年高考陕西卷(理))在一场娱乐晚会上, 有5位民间歌手(1至5号)登台演唱, 由现场数百名观众投票选出最受欢迎歌手. 各位观众须彼此独立地在选票上选3名歌手, 其中观众甲是1号歌手的歌迷, 他必选1号, 不选2号, 另在3至5号中随机选2名. 观众乙和丙对5位歌手的演唱没有偏爱, 因此在1至5号中随机选3名歌手.(Ⅰ) 求观众甲选中3号歌手且观众乙未选中3号歌手的概率;(Ⅱ) X 表示3号歌手得到观众甲、乙、丙的票数之和, 求X 的分布列和数学期望.【答案】解:(Ⅰ) 设事件A 表示:观众甲选中3号歌手且观众乙未选中3号歌手. 观众甲选中3号歌手的概率为32,观众乙未选中3号歌手的概率为53-1. 所以P(A) = 15453-132=⋅)(. 因此,观众甲选中3号歌手且观众乙未选中3号歌手的概率为154(Ⅱ) X 表示3号歌手得到观众甲、乙、丙的票数之和,则X 可取0,1,2,3. 观众甲选中3号歌手的概率为32,观众乙选中3号歌手的概率为53.当观众甲、乙、丙均未选中3号歌手时,这时X=0,P(X = 0) = 754)531()321(2=-⋅-.当观众甲、乙、丙中只有1人选中3号歌手时,这时X=1,P(X = 1) =75207566853)531(321()531(53321()531(322=++=⋅-⋅-+-⋅⋅-+-⋅)).当观众甲、乙、丙中只有2人选中3号歌手时,这时X=2,P(X = 2) =7533751291253)531(325353321()531(5332=++=⋅-⋅+⋅⋅-+-⋅⋅).当观众甲、乙、丙均选中3号歌手时,这时X=3,P(X =3) = 7518)53(322=⋅.X 的分布列如下表: 1575753752751750==⋅+⋅+⋅+⋅=εE 所以,数学期望1528=EX1.(2013年高考湖南卷(理))某人在如图4所示的直角边长为4米的三角形地块的每个格点(指纵、横的交叉点记忆三角形的顶点)处都种了一株相同品种的作物.根据历年的种植经验,一株该种作物的年收获量Y(单位:kg)与它的“相近”作物株数X之间的关系如下表所示:X 1 2 3 4 Y 51 48 45 42 这里,两株作物“相近”是指它们之间的直线距离不超过1米.(I)从三角形地块的内部和边界上分别随机选取一株作物,求它们恰好“相近”的概率;(II)从所种作物中随机选取一株,求它的年收获量的分布列与数学期望.【答案】解: (Ⅰ) 由图知,三角形边界共有12个格点,内部共有3个格点.从三角形上顶点按逆时针方向开始,分别有0,0,1,1,0,1,1,0,0,1,2,1对格点,共8对格点恰好“相近”.所以,从三角形地块的内部和边界上分别随机选取一株作物,它们恰好“相近”的概率923128=⋅=P (Ⅱ)三角形共有15个格点.与周围格点的距离不超过1米的格点数都是1个的格点有2个,坐标分别为(4,0),(0,4).154)51(==Y P 所以 与周围格点的距离不超过1米的格点数都是2个的格点有4个,坐标分别为(0,0),(1,3), (2,2),(3,1).154)48(==Y P 所以与周围格点的距离不超过1米的格点数都是3个的格点有6个,坐标分别为(1,0), (2,0), (3,0),(0,1,) ,(0,2),(0,3,).156)45(==Y P 所以与周围格点的距离不超过1米的格点数都是4个的格点有3个,坐标分别为(1,1),(1,2), (2,1).153)42(==Y P 所以如下表所示:46156901512627019210215342156451544815251)(==+++=⋅+⋅+⋅+⋅=Y E46)(=∴Y E .2.(2013年普通高等学校招生统一考试重庆数学(理)试题(含答案))某商场举行的“三色球”购物摸奖活动规定:在一次摸奖中,摸奖者先从装有3个红球与4个白球的袋中任意摸出3个球,再从装有1个蓝球与2个白球的袋中任意摸出1个球,根据摸出4个球中红球与蓝球的个数,设一.二.三等奖如下:三等奖2红1蓝10元其余情况无奖且每次摸奖最多只能获得一个奖级.(1)求一次摸奖恰好摸到1个红球的概率;(2)求摸奖者在一次摸奖中获奖金额X的分布列与期望()E X.【答案】3.(2013年普通高等学校招生统一考试浙江数学(理)试题(纯WORD 版))设袋子中装有a个红球,b 个黄球,c 个蓝球,且规定:取出一个红球得1分,取出一个黄球2分,取出蓝球得3分.(1)当1,2,3===c b a 时,从该袋子中任取(有放回,且每球取到的机会均等)2个球,记随机变量ξ为取出此2球所得分数之和,.求ξ分布列;(2)从该袋子中任取(且每球取到的机会均等)1个球,记随机变量η为取出此球所得分数.若95,35==ηηD E ,求.::c b a【答案】解:(Ⅰ)由已知得到:当两次摸到的球分别是红红时2ξ=,此时331(2)664P ξ⨯===⨯;当两次摸到的球分别是黄黄,红蓝,蓝红时4ξ=,此时2231135(4)66666618P ξ⨯⨯⨯==++=⨯⨯⨯;当两次摸到的球分别是红黄,黄红时3ξ=,此时32231(3)66663P ξ⨯⨯==+=⨯⨯;当两次摸到的球分别是黄蓝,蓝黄时5ξ=,此时12211(5)66669P ξ⨯⨯==+=⨯⨯;当两次摸到的球分别是蓝蓝时6ξ=,此时111(6)6636P ξ⨯===⨯;所以ξ的分布列是:(Ⅱ)由已知得到:η有三种取值即1,2,3,所以η的分布列是:所以:2225233555253(1)(2)(3)9333a b c E a b c a b c a b c a b c D a b c a b c a b c ηη⎧==++⎪⎪++++++⎨⎪==-⨯+-⨯+-⨯⎪++++++⎩,所以2,3::3:2:1b c a c a b c ==∴=.4.(2013年普通高等学校招生统一考试新课标Ⅱ卷数学(理)(纯WORD版含答案))经销商经销某种农产品,在一个销售季度内,每售出1t该产品获利润500元,未售出的产品,每1t亏损300元.根据历史资料,得到销售季度内市场需求量的频率分布直方图,如图所示.经销商为下一个销售季度购进了130t该农产品,以X(单位:t,150≤X)表示下一个100≤销售季度内的市场需求量,T(单位:元)表示下一个销售季度内销商该农产品的利润.(Ⅰ)将T表示为X的函数;(Ⅱ)根据直方图估计利润T不少于57000元的概率;(Ⅲ)在直方图的需求量分组中,以各组的区间中点值代表该组的各个值,需求量落入该区间的频率作为需求量取该区间中点值的概率(例如:若[100,110)X∈,则取105X=X=,且105的概率等于需求量落入[100,110)的概率),求利润T的数学期望.【答案】5.(2013年高考江西卷(理))小波以游戏方式决定参加学校合唱团还是参加学校排球队.游戏规则为:以O 为起点,再从12345678,,,,,,,,A A A A A A A A (如图)这8个点中任取两点分别为终点得到两个向量,记这两个向量的数量积为X .若0X 就参加学校合唱团,否则就参加学校排球队.(1) 求小波参加学校合唱团的概率; (2) 求X 的分布列和数学期望.【答案】解:(1)从8个点中任意取两点为向量终点的不同取法共有2828C=种,0χ=时,两向量夹角为直角共有8种情形;所以小波参加学校合唱团的概率为82(0)287P χ===. (2)两向量数量积χ的所有可能取值为2,1,0,1,2χ--=时,有两种情形;1χ=时,有8种情形;1χ=-时,有10种情形.所以χ的分布列为: χ 2- 1-0 1 P 114 514 27 2715223(2)+(1)0114147714E χ=-⨯-⨯+⨯+⨯=-.6.(2013年普通高等学校招生统一考试山东数学(理)试题(含答案))甲、乙两支排球队进行比赛,约定先胜3局者获得比赛的胜利,比赛随即结束,除第五局甲队获胜的概率是12外,其余每局比赛甲队获胜的概率都是23,假设各局比赛结果相互独立. (Ⅰ)分别求甲队以3:0,3:1,3:2胜利的概率;(Ⅱ)若比赛结果为3:0或3:1,则胜利方得3分,对方得0分;若比赛结果为3:2,则胜利方得2分、对方得1分.求乙队得分X 的分布列及数学期望.【答案】解:(Ⅰ)记“甲队以3:0胜利”为事件1A ,“甲队以3:1胜利”为事件2A ,“甲队以3:2胜利”为事件3A ,由题意,各局比赛结果相互独立, 故3128()()327P A ==,22232228()()(1)33327P A C =-⨯=, 122342214()()(1)33227P A C =-⨯=所以,甲队以3:0,3:1,3:2胜利的概率分别是827,827,427;(Ⅱ)设“乙队以3:2胜利”为事件4A ,由题意,各局比赛结果相互独立,所以122442214()(1)()(1)33227P A C =-⨯-=由题意,随机变量X 的所有可能的取值为0,1,2,3,,根据事件的互斥性得1212(0)()()()P X P A A P A P A ==+=+1627=,34(1)()27P X P A ===, 44(2)()27P X P A ===,(3)P X ==1-(0)P X =(1)P X -=(2)P X -=327=故X 的分布列为 X123P1627427427327所以16443012327272727EX =⨯+⨯+⨯+⨯79=7.(2013年高考湖北卷(理))假设每天从甲地去乙地的旅客人数X是服从正态分布()2800,50N 的随机变量.记一天中从甲地去乙地的旅客人数不超过900的概率为0p . (I)求0p 的值;(参考数据:若()2,XN μσ,有()0.6826P X μσμσ-<<+=,()220.9544P X μσμσ-<<+=,()330.9974P X μσμσ-<<+=.)(II)某客运公司用A .B 两种型号的车辆承担甲.乙两地间的长途客运业务,每车每天往返一次,A .B 两种车辆的载客量分别为36人和60人,从甲地去乙地的运营成本分别为1600元/辆和2400元/辆.公司拟组建一个不超过21辆车的客运车队,并要求B 型车不多于A 型车7辆.若每天要以不小于0p 的概率运完从甲地去乙地的旅客,且使公司从甲地去乙地的运营成本最小,那么应配备A 型车.B 型车各多少辆?【答案】解:(I)010.50.95440.97722p=+⨯=(II)设配备A 型车x 辆,B 型车y 辆,运营成本为z 元,由已知条件得2136609007,x y x y y x x y N +≤⎧⎪+≥⎪⎨-≤⎪⎪∈⎩,而16002400z x y =+作出可行域,得到最优解5,12x y ==. 所以配备A 型车5辆,B 型车12辆可使运营成本最小.8.(2013年高考新课标1(理))一批产品需要进行质量检验,检验方案是:先从这批产品中任取4件作检验,这4件产品中优质品的件数记为n.如果n=3,再从这批产品中任取4件作检验,若都为优质品,则这批产品通过检验;如果n=4,再从这批产品中任取1件作检验,若为优质品,则这批产品通过检验;其他情况下,这批产品都不能通过检验.假设这批产品的优质品率为50%,即取出的产品是优质品的概率都为,且各件产品是否为优质品相互独立(1)求这批产品通过检验的概率;(2)已知每件产品检验费用为100元,凡抽取的每件产品都需要检验,对这批产品作质量检验所需的费用记为X(单位:元),求X的分布列及数学期望.【答案】设第一次取出的4件产品中恰有3件优质品为事件A,第一次取出的4件产品中全为优质品为事件B,第二次取出的4件产品都是优质品为事件C,第二次取出的1件产品是优质品为事件D,这批产品通过检验为事件E,根据题意有E=(AB)∪(CD),且AB 与CD 互斥,∴P(E)=P(AB)+P(CD)=P(A)P(B|A)+P(C)P(D|C)=3244111()()222C ⨯⨯+411()22⨯=364(Ⅱ)X 的可能取值为400,500,800,并且P(X=400)=1-3344111()()222C ⨯-=1116,P(X=500)=116,P(X=800)=33411()22C ⨯=14, ∴X 的分布列为EX=400×1116+500×116+800×14=506.259.(2013年高考四川卷(理))某算法的程序框图如图所示,其中输入的变量x 在1,2,3,,24⋅⋅⋅这24个整数中等可能随机产生.(Ⅰ)分别求出按程序框图正确编程运行时输出y 的值为i 的概率(1,2,3)iP i =;(Ⅱ)甲、乙两同学依据自己对程序框图的理解,各自编写程序重复运行n次后,统计记录了输出y的值为(1,2,3)i i=的频数.以下是甲、乙所作频数统计表的部分数据.写出甲、乙所编程序各自输出y的值为i i=的频率(用分数表示),并判断两位同(1,2,3)学中哪一位所编写程序符合算法要求的可能性较大;(Ⅲ)按程序框图正确编写的程序运行3次,求输出y的值为2的次数ξ的分布列及数学期望.【答案】解:()I.变量x是在1,2,3,24这24个整数中随机产生的一个数,共有24种可能.当x从1,3,5,7,9,11,13,15,17,19,21,23这12个数中产生时,输出y的值为1,故11 2p=;当x从2,4,8,10,14,16,20,22这8个数中产生时,输出y 的值为2,故213p=;当x 从6,12,18,24这4个数中产生时,输出y 的值为3,故316p=()II 当n=2100时,甲、乙所编程序各自输出y的值为i(i=1,2,3)的频率如下:比较频率趋势与概率,可得乙同学所编程序符合算法要求的可能性较大(3)随机变量ξ可能饿取值为0,1,2,3.303128(0)3327p C ξ⎛⎫⎛⎫==⨯= ⎪ ⎪⎝⎭⎝⎭1213124(1)339p C ξ⎛⎫⎛⎫==⨯= ⎪ ⎪⎝⎭⎝⎭2123122(2)339p C ξ⎛⎫⎛⎫==⨯= ⎪ ⎪⎝⎭⎝⎭3033121(3)3327p C ξ⎛⎫⎛⎫==⨯= ⎪ ⎪⎝⎭⎝⎭故ξ的分布列为所以842101231279927E ξ=⨯+⨯+⨯+⨯= 即ξ的数学期望为12.(2013年普通高等学校招生统一考试安徽数学(理)试题(纯WORD 版))某高校数学系计划在周六和周日各举行一次主题不同的心理测试活动,分别由李老师和张老师负责,已知该系共有n 位学生,每次活动均需该系k 位学生参加(n 和k 都是固定的正整数).假设李老师和张老师分别将各自活动通知的信息独立、随机地发给该系k 位学生,且所发信息都能收到.记该系收到李老师或张老师所发活动通知信息的学生人数为x(Ⅰ)求该系学生甲收到李老师或张老师所发活动通知信息的概率;(Ⅱ)求使()P X m =取得最大值的整数m .【答案】解: (Ⅰ) n k A P n k A P A -1)()(==,师的通知信息,则表示:学生甲收到李老设事件.)()(),()(A P B P A P B P B ==师的通知信息,则表示:学生甲收到张老设事件.师或张老师的通知信息表示:学生甲收到李老设事件C .则22)(2)1(1)B P()A P(-1=P(C)n k n k n k -=--=⋅.所以,2)(2nk n k -老师的通知信息为学生甲收到李老师或张.。

2013年高考数学-试卷分类汇编:11概率与统计(理)

2013年高考数学-试卷分类汇编:11概率与统计(理)

2013 年高考理科数学试题分类汇编:11 概率与统计一、选择题错误!未指定书签。

.( 2013 年普通高等学校招生统一考试辽宁数学(理)试题( WORD版))某学校组织学生参加英语测试, 成绩的频率分布直方图如图, 数据的分组一次为20,40 , 40,60 , 60,80 ,8 20,100 . 若低于 60 分的人数是15 人 , 则该班的学生人数是()A. 45 B.50 C.55D. 60【答案】 B错误!未指定书签。

.( 2013 年高考陕西卷(理))某单位有840 名职工 , 现采用系统抽样方法 , 抽取 42 人做问卷调查 , 将 840 人按 1, 2, , 840 随机编号 , 则抽取的 42 人中 , 编号落入区间 [481, 720] 的人数为A. 11 B. 12 C.13 D. 14 ()【答案】 B错误!未指定书签。

.(2013 年普通高等学校招生统一考试安徽数学(理)试题(纯WORD版))某班级有50 名学生 , 其中有 30 名男生和20 名女生 , 随机询问了该班五名男生和五名女生在某次数学测验中的成绩, 五名男生的成绩分别为86,94,88,92,90, 五名女生的成绩分别为88,93,93,88,93. 下列说法一定正确的是A.这种抽样方法是一种分层抽样()B.这种抽样方法是一种系统抽样C.这五名男生成绩的方差大于这五名女生成绩的方差D.该班级男生成绩的平均数小于该班女生成绩的平均数【答案】 C错误!未指定书签。

.(2013 年高考湖南卷(理))某学校有男、女学生各500男女学生在学习兴趣与业余爱好方面是否存在显著差异, 拟从全体学生中抽取生进行调查 , 则宜采用的抽样方法是A.抽签法B.随机数法C.系统抽样法D.分层抽样法名 . 为了解100 名学()【答案】 D错误!未指定书签。

.(2013 年高考陕西卷(理))如图 , 在矩形区域ABCD的各有一个通信基站 , 假设其信号覆盖范围分别是扇形区域ADE和扇形区域区域内无其他信号来源 , 基站工作正常 ). 若在该矩形区域内随机地选一地点点无信号的概率是.A, C两点处CBF( 该矩形, 则该地DF C1EA 2 B()A. 1 B. 1 C. 22 D.4 2 4【答案】 A 错误!未指定书签。

高考数学试卷 总结解析---分类汇编11:概率与统计 Word版含答案

高考数学试卷  总结解析---分类汇编11:概率与统计 Word版含答案

2013年全国高考理科数学试题分类汇编11:概率与统计一、选择题1.(2013年普通高等学校招生统一考试辽宁数学(理)试题(WORD版))某学校组织学生20,40,40,60,参加英语测试,成绩的频率分布直方图如图,数据的分组一次为[)[)[)[)60,80,820,100.若低于60分的人数是15人,则该班的学生人数是()A.45B.50C.55D.60【答案】B2 .(2013年高考陕西卷(理))某单位有840名职工, 现采用系统抽样方法, 抽取42人做问卷调查, 将840人按1, 2, , 840随机编号, 则抽取的42人中, 编号落入区间[481, 720]的人数为()A.11 B.12 C.13 D.14【答案】B3 .(2013年普通高等学校招生统一考试安徽数学(理)试题(纯WORD版))某班级有50名学生,其中有30名男生和20名女生,随机询问了该班五名男生和五名女生在某次数学测验中的成绩,五名男生的成绩分别为86,94,88,92,90,五名女生的成绩分别为88,93,93,88,93.下列说法一定正确的是()A.这种抽样方法是一种分层抽样B.这种抽样方法是一种系统抽样C.这五名男生成绩的方差大于这五名女生成绩的方差D.该班级男生成绩的平均数小于该班女生成绩的平均数【答案】C4 .(2013年高考湖南卷(理))某学校有男、女学生各500名.为了解男女学生在学习兴趣与业余爱好方面是否存在显著差异,拟从全体学生中抽取100名学生进行调查,则宜采用的抽样方法是( ) A .抽签法 B .随机数法 C .系统抽样法 D .分层抽样法【答案】D5 .(2013年高考陕西卷(理))如图, 在矩形区域ABCD 的A , C 两点处各有一个通信基站,假设其信号覆盖范围分别是扇形区域ADE 和扇形区域CBF (该矩形区域内无其他信号来源, 基站工作正常). 若在该矩形区域内随机地选一地点, 则该地点无.信号的概率是( ) A .14π-B .12π- C .22π-D .4π 【答案】A6 .(2013年高考四川卷(理))节日里某家前的树上挂了两串彩灯,这两串彩灯的第一次闪亮相互独立,若接通电后的4秒内任一时刻等可能发生,然后每串彩灯在内4秒为间隔闪亮,那么这两串彩灯同时通电后,它们第一次闪亮的时刻相差不超过2秒的概率是( ) A .14B .12C .34D .78【答案】C7 .(2013年普通高等学校招生统一考试福建数学(理)试题(纯WORD 版))某校从高一年级学生中随机抽取部分学生,将他们的模块测试成绩分为6组:[40,50), [50,60),[60,70), [70,80), [80,90), [90,100)加以统计,得到如图所示的频率分布直方图,已知高一年级共有学生600名,据此估计,该模块测试成绩不少于60分的学生人数为( ) A .588 B .480 C .450 D .120【答案】B8 .(2013年高考江西卷(理))总体有编号为01,02,…,19,20的20个个体组成。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2013年全国各地高考文科数学试题分类汇编11:概率与统计一、选择题1 .(2013年高考安徽(文))若某公司从五位大学毕业生甲、乙、丙、丁、戌中录用三人,这五人被录用的机会均等,则甲或乙被 录用的概率为 ( )A .23B .25C .35D .910【答案】D2 .(2013年高考重庆卷(文))下图是某公司10个销售店某月销售某产品数量(单位:台)的茎叶图,则数据落在区间[20,30)内的概率为( )A .0.2B .0.4C .0.5D .0.6【答案】B3 .(2013年高考湖南(文))已知事件“在矩形ABCD 的边CD 上随机取一点P,使△APB的最大边是AB”发生的概率为.21,则ADAB=____ ( )A .12B .14 C .32D .74【答案】D4 .(2013年高考江西卷(文))集合A={2,3},B={1,2,3},从A,B 中各取任意一个数,则这两数之和等于4的概率是 ( )A .23B .13 C .12D .16【答案】C5 .(2013年高考湖南(文))某工厂甲、乙、丙三个车间生产了同一种产品,数量分别为120件,80件,60件.为了解它们的产品质量是否存在显著差异,用分层抽样方法抽取了一个容量为n 的样本进行调查,其中从丙车间的产品中抽取了3件,则n=___ D .____ ( )A .9 B .10 C .12 D .13 【答案】D6 .(2013年高考山东卷(文))将某选手的9个得分去掉1个最高分,去掉1个最低分,7个剩余分数的平均分为91,现场做的9个分数的茎叶图后来有一个数据模糊,无法辨认,在图中以x表示:则7个剩余分数的方差为()A.116 9B.367C.36 D.677【答案】B7 .(2013年高考四川卷(文))某学校随机抽取20个班,调查各班中有网上购物经历的人数,所得数据的茎叶图如图所示.以组距为5将数据分组成[0,5),[5,10),,[30,35),[35,40]时,所作的频率分布直方图是0.04组距频率0.05组距频率0.04组距频率0.04组距频率0人数0.010.020.0351015202530354000.010.020.030.04510152025303540人数0人数0.010.020.031020304000.010.020.0310203040人数(B)(A)(C)(D)【答案】A8 .(2013年高考课标Ⅰ卷(文))从1,2,3,4中任取2个不同的数,则取出的2个数之差的绝对值为2的概率是()A.12B.13C.14D.16【答案】B9 .(2013年高考陕西卷(文))对一批产品的长度(单位: mm)进行抽样检测, 下图喂检测结果的频率分布直方图. 根据标准, 产品长度在区间[20,25)上的为一等品, 在区间[15,20)和区间[25,30)上的为二等品, 在区间[10,15)和[30,35)上的为三等品. 用频率估计概率, 现从该批产品中随机抽取一件, 则其为二等品的概率为8 7 79 4 0 1 0 9 1x( )A .0.09B .0.20C .0.25D .0.45【答案】D10.(2013年高考江西卷(文))总体编号为01,02,19,20的20个个体组成.利用下面的随机数表选取5个个体,选取方法是从随机数表第1行的第5列和第6列数字开始由左到右依次选取两个数字,则选出来的第5个个体的编号为( )A .08B .07C .02D .01【答案】D11.(2013年高考辽宁卷(文))某学校组织学生参加英语测试,成绩的频率分布直方图如图,数据的分组一次为[)[)20,40,40,60,[)[)60,80,820,100,若低于60分的人数是15人,则该班的学生人数是( )A .45B .50C .55D .60【答案】B12.四名同学根据各自的样本数据研究变量,x y 之间的相关关系,并求得回归直线方程,分别得到以下四个结论:① y 与x 负相关且 2.347 6.423y x =-; ② y 与x 负相关且 3.476 5.648y x =-+; ③ y 与x 正相关且 5.4378.493y x =+; ④ y 与x 正相关且 4.326 4.578y x =--. 其中一定不正..确.的结论的序号是 A.①② B.②③C.③④D. ①④【答案】D13.已知x 与y 之间的几组数据如下表:假设根据上表数据所得线性回归直线方程为a x b yˆˆˆ+=.若某同学根据上表中前两组数据)0,1(和)2,2(求得的直线方程为a x b y '+'=,则以下结论正确的是( )A.a a b b'>'>ˆ,ˆ B.a a b b '<'>ˆ,ˆ C.a a b b '>'<ˆ,ˆ D.a a b b '<'<ˆ,ˆ 【答案】C 二、填空题14.(2013年高考浙江卷(文))从三男三女6名学生中任选2名(每名同学被选中的机会相等),则2名都是女同学的概率等于_________.【答案】1515.(2013年高考湖北卷(文))在区间[2,4]-上随机地取一个数x ,若x 满足||x m ≤的概率为56,则m =__________. 【答案】316.(2013年高考福建卷(文))利用计算机产生1~0之间的均匀随机数a ,则事件“013<-a ”发生的概率为_______【答案】3117.(2013年高考重庆卷(文))若甲、乙、丙三人随机地站成一排,则甲、乙两人相邻而站的概率为____________.【答案】2318.(2013年高考辽宁卷(文))为了考察某校各班参加课外书法小组的人数,在全校随机抽取5个班级,把每个班级参加该小组的认为作为样本数据.已知样本平均数为7,样本方差为4,且样本数据互相不相同,则样本数据中的最大值为____________. 【答案】1019.(2013年上海高考数学试题(文科))某学校高一年级男生人数占该年级学生人数的40%.在一次考试中,男、女生平均分数分别为75、80,则这次考试该年级学生平均分数为________. 【答案】7820.(2013年高考湖北卷(文))某学员在一次射击测试中射靶10次,命中环数如x 1 2 3 4 5 6 y 0 2 1 3 3 4下:7,8,7,9,5,4,9,10,7,4则(Ⅰ)平均命中环数为__________; (Ⅱ)命中环数的标准差为__________. 【答案】(Ⅰ)7 (Ⅱ)221.(2013年高考课标Ⅱ卷(文))从1,2,3,4,5中任意取出两个不同的数,其和为5的概率是________.【答案】1522.(2013年上海高考数学试题(文科))盒子中装有编号为1,2,3,4,5,6,7的七个球,从中任意取出两个,则这两个球的编号之积为偶数的概率是_______(结果用最简分数表示).【答案】57三、解答题23.(2013年高考江西卷(文))小波已游戏方式决定是去打球、唱歌还是去下棋.游戏规则为以O 为起点,再从A 1,A 2,A 3,A 4,A 5,A 6(如图)这6个点中任取两点分别为终点得到两个向量,记住这两个向量的数量积为X,若X>0就去打球,若X=0就去唱歌,若X<0就去下棋.(1) 写出数量积X 的所有可能取值 (2)分别求小波去下棋的概率和不.去唱歌的概率 【答案】解:(1) x 的所有可能取值为-2 ,-1 ,0, 1.(2)数量积为-2的只有25OA OA •一种数量积为-1的有15OA OA •,1624263435,,,,OA OA OA OA OA OA OA OA OA OA •••••六种数量积为0的有13143646,,,OA OA OA OA OA OA OA OA ••••四种 数量积为1的有12234556,,,OA OA OA OA OA OA OA OA ••••四种 故所有可能的情况共有15种. 所以小波去下棋的概率为1715p =因为去唱歌的概率为2415p =,所以小波不去唱歌的概率2411111515p p =-=-= 24.(2013年高考陕西卷(文))有7位歌手(1至7号)参加一场歌唱比赛, 由500名大众评委现场投票决定歌手名次,根据年龄将大众评委分为5组, 各组的人数如下:组别 A B C D E 人数50100 150 15050(Ⅰ) 为了调查评委对7位歌手的支持状况, 现用分层抽样方法从各组中抽取若干评委, 其中从B 组中抽取了6人. 请将其余各组抽取的人数填入下表.组别 A B C D E 人数 50 100 150 150 50 抽取人数6 (Ⅱ) 在(Ⅰ)中, 若A , B 两组被抽到的评委中各有2人支持1号歌手, 现从这两组被抽到的评委中分别任选1人, 求这2人都支持1号歌手的概率. 【答案】解: (Ⅰ) 按相同的比例从不同的组中抽取人数.从B 组100人中抽取6人,即从50人中抽取3人,从100人中抽取6人,从100人中抽取9人.(Ⅱ) A 组抽取的3人中有2人支持1号歌手,则从3人中任选1人,支持支持1号歌手的概率为32· B 组抽取的6人中有2人支持1号歌手,则从6人中任选1人,支持支持1号歌手的概率为62· 现从抽样评委A 组3人,B 组6人中各自任选一人,则这2人都支持1号歌手的概率926232=⋅=P . 所以,从A,B 两组抽样评委中,各自任选一人,则这2人都支持1号歌手的概率为92. 25.(2013年高考四川卷(文))某算法的程序框图如图所示,其中输入的变量x 在24,,3,2,1 这24个整数中等可能随机产生.(Ⅰ)分别求出按程序框图正确编程运行时输出y 的值为i 的概率(1,2,3)i P i =; (Ⅱ)甲、乙两同学依据自己对程序框图的理解,各自编写程序重复运行n 次后,统计记录了输出y 的值为(1,2,3)i i =的频数.以下是甲、乙所作频数统计表的部分数据.当2100n =时,根据表中的数据,分别写出甲、乙所编程序各自输出y 的值为(1,2,3)i i =的频率(用分数表示),并判断两位同学中哪一位所编写程序符合算法要求的可能性较大.【答案】解:(Ⅰ)变量x 是在24,,3,2,1 这24个整数中等可能随机产生的一个数,共有24种可能.当x 从23,21,19,17,15,13,11,9,7,5,3,1这12个数中产生时,输出y 的值为1,故211=P ; 当x 从22,20,16,14,10,8,4,2这8个数中产生时,输出y 的值为2,故312=P ; 当x 从24,18,12,6这4个数中产生时,输出y 的值为3,故613=P . 所以输出y 的值为1的概率为21,输出y 的值为2的概率为31,输出y 的值为3的概率为61. (Ⅱ)当2100n =时,甲、乙所编程序各自输出y 的值为(1,2,3)i i =的频率如下,输出y 的值为1的频率输出y 的值为2的频率输出y 的值为3的频率甲2100102721003762100697比较频率趋势与概率,可得乙同学所编写程序符合算法要求的可能性较大.26.(2013年高考辽宁卷(文))现有6道题,其中4道甲类题,2道乙类题,张同学从中任取3道题解答.试求:(I)所取的2道题都是甲类题的概率; (II)所取的2道题不是同一类题的概率.【答案】27.(2013年高考天津卷(文))某产品的三个质量指标分别为x , y , z , 用综合指标S =x + y + z 评价该产品的等级. 若S ≤4, 则该产品为一等品. 先从一批该产品中, 随机抽取10件产品作为样本, 其质量指标列表如下: 产品编号 A 1 A 2 A 3 A 4A 5质量指标(x ,(1,1,2) (2,1,1) (2,2,2) (1,1,1)(1,2,1)乙2100105121006962100353y , z)产品编号 A 6 A 7 A 8 A 9 A 10 质量指标(x , y , z )(1,2,2) (2,1,1) (2,2,1) (1,1,1) (2,1,2) (Ⅰ) 利用上表提供的样本数据估计该批产品的一等品率; (Ⅱ) 在该样品的一等品中, 随机抽取两件产品, (⒈) 用产品编号列出所有可能的结果;(⒉) 设事件B 为 “在取出的2件产品中, 每件产品的综合指标S 都等于4”, 求事件B 发生的概率. 【答案】28.(2013年高考湖南(文))某人在如图3所示的直角边长为4米的三角形地块的每个格点(指纵、横直线的交叉点以及三角形的顶点)处都种了一株相同品种的作物.根据历年的种植经验,一株该种作物的年收货量Y (单位:kg)与它的“相近”作物株数X 之间的关系如下表所示:这里,两株作物“相近”是指它们之间的直线距离不超过1米. (Ⅰ)完成下表,并求所种作物的平均年收获量;(Ⅱ)在所种作物中随机选取一株,求它的年收获量至少为48kg 的概率. 【答案】解: (Ⅰ) 由图知,三角形中共有15个格点,与周围格点的距离不超过1米的格点数都是1个的格点有2个,坐标分别为(4,0),(0,4).与周围格点的距离不超过1米的格点数都是2个的格点有4个,坐标分别为(0,0), (1,3), (2,2),(3,1).与周围格点的距离不超过1米的格点数都是3个的格点有6个,坐标分别为(1,0), (2,0), (3,0),(0,1,) ,(0,2),(0,3,).与周围格点的距离不超过1米的格点数都是4个的格点有3个,坐标分别为(1,1), (1,2), (2,1).如下表所示:Y 51 48 45 42 频数 2 4 6 3 平均年收获量4615342645448251=⋅+⋅+⋅+⋅=u .(Ⅱ)在15株中,年收获量至少为48kg 的作物共有2+4=6个. 所以,15株中任选一个,它的年收获量至少为48k 的概率P=4.0156=. 29.(2013年高考安徽(文))为调查甲、乙两校高三年级学生某次联考数学成绩情况,用简单随机抽样,从这两校中各抽取30名高三年级学生,以他们的数学成绩(百分制)作为样本,样本数据的茎叶图如下: 甲 乙 7 4 55 3 3 2 5 3 3 85 5 4 3 3 3 1 0 06 0 6 9 1 1 2 2 3 3 5 8 6 6 2 2 1 1 0 07 0 0 2 2 2 3 3 6 6 9 7 5 4 4 28 1 1 5 5 8 2 09 0(Ⅰ)若甲校高三年级每位学生被抽取的概率为0.05,求甲校高三年级学生总人数,并估计甲校高三年级这次联考数学成绩的及格率(60分及60分以上为及格); (Ⅱ)设甲、乙两校高三年级学生这次联考数学平均成绩分别为12,x x ,估计12x x -的值.【答案】解:(1)30300.056000.05n n =⇒== 255306p == (2)174013504246092670922805290230x +++⨯++⨯++⨯++⨯++⨯==208430254014503176010337010208059030x +++⨯++⨯++⨯++⨯+==2069302120842069150.5303030x x ===--30.(2013年高考课标Ⅱ卷(文))经销商经销某种农产品,在一个销售季度内,每售出1t该产品获利润500元,未售出的产品,每1t 亏损300元.根据历史资料,得到销售季度内市场需求量的频率分布直图,如右图所示.经销商为下一个销售季度购进了130t 该农产品.以X(单位:t≤100≤X≤150)表示下一个销售季度内的市场需求量,T(单位:元)表示下一个销售季度内经销该农产品的利润. (Ⅰ)将T 表示为X 的函数;(Ⅱ)根据直方图估计利润T 不少于57000元的概率.【答案】/频率组距0.0100.0150.0200.0250.030100110120130140150需求量/x t31.(2013年高考广东卷(文))从一批苹果中,随机抽取50个,其重量(单位:克)的频数分布表如下:分组(重量) [80,85)[85,90)[90,95)[95,100)频数(个)5102015(1) 根据频数分布表计算苹果的重量在[90,95)的频率;(2) 用分层抽样的方法从重量在[80,85)和[95,100)的苹果中共抽取4个,其中重量在[80,85)的有几个?(3) 在(2)中抽出的4个苹果中,任取2个,求重量在[80,85)和[95,100)中各有1个的概率.【答案】(1)重量在[)90,95的频率200.450==;(2)若采用分层抽样的方法从重量在[)80,85和[)95,100的苹果中共抽取4个,则重量在[)80,85的个数541515=⨯=+; (3)设在[)80,85中抽取的一个苹果为x ,在[)95,100中抽取的三个苹果分别为,,a b c ,从抽出的4个苹果中,任取2个共有(,),(,),(,),(,),(,),(,)x a x b x c a b a c b c 6种情况,其中符合“重量在[)80,85和[)95,100中各有一个”的情况共有(,),(,),(,)x a x b x c 种;设“抽出的4个苹果中,任取2个,求重量在[)80,85和[)95,100中各有一个”为事件A ,则事件A 的概率31()62P A ==; 32.(2013年高考山东卷(文))某小组共有A B C D E 、、、、五位同学,他们的身高(单位:米)以及体重指标(单位:千克/米2) 如下表所示:A BC D E 身高1.691.731.751.791.82体重指标19.2 25.1 18.5 23.3 20.9 (Ⅰ)从该小组身高低于1.80的同学中任选2人,求选到的2人身高都在1.78以下的概率(Ⅱ)从该小组同学中任选2人,求选到的2人的身高都在1.70以上且体重指标都在[18.5,23.9)中的概率 【答案】33.(2013年高考北京卷(文))下图是某市3月1日至14日的空气质量指数趋势图,空气质量指数小于100表示空气质量优良,空气质量指数大于200表示空气重度污染,某人随机选择3月1日至3月13日中的某一天到达该市,并停留2天.(Ⅰ)求此人到达当日空气质量优良的概率;(Ⅱ)求此人在该市停留期间只有1天空气重度污染的概率;(Ⅲ)由图判断从哪天开始连续三天的空气质量指数方差最大?(结论不要求证明)【答案】解:(I)在3月1日至3月13日这13天中,1日.2日.3日.7日.12日.13日共6天的空气质量优良,所以此人到达当日空气质量优良的概率是613.(II)根据题意,事件“此人在该市停留期间只有1天空气重度污染”等价于“此人到达该市的日期是4日,或5日,或7日,或8日”.所以此人在该市停留期间只有1天空气质量重度污染的概率为413.(III)从3月5日开始连续三天的空气质量指数方差最大.34.(2013年高考福建卷(文))某工厂有25周岁以上(含25周岁)工人300名,25周岁以下工人200名.为研究工人的日平均生产量是否与年龄有关.现采用分层抽样的方法,从中抽取了100名工人,先统计了他们某月的日平均生产件数,然后按工人年龄在“25周岁以上(含25周岁)”和“25周岁以下”分为两组,在将两组工人的日平均生产件数分成5组:[50,60),[60,70),[70,80),[80,90),[90,100)分别加以统计,得到如图所示的频率分布直方图.(1)从样本中日平均生产件数不足60件的工人中随机抽取2人,求至少抽到一名“25周岁以下组”工人的频率.(2)规定日平均生产件数不少于80件者为“生产能手”,请你根据已知条件完成22的列联表,并判断是否有90%的把握认为“生产能手与工人所在的年龄组有关”?附表:【答案】解:(Ⅰ)由已知得,样本中有25周岁以上组工人60名,25周岁以下组工人40名所以,样本中日平均生产件数不足60件的工人中,25周岁以上组工人有600.053⨯=(人),记为1A ,2A ,3A ;25周岁以下组工人有400.052⨯=(人),记为1B ,2B从中随机抽取2名工人,所有可能的结果共有10种,他们是:12(,)A A ,13(,)A A ,23(,)A A ,11(,)A B ,12(,)A B ,21(,)A B ,22(,)A B ,31(,)A B ,32(,)A B ,12(,)B B其中,至少有名“25周岁以下组”工人的可能结果共有7种,它们是:11(,)A B ,12(,)A B ,21(,)A B ,22(,)A B ,31(,)A B ,32(,)A B ,12(,)B B .故所求的概率:710P =(Ⅱ)由频率分布直方图可知,在抽取的100名工人中,“25周岁以上组”中的生产能手600.2515⨯=(人),“25周岁以下组”中的生产能手400.37515⨯=(人),据此可得22⨯列联表如下:生产能手 非生产能手 合计25周岁以上组 15 45 60 25周岁以下组 15 25 40合计30 70 100 所以得:222()100(15251545)251.79()()()()6040307014n ad bc K a b c d a c b d -⨯⨯-⨯===≈++++⨯⨯⨯因为1.79 2.706<,所以没有90%的把握认为“生产能手与工人所在的年龄组有关”35.(2013年高考大纲卷(文))甲、乙、丙三人进行羽毛球练习赛,其中两人比赛,另一人当裁判,每局比赛结束时,负的一方在下一局当裁判,设各局中双方获胜的概率均为1,2各局比赛的结果都相互独立,第1局甲当裁判.(I)求第4局甲当裁判的概率;(II)求前4局中乙恰好当1次裁判概率.【答案】(Ⅰ)记1A 表示事件“第2局结果为甲胜”,2A 表示事件“第3局甲参加比赛时,结果为甲负”,A 表示事件“第4局甲当裁判”.则12=A A A •.12121()=P()()()4P A A A P A P A •==. (Ⅱ)记1B 表示事件“第1局结果为乙胜”,2B 表示事件“第2局乙参加比赛时,结果为乙胜”, 3B 表示事件“第3局乙参加比赛时,结果为乙胜”,B 表示事件“前4局中恰好当1次裁判”. 则1312312B B B B B B B B =•+••+•.1312312()()P B P B B B B B B B =•+••+• 1312312()()()P B B P B B B P B B =•+••+•1312312()()()()()()()P B P B P B P B P B P B P B =•+••+• 111484=++ 58=. 36.(2013年高考课标Ⅰ卷(文))(本小题满分共12分)为了比较两种治疗失眠症的药(分别称为A 药,B 药)的疗效,随机地选取20位患者服用A 药,20位患者服用B 药,这40位患者服用一段时间后,记录他们日平均增加的睡眠时间(单位:h ),试验的观测结果如下:服用A 药的20位患者日平均增加的睡眠时间:0.6 1.2 2.7 1.5 2.8 1.8 2.2 2.3 3.2 3.5 2.5 2.6 1.2 2.7 1.5 2.9 3.0 3.1 2.3 2.4服用B 药的20位患者日平均增加的睡眠时间:3.2 1.7 1.9 0.8 0.9 2.4 1.2 2.6 1.3 1.4 1.6 0.5 1.8 0.6 2.1 1.1 2.5 1.2 2.7 0.5 (1)分别计算两组数据的平均数,从计算结果看,哪种药的疗效更好? (3)根据两组数据完成下面茎叶图,从茎叶图看,哪种药的疗效更好?【答案】(本小题满分共12分)(1) 设A 药观测数据的平均数为 ,B 药观测数据的平均数为 ,又观测结果可得120x=(0.6+1.2+1.2+1.5+1.5+1.8+2.2+2.3+2.3+2.4+2.5+2.6+2.7+2.7+2.8+3.0+3.1+3.2+3.5)=2.3,1(0.50.50.60.80.9 1.1 1.2 1.2 1.3 1.4 1.6 1.7 1.8 1.9 2.1202.4 2.5 2.6 2.73.2 1.6y =+++++++++++++++++++=由以上计算结果可得x >y,因此可看出A 药的疗效更好(2)由观测结果可绘制如下茎叶图: A 药 B 药 6 0. 5 5 6 8 9 8 5 5 2 21. 1 2 2 3 4 6 7 8 9 9 8 7 7 6 5 4 3 3 22. 1 4 5 6 7 5 2 1 03.2从以上茎叶图可以看出,A 药疗效的试验结果有的叶集中在茎2.3上,而B 药疗效的试验结果有710的叶集中在茎0,1上,由此可看出A 药的疗效更好. 37.(本小题满分13分,(Ⅰ)小问9分,(Ⅱ)、(Ⅲ)小问各2分)从某居民区随机抽取10个家庭,获得第i 个家庭的月收入i x (单位:千元)与月储蓄i y (单位:千元)的数据资料,算得10180ii x==∑,10120i i y ==∑,101184i i i x y ==∑,1021720i i x ==∑.(Ⅰ)求家庭的月储蓄y 对月收入x 的线性回归方程y bx a =+;(Ⅱ)判断变量x 与y 之间是正相关还是负相关;(Ⅲ)若该居民区某家庭月收入为7千元,预测该家庭的月储蓄.附:线性回归方程y bx a =+中,1221ni ii nii x y nx yb xnx==-=-∑∑,a y bx =-,其中x ,y 为样本平均值,线性回归方程也可写为y bx a =+.。

相关文档
最新文档