射频电路设计(第六章)
(完整版)射频电路设计
目录
1、 引言 2、 传输线分析 3、 Smith圆图 4、 单端口网络和多端口网络 5、 射频滤波器设计 6、 有源射频元件 7、 有源射频电路器件模型 8、 匹配网络和偏置网络 9、 射频晶体管放大器设计 10、振荡器和混频器
4
第1章 引 言
回顾由低频到高频电路的演变过程,并从物理的角度引出 和揭示采用新技术去设计、优化此类电路的必要性。
在多数情况下导体的μr=1, 故趋肤厚度随着频率的升高迅速 降低。
2a 高电流密度 低电流密度
电流方向
Jz /Jz0
-a
ar
Jz /Jz0
δ,mm
1
0.9 0.8 0.7
σCu=64.516×106S/m Al σAl=40.0×106S/m
0.6 0.5
AuσAu=48.544×106S/m
0.4
线圈半径:r = 50mil=1.27mm(1英寸=1000㏕) 20
线圈长度:l =50mil=1.27mm 邻匝线距:d= l /N≈3.6×10-4m
105
实际电感
104
理想电感
Z ,Ω
根据空气芯螺旋管电感公式: 103
L r 20N 2 61.4nH
102
l
由1.14式,平板间距等于匝距,
• 在第5章“滤波器设计”中研究特定的阻抗对频率响应的一般 开发策略,简述以分立元件和分布元件为基础的滤波器理论。
• 第8章将深入研究“匹配网络和偏置网络”的实现。 • 第9章介绍“射频晶体管放大器设计”中有关增益、线性度、
噪声和稳定度等指标。 • 第10章讨论“振荡器和混频器”设计的基本原理。
9
1.2 量纲和单位
0.23~1GHz 130~30cm
《射频电路设计》课程教学大纲
《射频电路设计》课程教学大纲课程代码:0806608027课程名称:射频电路设计英文名称:Radio-frequency(RF) Circuit Design总学时:48 讲课学时:34 实验学时:14上机学时:课外学时:学分:3适用对象:电子信息工程专业本科四年制学生先修课程:《模拟电子技术》、《高频电子线路》一、课程性质、目的和任务本课程是电子信息工程专业的一门实用性很强的专业课。
本课程将运用大量的图解和实例,为学生讲解传输线原理、线性网络的匹配、滤波电路的设计、射频放大器等有源电路的设计,旨在使该专业的学生学习并掌握射频电路的基本概念以及射频电子线路设计原理等方面的知识。
为学生今后从事相关专业的工作,打下良好的基础。
二、教学基本要求射频电路设计内容涵盖频率为30MHz至4 GHz范围的电路设计,通过本课程的学习使学生能掌握采用分布参数等效电路进行射频电路的设计原理及方法,除了匹配及滤波等无源电路外,还要掌握线性有源网络和非线性有源网络的设计。
三、教学内容及要求1、射频电路设计基础教学内容:①射频电路的基本概念、应用领域与设计特点②波传播中的基本概念,传输线理论③二端口RF/微波网络的电路表示④基于S参数的分析方法。
教学要求:①理解射频电路和低频电路的区别②掌握基于S参数的分析方法2、无源电路设计教学内容:①Smith 圆图及其应用②匹配网络的设计③滤波电路的设计教学要求:①掌握用Smith圆图进行匹配设计的基本方法②掌握滤波电路的设计方法3、有源网络的线性和非线性设计教学内容:①有源网络中的稳定性及其分析②有源网络的噪声及其模型③放大器的增益④射频放大器的小信号设计⑤射频放大器的大信号设计⑥射频振荡器的设计⑦射频检波器和混频器的设计教学要求:①理解射频电路设计中所要考虑的三个方面:稳定性、增益、噪声②掌握射频放大器的小信号设计和大信号设计③掌握射频振荡器的设计,射频检波器和混频器的设计四、实践环节实验安排在本课程内,总计8个学时的实验:1、ADS软件的应用初步4学时2、微带滤波器的设计与仿真3学时3、阻抗匹配网络的设计与仿真3学时4、射频放大器的设计与仿真4学时五、课外习题及课程讨论为达到本课程的教学基本要求,鼓励学生结合实际电路设计多做相关课外习题,多进行电路的设计与仿真分析。
《射频通信电路》第6章 匹配和偏置电路
50.0 25.0 10.0 0.01
0.004 0.08 50.0 25.0 10.0 0.01
0.04
0.02
0.02
0.02
0.004 0.04
0.02
50.0 L
50.0 C 25.0 Zin C ZL 100
C 25.0 Zin C ZL Zin 200 L ZL 25.0 100 L 100 50.0 50.0
ZL
500.0
0.2 0.08 0.2 0.04 0.02 0.01 0.004 0.04
Z0
200 100
500.0
0.004 0.08 50.0 25.0 10.0 0.01
0.02
《射频通信电路》程知群
6.2.3 集总参数L形匹配电路
目的
从负载点出发向匹配点移动;
规则
沿着Z-Y Smith圆图中的等电阻圆或等电导圆移动; 每一次移动都对应一个电抗器件;
L=8.1nH
0.4
0.2 0.08 0.2 0.04 0.02 0.01 0.004 0.04
Z0
200 100
500.0
0.2
0.004 0.08 50.0
0.0 0.0 0.5 1.0 1.5 2.0 2.5 3.0
B
Qn=2
25.0 10.0 0.01
f (GHz)
L=1.6nH
LL=1.6nH Zin=50W
《射频通信电路》程知群
6.2.3 集总参数L形匹配电路
在1GHz的频率下,设计一个两元件L 形匹配电路把负载ZL=10+j10W的负载 匹配到特征阻抗为Z0=50W的传输线。
射频微波通讯电路设计(RF-Microwave Communication Circuits Design )
ε eff = λ
(e) (o) ε eff + ε eff
2
c
=
λ0 f l= = = 4 4 ε eff 4 ε eff
求 Z0e,Z0o: c = 10−20 / 20 = 0.1 Z 0e = Z 0 Z 0e = Z 0
3.7365 + 3.2195 = 1.8636 2 3 × 1011 5.8 × 109 = 6.9387mm = 4 × 1.8636
其中 L,C,CC 計算如下
L= C= Z0 50 = = 1.372 × 10−9 H 9 2π f 0 2π × 5.8 × 10 1 1 = = 5.488 × 10−13 F 9 2π f 0 Z 0 2π × 5.8 × 10 × 50 10 10 = = 5.488 × 10−14 F 9 2π f 0 Z 0 2π × 5.8 × 10 × 50
CF 20 −20 20
CC : Coupling Capacitance CC < 0.18 / 2πf0 CF: Coupling Factor
CC =
S-parameter analyze: The magnitude of S11,S21,S31,S41(dB)
Return Loss = -20Log(S11) =39.99 dB Coupling = -10Log(P3/P1) = 19.96 dB Isolation = -10Log(P4/P1) = 40.00 dB Directivity = -10Log(P4/P3) = Isolation – Coupling = 40 – 19.96 = 20.04 dB Insertion Loss = -10Log(1-P3/P1) = 0.0436 dB
射频电路设计课程设计
射频电路设计课程设计1. 引言射频(Radio Frequency,RF)电路设计是电子信息工程专业的重要课程,主要涉及无线电通讯、遥控、雷达、导航等领域。
本文将介绍在射频电路设计课程中,通过选取合适的RF接口、设计天线、优化电路布局等措施来完成射频电路设计的实践过程。
2. 课程设计目标通过射频电路设计课程的教学,使学生掌握以下知识和技能:•了解射频电路的基本原理和特性;•理解射频电路设计的基本流程和方法;•掌握常用的射频电路元器件和器件参数;•能够选取合适的RF接口和设计天线;•能够进行射频电路的优化和性能测试。
3. 课程设计内容3.1 接口选取在射频电路设计中,RF接口的选取非常重要。
在不同的应用场景下,应该选取不同的接口。
常用的RF接口有SMA、N、TNC、BNC等。
在选取RF接口时,还需要考虑信号频率、功率等参数。
3.2 天线设计天线是射频通信中的重要组成部分,对于无线通信的信号清晰度和传输距离起着至关重要的作用。
常用的天线有板状天线、棒状天线、贴片天线等。
在天线设计时,需考虑天线的天线增益、VSWR值、馈线长度等参数。
还需要注意天线和集成电路布局的相对位置,并进行合理的匹配设计。
3.3 电路布局电路布局对于射频电路的性能具有很大的影响,因此需要进行合理的布局设计。
电路板尺寸、阻抗匹配、引脚位置等因素都需要考虑到。
此外,还需要设计合适的敷铜、引线规划等将电路各部分有机地组装在一起。
在完成电路布局之后,还需进行信号完整性分析、噪声分析、ANE分析等,以确保电路的可靠性和稳定性。
3.4 电路测试在完成射频电路设计之后,还需进行性能测试以验证其性能是否符合要求。
常用的测试方法有噪声系数测试、增益平坦度测试、P1dB测试、IP3测试等。
测试时需使用合适的测试设备,如信号发生器、频谱分析仪、网络分析仪等,并根据需要选择合适的负载和网络校准器。
4. 结束语本文介绍了射频电路设计课程的内容和目标,以及在射频电路设计过程中需要考虑的关键因素。
射频电路设计6
| o u t | |
S 22 S D 1 S 11 S
| | S 2 2
S 12 S 21 S 1 S11 S
| 1
|ΓL|<1 |ΓS|<1
绝对稳定条件1
若|S11|<1和|S22|<1,绝对稳定条件可表述为: 1)稳定性判定圆必须完全落在单位圆|ГS|=1和|ГL|=1之外。如下图所示。
小信号放大器设计
小信号放大器的等效电路
一个典型的小信号放大器的等效电路如下图所示。用VS及ZS表示信号源,散 射参量为S的二端口网络表示微波晶体管,ZL为负载。 ГS ГL b1’ a1 b2 a2’ ZS Pinc PL [S] ZL VS ~ a1’ b1 a2 b2’ Гin Гout 为了更好分析功率关系,一般用信号波源bS及源反射系数ГS来表示信号源,它 们与VS及ZS的关系为:
先考察晶体管的输出端口,将相关参量写为复数形式
S 11 S 11 jS 11 , S 22 S 22 jR 22 , D D
R I R I R
jD , L L j L
I R
I
使|Γin|=1的输出端口参数ΓL的取值可由
in
S11 L D 1 S 22 L
放大器输入端口功率关系
放大器输入端口的入射功率Pinc为:
Pinc=
a1 2
2
=
b1
'
2
2
b1’
ГS
a1 [S] b1 b2
ГL PL
a2
a2’ ZL Гout b 2’
因为b1’=bS+ГSa1’, a1’=Гin b1’, 所以上式可写为: 2 Pinc=
1 2
射频电路理论与设计
射频电路仿真与实验
05
电路仿真软件
如Multisim、PSPICE等,用于模拟和分析射频电路的电流、电压等电气特性。
电磁场与电路联合仿真软件
如COMSOL Multiphysics等,能够实现电磁场和电路的耦合仿真,适用于复杂的多物理场问题。
定义与特点
手机、无线局域网、卫星通信等。
通信
目标探测、测距、测速等。
雷达
全球定位系统(GPS)、北斗卫星导航系统等。
导航
无线电广播、电视广播等。
广播
射频电路的应用领域
射频电路的基本组成
产生射频信号,可以是振荡器、放大器等。
用于传输射频信号,可以是同轴线、微带线等。
包括天线、滤波器、混频器、放大器等,用于处理射频信号。
电磁兼容性与干扰问题
随着设备数量的增加和通信频段的密集化,电磁兼容性和干扰问题变得更加突出,需要采取有效的措施来解决。
材料与工艺限制
在实现小型化和集成化的同时,材料和工艺的限制可能导致性能下降、可靠性问题和制造成本增加。
测量与调试的挑战
在高频和宽带条件下,测量和调试技术面临更大的挑战,需要发展新的测试设备和测试方法。
软件定义无线电(SDR)
通过软件编程来实现无线电功能,使得射频电路更加灵活和可重构,满足多样化应用需求。
5G和物联网(IoT)技术的影响
随着5G和物联网技术的快速发展,射频电路的设计将面临新的挑战和机遇,需要不断适应新技术要求。
技术挑战
高频与宽带信号处理
随着通信频段的不断提高,射频电路需要处理更高频率和更宽带宽的信号,这带来了信号失真、噪声干扰和功耗增加等技术挑战。
第六章 定向耦合器
B3
1 2
B4 0
分之线耦合器所有端口都是匹配的,从端口1输入 的功率对等的分配给端口2和端口3,这两个输出 端口之间有90°相移,没有功率从耦合到端口4 (隔离端) 由于分支线混合网络有高度的对称性,任何端口 都可以作为输入端口,输出端口总在输入端口相 反的一侧,而隔离端是输入端口同侧的余下端口
考虑C=-3dB时所得的定向耦合器与功率分配器的关系?
6.2 耦合微带定向耦合器
两平行微带线的长 度为四分之一波长 在辅线上耦合输出 的方向与主线上传 播的方向相反,也 称为反定向耦合器
耦合线方向性解释
磁耦合:电流i1的交 变磁场会在辅传输线 激励起相反方向传输 的电流IL
主传输线和辅传输线相互靠近, 相互间有能量耦合,有电耦合 (以耦合电容表示),也有磁耦合 (以耦合电感表示)
第六章 定向耦合器
在射频/微波领域按一定相位和功率关系分 配功率的器件称为定向耦合器,通常具有 无耗、互易、匹配的特性 在混频器、倍频器、衰减器、移相器、功 率放大器等微波电路中应用较多。
定向耦合器的基本指标
1 工作频带 定向耦合器的功能实现主要依靠波程相位的关 系,也就跟频率有关系 2 插入损耗 主路输出端和主路输入端的功率比值,包括耦合 损耗以及导体介质的热损耗 3 耦合度 描述耦合输出端口与主路输入端的比例关系
1 S 21
1 S 31
2
2
I (dB ) 10 lg
P4 P 1
10 lg
1 S 41
2
D(dB) 10 lg
P 3 P4
I C
6.1 集总参数定向耦合器
低通式L-C
高通式L-C
集总参数定向耦合器设计公式
射频电路理论与设计
射频电路理论与设计《射频电路理论与设计》从传输线理论和射频网络的观点出发,系统地介绍了射频电路的基本理论及设计方法,同时将史密斯圆图的图解方法应用到射频电路的设计之中。
《射频电路理论与设计(第2版)/21世纪高等院校信息与通信工程规划教材·精品系列》共12章,第1章为引言;第2~4章为传输线理论、史密斯圆图和射频网络基础,系统地介绍了射频电路的基本概念、基本参数、图解工具和基本研究方法;第5~11章为谐振电路、匹配网络、滤波器、放大器、振荡器、混频器和检波器的设计,这些电路设计可以构成完整的射频电路解决方案;第12章为ADS射频电路仿真设计简介,目的是架起射频电路理论与ADS射频仿真设计的桥梁。
书中不仅列举了大量具有实用价值的例题,并且以较大的篇幅详细地给出了设计求解过程。
书中每章都配有小结、思考题和练习题,并在书末附有思考题和练习题的答案。
本书有配套的ADS射频电路仿真教材,分别为《ADS射频电路设计基础与典型应用》和《ADS射频电路仿真与实例详解》。
《射频电路理论与设计(第2版)/21世纪高等院校信息与通信工程规划教材·精品系列》可作为高等学校电子工程、通信工程、自动控制、微电子学、仪器仪表及相关专业本科生的教材,也可作为射频、微波及相关专业技术人员的参考书。
第1章引言1.1 射频概念1.1.1 频谱划分1.1.2 射频和微波1.1.3 射频通信系统的工作频率1.1.4 射频的基本特性1.2 射频电路的特点1.2.1 频率与波长1.2.2 低频电路理论是射频电路理论的特例1.2.3 射频电路的分布参数1.2.4 射频电路的集肤效应1.3 射频系统1.3.1 射频系统举例1.3.2 收发信机1.3.3 ADS射频仿真设计1.4 本书安排本章小结思考题和练习题第2章传输线理论2.1 传输线结构2.1.1 传输线的构成2.1.2 几种常用的TEM传输线2.2 传输线等效电路表示法2.2.1 长线2.2.2 传输线的分布参数2.2.3 传输线的等效电路2.3 传输线方程及其解2.3.1 均匀传输线方程2.3.2 均匀传输线方程的解2.3.3 行波2.3.4 传输线的二种边界条件2.4 传输线的基本特性参数2.4.1 特性阻抗2.4.2 反射系数2.4.3 输入阻抗2.4.4 传播常数2.4.5 传输功率2.5 均匀无耗传输线工作状态分析2.5.1 行波工作状态2.5.2 驻波工作状态2.5.3 行驻波工作状态2.5.4 阻抗变换器2.6 信号源的功率输出和有载传输线2.6.1 包含信号源与终端负载的传输线2.6.2 传输线的功率2.6.3 信号源的共轭匹配2.6.4 回波损耗和插入损耗2.7 微带线2.7.1 微带线的有效介电常数和特性阻抗2.7.2 微带线的传输特性2.7.3 微带线的损耗与衰减本章小结思考题和练习题第3章史密斯圆图3.1 复平面上反射系数的表示方法3.1.1 反射系数复平面3.1.2 等反射系数圆和电刻度圆3.2 史密斯阻抗圆图3.2.1 归一化阻抗3.2.2 等电阻圆和等电抗圆3.2.3 史密斯阻抗圆图3.2.4 史密斯阻抗圆图的应用3.3 史密斯导纳圆图3.3.1 归一化导纳3.3.2 史密斯导纳圆图3.3.3 史密斯阻抗-导纳圆图3.4 史密斯圆图在集总参数元件电路中的应用3.4.1 含串联集总参数元件时电路的输入阻抗3.4.2 含并联集总参数元件时电路的输入导纳3.4.3 含一个集总电抗元件时电路的输入阻抗3.4.4 含多个集总电抗元件时电路的输入阻抗本章小结思考题和练习题第4章射频网络基础4.1 二端口低频网络参量4.1.1 阻抗参量4.1.2 导纳参量4.1.3 混合参量4.1.4 转移参量4.2 二端口射频网络参量4.2.1 散射参量4.2.2 传输参量4.3 二端口网络的参量特性4.3.1 互易网络4.3.2 对称网络4.3.3 无耗网络4.4 二端口网络的参量互换4.4.1 网络参量[Z]、[Y]、[h]、[ABCD]之间的相互转换4.4.2 网络参量[S]和[T]之间的相互转换4.4.3 网络参量[Z]、[Y]、[h]、[ABCD]与[S]之间的相互转换4.5 多端口网络的散射参量4.5.1 多端口网络散射参量的定义4.5.2 常见的多端口射频网络4.6 信号流图4.6.1 信号流图的构成4.6.2 信号流图的化简规则本章小结思考题和练习题第5章谐振电路5.1 串联谐振电路5.1.1 谐振频率5.1.2 品质因数5.1.3 输入阻抗5.1.4 带宽5.1.5 有载品质因数5.2 并联谐振电路5.2.1 谐振频率5.2.2 品质因数5.2.3 输入导纳5.2.4 带宽5.2.5 有载品质因数5.3 传输线谐振器5.3.1 终端短路传输线5.3.2 终端短路传输线5.3.3 终端开路传输线5.3.4 终端开路传输线5.4 介质谐振器本章小结思考题和练习题第6章匹配网络6.1 匹配网络的目的及选择方法6.2 集总参数元件电路的匹配网络设计6.2.1 传输线与负载间L形匹配网络6.2.2 信源与负载间L形共轭匹配网络6.2.3 L形匹配网络的带宽6.2.4 T形匹配网络和鹦纹ヅ渫6.3 分布参数元件电路的匹配网络设计6.3.1 负载与传输线的阻抗匹配6.3.2 信源与负载的共轭匹配6.4 混合参数元件电路的匹配网络设计本章小结思考题和练习题第7章滤波器的设计7.1 滤波器的类型7.2 用插入损耗法设计低通滤波器原型7.2.1 巴特沃斯低通滤波器原型7.2.2 切比雪夫低通滤波器原型7.2.3 椭圆函数低通滤波器原型7.2.4 线性相位低通滤波器原型7.3 滤波器的变换7.3.1 阻抗变换7.3.2 频率变换7.4 短截线滤波器7.4.1 理查德变换7.4.2 科洛达规则7.4.3 低通滤波器设计举例7.4.4 带阻滤波器设计举例7.5 阶梯阻抗低通滤波器7.5.1 短传输线段的近似等效电路7.5.2 滤波器设计举例7.6 平行耦合微带线滤波器7.6.1 奇模和偶模7.6.2 平行耦合微带线的滤波特性7.6.3 带通滤波器设计举例本章小结思考题和练习题第8章放大器的稳定性、增益和噪声8.1 放大器的稳定性8.1.1 稳定准则8.1.2 稳定性判别的图解法8.1.3 绝对稳定判别的解析法8.1.4 放大器稳定措施8.2 放大器的增益8.2.1 功率增益的定义和计算公式8.2.2 最大功率增益8.2.3 晶体管单向情况8.2.4 晶体管双向情况8.3 输入输出电压驻波比8.3.1 失配因子8.3.2 输入、输出驻波分析8.4 放大器的噪声8.4.1 等效噪声温度和噪声系数8.4.2 级连网络的等效噪声温度和噪声系数8.4.3 等噪声系数圆本章小结思考题和练习题第9章放大器的设计9.1 放大器的工作状态和分类9.1.1 基于静态工作点的放大器分类9.1.2 基于信号大小的放大器分类9.2 放大器的偏置网络9.2.1 偏置电路与射频电路之间的连接9.2.2 偏置电路的设计9.3 小信号放大器的设计9.3.1 小信号放大器的设计步骤9.3.2 最大增益放大器的设计9.3.3 固定增益放大器的设计9.3.4 最小噪声放大器的设计9.3.5 低噪声放大器的设计9.3.6 宽带放大器的设计9.4 功率放大器的设计9.4.1 A类放大器的设计9.4.2 交调失真9.5 多级放大器的设计本章小结习题第10章振荡器的设计10.1 振荡电路的形成10.1.1 振荡器的基本模型10.1.2 振荡器的有源器件10.1.3 振荡器与放大器的比较10.2 微波振荡器10.2.1 振荡条件10.2.2 晶体管振荡器10.2.3 二极管振荡器10.2.4 介质谐振器振荡器10.2.5 压控振荡器10.3 振荡电路的一般分析10.3.1 晶体管振荡器的一般电路10.3.2 考毕兹(Colpitts)振荡器10.3.3 哈特莱(Hartley)振荡器10.3.4 皮尔斯(Pierce)晶体振荡器10.4 振荡器的技术指标本章小结思考题和练习题第11章混频器和检波器的设计11.1 混频器11.1.1 混频器的特性11.1.2 混频器的种类11.1.3 混频器主要技术指标11.1.4 单端二极管混频器11.1.5 单平衡混频器11.2 检波器11.2.1 整流器与检波器11.2.2 二极管检波器11.2.3 检波器的灵敏度本章小结思考题和练习题第12章 ADS射频电路仿真设计简介12.1 美国安捷伦(Agilent)公司与ADS软件12.2 ADS的设计功能12.3 ADS的仿真功能12.4 ADS的4种主要工作视窗12.4.1 主视窗12.4.2 原理图视窗12.4.3 数据显示视窗12.4.4 版图视窗本章小结思考题和练习题附录A 国际单位制(SI)词头附录B 电学、磁学和光学的量和单位附录C 某些材料的电导率附录D 某些材料的相对介电常数和损耗角正切附录E 常用同轴射频电缆特性参数思考题和练习题答案参考文献。
射频电路理论与设计
Z11 Z 22 , Z12 Z 21
第四章 谐振电路
一、串联谐振电路 1 1、谐振频率 0 LC 2、品质因数 0L 无载品质因数 Q R 有载品质因数 0 L 3、输入阻抗
外部品质因数 Qe
0 L
RL
1 1 1 QL , R RL QL Q Qe
4、带宽 BW 2 1 0
3、常用散射参量 S 和传输参量 T 来描述射频网 络。散射参量 S 是在各端口匹配时用入射电压 和反射电压之间的关系得到的,可以表征射频器 件的特征。对于级连网络,射频电路可以利用传 输参量 T 简化对网络的分析。 4、互易网络仅适用于含有线性双向阻抗的无源网 络,满足该条件的无源网络可含有电阻、电容、 电感或变压器等线性无源器件。由铁氧体各项异 性媒质构成的元件及有源电路不是互易网络。对 称网络是互易网络的一个特例。对称网络中电子 元件的大小及尺寸位置对称分布。对称网络首先 是互易网络。
3、转移参量对应的网络方程 v1 A B v2 v1 Av2 Bi2 i C D i 2 1 i1 Cv2 Di2 v1 h11i1 h12 v2 4、混合参量对应的网络方程
i h i h v
5、常用串联阻抗Z 、并联导纳Y 、T型网络和 P 型网络的 ABCD 矩阵。 73 例3.4
1 Z ABCDZ 0 1
ZA 1 Z ABCDT 1 C ZC Z Z Z A ZB A B ZC ZB 1 ZC
1 0 ABCDY Y 1
YB 1 YC ABCD Y Y YAYB A B YC 1 YC YA 1 YC
射频电路理论与设计课后答案
射频电路理论与设计课后答案【篇一:射频电路仿真与设计】>摘要: 随着无线通信技术的不断发展,传统的设计方法已经不能满足射频电路和系统设计的需要,使用射频eda 软件工具进行射频电路设计已经成为必然趋势。
目前,射频领域主要的eda 工具首推的是agilent 公司的ads 。
ads 是在 hp eesof 系列 eda 软件基础上发展完善起来的大型综合设计软件。
由于其功能强大,仿真手段和方法多样化,基本上能满足现代射频电路设计的需要,已经得到国内射频同行的认可,成为现今射频电路和系统设计研发过程中最常用的辅助设计工具。
关键词:射频电路设计原理,设计方法与过程,仿真方法,展望未来引言:随着通信技术的发展,通信设备所用频率日益提高,射频(r f )和微波( mw )电路在通信系统中广泛应用,高频电路设计领域得到了工业界的特别关注,新型半导体器件更使得高速数字系统和高频模拟系统不断扩张。
微波射频识别系统( rfid )的载波频率在915mhz 和 2450mhz 频率范围内;全球定位系统( gps )载波频率在 1227.60mhz 和 1575.42mhz 的频率范围内;个人通信系统中的射频电路工作在1.9ghz ,并且可以集成于体积日益变小的个人通信终端上;在 c 波段卫星广播通信系统中包括4ghz 的上行通信链路和6ghz 的下行通信链路。
通常这些电路的工作频率都在1ghz 以上,并且随着通信技术的发展,这种趋势会继续下去。
但是,处理这种频率很高的电路,不仅需要特别的设备和装置,而且需要直流和低频电路中没有用到的理论知识和实际经验,这对射频电路设计提出更高的要求。
正文:1.射频电路设计原理频率范围从 300khz ~30ghz 之间,射频电流是一种每秒变化大于10000 次的称为高频电流的简称。
具有远距离传输能力的高频电磁波称为射频。
高频电路基本上是由无源元件、有源器件和无源网络组成的,高频电路中无源线性元件主要是电阻 (器 )、电容 (器)和电感(器 ) 。
射频电路设计要点与设计方案(图文并茂)
射频电路设计要点与设计方案(图文并茂)目录1、射频电路中元器件封装的注意事项 (3)01.电路板的叠构 (4)02.阻抗控制 (5)03.射频元器件的摆放 (6)04.射频走线应该注意的问题 (7)05.过孔的放置 (8)2、射频电路电源设计注意事项 (9)3、射频PCB设计的EMC规范 (14)1)、层分布 (14)2)、接地 (15)3)、屏蔽 (16)4)、屏蔽材料和方法 (18)5)、屏蔽罩设计 (19)4、射频走线与地 (22)5、设计 (26)一、布局注意事项 (34)二、布线注意事项 (37)三、接地处理 (38)1、射频电路中元器件封装的注意事项成功的RF设计必须仔细注意整个设计过程中每个步骤及每个细节,这意味着必须在设计开始阶段就要进行彻底的、仔细的规划,并对每个设计步骤的进展进行全面持续的评估。
而这种细致的设计技巧正是国内大多数电子企业文化所欠缺的。
近几年来,由于蓝牙设备、无线局域网络(WLAN)设备,和移动电话的需求与成长,促使业者越来越关注RF电路设计的技巧。
从过去到现在,RF电路板设计如同电磁干扰(EMI)问题一样,一直是工程师们最难掌控的部份,甚至是梦魇。
若想要一次就设计成功,必须事先仔细规划和注重细节才能奏效。
射频(RF)电路板设计由于在理论上还有很多不确定性,因此常被形容为一种黑色艺术。
但这只是一种以偏盖全的观点,RF电路板设计还是有许多可以遵循的法则。
不过,在实际设计时,真正实用的技巧是当这些法则因各种限制而无法实施时,如何对它们进行折衷处理。
重要的RF设计课题包括:阻抗和阻抗匹配、绝缘层材料和层叠板、波长和谐波等。
在 WiFi 产品的开发过程中,射频电路的布线是极为关键的一个过程。
很多时候,我们可能在原理上已经设计的很完善,但是在实际的制板,上件过后发现很不理想,实际上这些都是布线做的不够完善的原因。
射频电路在布线中应该注意的问题:01.电路板的叠构在进行布线之前,我们首先要确定电路板的叠构,就像盖房子要先有房子的墙壁。
射频电路设计课程内容提要
第3章 射频功率放大器电路设计
内容提要
射频功率放大器用来产生足够大的射频输出功率,并馈送 到天线上辐射出去。射频功率放大器的主要技术指标是输 出功率与效率。其电路通常由放大器件和阻抗匹配网络组 成,按工作状态分类可分为线性放大电路和非线性放大电
在调制中,载波信号的幅度随调制信号而变,称为幅 度调制(AM);载波信号的频率随调制信号而变,称 为频率调制或调频(FM);载波信号的相位随调制信 号而变,称为相位调制或调相(PM)。
数字信号对载波振幅调制称为振幅键控(ASK),对载 波频率调制称为频移键控(FSK),对载波相位调制称 为相移键控(即相位键控)(PSK)。
可利用所掌握的调制与解调电路的分析方法,对实例 电路结构形式进行研究。
可根据教学需要,对应用电路和印制电路板设计实例 展开讨论。有关芯片的技术指标、内部结构、引脚功 能和封装尺寸等可以作为作业,登录相关网站查询, 进一步加深对电路实例的理解。
第5章 混频器电路设计
内容提要
混频(变频)是将载频为fC的已调波变换为载频为fI的 已调波。将已调波载频搬至高于本振频率L,称为上 变频;把已调波载频搬至低于本振频率L,称为下变
知识要点
锁相环路(PLL),鉴相器(PD),压控振荡器 (VCO),环路滤波器,分频器,锁定,捕获,跟踪,
窄带滤波特性。
教学建议
本章的重点是掌握锁相环路(PLL)电路的一些基本概 念,锁相环路(PLL)的结构和分析方法,锁相环路 (PLL)应用电路结构形式和特点,基于单片集成电路 的锁相环路(PLL)电路、VCO电路、缓冲放大器电路 和前置分频器电路设计实例。建议学时数为4学时。
《射频放大器的设计》PPT课件
k
1
S11
2
S22
2
2
1
2 S12 S21
且
S11 S22 S12 S21 1
放大器的稳定措施:
1.通常在输入、输出回路中增设阻尼电阻 (串联或并联);
2.选合适参数的放大器件; 3.选择合理的工作点; 4.正确选择组成谐振电路的L/C值关系
(串联:L高,Q高;并联:C高,Q高)。
第六章 射频放大器的设计
6.1 射频放大器的特性指标和基本构成
1. RF放大器的基本构成:
2.特性指标
(1) 增益:
• : 转换功率增益
GT负载吸收的功率 信号源共 Nhomakorabea匹配时的输入功率
(1 L 2 ) S21 2 (1 S 2 ) (1 S11S )(1 S22L ) S21 S12 L S
3.微带放大器电路形式
• 实际各线长:
L1 l1 g
L2 l2 g
L3 l3 g L4 l4 g
另外,其它匹配形式:S11(或S22)先消去对应阻抗的虚部,
再将剩下的实部经
线转换成Z0值。
g
4
4.偏置注入网络:
(1)若微带线匹配网络应用短路短截线,则可以直 接将直流偏置从短路线的交流短路点注入。
感谢下 载
(2)若微带线匹配网络中不应用短路短截线, 则直流偏置必须经过 短路线注入。
g
4
6.3宽带RF放大器
• 1.频率补偿匹配:
• 原理:在放大器的输入或输出端口引入适当的 失配,用于补偿S参数的频率特性。
• 方法:
•
(1)输入端选频匹配,并且匹配网络的Q
值较小,带相对较宽;同时,输出端口采用纯电
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
环境温度对半导体的电性能 有很大影响。由功率损耗使 器件内部加热,可造成超过 100—1500c的温升。注:在
例题中忽略了带隙能随温度的变 化,这将在第7章中讨论。
6.1半导体基础
二、掺杂半导体:
通过引入杂质原子可以引发半导体的电特性作较大的改变。 这种过程称为掺杂。 1、 N型半导体:为获得N型掺杂(提供附加电子到导带),所 引入的原子较之原来在本征半导体晶格上的原子有更多的价 电子。如:将磷(P)原子移植到si内,就在中性晶格内提供了 弱束缚电子,如右图(b)
6.1半导体基础
以电势的导数代替电场,积分得扩散阻挡层电压(称内建电势):
其中nn和np仍分别是N型半导体和P型半导体中的电子浓度。
ห้องสมุดไป่ตู้
如果再考虑空穴电流从P型半导体到N型半导体的流动以及与之相抵消的场 感应电流中的相应部分IPF,可以得到扩散阻挡层电压: 若:P型半导体中受主浓度NA>>ni N型半导体中施主浓度ND>>ni 则n n= ND n p = ni2 /NA
总电压降为扩散电压:
6.1半导体基础
正空间电荷区在N型半导体内的延伸长度: 正空间电荷区在N型半导体内的延伸长度: 总长度: 三、结点电容:是射频器件的一个重要参量,因为 在高频运行下低电容意味着有快捷的开关速度和适应 能力。通过熟知的平扳电容器公式可找出结电容: C=εA/ds 把距离代人上式.得到电容的表达式如下
I=I0(e v/VT-1)
在负压下有一小的、与电压无关的电流 在负压下有一小的、与电压无关的电流(-Io),而在正压下则为指数增长电流。(图示中的函数关系是理 ,而在正压下则为指数增长电流。
想化的,末考虑到击穿现象。但上式显示出了在外加交流电压下PN结的整流性质。)
耗尽层或结电容的存在要求PN二极管上加有负电压。 耗尽层或结电容的存在要求 二极管上加有负电压。(如上例题),这意味着VA<Vdiff的条件。但注意: 二极管上加有负电压
导致空间电荷区或耗尽层的总长度: 可看出:空间电荷区或是增大或是缩小取决于 的极性。 空间电荷区或是增大或是缩小取决于VA的极性 的极性。
6.1半导体基础
例题6.3 计算PN结的结电容和空间电荷区的长度 对于硅半导体的一个跳变PN结,在室温下(εr=11.9,ni=xl010cm-3其施主和受主浓度分 别等于NA=l015cm-3和N0=5xl015cm-3 。意欲找出空间电荷区dp和dn以及在零偏置电压下 的结电容。证明PN结的耗尽层电容表示成下列形式: 其中cJ0是零偏置电压下的结电容。确定cJ0 ,并描述出耗尽层电容与外电压的函数关系 (设PN结的横截面积A=10-4CM2)。 解:把外电压VA引入到电容表达式(6.30)中.得到:
在正偏压条件下,由于储存在半导体层中的扩散电量Qd(少数载流子)的存在而出现一个附加的扩散电容;如 果VA>Vdiff ,则它占支配地位。该电量可定量给出,即电量Qd等于二极管电流I与载流子穿过二极管的
渡越时间τT的乘积: 显然 扩散电容与外电压和结温度非线性关系: 可见它与工作电压有强烈地依赖关系。 通常. 二极管的总电容 可粗略地划分成三个区域: 二极管的总电容c可粗略地划分成三个区域 通常.PN二极管的总电容 可粗略地划分成三个区域: 1.VA<0,只有耗尽层电容是重要的;C=CJ . ,只有耗尽层电容是重要的; 2.0<VA<Vdiff,耗尽层和扩散电容相组合:C=CJ+Cd . ,耗尽层和扩散电容相组合: 3.VA<Vdiff,只有扩散电容是重要的:C=Cd . ,只有扩散电容是重要的:
成一个空穴和一个运动电子。
A、当不存在热能时,即温度为绝对零度(T=o K T=-273.150C) ,所 A (T=o K或T=-273.15 有电子都束缚在对应原子上,半导体不导电。 B、当温度升高时,某些电子得到足够的能量,打破共价键并穿越禁带 宽度Wg=Wc — Wv,如图b所示(在室温T=300K,Si的带隙能为1.12ev, Ge为o.62ev,GaAs为1.42ev)。这些自由电子形成带负电的载流子,允 许电流传导。 在半导体中,用n表示传导电子的浓度。当一个电子打破共价键,留下 一个带正电的空位,后者可以被另一电子占据。这种形式的空位称为空 穴,其浓度用p表示。 在图6.1(a)中图示了平面晶体布置示意图, 在图6. (b)显示了等效能带图示,图中在价带Wv中产生一空穴,在 导带Wc中产生——电子,两个带之间的带隙能为Wg。
6.1半导体基础
例题6.2 确定PN结的扩散阻挡层电压或内建电压 对一特定的(硅)PN结,掺杂浓度给定为NA=5xl018cm-3和N0=5xl015scm-3,以及其本征 浓度ni=1. 5xl010cm-3 ,求在T=300 K下的阻挡层电压。 解:阻挡层电压直接由(6.20)式确定: 内建电势依赖于掺杂浓度和温度。 内建电势依赖于掺杂浓度和温度。 对不同半导体材料( 对不同半导体材料(本征载流子浓度不同),即使掺杂密度是相同,其内建电压将是不 , 其内建电压将是不 同的。要确定沿X轴上的电势分布,可应用泊松(Poisson)方程,在一维分析下写成 同的 其中:ρ(x)是电荷密度,εr是半导体的相对介电常数。 设定均匀掺杂和跳变结点近似,如图6.5b所示,而有每一材料中的电荷密度:
第六章有源射频元件
6.1半导体基础 6.2射频二极管 6.3BJT双极结晶体管 6.4射频场效应晶体管 6.5高电子迁移率晶体管
6.1半导体基础
本节以三种最为通用的半导体:锗(ce)、硅(si)和砷化镓(GaAs) 半导体为例,简明地介绍构筑半导体器件模型的基本模块,特别是PN
结的作用。 如右图(a)原理性地给出了纯硅的键价结构:每个硅原子有4个价电子与 相邻原子共享,形成4个共价键。其中有一价键热分离(T>o K),造
其中d p和dn分别是在P型半导体和N型半导体中空间电荷的延伸长度,见图6.5(a)。 对上式积分可求出半导体在空间范围—dp≤x ≤dn内的电场: 电场分布见图d
6.1半导体基础
所得到的电场分布的结果描绘在图6.5(d) 小。在推导(6.23)式时,利用了电荷抵消 规律,即要求半导体内总空间电荷为零这一 事实,对于高掺杂半导体这等效于以下条件: 为获得电压沿x铀的分布,对(6.23)式积分 如下:
由直觉看出:“额外”电子的能级比其余4个价电子的能级更接近导 带。当温度上升到高于绝对零度时.这个弱自由电子从原子中分离出, 形成自由负电荷,留下固定的磷正离子。这样,当仍保持电中性时, 该原子施舍一个电子到导带,而价带中没有产生空穴。 由于在导带中有了更多的电子,结果就导致Fermi的增高。成为N型 半导体,其中电子浓度nn和少数空穴浓度Pn有如下关系: 其中nD为施主浓度
带入得本征载流子浓度为:
6.1半导体基础
据宏观电磁理论:材料的电导率为σ=J/E,
J是电流密度,E是外加电场. 在宏观模型(Drude模型)下,电导率可通过载流子浓度N,有关元素的荷电量q,漂移速度vd以及电场 E给出:
在半导体中,电子和空穴两者都对材料的电导率有作用。在低电场下载流子的漂移速度 正比于外加电场强度,其比例常数称为迁移率d。则: 其中 n和 p分别为电子和空穴的迁移率。 对于本征半导体,由于有n=p=ni,则:
令:
计算得:CJ0 =10.68PF
当外加电压接近内建(阻挡层)电势时.结电容趋于无限大。然而在实际上此时开始达到饱和,这将在后面介绍
6.1半导体基础
四、肖特基二极管方程: 对流过二极管的电流.列出肖特基二极管方程(在附录F中有推导): 其中Io是反向饱和电流或漏电流。 是反向饱和电流或漏电流。 是反向饱和电流或漏电流 通常称这电流一电压特性曲线为I-V曲线,如图6.8所示。 该曲线表明:
射频电路设计
信息科学与技术学院
目
第一章 第二章 第三章 第四章 第五章 第六章 第七章 第八章 第九章 第十章
录
引言 传输线分析 Smith圆图 单端口网络和多端口网络 有源射频器件模型 匹配网络和偏置网络 射频仿真软件ADS概况 射频放大器设计 射频滤波器设计 混频器和振荡器设计
如果外电压VA加到结点上:出现如图6.6所示的正 反两种情况,说明了二极管的整流器作用。
6.1半导体基础
反向馈电见图6.6(a)增加空间电荷区并阻断电流流动,只是由少数载流子 (N型半导体中的空穴和P半导体中的电子)造成的漏电流。与此相反,正向馈 电由于在N型半导体中注入额外的电子和在P型半导体中注入额外的空穴, 而使空间电荷区缩小。为表述这些情况,必须对上面给出的方程(6.27)和 方程(6.28)加以修改,用Vdiff-VA代替原式中的阻挡层电压Vdiff:
代入方程
得:
当nD>>ni
则:
6.1半导体基础
2、 P型半导体:现在考虑添加的杂质原子比构成本征半导体品格的原子有更少
价电子的情况。这种类型的元素称为受主.例如对于si晶格,硼(B)就属于这种元素。 由图(c)(上页)可看出:共价键之一出现空六。这一空穴在能带隙中引入附加能 态,其位置靠近价带。当温度从绝对零度向上升时,一些电子得到额外能量去占 据空键,但其能量不足以越过禁带。这样,杂质原子将接受附加电子,形成净负 电荷。在电子被移去的位置上将产生空穴,这些空穴可自由迁移,并对半导体中 的传导电流作出贡献。用受主原子对半导体掺杂,就产生 型半导体 用受主原子对半导体掺杂, 型半导体,它有: 用受主原子对半导体掺杂 就产生P型半导体
n和p分别表示与导带和价带相关联的能级;WF是Fermi能级,电子有50%的概率占据该能级。对本征(纯) 半导体,在室温下其费米能级非常靠近禁带的中部。
一、本征半导体: 由热激发产生的自由电子数等于空穴数,即n=p=ni,所以电子和空穴的浓度按以下的浓度定 律表述:
ni是本征浓度,该式对掺杂半导体也适用
6.1半导体基础