最新微波技术实验指导书

合集下载

《微波技术与天线》实验指导书(DOC)

《微波技术与天线》实验指导书(DOC)

微波技术与天线实验指导书南京工业大学信息科学与工程学院通信工程系目录实验一微波测量系统的熟悉和调整 - 2 -实验二电压驻波比的测量 - 9 -实验三微波阻抗的测量与匹配 - 12 -实验四二端口微波网络阻抗参数的测量 - 17 -实验一微波测量系统的熟悉和调整一、实验目的1. 熟悉波导测量线的使用方法;2. 掌握校准晶体检波特性的方法;3. 观测矩形波导终端的三种状态(短路、接任意负载、匹配)时,TE10波的电场分量沿轴向方向上的分布。

二、实验原理1. 传输线的三种状态对于波导系统,电场基本解为(1) 当终端接短路负载时,导行波在终端全部被反射――纯驻波状态。

在x=a/2处其模值为:最大值和最小值为:(2) 终端接任意负载时,导行波在终端部分被反射――行驻波状态。

在x=a/2处由此可见,行驻波由一行波与一驻波合成而得。

其模值为:可得到最大值和最小值为:(3) 终端接匹配负载时,导行波仅有入射波而无反射波――行波状态。

其模值为由上述可知,在测量线的终端分别接上短路器、任意负载和匹配负载,移动探针位置,都可以观测到测量线中不同位置的电场强度(复振幅大小)对应的电流指示读数。

2. 由测量线的基本工作原理可知,指示器的读数1是探针所在处|E|对应的检波电流。

任一位置处|E|与I的对应关系应视检波晶体二极管的检波特性而定。

一般,这种关系可通过对二极管定标而确定。

所谓定标,就是找出电场的归一化值|E’|与I的对应关系。

我们知道,当测量线终端短路时:如果我们取任意一零点(波节点)作为坐标起始位置,且坐标用d表示,则:晶体二极管上的检波电压u正比于探针所在处|E’|。

所以上式可用u的归一化值u’来表示。

即:晶体二极管的检波电流I与检波电压u之间的关系为:式中c为比例常数,n为检波率。

式中c’为比例常数。

3. 当测量线的探针插入波导时,在波导中会引入不均匀性,从而影响系统的工作状态。

探针在开槽线中与电场耦合,其效果相当于在等效传输线上并联了一个探针支路。

微波技术实验指导书(1)

微波技术实验指导书(1)
按 [菜单], 把光标移到 [驻波], 按 [执行]即可, 有四档可选读 数范围, 读出数据, 列表并画图 。
(2)测量同轴可变衰减器的插入损耗 a)按图 3所示连接好 。
输出
输入 A
输入 B
10dB衰减器
待测器件
10dB衰减器
图 3待测器件连接框图
b)在主菜单上按“ ”键光标移到《测: A、B》下, 按[→]或[←]键 使 A为《插损》, B下为空白 。
将测量线终端分别换接匹配负载(行波状态)和开口波导(行驻波 状态), 同样用上述方法进行测量 。
测量传输线终端为开口波导时的 和 值, 用式(2)计算驻波比 。
5. 实验报告
根据实验数据, 画出传输线在三种工作状态时的电场幅度分布曲线 。 根据测量的 和 值计算开口波导的驻波比 。 由测试数据求得矩形波导的波导波长, 并与理论计算结果比较 。
不会对人体造成任何伤害 。但是, 在实验期间, 请注意以下事项: a.不要用眼睛往任何连接其他设备的开路传输线里面看; b.不要把身体的任何部位放在传输线的开口端; c.在拆/装微波元器件时, 请关掉微波信号源 。
在实验中一般为小信号检波, 可以取 n=2, 即平方律检波, 则上式
(1)可表示为
(2) 式中 和 分别为波腹点和波节点的检波电流值 。
4.实验步骤 实验所用原理框图如图 3所示 。
信号源
选频放大器
同轴-波导 隔离器 波长计 变换
衰减器
波导测量线
图 3实验框图
待测负载
首先将测量线终端接短路负载,这时在传输线上形成全驻波,然后将 探针移到测量线左端的一个波节点, 记下探针位置 D(mm)和检波 电流 I( )值, 以后每向右移动探针 2mm, 记录一个 D和 I值, 直到测出两个完整的驻波 。

微波实验指导(终)

微波实验指导(终)

实验一 系统设备简介、频率测量一、 实验目的:1通过实验使得学生熟悉、了解实验所用设备及附件的性能、用途等。

2 掌握用频率计测量频率的方法。

二、 实验所用设备及方框图(设备详细介绍见附录2)本实验所用设备及附件为YM1123信号发生器;YM3892选频放大器;波导/同轴转换器;PX16频率计;晶体检波器,其连接方框图如下:图 1三、频率测量的实验步骤:1按方框图连接好实验系统。

2 检查实验系统准确无误后,打开选频放大器,将增益开关置于40~60分贝档。

3 打开信号发生器,圆盘刻度置于100档,重复频率量程置于100处,设备右上角←、→置于档,这时即有了输出,输出功率的大小用衰减旋纽调节。

4 观察选频放大器,若指示太小,调节晶体检波器和选频放大器增益调节,原则上使选频放大器指针指示在满刻度的4/5上,调节频率计,找到频率计的吸收峰值,观察这时频率计的刻度值,此值即为所测的频率值。

5 关闭设备,整理好附件。

6 数据整理,写出实验报告。

实验二 波导波长的测量一、 实验目的1 掌握使用“中值法”测量最小值的方法。

2 掌握波导波长的测量方法。

3 熟练掌握微波成套设备的使用。

二、 实验原理波导波长是用驻波测量线进行测量的,驻波测量线可测出波导中心电场纵轴的分布情况,在矩形波导中:g λ=(1)其中c λ为截止波长,0λ为自由空间波长。

'''2222(()/2g D D D λ==+cλ=对截止波长:m=1,n=0; 2c a λ=我们知道相邻两个电场的最小点(或最大点)间的距离为半个波长。

如图所示:EE 121221E图 2测量波导波长时,利用测量线决定相邻两个电场的最小点(或最大点),就可以计算出波导波长g λ。

测量波导波长时,由于电场的最小值的变化比最大值尖锐,因此往往采用测量两个电场最小值的位置来计算,即:212()g D D λ=- (2)为了测量电场最小值的位置,常常采用中值读数法,具体方法为在最小值附近找出极小值,例如找到'1D 和''1D 来确定1D 的位置,找到''2D 和'2D 来确定2D 的位置,公式为 '''111()/2D D D =+ (3)'''222()/2D D D =+ (4) 三、 实验原理框图图 3四、 实验步骤:1 按方框图连接设备极其附件。

微波的技术实验指导书(二)

微波的技术实验指导书(二)

实验一三厘米波导测量系统一、系统结构框图图1-1 三厘米波导测量系统备注:三厘米隔离器用在精密测量中,而在一般测量中可以不加,因为在YM1123中有一个隔离器。

本章后续的六个实验均是基于该结构展开的,下面将对结构中的仪器进行一一介绍。

二、仪器、器件介绍本套系统主要用于测量微波在波导中传输时的一些基本参数,如波导波长、反射系数、阻抗及功率等。

主要用到的仪器为:YM1123微波信号发生器、波导测量线、小功率计、频率计、选频放大器、波导功率探头以及各种波导元件。

下面分别进行介绍:(一)YM1123微波信号发生器YM1123微波信号发生器是一款固态信号源,主要基于某些半导体材料(如砷化镓)的体效应来实现振荡的,具有功率大、稳定可靠等特性。

整体结构由高频部分、调制器部分、功率显示部分(对100uW的功率作相对指示)、频率显示部分及衰减显示部分、工作状态控制部分、电源部分六大件组成,其中高频部分负责产生7.5GH z~12.4GHz的微波信号,调制部分负责产生一系列脉冲信号,采用PIN调制器来实现微波信号的脉冲幅度调制。

其面板调节控制机构如下所示:1. 面板调节控制机构(1)电源开关位置。

(2)工作状态开关:按移动键可改变工作状态,指示灯也相应改变。

工作状态有:等幅(=,用于测量校准衰减器在100uW时0dB定标)、内调制(分方波和脉冲两种)、外调制(外输入脉冲信号,具有极性变换功能)及外整步。

(3)“调谐”旋钮调节可改变输出频率。

(4)“调零”旋钮调节可改变电表电气调零。

(5)“衰减调节”旋钮可控制输出功率大小。

反时针调节,信号输出增大,衰减显示减小;顺时针调节,信号输出减小,衰减显示增大。

(6)“衰减调零”为100uW基准0dB校准。

(7)“×1、×10”开关:调制信号重复频率开关。

(8)“重复频率”旋钮调节可改变调制信号重复频率。

(9)“脉宽”旋钮调节可改变调制信号脉冲宽度。

(10)“延迟”旋钮调节可改变调制信号脉冲延迟时间。

微波技术实验指导书

微波技术实验指导书

微波技术试验报告姓名:学号:指导教师:秦月梅时间:实验一 短路线、开路线、匹配负载S 参量的测量一、实验目的1、通过对短路线、开路线的S 参量S 11的测量,了解传输线开路、短路的特性。

2、通过对匹配负载的S 参量S 11及S 21的测量,了解微带线的特性。

二、实验原理S 参量网络参量有多种,如阻抗参量[Z],导纳参量[Y],散射参量[S]等。

微波频段通常采用[S]参量,因为它不仅容易测量,而且通过计算可以转换成其他参量,例如[Y]、[Z],电压驻波比及反射损耗等。

一个二端口微波元件用二端口网络来表示,如图1-1所示。

图中,a 1,a 2分别为网络端口“1”和端口“2”的向内的入射波;b1,b2分别为端口“1”和端口“2”向外的反射波。

对于线性网络,可用线性代数方程表示。

b 1=S 11a 1+S 12a 2 (1-1) b 2=S 21a 1+S 22a 2 写成矩阵形式:⎥⎥⎦⎤⎢⎢⎣⎡⎥⎥⎦⎤⎢⎢⎣⎡=⎥⎥⎦⎤⎢⎢⎣⎡a a S S S S b b 212212211121 (1-2)式中S 11,S 12,S 21,S 22组成[S]参量,它们的物理意义分别为 S 11=11a b 02=a “2”端口外接匹配负载时,“1”端口的反射系数 S 21=12a b 02=a “2”端口外接匹配负载时,“1”端口至“2”端口的传输系数 S 12=21a b 01=a “1”端口外接匹配负载时,“2”端口至“1”端口的传输系数 S 22=22a b 01=a “2”端口外接匹配负载时,“1”端口的反射系数对于多端口网络,[S]参量可按上述方法同样定义,对于互易二端口网络,S12=S21,则仅有三个独立参量。

三、实验仪器及装置图1模组编号:RF2KM1-1A (OPTN/SHORT/THRU CAL KIT) 2模组内容:3 RF2000测量主机:一台4 PC机一台,BNC连接线若干四、实验内容及步骤(一)开路线(MOD-1A)的S11测量(1)将RF2000与PC机通过RS232连接,接好RF2000电源,开机。

电磁场与微波技术实验指导书(新)

电磁场与微波技术实验指导书(新)

电磁场与微波技术实验指导书XXXXXXXXXXXXXXXXXXXXXXXX注意事项一、实验前应完成各项预习任务。

二、开启仪器前先熟悉实验仪器的使用方法。

三、实验过程中应仔细观察实验现象,认真做好实验结果记录。

四、培养踏实、严谨、实事求是的科学作风。

自主完成实验和报告。

五、爱护公共财产,当发生仪器设备损坏时,必须认真检查原因并按规定处理。

六、保持实验室内安静、整洁和良好的秩序,实验后应切断所用仪器的电源 ,并将仪器整理好。

协助保持实验室清洁卫生, 带出自己所产生的赃物。

七、不迟到,不早退,不无故缺席。

按时交实验报告。

八、实验报告中应包括:1、实验名称。

2、实验目的。

3、实验内容、步骤,实验数据记录和处理。

4、实验中实际使用的仪器型号、数量等。

5、实验结果与讨论,并得出结论,也可提出存在问题。

6、思考题。

实验仪器JMX-JY-002电磁波综合实验仪一、概述电磁波综合实验仪,提供了一种融验证与设计为一体的电磁波实验的新方法和装置。

它能使学生通过应用本发明方法和装置进行电磁场与电磁波实验,透彻地了解法拉第电磁感应定律、电偶极子、天线基本结构及其特性等重要知识点,使学生直观形象地认识时谐电磁场,深刻理解电磁感应的原理和作用,深刻理解电偶极子和电磁波辐射原理,掌握电磁场和电磁波测量技术的原理和方法,帮助学生建立电磁波的形象化思维方式,加深和加强学生对电磁波产生、发射、传输和接收过程及相关特性的认识,培养学生对电磁波分析和电磁波应用的创新能力。

《JMX-JY-002电磁波综合实验仪》在001型基础上,添加了对天线不同极化角度的测量,学生通过测量,可绘制不同极化天线的方向图,使得学生对电磁波的感受更加深刻。

二、特点1、理论与实践结合性强2、直接面向《电磁场与波》的课程建设与改革需要,紧密配合教学大纲,使课堂环节与实验环节紧密结合。

3、针对重要知识点“电磁场与电磁波”课堂教学环节长期存在难于直观表达的困难,形象地体验抽象的知识。

微波技术天线课程实验指导书

微波技术天线课程实验指导书

实验一 微波发送系统电路组成及介绍一、实验目的1、了解射频前端发射器的基本结构与主要设计参数。

2、利用实验模组的实际测量了解射频前端发射器的特性。

二、原理分析微波电视传输系统是一套短距离、点对点的微波电视发送和接收系统,它将现场摄得的电视视频、音频信号以微波方式传送,再向电视中心站或有线电视站发送。

三、实验框图四、实验设备五、主要技术指标1. 一路电视图像信号和一路拌音信号。

系统可多路组合使用;2. 传输距离优于4km;(开阔无阻挡)图1-1微波电视传输系统方框图3. 工作频率S波段(2.1-2.7GHz),频率点可由用户选定;4. 发射机输出功率≥100mW;10 ;5. 频率稳定度:5×67. 视频输入/输出电平:1V(75Ω);8.视频调制方式:FM9. 音频输入/输出电平:2.2V(p-p) (600Ω不平衡);10.音频调制方式:FM-FM11.频带宽度:27MHz12. 微分增益:≤±3%;13. 微分相位:≤±2°;14. 工作电源:发射机:+12V一体化电池可充电电池连续工作10小时以上;六、实验步骤和方法⑴如图所示,接好视频信号发生器和微波调制器的发射支路,如有可能测量微波发射频谱特性。

⑵将接收支路连接好,在图像监视器上应能看到较大的调频雪花噪声颗粒。

⑶对接受机进行调谐,选择频道,首先调出图像信号,然后对伴音信号进行调谐,是伴音信号清晰悦耳。

⑷如图所示,按微波数字信号传输系统方框图进行连接,发射端接上数字信号发生器,接受端接上示波器观察接收数字信号波形。

七、实验预习要求1、预习放大器、滤波器、混频器和功率放大器的原理的理论知识。

2、预习放大器、滤波器、混频器和功率放大器的设计原理。

八、实验报告要求1、画出实验系统的连接方框图并叙述实验原理。

2、调谐不同的频段,观察输出端实验现象。

3、写出实验的心得体会。

实验二 微波接收系统电路组成及介绍一、实验目的1、了解射频前端发射器的基本结构与主要设计参数。

电磁场微波实验指导书(电子专业)概要

电磁场微波实验指导书(电子专业)概要

电磁场、微波测量实验指导书(电子专业适用)实验一 电磁波参量的测量一、实验目的(1)在学习均匀平面电磁波特性的基础上,观察电磁波传播特性如E 、 H 和 S 互相垂直。

(2)熟悉并利用相干波原理,测定自由空间内电磁波波长λ,并确定电磁波的相位常数β 和波速υ。

(3)了解电磁波的其他参量,如波阻抗η等。

二、实验仪器 (1) DH1211型3cm 固态源1台(2) DH926A 型电磁 波综合测试仪1套 (3) XF-01选频放大器1台 (4)PX-16型频率计三、实验原理两束等幅、同频率的均匀平面电磁波,在自由空间内从相同(或相反)方向传播时,由于初始相位不同,它们相互干涉的结果,在传播路径上形成驻波分布。

通过测定驻波场节点的分布,求得波长λ的值,由2πβλ=、f υλ=得到电磁波的主要参数:β、υ。

设0r P 入射波为:0j i i E E e βγ-=当入射波以入射角θ向介质板斜投射时,在分界面上产生反射波r E 和折射波i E 。

设入射波为垂直极化波,用R ⊥表示介质板的反射系数,用0T ⊥和T ε⊥表示由空气进入介质板和由介质板进入空气的折射系数。

可动板2r P 和固定板1r P 都是金属板,其电场反射系数为-1,则3r P 处的相干波分别为:110j r i E R T T E e φε-⊥⊥⊥=- 1131()r r L L L φββ=+= 220j r i E R T T E e φε-⊥⊥⊥=- 22331()()r r r r L L L L L φββ=+=++ 其中,21L L L ∆=-因为1L 是固定值,2L 则随可动板位移L 而变化。

当2r P 移动L 值时,使3r P 具有最大输出指示时,则有1r E 和2r E 为同相叠加;当2r P 移动L 值,使3r P 具有零值输出指示时,必有1r E 和2r E 反相。

故可采用改变2r P 的位置,使3r P 输出最大或零指示重复出现。

微波技术基础实验指导书

微波技术基础实验指导书

- - -. 微波技术基础实验指导书郭伟陈柯编华中科技大学电信系前言与更早时期定位在波导与场论相比,现代微波工程中占支配地位的内容是分布电路分析。

当今大多数微波工程师从事平面结构元件和集成电路设计,无需直接求助于电磁场分析。

当今微波工程师所使用的基本工具是微波CAD(计算机辅助设计)软件和网络分析仪,而微波技术的教学必须对此给出回应,把重点转移到网络分析、平面电路和元器件以及有源电路设计方面。

微波技术仍总离不开电磁学(许多较为复杂的CAD软件包要使用严格的电磁场理论求解),而学生仍将从揭示事物的本质中受益(诸如波导模式和通过小孔耦合),但是把重点改变到微波电路分析和设计上这一点是不容置疑的。

微波与射频(RF)技术已蔓延到了各个方面。

在商业等领域,更是如此,其现代应用包括蜂窝、个人通信系统、无线局域数据网、车载毫米波防撞雷达、用于广播和电视的直播卫星、全球定位系统(GPS)、射频识别标识(identification tagging)、超宽频带无线通信和雷达系统以及微波环境遥感系统。

防卫系统继续大量地依靠微波技术用于无源和有源测向、通信以及武器操控系统。

这样的业务发展态势意味着,在可预见的将来,在射频和微波工程方面不存在缺少挑战性的课题;同时对于工程师们,显然需要领悟微波技术的基本原理,同样需要把这些知识应用于实际感兴趣问题的创造能力。

本微波技术基础教学实验的设置,就是为了使学生通过实验更多地获得有关微波器件的基本构成、工作原理、模拟分析、测试仪器和测量技能方面的理性和感性认识,真正掌握时域和频域、传输线、微波电路等基本的概念,并学会使用重要的微波测试仪器。

实验一矢量网络分析仪的使用及传输线的测量一实验目的1.学习矢量网络分析仪的基本工作原理;2.初步掌握AV3620矢量网络分析仪的操作使用方法;3.掌握使用矢量网络分析仪测量微带传输线不同工作状态下的S参数;4.通过测量认知1/4波长传输线阻抗变换特性。

最新微波技术实验指导书1

最新微波技术实验指导书1

微波技术实验指导书1实验要求一、预习要求:实验前必须充分预习,完成指定的预习任务。

1.认真阅读实验指导书,分析、掌握实验电路的工作原理,并进行必要的计算。

2.复习实验中所用各仪器的使用方法及注意事项。

3.熟悉实验任务,完成各实验“预习要求”中指定的内容,写好预习报告。

二、实验要求:1.使用仪器前必须了解其性能、操作方法及注意事项,在使用时应严格遵守。

2.实验时应注意观察,若发现有破坏性异常现象(例如有元件冒烟、发烫或有异味)应立即关断电源,保持现场,报告指导教师。

找出原因、排除故障后,经指导教师同意再继续实验。

3.在进行微波测试时,终端尽量不要开口,以防止微波能量泄露。

4.实验过程中应仔细观察实验现象,认真纪录实验结果(数据、波形、现象)。

所纪录的实验结果经指导教师审阅签字后再拆除实验线路。

5.实验结束后,必须关断电源,并将仪器、设备、工具等按规定整理。

6.实验后每个同学必须按要求独立完成实验报告并按时上交。

实验一、微波传输线频率和波长的测量一、实验目的1.学会使用基本微波器件。

2.了解微波振荡源的基本工作特性和微波的传输特性。

3.学习利用吸收式测量频率和波长的方法;4.掌握用测量线来测量波长和频率的方法。

二、实验原理1.微波的传输特性为了避免导线辐射损耗和趋肤效应等的影响,采用标准矩形波导管为微波传输线,并用TE10波型。

波导管具有三种工作状态:①当终端接“匹配负载”时,反射波不存在,波导中呈行波状态;②当终端接“短路片”、开路或接纯电抗性负载时,终端全反射,波导中呈纯驻波状态;③一般情况下,终端是部分反射,波导中传输的既不是行波,也不是纯驻波,而是呈行驻波状态。

2.微波频率的测量用吸收式频率计PX16(直读式),测量范围8.2GHZ-12.4GHZ,误差≤±0.3%,当传输线中相当一部分功率进入频率计谐振腔内,而另一部分从耦合元件处反射回去。

当调节频率计,使其自身空腔的固有频率与微波信号频率相同时产生谐振,用选频放大器测量,信号源须用内方波,重复频率为1KHZ 左右,谐振时可从选放上观察到信号幅度明显减少,以减幅最大位置为判断频率测量值的论据。

微波技术基础实验指导书

微波技术基础实验指导书

微波技术基础实验指导书实验一微波测量系统的了解与使用实验性质:验证性实验级别:选做开课单位:信息与通信工程学院学时:2学时一、实验目的:1.了解微波测量线系统的组成,认识各种微波器件。

2.学会测量设备的使用。

二、实验器材:1.3厘米固态信号源2.隔离器3.可变衰减器4.测量线5.选频放大器6.各种微波器件三、实验内容:1.了解微波测试系统2.学习使用测量线四、基本原理:图1。

1 微波测试系统组成1.信号源信号源是为电子测量提供符合一定技术要求的电信号的设备,微波信号源是对各种相应测量设备或其它电子设备提供微波信号。

常用微波信号源可分为:简易信号发生器、功率信号发生器、标准信号发生器和扫频信号发生器。

本实验采用DH1121A型3cm固态信号源。

2.选频放大器当信号源加有1000Hz左右的方波调幅时,用得最多的检波放大指示方案是“选频放大器”法。

它是将检波输出的方波经选频放大器选出1000Hz基波进行高倍数放大,然后再整为直流,用直流电表指示。

它具有极高的灵敏度和极低的噪声电平。

表头一般具有等刻度及分贝刻度。

要求有良好的接地和屏蔽。

选频放大器也叫测量放大器。

3.测量线3厘米波导测量线由开槽波导、不调谐探头和滑架组成。

开槽波导中的场由不调谐探头取样,探头的移动靠滑架上的传动装置,探头的输出送到显示装置,就可以显示沿波导轴线的电磁场的变化信息。

4.可变衰减器为了固定传输系统内传输功率的功率电平,传输系统内必须接入衰减器,对微波产生一定的衰减,衰减量固定不变的称为固定衰减器,可在一定范围内调节的称为可变衰减器。

衰减器有吸收衰减器、截止衰减器和极化衰减器三种型式。

实验中采用的吸收式衰减器,是利用置入其中的吸收片所引起的通过波的损耗而得到衰减的。

一般可调吸收式衰减器的衰减量可在0到30-50分贝之间连续调节,其相应的衰减量可在调节机构的度盘上读出(直读式),或者从所附的校正曲线上查得。

五、实验步骤:1.了解微波测试系统1.1观看如图装置的的微波测试系统。

微波技术实验指导书1

微波技术实验指导书1

实验要求一、预习要求:实验前必须充分预习,完成指定的预习任务。

1.认真阅读实验指导书,分析、掌握实验电路的工作原理,并进行必要的计算。

2.复习实验中所用各仪器的使用方法及注意事项。

3.熟悉实验任务,完成各实验“预习要求”中指定的内容,写好预习报告。

二、实验要求:1.使用仪器前必须了解其性能、操作方法及注意事项,在使用时应严格遵守。

2.实验时应注意观察,若发现有破坏性异常现象(例如有元件冒烟、发烫或有异味)应立即关断电源,保持现场,报告指导教师。

找出原因、排除故障后,经指导教师同意再继续实验。

3.在进行微波测试时,终端尽量不要开口,以防止微波能量泄露。

4.实验过程中应仔细观察实验现象,认真纪录实验结果(数据、波形、现象)。

所纪录的实验结果经指导教师审阅签字后再拆除实验线路。

5.实验结束后,必须关断电源,并将仪器、设备、工具等按规定整理。

6.实验后每个同学必须按要求独立完成实验报告并按时上交。

实验一、微波传输线频率和波长的测量一、实验目的1.学会使用基本微波器件。

2.了解微波振荡源的基本工作特性和微波的传输特性。

3.学习利用吸收式测量频率和波长的方法;4.掌握用测量线来测量波长和频率的方法。

二、实验原理1.微波的传输特性为了避免导线辐射损耗和趋肤效应等的影响,采用标准矩形波导管为微波型。

波传输线,并用TE10波导管具有三种工作状态:①当终端接“匹配负载”时,反射波不存在,波导中呈行波状态;②当终端接“短路片”、开路或接纯电抗性负载时,终端全反射,波导中呈纯驻波状态;③一般情况下,终端是部分反射,波导中传输的既不是行波,也不是纯驻波,而是呈行驻波状态。

2.微波频率的测量用吸收式频率计PX16(直读式),测量范围8.2GHZ-12.4GHZ,误差≤±0.3%,当传输线中相当一部分功率进入频率计谐振腔内,而另一部分从耦合元件处反射回去。

当调节频率计,使其自身空腔的固有频率与微波信号频率相同时产生谐振,用选频放大器测量,信号源须用内方波,重复频率为1KHZ 左右,谐振时可从选放上观察到信号幅度明显减少,以减幅最大位置为判断频率测量值的论据。

微波技术实验指导书

微波技术实验指导书

式中,λc 为截止波长。 一般波导工作在主模状态,其 λc =2a 。本实验中波导型号为 BJ-100, 其宽边为 a =22.86 mm ,代入上式计算出工作波长。 在波导中,还可利用下面公式计算波导波长:
g
0 1 ( 0 / 2 a )
(2-8)
式中,λ0 为真空中自由空间的波长(实验中近似有 λ0≈λ)。 4. 频率测量 微波频率测量是利用微波圆柱谐振腔体制作而成的一种谐振吸收式波长表。当吸收式波长 表与信号源产生的微波信号频率共振时,将从电路中吸收最大的能量,系统中选频放大器的指 示达最小,此时在频率计上圆柱谐振腔的固有频率与系统的工作频率相同,从频率计上直接读 出频率 f0 值即为信号源的工作频率。该频率计测量频率范围为 8.2~12.4GHz、测量精度可达 ≤0.3% 。另外信号源工作频率 f 可由工作波长 λ 求得:
图 2-2 交叉读数法测量波节点位置 为了使测量波导波长的精度较高(接近实际的波导波长),采用交叉读数法测量波导波长。在 测试系统调整良好状态下,通过测定一个驻波波节点两侧相等的电流指示值 I0 (可选取最大值的 20%)所对应的两个位置 d1、d2,则取 d1、d2 之和的平均值,得到对应驻波波节点的位置 dmin1 。 用同样的方法测定另一个相邻波节点的位置 dmin2 ,如图 3-1 所示,则 dmin1 、dmin2 与系统中波 导波长之间的关系为:
实验原理
图 1-1 示出了实验室常用的微波测试系统。进行微波测量时,首先要正确连接与调整微波 测量系统。微波测量系统的调整主要指微波信号源、微波测量线的调整、晶体检波器的校准。 信号源的调整包括振荡频率、功率电平及调制方式等。本实验主要讨论微波测量线的调整和晶 体检波器的校准。 1. 微波测量线的调整 微波测量线是微波系统的一种常用测量仪器,它在微波测量中用途很广,可测驻波、反射 系数、阻抗、相位和波长等。 测量线通常由一段开槽传输线、探头座(耦合探针、探针的调谐腔体和输出指示) 、传动装 置三部分组成。由于耦合探针伸入传输线而引入不均匀性,其作用相当于在线上并联一个导纳, 从而影响系统的工作状态。为了减少其影响,测试前必须仔细调整测量线。实验中测量线的调 整一般包括的探针深度调整和耦合输出匹配(即调谐装置) 。通常测量线探针深度及调谐装置均 已调好,不易轻易变动! 2. 晶体检波器的工作原理 在微波测量系统中,送至指示器的微波能量通常是经过晶体二极管检波后的直流或低频电 流,指示器的读数是检波电流的有效值。在测量线中,晶体检波电流与高频电压之间关系是非 线性的,因此要准确测出驻波(行波)系数必须知道晶体检波器的检波特性曲线。 晶体二极管的电流 I 与检波电压 U 的一般关系为 I=CU n (2-1) 式中,C 为常数,n 为检波律,U 为检波电压。 检波电压 U 与探针的耦合电场成正比。晶体管的检波律 n 随检波电压 U 改变。在弱信号 工作(检波电流不大于 10μA)情况下,近似为平方律检波,即 n=2,此时选频放大器的分贝量程 一般置于 50 dB (或 60dB)档;在大信号范围,n 近似等于 1,即直线律。 测量晶体检波器校准曲线最简便的方法是将测量线输出端短路,此时测量线上为纯驻波, 其相对电压按正弦律分布,即:

微波实验指导书

微波实验指导书

微波实验微波技术是近代发展起来的一门尖端科学技术,它不仅在通讯、原子能技术、空间技术、量子电子学以及农业生产等方面有着广泛的应用,在科学研究中也是一种重要的观测手段,微波的研究方法和测试设备都与无线电波的不同。

从图1可以看出,微波的频率范围是处于光波和广播电视所采用的无线电波之间,因此它兼有两者的性质,却又区别于两者。

与无线电波相比,微波有下述几个主要特点图1 电磁波的分类1.波长短(1m —1mm):具有直线传播的特性,利用这个特点,就能在微波波段制成方向性极好的天线系统,也可以收到地面和宇宙空间各种物体反射回来的微弱信号,从而确定物体的方位和距离,为雷达定位、导航等领域提供了广阔的应用。

2.频率高:微波的电磁振荡周期(10-9一10-12s)很短,已经和电子管中电子在电极间的飞越时间(约10-9s)可以比拟,甚至还小,因此普通电子管不能再用作微波器件(振荡器、放大器和检波器)中,而必须采用原理完全不同的微波电子管(速调管、磁控管和行波管等)、微波固体器件和量子器件来代替。

另外,微波传输线、微波元件和微波测量设备的线度与波长具有相近的数量级,在导体中传播时趋肤效应和辐射变得十分严重,一般无线电元件如电阻,电容,电感等元件都不再适用,也必须用原理完全不同的微波元件(波导管、波导元件、谐振腔等)来代替。

3.微波在研究方法上不像无线电那样去研究电路中的电压和电流,而是研究微波系统中的电磁场,以波长、功率、驻波系数等作为基本测量参量。

4.量子特性:在微波波段,电磁波每个量子的能量范围大约是10-6~10-3eV,而许多原子和分子发射和吸收的电磁波的波长也正好处在微波波段内。

人们利用这一特点来研究分子和原子的结构,发展了微波波谱学和量子电子学等尖端学科,并研制了低噪音的量子放大器和准确的分子钟,原子钟。

(北京大华无线电仪器厂)5.能穿透电离层:微波可以畅通无阻地穿越地球上空的电离层,为卫星通讯,宇宙通讯和射电天文学的研究和发展提供了广阔的前途。

微波技术与天线实验指导书啊啊

微波技术与天线实验指导书啊啊

小功率调幅发射机整体概述1.1 小功率调幅发射机的初步认识发射机的主要任务是完成有用的低频信号对高频载波的调制,将其变为在某一中心频率上具有一定带宽、适合通过天线发射的电磁波。

调幅发射机实现调幅简便,调制所占的频带窄,并且与之对应的调幅接收设备简单,所以调幅发射机广泛地应用于广播发射。

所谓调幅,就是指,使振幅随调制信号的变化而变化,严格的讲,就是指载波振幅与调制信号的大小成线性关系,而它的频率和相位不变。

振幅调制分为4种方式:AM(普通调幅)、DSB(抑制载波双边带调幅)、SSB(单边带调幅)、VSB(残留边带调幅)。

本设计调幅发射机指的是AM调幅发射机。

通常,发射机包括三个部分:高频部分,低频部分和电源部分。

高频部分一般包括主振荡器、缓冲放大、倍频器、中间放大、功放推动级与末级功放。

主振荡器的作用是产生频率稳定的载波。

缓冲级主要是削弱后级对主振器的影响。

低频部分包括话筒、低频电压放大级、低频功率放大级。

调制是将要传送的信息装载到某一高频振荡信号上去的过程。

1.2 小功率调幅发射机的主要技术指标在设计调幅发射机时,主要遵循如下性能指标:工作频率范围:调幅制一般适用于中、短波广播通信,其工作频率范围为300kHz~30MHz。

发射功率:一般是指发射机送到天线上的功率。

只有当天线的长度与发射频率的波长可比拟时,天线才能有效地把载波发射出去。

波长λ与频率f的关系为λ=c/f。

调幅系数:调幅系数ma是调制信号控制载波电压振幅变化的系数,ma的取值范围为0~1,通常以百分数的形式表示,即0%~100%。

频率稳定度:发射机的每个波道都有一个标称的射频中心工作频率,用f0表示。

工作频率的稳定度取决于发信本振源的频率稳匹配是射频和微波技术中的一个重要概念,通常包含两方面的意义:一是源的匹配,二是负载的匹配。

通常射频和微波系统中都希望采用匹配源,可使波源不再产生二次反射从而减少测量误差;同时,匹配负载可以从匹配源中取出最大功率。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

微波技术实验指导书微波技术实验指导书实验一微波测量系统的了解与使用实验性质:验证性实验级别:选做开课单位:信息与通信工程学院学时:2学时一、实验目的:1.了解微波测量线系统的组成,认识各种微波器件。

2.学会测量设备的使用。

二、实验器材:1.3厘米固态信号源2.隔离器3.可变衰减器4.测量线5.选频放大器6.各种微波器件三、实验内容:1.了解微波测试系统2. 学习使用测量线四、基本原理:图1.1 微波测试系统组成1.信号源信号源是为电子测量提供符合一定技术要求的电信号的设备,微波信号源是对各种相应测量设备或其它电子设备提供微波信号。

常用微波信号源可分为:简易信号发生器、功率信号发生器、标准信号发生器和扫频信号发生器。

本实验采用DH1121A型3cm固态信号源。

2.选频放大器当信号源加有1000Hz左右的方波调幅时,用得最多的检波放大指示方案是“选频放大器”法。

它是将检波输出的方波经选频放大器选出1000Hz基波进行高倍数放大,然后再整为直流,用直流电表指示。

它具有极高的灵敏度和极低的噪声电平。

表头一般具有等刻度及分贝刻度。

要求有良好的接地和屏蔽。

选频放大器也叫测量放大器。

3.测量线3厘米波导测量线由开槽波导、不调谐探头和滑架组成。

开槽波导中的场由不调谐探头取样,探头的移动靠滑架上的传动装置,探头的输出送到显示装置,就可以显示沿波导轴线的电磁场的变化信息。

4.可变衰减器为了固定传输系统内传输功率的功率电平,传输系统内必须接入衰减器,对微波产生一定的衰减,衰减量固定不变的称为固定衰减器,可在一定范围内调节的称为可变衰减器。

衰减器有吸收衰减器、截止衰减器和极化衰减器三种型式。

实验中采用的吸收式衰减器,是利用置入其中的吸收片所引起的通过波的损耗而得到衰减的。

一般可调吸收式衰减器的衰减量可在0到30-50分贝之间连续调节,其相应的衰减量可在调节机构的度盘上读出(直读式),或者从所附的校正曲线上查得。

五、实验步骤:1.了解微波测试系统1.1观看如图装置的的微波测试系统。

1.2观看常用微波元件的形状、结构,并了解其作用、主要性能及使用方法。

常用元件如:铁氧体隔离器、衰减器、直读式频率计、定向耦合器、晶体检波架、全匹配负载、波导同轴转换器等。

2.了解测量线结构,掌握各部分功能及使用方法。

2.1按图检查本实验仪器及装置。

2.2将微波衰减器置于衰减量较大的位置(约20至30dB),指示器灵敏度置于较低位置,以防止指示电表偶然过载而损坏。

2.3调节信号源频率,观察指示器的变化。

2.4调节衰减器,观察指示器的变化。

2.5调节滑动架,观察指示器的变化。

六、预习与思考:总体复习微波系统的知识,熟悉各种微波元器件的构造及原理特点。

实验二驻波系数的测量实验性质:综合性实验级别:必做开课单位:信息与通信工程学院学时:2学时一、实验目的:1.理解测量大、中电压驻波比的原理和常用方法。

2.掌握用直接法测量小驻波比的方法。

二、实验器材:1.3厘米固态信号源2.隔离器3.可变衰减器 4.测量线 5.选频放大器 6.各种微波器件 三、实验内容:测量无耗小驻波比微波元件的电压驻波比。

四、基本原理:图2.1 直接法测电压驻波比方框图微波元件的电压驻波比是传输线中电场最大值与最小值之比,表示为max minE E ρ= (2.1)1. 直接法该方法适用于测量中小电压驻波比。

当驻波系数不大于6时,可直接沿测量线测量驻波最大点和最小点的场强得到,故称为直接法。

直接法测电压驻波比方框图如图2.1所示。

被测器件接在测量线的终端,这时测量线中电场的纵向分布如图2.2所示。

min max /U U =ρ 图2.2 测量线电场分布图当测量线的探针沿纵向移动时,波腹点和节点指示电表读数分别为Umax 和Umin 。

晶体二极管为平方律检波时,则有:(2.2)当驻波比1.05<ρ<1.5时,Umax 和Umin 相差不大,且波腹和波节平坦,难以准确测定。

为了提高测量精度,可移动探针测出几个波腹和波节的数据,然后取平均值。

nnU U U U U U min 2min 1min max 2max 1max ++++++= ρ (2.3)当驻波比1.5 <ρ<6时可直接读出场强最大值和最小值。

表2。

1 波腹波节处的电压值六、预习与思考:1.复习均匀传输线理论,了解传输线上电压电流的分布情况 2.熟悉各实验步骤,以加快测量速度。

3.驻波的节点与腹点如何选取?实验三 阻抗的测量实验性质:综合性 实验级别:必做 开课单位:信息与通信工程学院 学时:2学时 一、实验目的:1.掌握用测量线测量阻抗的原理和方法。

2.进一步掌握阻抗圆图的用法。

二、实验器材:1.3厘米固态信号源 2.隔离器 3.可变衰减器 4.测量线 5.选频放大器 6.各种微波器件 三、实验内容:1.调整微波测试系统 2.测量阻抗 四、基本原理:微波元器件或天线系统的输入阻抗是微波工程中的重要参数,因而阻抗测量也是重要内容之一,本实验学习用测量线测量单端口微波元件输入阻抗的方法。

根据传输理论,传输系统中驻波分布与终端负载阻抗直接有关,表征驻波特性的两个参量,驻波比ρ及相位min l β与负载阻抗的关系:minmin L l jtan -tan j 1Z ~βρβρl -=(3.1)图3.1 电压与相位的关系图3.2 等效截面法上式左端为归一化负载阻抗,即单端口微波元件的输入阻抗,ρ为驻波比。

min l 是终端负载至相邻驻波节点的距离,参照图3.1。

因而只需在测量线的输出端接上待测元件,分别测定驻波比ρ,波导波长g λ及距离min l ,即可用上式或阻抗(或导纳)圆图计算待测元件的输入阻抗(或输入导纳)。

实际测量中常用“等效截面法”。

首先让测量线终端短路,沿线驻波分布如图3.2(a)所示,因而移动测量线探针可测得某一驻波节点位置T d ,它与终端距离为半波长的整数倍n λg/2(n=1,2,3…),此位置即为待测元件输入端面在测量线上的等效位置T 。

当测量线终端换接待测负载时,系统的驻波分布如图3.2(b)所示,由测量线测得T d 左边(向波源方向)的相邻驻波节点位置min d 即为终端相邻驻波节点的等效位置。

所以Td d l l -=min min (3.2)由公式minmintan tan 1l j l j Z L βρβρ--=(3.3)可以计算待测元件的输入阻抗Z L ,下图为导纳圆,A 点的读数即为待测元件的归一化导纳,B 点的读数即为归一化阻抗,如图3.3所示。

图3。

3 归一化阻抗圆图图5.3 归一化阻抗圆图图3。

4 实验装置图五、实验步骤: 1. 调整微波测量系统(1)测量线输出端接匹配负载,调整测量系统。

(2)测量线终端换接短路板,用交叉读数法测量波导波长g λ并确定位于测量线中间的一个波节点位置T d ,记录测量数据。

2.测量电感(或电容)膜片及晶体检波器输入阻抗(1)取下短路板,测量线输出端接“电感(或电容)膜片+负载匹配”测出T d ,左边相邻驻波节点的位置min d ,计算T d d l l -=min min ,记录测量数据。

(2)用微波衰减器调整功率电平,使测量线探头晶体处于平方律检波范围。

用直接法测量驻波比ρ,记录数据。

(3)根据ρ,min l ,g λ,应用导纳圆图计算“电感(或电容)膜片+负载匹配”的归一化导纳。

六、预习与思考:1、复习均匀传输线理论,了解传输线上电压电流的分布情况。

2、了解传输线不同终端负载的接入情况。

3、如果终端负载是感性的,则滑动螺钉与负载的距离必须满足什么条件?为什么?实验四 波长和频率的测量实验性质:综合性 实验级别:必做开课单位:信息与通信工程学院 学时:2学时一、实验目的:1.了解几种常用的测量频率和波长的仪器。

2.掌握测量频率和波长的基本原理和方法。

二、实验器材:1.3厘米固态信号源2.隔离器3.可变衰减器4.测量线5.选频放大器6.各种微波器件三、实验内容:1.测量微波信号的频率2.测量微波信号的波长四、基本原理:图4.1 实验装置图频率是微波测量的基本参量之一。

从原理上说,波长的测量与频率的测量是有区别的,前者归结为长度的测量,后者归结为时间的测量。

根据谐振腔的谐振选频原理可知,单模谐振腔的谐振频率决定于腔体尺寸,得用调谐机构的位置对谐振腔进行调谐,使之与待测微波信号发生谐振,就可以根据谐振时调谐机构的位置,判断腔内谐振的电磁波的频率。

这就是谐振式频率计的基本原理。

本实验将频率计采用吸收式接法。

当产生谐振时,谐振腔最大程度的获取功率,使得输出几乎为0,这样从指示器上可以观察其谐振或失谐的情况,从而读出频率计上指示的读数。

根据传输线原理,邻近两个腹点或两个节点之间的距离为半波长,这样可根据选频放大器上显示的相邻腹点,从测量线上直接读出波长。

五、实验步骤:1.微波频率的测量(1)按图4.1所示的框图连接实验系统。

(2)将检波器及检波指示器接到被测件位置上。

(3)用频率计测出微波信号源的频率。

旋转频率计的测微头,当频率计与被测频率谐振时,将出现吸收峰。

反映在检波指示器上的指示是一跌落点(参见图 4.2),此时,读出频率计测微头的读数,再从频率计频率与刻度曲线上查出对应的频率。

检波指示器指示谐振点 频率计测微头刻度图4.2频率计的谐振点曲线2. 波导波长的测量:(1)接开路阻抗,其可变电抗的反射系数接近1,在测量线中入射波与反射波的叠加为接近纯驻波的图形,如图4.3所示,只要测得驻波相邻节点的位置L 1、L 2,由L L g 1221-=λ,即可求得波导波长λg 。

(2)接短路阻抗。

测量驻波相邻腹点的位置L 1、L 2,由L L g 1221-=λ,即可求得波导波长λg 。

六、预习与思考:1.复习均匀传输线理论,了解传输线上电压电流的分布情况。

2.用传输线理论分析测量波长与频率的原理。

相关文档
最新文档