动能和动能定理考试试题教程文件

合集下载

高考必刷题物理动能与动能定理题及解析

高考必刷题物理动能与动能定理题及解析

高考必刷题物理动能与动能定理题及解析一、高中物理精讲专题测试动能与动能定理1.某校兴趣小组制作了一个游戏装置,其简化模型如图所示,在 A 点用一弹射装置可 将静止的小滑块以 v 0水平速度弹射出去,沿水平直线轨道运动到 B 点后,进入半径 R =0.3m 的光滑竖直圆形轨道,运行一周后自 B 点向 C 点运动,C 点右侧有一陷阱,C 、D 两点的竖 直高度差 h =0.2m ,水平距离 s =0.6m ,水平轨道 AB 长为 L 1=1m ,BC 长为 L 2 =2.6m ,小滑块与 水平轨道间的动摩擦因数 μ=0.5,重力加速度 g =10m/s 2.(1)若小滑块恰能通过圆形轨道的最高点,求小滑块在 A 点弹射出的速度大小; (2)若游戏规则为小滑块沿着圆形轨道运行一周离开圆形轨道后只要不掉进陷阱即为胜出,求小滑块在 A 点弹射出的速度大小的范围. 【答案】(1)(2)5m/s≤v A ≤6m/s 和v A ≥【解析】 【分析】 【详解】(1)小滑块恰能通过圆轨道最高点的速度为v ,由牛顿第二定律及机械能守恒定律由B 到最高点2211222B mv mgR mv =+ 由A 到B :解得A 点的速度为(2)若小滑块刚好停在C 处,则:解得A 点的速度为若小滑块停在BC 段,应满足3/4/A m s v m s ≤≤ 若小滑块能通过C 点并恰好越过壕沟,则有212h gt =c s v t =解得所以初速度的范围为3/4/A m s v m s ≤≤和5/A v m s ≥2.某小型设备工厂采用如图所示的传送带传送工件。

传送带由电动机带动,以2m/s v =的速度顺时针匀速转动,倾角37θ=︒。

工人将工件轻放至传送带最低点A ,由传送带传送至最高点B 后再由另一工人运走,工件与传送带间的动摩擦因数为78μ=,所运送的每个工件完全相同且质量2kg m =。

传送带长度为6m =L ,不计空气阻力。

高中物理动能与动能定理试题(有答案和解析)及解析

高中物理动能与动能定理试题(有答案和解析)及解析

高中物理动能与动能定理试题(有答案和解析)及解析一、高中物理精讲专题测试动能与动能定理1.如图所示,两物块A 、B 并排静置于高h=0.80m 的光滑水平桌面上,物块的质量均为M=0.60kg .一颗质量m=0.10kg 的子弹C 以v 0=100m/s 的水平速度从左面射入A ,子弹射穿A 后接着射入B 并留在B 中,此时A 、B 都没有离开桌面.已知物块A 的长度为0.27m ,A 离开桌面后,落地点到桌边的水平距离s=2.0m .设子弹在物块A 、B 中穿行时受到的阻力大小相等,g 取10m/s 2.(平抛过程中物块看成质点)求:(1)物块A 和物块B 离开桌面时速度的大小分别是多少; (2)子弹在物块B 中打入的深度;(3)若使子弹在物块B 中穿行时物块B 未离开桌面,则物块B 到桌边的最小初始距离.【答案】(1)5m/s ;10m/s ;(2)23.510B m L -=⨯(3)22.510m -⨯【解析】 【分析】 【详解】试题分析:(1)子弹射穿物块A 后,A 以速度v A 沿桌面水平向右匀速运动,离开桌面后做平抛运 动: 212h gt =解得:t=0.40s A 离开桌边的速度A sv t=,解得:v A =5.0m/s 设子弹射入物块B 后,子弹与B 的共同速度为v B ,子弹与两物块作用过程系统动量守恒:0()A B mv Mv M m v =++B 离开桌边的速度v B =10m/s(2)设子弹离开A 时的速度为1v ,子弹与物块A 作用过程系统动量守恒:012A mv mv Mv =+v 1=40m/s子弹在物块B 中穿行的过程中,由能量守恒2221111()222B A B fL Mv mv M m v =+-+① 子弹在物块A 中穿行的过程中,由能量守恒22201111()222A A fL mv mv M M v =--+②由①②解得23.510B L -=⨯m(3)子弹在物块A 中穿行过程中,物块A 在水平桌面上的位移为s 1,由动能定理:211()02A fs M M v =+-③子弹在物块B 中穿行过程中,物块B 在水平桌面上的位移为s 2,由动能定理2221122B A fs Mv Mv =-④ 由②③④解得物块B 到桌边的最小距离为:min 12s s s =+,解得:2min 2.510s m -=⨯考点:平抛运动;动量守恒定律;能量守恒定律.2.如图所示,不可伸长的细线跨过同一高度处的两个光滑定滑轮连接着两个物体A 和B ,A 、B 质量均为m 。

高考物理动能与动能定理试题经典及解析

高考物理动能与动能定理试题经典及解析
(1)玩具滑车到达 点时对 点的压力大小。
(2)如果传送带保持不动,玩具滑车到达传送带右端轮子最高点时的速度和落水点位置。
(3)如果传送带是在以某一速度匀速运动的(右端轮子顺时针转),试讨论玩具滑车落水点与传送带速度大小之间的关系。
【答案】(1)80N;(2)6m/s,6m;(3)见解析。
【解析】
【详解】
【点睛】
经典力学问题一般先对物体进行受力分析,求得合外力及运动过程做功情况,然后根据牛顿定律、动能定理及几何关系求解。
2.如图所示,斜面ABC下端与光滑的圆弧轨道CDE相切于C,整个装置竖直固定,D是最低点,圆心角∠DOC=37°,E、B与圆心O等高,圆弧轨道半径R=0.30m,斜面长L=1.90m,AB部分光滑,BC部分粗糙.现有一个质量m=0.10kg的小物块P从斜面上端A点无初速下滑,物块P与斜面BC部分之间的动摩擦因数μ=0.75.取sin37°=0.6,cos37°=0.8,重力加速度g=10m/s2,忽略空气阻力.求:
高考物理动能与动能定理试题经典及解析
一、高中物理精讲专题测试动能与动能定理
1.如图所示,半径R=0.5 m的光滑圆弧轨道的左端A与圆心O等高,B为圆弧轨道的最低点,圆弧轨道的右端C与一倾角θ=37°的粗糙斜面相切。一质量m=1kg的小滑块从A点正上方h=1 m处的P点由静止自由下落。已知滑块与粗糙斜面间的动摩擦因数μ=0.5,sin37°=0.6,cos37°=0.8,重力加速度g=10 m/s2。
【解析】
试题分析:小物块从开始运动到与挡板碰撞,重力、摩擦力做功,运用动能定理。求小物块经过B点多少次停下来,需要根据功能转化或动能定理求出小物块运动的路程,计算出经过B点多少次。小物块经过平抛运动到达D点,可以求出平抛时的初速度,进而求出在BC段上运动的距离以及和当班碰撞的次数。

高考物理动能与动能定理试题(有答案和解析)

高考物理动能与动能定理试题(有答案和解析)

高考物理动能与动能定理试题(有答案和解析)一、高中物理精讲专题测试动能与动能定理1.如图所示,足够长的光滑绝缘水平台左端固定一被压缩的绝缘轻质弹簧,一个质量0.04kg m =,电量4310C q -=⨯的带负电小物块与弹簧接触但不栓接,弹簧的弹性势能为0.32J 。

某一瞬间释放弹簧弹出小物块,小物块从水平台右端A 点飞出,恰好能没有碰撞地落到粗糙倾斜轨道的最高点B ,并沿轨道BC 滑下,运动到光滑水平轨道CD ,从D 点进入到光滑竖直圆内侧轨道。

已知倾斜轨道与水平方向夹角为37α︒=,倾斜轨道长为2.0m L =,带电小物块与倾斜轨道间的动摩擦因数0.5μ=。

小物块在C 点没有能量损失,所有轨道都是绝缘的,运动过程中小物块的电量保持不变,可视为质点。

只有光滑竖直圆轨道处存在范围足够大的竖直向下的匀强电场,场强5210V/m E =⨯。

已知cos370.8︒=,sin370.6︒=,取210m/s g =,求:(1)小物块运动到A 点时的速度大小A v ; (2)小物块运动到C 点时的速度大小C v ;(3)要使小物块不离开圆轨道,圆轨道的半径应满足什么条件?【答案】(1)4m/s ;(233;(3)R ⩽0.022m 【解析】 【分析】 【详解】(1)释放弹簧过程中,弹簧推动物体做功,弹簧弹性势能转变为物体动能212P A E mv =解得220.324m/s 0.04P A E v m ===⨯ (2)A 到B 物体做平抛运动,到B 点有cos37A Bvv ︒= 所以45m/s 0.8B v == B 到C 根据动能定理有2211sin37cos3722C B mgL mg L mv mv μ︒-︒⋅=- 解得33m/s C v =(3)根据题意可知,小球受到的电场力和重力的合力方向向上,其大小为F=qE-mg =59.6N所以D 点为等效最高点,则小球到达D 点时对轨道的压力为零,此时的速度最小,即2Dv F m R=解得D FRv m=所以要小物块不离开圆轨道则应满足v C ≥v D 得:R ≤0.022m2.在光滑绝缘的水平面上,存在平行于水平面向右的匀强电场,电场强度为E ,水平面上放置两个静止、且均可看作质点的小球A 和B ,两小球质量均为m ,A 球带电荷量为Q +,B 球不带电,A 、B 连线与电场线平行,开始时两球相距L ,在电场力作用下,A 球与B 球发生对心弹性碰撞.设碰撞过程中,A 、B 两球间无电量转移.(1)第一次碰撞结束瞬间A 、B 两球的速度各为多大?(2)从开始到即将发生第二次碰撞这段过程中电场力做了多少功?(3)从开始到即将发生第二次碰撞这段过程中,若要求A 在运动过程中对桌面始终无压力且刚好不离开水平桌面(v=0时刻除外),可以在水平面内加一与电场正交的磁场.请写出磁场B 与时间t 的函数关系.【答案】(1)10A v '= 12BQEL v m='5QEL (3) 222B mL Q E t QE =⎛⎫- ⎪⎝⎭223mL mLt QE QE<≤ 【解析】(1)A 球的加速度QE a m =,碰前A的速度1A v =B 的速度10B v = 设碰后A 、B 球速度分别为'1A v 、'1B v ,两球发生碰撞时,由动量守恒和能量守恒定律有:''111A A B m m m v v v =+,2'2'2111111222A AB m m m v v v =+所以B 碰撞后交换速度:'10A v =,'11B A v v ==(2)设A 球开始运动时为计时零点,即0t =,A 、B 球发生第一次、第二次的碰撞时刻分别为1t 、2t;由匀变速速度公式有:110A avt -==第一次碰后,经21t t -时间A 、B 两球发生第二次碰撞,设碰前瞬间A 、B 两球速度分别为2A v 和2B v ,由位移关系有:()()2'1212112B av t t t t -=-,得到:213tt == ()2211122A A a a v t t t v =-===;'21B B v v = 由功能关系可得:222211=522A B m m QEL W v v +=电(另解:两个过程A 球发生的位移分别为1x 、2x ,1L x =,由匀变速规律推论24L x =,根据电场力做功公式有:()125W QE QEL x x =+=) (3)对A 球由平衡条件得到:A QB mg v =,A at v =,QEa m=从A 开始运动到发生第一次碰撞:()220t mg g t Qat Et m B Q ⎛==<≤ ⎝ 从第一次碰撞到发生第二次碰撞:()2t t B =<≤ 点睛:本题是电场相关知识与动量守恒定律的综合,虽然A 球受电场力,但碰撞的内力远大于内力,则碰撞前后动量仍然守恒.由于两球的质量相等则弹性碰撞后交换速度.那么A 球第一次碰后从速度为零继续做匀加速直线运动,直到发生第二次碰撞.题设过程只是发生第二次碰撞之前的相关过程,有涉及第二次以后碰撞,当然问题变得简单些.3.如图所示,在倾角为θ=30°的固定斜面上固定一块与斜面垂直的光滑挡板,质量为m 的半圆柱体A 紧靠挡板放在斜面上,质量为2m 的圆柱体B 放在A 上并靠在挡板上静止。

动能与动能定理经典习题及答案(免费》

动能与动能定理经典习题及答案(免费》

1.关于做功和物体动能变化的关系,不正确的是().A.只有动力对物体做功时,物体的动能增加B.只有物体克服阻力做功时,它的功能减少C.外力对物体做功的代数和等于物体的末动能和初动能之差D.动力和阻力都对物体做功,物体的动能一定变化2.下列关于运动物体所受的合外力、合外力做功和动能变化的关系正确的是().A.如果物体所受的合外力为零,那么合外力对物体做的功一定为零B.如果合外力对物体所做的功为零,则合外力一定为零C.物体在合外力作用下作变速运动,动能一定变化D.物体的动能不变,所受的合外力必定为零3.两个材料相同的物体,甲的质量大于乙的质量,以相同的初动能在同一水平面上滑动,最后都静止,它们滑行的距离是().A.乙大B.甲大C.一样大D.无法比较4.一个物体沿着高低不平的自由面做匀速率运动,在下面几种说法中,正确的是().A.动力做的功为零B.动力做的功不为零C.动力做功与阻力做功的代数和为零D.合力做的功为零5.放在水平面上的物体在一对水平方向的平衡力作用下做匀速直线运动,当撤去一个力后,下列说法中错误的是().A.物体的动能可能减少B.物体的动能可能增加C.没有撤去的这个力一定不再做功D.没有撤去的这个力一定还做功平面上做匀速圆周运动,拉力为某个值F时,转动半径为B,当拉力逐渐减小到了F/4时,物体仍做匀速圆周运动,半径为2R,则外力对物体所做的功大小是().A、FR/4B、3FR/4C、5FR/2D、零7. 一物体质量为2kg,以4m/s的速度在光滑水平面上向左滑行。

从某时刻起作用一向右的水平力,经过一段时间后,滑块的速度方向变为水平向右,大小为4m/s,在这段时间内,水平力做功为()A. 0B. 8JC. 16JD. 32J8.质量为5×105kg的机车,以恒定的功率沿平直轨道行驶,在3minl内行驶了1450m,其速度从10m/s增加到最大速度15m/s.若阻力保持不变,求机车的功率和所受阻力的数值.9. 一小球从高出地面Hm 处,由静止自由下落,不计空气阻力,球落至地面后又深入沙坑h米后停止,求沙坑对球的平均阻力是其重力的多少倍。

高考物理动能与动能定理试题(有答案和解析)

高考物理动能与动能定理试题(有答案和解析)

的小物块从轨道右侧 A 点以初速度
冲上轨道,通过圆形轨道,水平轨道
后压缩弹簧,并被弹簧以原速率弹回,取
,求:
(1)弹簧获得的最大弹性势能 ; (2)小物块被弹簧第一次弹回经过圆轨道最低点时的动能 ; (3)当 R 满足什么条件时,小物块被弹簧第一次弹回圆轨道时能沿轨道运动而不会脱离 轨道。 【答案】(1)10.5J(2)3J(3)0.3m≤R≤0.42m 或 0≤R≤0.12m 【解析】 【详解】 (1)当弹簧被压缩到最短时,其弹性势能最大。从 A 到压缩弹簧至最短的过程中,由动
代入数据得:Q=126 J 故本题答案是:(1)μ=0.875.(2)ΔE=90 J(3)Q=126 J 【点睛】 对物体受力分析并结合图像的斜率求得加速度,在 v-t 图像中图像包围的面积代表物体运 动做过的位移。
5.如图所示,一质量为 M、足够长的平板静止于光滑水平面上,平板左端与水平轻弹簧 相连,弹簧的另一端固定在墙上.平板上有一质量为 m 的小物块以速度 v0 向右运动,且在 本题设问中小物块保持向右运动.已知小物块与平板间的动摩擦因数为 μ,弹簧弹性势能 Ep 与弹簧形变量 x 的平方成正比,重力加速度为 g.求:
6J
(3)滑块从 A 点运动到 C 点过程,由动能定理得
解得 BC 间距离
mg
3r
mgs
1 2
mvc2
s 0.5m
小球与弹簧作用后返回 C 处动能不变,小滑块的动能最终消耗在与 BC 水平面相互作用的
过程中,设物块在 BC 上的运动路程为 s ,由动能定理有
mgs
1 2
mvc2
解得
s 0.7m 故最终小滑动距离 B 为 0.7 0.5m 0.2m处停下.
(1)物体与传送带间的动摩擦因数; (2) 0~8 s 内物体机械能的增加量; (3)物体与传送带摩擦产生的热量 Q。 【答案】(1)μ=0.875.(2)ΔE=90 J(3)Q=126 J 【解析】 【详解】 (1)由图象可以知道,传送带沿斜向上运动,物体放到传送带上的初速度方向是沿斜面向下的,

高考物理动能与动能定理技巧(很有用)及练习题含解析

高考物理动能与动能定理技巧(很有用)及练习题含解析

高考物理动能与动能定理技巧(很有用)及练习题含解析一、高中物理精讲专题测试动能与动能定理1.某校兴趣小组制作了一个游戏装置,其简化模型如图所示,在 A 点用一弹射装置可 将静止的小滑块以 v 0水平速度弹射出去,沿水平直线轨道运动到 B 点后,进入半径 R =0.3m 的光滑竖直圆形轨道,运行一周后自 B 点向 C 点运动,C 点右侧有一陷阱,C 、D 两点的竖 直高度差 h =0.2m ,水平距离 s =0.6m ,水平轨道 AB 长为 L 1=1m ,BC 长为 L 2 =2.6m ,小滑块与 水平轨道间的动摩擦因数 μ=0.5,重力加速度 g =10m/s 2.(1)若小滑块恰能通过圆形轨道的最高点,求小滑块在 A 点弹射出的速度大小; (2)若游戏规则为小滑块沿着圆形轨道运行一周离开圆形轨道后只要不掉进陷阱即为胜出,求小滑块在 A 点弹射出的速度大小的范围. 【答案】(1)(2)5m/s≤v A ≤6m/s 和v A ≥【解析】 【分析】 【详解】(1)小滑块恰能通过圆轨道最高点的速度为v ,由牛顿第二定律及机械能守恒定律由B 到最高点2211222B mv mgR mv =+ 由A 到B :解得A 点的速度为(2)若小滑块刚好停在C 处,则:解得A 点的速度为若小滑块停在BC 段,应满足3/4/A m s v m s ≤≤ 若小滑块能通过C 点并恰好越过壕沟,则有212h gt =c s v t =解得所以初速度的范围为3/4/A m s v m s ≤≤和5/A v m s ≥2.如图所示,斜面ABC 下端与光滑的圆弧轨道CDE 相切于C ,整个装置竖直固定,D 是最低点,圆心角∠DOC =37°,E 、B 与圆心O 等高,圆弧轨道半径R =0.30m ,斜面长L =1.90m ,AB 部分光滑,BC 部分粗糙.现有一个质量m =0.10kg 的小物块P 从斜面上端A 点无初速下滑,物块P 与斜面BC 部分之间的动摩擦因数μ=0.75.取sin37°=0.6,cos37°=0.8,重力加速度g =10m/s 2,忽略空气阻力.求:(1)物块第一次通过C 点时的速度大小v C .(2)物块第一次通过D 点时受到轨道的支持力大小F D . (3)物块最终所处的位置.【答案】(1)32m/s (2)7.4N (3)0.35m 【解析】 【分析】由题中“斜面ABC 下端与光滑的圆弧轨道CDE 相切于C”可知,本题考查动能定理、圆周运动和机械能守恒,根据过程分析,运用动能定理、机械能守恒和牛顿第二定律可以解答. 【详解】(1)BC 长度tan 530.4m l R ==o ,由动能定理可得21()sin 372B mg L l mv -=o代入数据的32m/s B v =物块在BC 部分所受的摩擦力大小为cos370.60N f mg μ==o所受合力为sin 370F mg f =-=o故32m/s C B v v ==(2)设物块第一次通过D 点的速度为D v ,由动能定理得2211(1cos37)22D C mgR mv mv -=-o有牛顿第二定律得2D D v F mg m R-= 联立解得7.4N D F =(3)物块每次通过BC 所损失的机械能为0.24J E fl ∆==物块在B 点的动能为212kB B E mv =解得0.9J kB E = 物块经过BC 次数0.9J=3.750.24Jn =设物块最终停在距离C 点x 处,可得()sin 37(3+)0mg L x f l x --=o代入数据可得0.35m x =3.某小型设备工厂采用如图所示的传送带传送工件。

(物理)动能与动能定理练习题含答案含解析

(物理)动能与动能定理练习题含答案含解析

(物理)动能与动能定理练习题含答案含解析一、高中物理精讲专题测试动能与动能定理1.如图所示,在水平轨道右侧固定半径为R的竖直圆槽形光滑轨道,水平轨道的PQ段长度为,上面铺设特殊材料,小物块与其动摩擦因数为,轨道其它部分摩擦不计。

水平轨道左侧有一轻质弹簧左端固定,弹簧处于原长状态。

可视为质点的质量的小物块从轨道右侧A点以初速度冲上轨道,通过圆形轨道,水平轨道后压缩弹簧,并被弹簧以原速率弹回,取,求:(1)弹簧获得的最大弹性势能;(2)小物块被弹簧第一次弹回经过圆轨道最低点时的动能;(3)当R满足什么条件时,小物块被弹簧第一次弹回圆轨道时能沿轨道运动而不会脱离轨道。

【答案】(1)10.5J(2)3J(3)0.3m≤R≤0.42m或0≤R≤0.12m【解析】【详解】(1)当弹簧被压缩到最短时,其弹性势能最大。

从A到压缩弹簧至最短的过程中,由动能定理得:−μmgl+W弹=0−m v02由功能关系:W弹=-△E p=-E p解得 E p=10.5J;(2)小物块从开始运动到第一次被弹回圆形轨道最低点的过程中,由动能定理得−2μmgl=E k−m v02解得 E k=3J;(3)小物块第一次返回后进入圆形轨道的运动,有以下两种情况:①小球能够绕圆轨道做完整的圆周运动,此时设小球最高点速度为v2,由动能定理得−2mgR=m v22−E k小物块能够经过最高点的条件m≥mg,解得R≤0.12m②小物块不能够绕圆轨道做圆周运动,为了不让其脱离轨道,小物块至多只能到达与圆心等高的位置,即m v12≤mgR,解得R≥0.3m;设第一次自A点经过圆形轨道最高点时,速度为v1,由动能定理得:−2mgR =m v 12-m v 02且需要满足 m ≥mg ,解得R≤0.72m ,综合以上考虑,R 需要满足的条件为:0.3m≤R≤0.42m 或0≤R≤0.12m 。

【点睛】解决本题的关键是分析清楚小物块的运动情况,把握隐含的临界条件,运用动能定理时要注意灵活选择研究的过程。

完整版动能和动能定理测试题和答案

完整版动能和动能定理测试题和答案

动能和动能定理测试题和答案动能和动能定理测试题一、选择题1.车做匀加快运动,速度从零增添到 V的过程中发动机做功 W1,从V增添到 2V的过程中发动机做功 W 2,设牵引力和阻力恒定,则有()A. W2=2W1B. W2=3W1C. W2=4W1D.仅能判断 W2> W12.用 100N的力将千克的足球以8m/s的初速度沿水平方向踢出 20米,则人对球做功为()A. 200J B.16J C. 2000J D.没法确立3.子弹以水平速度 V射入静止在圆滑水平面上的木块M,并留在此中,则()A.子弹战胜阻力做功与木块获取的动能相等B.阻力对子弹做功小于子弹动能的减少C.子弹战胜阻力做功与子弹对木块做功相等D.子弹克阻力做功大于子弹对木块做功4.如下图, DO是水平面, AB是斜面,初速度为 v0 ,物体从 D点出发 DBA滑到极点时速度恰巧为零,假如斜面改为 AC,让该物体从 D点出发 DCA滑到 A点且速度恰巧为零,则物体拥有的初速度(已知物体与路面间的动摩擦系数到处相等且不为零)()A.大于 v0B.等于 v0C.小于 v0D.取决于斜面的倾角5.质量不等,但拥有相同初动能的两个物体,在摩擦系数相同的水平川面上滑行,直到停止,则()A.质量大的物体滑行的距离大B.质量小的物体滑行的距离大C.它们滑行的距离相同大D.它们战胜摩擦力所做的功相同多6.有两个物体其质量 M1>M 2它们初动能相同,若两物体遇到不变的阻力 F1和 F2作用经过相同的时间停下,它们的位移分别为 S1和S2,则()A. F1> F2,且 S1< S2B. F1> F2,且 S1> S2C. F1<F2,且 S1< S2D. F1>F2,且 S1> S27.速度为v的子弹,恰可穿透一块固定着的木板,假如子弹的速度为2v,子弹穿透木板时阻力视为不变,则可穿透相同的木板:()A.1块;B.2块;C.3块;D.4块。

8 . 质量为 m的物体从高为 h的斜坡上 a点由静止滑下,滑到水平面上b点静止,如下图,此刻要把它从 b点再拉回到 a点,则外力对物体做功起码是()A.mghB. 2mghC. 3mghD. 4mgh9. 一物体在竖直弹簧的上方h米处着落,而后又被弹簧弹回,如下图,则物体动能最大时是:()A.物体刚接触弹簧时;动能和动能定理测试题和答案B.物体将弹簧压缩至最短时;C.物体重力与弹力相等时;D.弹簧等于原长时。

【物理】物理动能与动能定理练习题含答案及解析

【物理】物理动能与动能定理练习题含答案及解析

【物理】物理动能与动能定理练习题含答案及解析一、高中物理精讲专题测试动能与动能定理1.如图所示,质量m =3kg 的小物块以初速度秽v 0=4m/s 水平向右抛出,恰好从A 点沿着圆弧的切线方向进入圆弧轨道。

圆弧轨道的半径为R = 3.75m ,B 点是圆弧轨道的最低点,圆弧轨道与水平轨道BD 平滑连接,A 与圆心D 的连线与竖直方向成37︒角,MN 是一段粗糙的水平轨道,小物块与MN 间的动摩擦因数μ=0.1,轨道其他部分光滑。

最右侧是一个半径为r =0.4m 的半圆弧轨道,C 点是圆弧轨道的最高点,半圆弧轨道与水平轨道BD 在D 点平滑连接。

已知重力加速度g =10m/s 2,sin37°=0.6,cos37°=0.8。

(1)求小物块经过B 点时对轨道的压力大小;(2)若MN 的长度为L 0=6m ,求小物块通过C 点时对轨道的压力大小; (3)若小物块恰好能通过C 点,求MN 的长度L 。

【答案】(1)62N (2)60N (3)10m 【解析】 【详解】(1)物块做平抛运动到A 点时,根据平抛运动的规律有:0cos37A v v ==︒ 解得:04m /5m /cos370.8A v v s s ===︒小物块经过A 点运动到B 点,根据机械能守恒定律有:()2211cos3722A B mv mg R R mv +-︒= 小物块经过B 点时,有:2BNB v F mg m R-= 解得:()232cos3762N BNBv F mg m R=-︒+=根据牛顿第三定律,小物块对轨道的压力大小是62N (2)小物块由B 点运动到C 点,根据动能定理有:22011222C B mgL mg r mv mv μ--⋅=- 在C 点,由牛顿第二定律得:2CNC v F mg m r+=代入数据解得:60N NC F =根据牛顿第三定律,小物块通过C 点时对轨道的压力大小是60N(3)小物块刚好能通过C 点时,根据22Cv mg m r=解得:2100.4m /2m /C v gr s s ==⨯=小物块从B 点运动到C 点的过程,根据动能定理有:22211222C B mgL mg r mv mv μ--⋅=- 代入数据解得:L =10m2.如图所示,在娱乐节目中,一质量为m =60 kg 的选手以v 0=7 m/s 的水平速度抓住竖直绳下端的抓手开始摆动,当绳摆到与竖直方向夹角θ=37°时,选手放开抓手,松手后的上升过程中选手水平速度保持不变,运动到水平传送带左端A 时速度刚好水平,并在传送带上滑行,传送带以v =2 m/s 匀速向右运动.已知绳子的悬挂点到抓手的距离为L =6 m ,传送带两端点A 、B 间的距离s =7 m ,选手与传送带间的动摩擦因数为μ=0.2,若把选手看成质点,且不考虑空气阻力和绳的质量.(g =10 m/s 2,sin 37°=0.6,cos 37°=0.8)求:(1)选手放开抓手时的速度大小; (2)选手在传送带上从A 运动到B 的时间; (3)选手在传送带上克服摩擦力做的功. 【答案】(1)5 m/s (2)3 s (3)360 J 【解析】试题分析:(1)设选手放开抓手时的速度为v 1,则-mg (L -Lcosθ)=mv 12-mv 02,v 1=5m/s(2)设选手放开抓手时的水平速度为v 2,v 2=v 1cosθ① 选手在传送带上减速过程中 a =-μg② v =v 2+at 1③④匀速运动的时间t 2,s -x 1=vt 2⑤ 选手在传送带上的运动时间t =t 1+t 2⑥ 联立①②③④⑤⑥得:t =3s(3)由动能定理得W f =mv 2-mv 22,解得:W f =-360J 故克服摩擦力做功为360J . 考点:动能定理的应用3.如图所示是一种特殊的游戏装置,CD 是一段位于竖直平面内的光滑圆弧轨道,圆弧半径为10m ,末端D 处的切线方向水平,一辆玩具滑车从轨道的C 点处下滑,滑到D 点时速度大小为10m/s ,从D 点飞出后落到水面上的B 点。

【物理】物理动能与动能定理题20套(带答案)

【物理】物理动能与动能定理题20套(带答案)

【物理】物理动能与动能定理题20套(带答案)一、高中物理精讲专题测试动能与动能定理1.如图所示,在水平轨道右侧固定半径为R的竖直圆槽形光滑轨道,水平轨道的PQ段长度为,上面铺设特殊材料,小物块与其动摩擦因数为,轨道其它部分摩擦不计。

水平轨道左侧有一轻质弹簧左端固定,弹簧处于原长状态。

可视为质点的质量的小物块从轨道右侧A点以初速度冲上轨道,通过圆形轨道,水平轨道后压缩弹簧,并被弹簧以原速率弹回,取,求:(1)弹簧获得的最大弹性势能;(2)小物块被弹簧第一次弹回经过圆轨道最低点时的动能;(3)当R满足什么条件时,小物块被弹簧第一次弹回圆轨道时能沿轨道运动而不会脱离轨道。

【答案】(1)10.5J(2)3J(3)0.3m≤R≤0.42m或0≤R≤0.12m【解析】【详解】(1)当弹簧被压缩到最短时,其弹性势能最大。

从A到压缩弹簧至最短的过程中,由动能定理得:−μmgl+W弹=0−m v02由功能关系:W弹=-△E p=-E p解得 E p=10.5J;(2)小物块从开始运动到第一次被弹回圆形轨道最低点的过程中,由动能定理得−2μmgl=E k−m v02解得 E k=3J;(3)小物块第一次返回后进入圆形轨道的运动,有以下两种情况:①小球能够绕圆轨道做完整的圆周运动,此时设小球最高点速度为v2,由动能定理得−2mgR=m v22−E k小物块能够经过最高点的条件m≥mg,解得R≤0.12m②小物块不能够绕圆轨道做圆周运动,为了不让其脱离轨道,小物块至多只能到达与圆心等高的位置,即m v12≤mgR,解得R≥0.3m;设第一次自A点经过圆形轨道最高点时,速度为v1,由动能定理得:−2mgR =m v 12-m v 02且需要满足 m ≥mg ,解得R≤0.72m ,综合以上考虑,R 需要满足的条件为:0.3m≤R≤0.42m 或0≤R≤0.12m 。

【点睛】解决本题的关键是分析清楚小物块的运动情况,把握隐含的临界条件,运用动能定理时要注意灵活选择研究的过程。

(完整版)高中物理动能定理经典计算题和答案

(完整版)高中物理动能定理经典计算题和答案

动能和动能定理经典试题例1 一架喷气式飞机,质量m =5×103kg ,起飞过程中从静止开始滑跑的路程为s =5.3×102m 时,达到起飞的速度v =60m/s ,在此过程中飞机受到的平均阻力是飞机重量的0.02倍(k =0。

02),求飞机受到的牵引力。

例2 将质量m=2kg 的一块石头从离地面H=2m 高处由静止开始释放,落入泥潭并陷入泥中h=5cm 深处,不计空气阻力,求泥对石头的平均阻力。

(g 取10m/s 2)例3 一质量为0.3㎏的弹性小球,在光滑的水平面上以6m/s 的速度垂直撞到墙上,碰撞后小球沿相反方向运动,反弹后的速度大小与碰撞前速度的大小相同,则碰撞前后小球速度变化量的大小Δv 和碰撞过程中墙对小球做功的大小W 为( )A .Δv=0 B. Δv=12m/s C 。

W=0 D 。

W=10.8J例4 在h 高处,以初速度v 0向水平方向抛出一个小球,不计空气阻力,小球着地时速度大小为( )A. gh v 20+B. gh v 20-C. gh v 220+ D 。

gh v 220-例5 一质量为 m 的小球,用长为l 的轻绳悬挂于O 点。

小球在水平拉力F 作用下,从平衡位置P 点很缓慢地移动到Q 点,如图2—7—3所示,则拉力F 所做的功为( )A. mgl cos θB. mgl (1-cos θ)C. Fl cos θD. Flsin θ例6 如图所示,光滑水平面上,一小球在穿过O 孔的绳子的拉力作用下沿一圆周匀速运动,当绳的拉力为F 时,圆周半径为R,当绳的拉力增大到8F 时,小球恰可沿半径为R /2的圆周匀速运动在上述增大拉力的过程中,绳的拉力对球做的功为________。

例7 如图2-7-4所示,绷紧的传送带在电动机带动下,始终保持v 0=2m/s 的速度匀速运行,传送带与水平地面的夹角θ=30°,现把一质量m =l0kg 的工件轻轻地放在传送带底端,由传送带传送至h =2m 的高处。

(物理)物理动能与动能定理题20套(带答案)及解析

(物理)物理动能与动能定理题20套(带答案)及解析

(物理)物理动能与动能定理题20套(带答案)及解析一、高中物理精讲专题测试动能与动能定理1.如图所示,粗糙水平桌面上有一轻质弹簧左端固定在A 点,自然状态时其右端位于B 点。

水平桌面右侧有一竖直放置的光滑轨道MNP ,其形状为半径R =1.0m 的圆环剪去了左上角120°的圆弧,MN 为其竖直直径,P 点到桌面的竖直距离是h =2.4m 。

用质量为m =0.2kg 的物块将弹簧由B 点缓慢压缩至C 点后由静止释放,弹簧在C 点时储存的弹性势能E p =3.2J ,物块飞离桌面后恰好P 点沿切线落入圆轨道。

已知物块与桌面间的动摩擦因数μ=0.4,重力加速度g 值取10m/s 2,不计空气阻力,求∶(1)物块通过P 点的速度大小;(2)物块经过轨道最高点M 时对轨道的压力大小; (3)C 、D 两点间的距离;【答案】(1)8m/s ;(2)4.8N ;(3)2m 【解析】 【分析】 【详解】(1)通过P 点时,由几何关系可知,速度方向与水平方向夹角为60o ,则22y v gh =o sin 60y v v=整理可得,物块通过P 点的速度8m/s v =(2)从P 到M 点的过程中,机械能守恒2211=(1cos60)+22o M mv mgR mv + 在最高点时根据牛顿第二定律2MN mv F mg R+= 整理得4.8N N F =根据牛顿第三定律可知,物块对轨道的压力大小为4.8N(3)从D 到P 物块做平抛运动,因此o cos 604m/s D v v ==从C 到D 的过程中,根据能量守恒定律212p D E mgx mv μ=+C 、D 两点间的距离2m x =2.如图所示,两物块A 、B 并排静置于高h=0.80m 的光滑水平桌面上,物块的质量均为M=0.60kg .一颗质量m=0.10kg 的子弹C 以v 0=100m/s 的水平速度从左面射入A ,子弹射穿A 后接着射入B 并留在B 中,此时A 、B 都没有离开桌面.已知物块A 的长度为0.27m ,A 离开桌面后,落地点到桌边的水平距离s=2.0m .设子弹在物块A 、B 中穿行时受到的阻力大小相等,g 取10m/s 2.(平抛过程中物块看成质点)求:(1)物块A 和物块B 离开桌面时速度的大小分别是多少; (2)子弹在物块B 中打入的深度;(3)若使子弹在物块B 中穿行时物块B 未离开桌面,则物块B 到桌边的最小初始距离.【答案】(1)5m/s ;10m/s ;(2)23.510B m L -=⨯(3)22.510m -⨯【解析】 【分析】 【详解】试题分析:(1)子弹射穿物块A 后,A 以速度v A 沿桌面水平向右匀速运动,离开桌面后做平抛运 动: 212h gt =解得:t=0.40s A 离开桌边的速度A sv t=,解得:v A =5.0m/s 设子弹射入物块B 后,子弹与B 的共同速度为v B ,子弹与两物块作用过程系统动量守恒:0()A B mv Mv M m v =++B 离开桌边的速度v B =10m/s(2)设子弹离开A 时的速度为1v ,子弹与物块A 作用过程系统动量守恒:012A mv mv Mv =+v 1=40m/s子弹在物块B 中穿行的过程中,由能量守恒2221111()222B A B fL Mv mv M m v =+-+① 子弹在物块A 中穿行的过程中,由能量守恒22201111()222A A fL mv mv M M v =--+②由①②解得23.510B L -=⨯m(3)子弹在物块A 中穿行过程中,物块A 在水平桌面上的位移为s 1,由动能定理:211()02A fs M M v =+-③子弹在物块B 中穿行过程中,物块B 在水平桌面上的位移为s 2,由动能定理2221122B A fs Mv Mv =-④ 由②③④解得物块B 到桌边的最小距离为:min 12s s s =+,解得:2min 2.510s m -=⨯考点:平抛运动;动量守恒定律;能量守恒定律.3.如图所示是一种特殊的游戏装置,CD 是一段位于竖直平面内的光滑圆弧轨道,圆弧半径为10m ,末端D 处的切线方向水平,一辆玩具滑车从轨道的C 点处下滑,滑到D 点时速度大小为10m/s ,从D 点飞出后落到水面上的B 点。

【物理】物理动能与动能定理题20套(带答案)及解析

【物理】物理动能与动能定理题20套(带答案)及解析

【物理】物理动能与动能定理题20套(带答案)及解析一、高中物理精讲专题测试动能与动能定理1.某小型设备工厂采用如图所示的传送带传送工件。

传送带由电动机带动,以2m/s v =的速度顺时针匀速转动,倾角37θ=︒。

工人将工件轻放至传送带最低点A ,由传送带传送至最高点B 后再由另一工人运走,工件与传送带间的动摩擦因数为78μ=,所运送的每个工件完全相同且质量2kg m =。

传送带长度为6m =L ,不计空气阻力。

(工件可视为质点,sin370.6︒=,cos370.8︒=,210m /s g =)求:(1)若工人某次只把一个工件轻放至A 点,则传送带将其由最低点A 传至B 点电动机需额外多输出多少电能?(2)若工人每隔1秒将一个工件轻放至A 点,在传送带长时间连续工作的过程中,电动机额外做功的平均功率是多少?【答案】(1)104J ;(2)104W 【解析】 【详解】 (1)对工件cos sin mg mg ma μθθ-=22v ax =1v at =12s t =得2m x =12x vt x ==带 2m x x x =-=相带由能量守恒定律p k E Q E E =+∆+∆电即21cos sin 2E mg x mgL mv μθθ=⋅++电相代入数据得104J E =电(2)由题意判断,每1s 放一个工件,传送带上共两个工件匀加速,每个工件先匀加速后匀速运动,与带共速后工件可与传送带相对静止一起匀速运动。

匀速运动的相邻的两个工件间距为2m x v t ∆=∆=L x n x -=∆得2n =所以,传送带上总有两个工件匀加速,两个工件匀速 则传送带所受摩擦力为2cos 2sin f mg mg μθθ=+电动机因传送工件额外做功功率为104W P fv ==2.如图所示,倾角为θ=45°的粗糙平直导轨与半径为R 的光滑圆环轨道相切,切点为B ,整个轨道处在竖直平面内.一质量为m 的小滑块从导轨上离地面高为h=3R 的D 处无初速下滑进入圆环轨道.接着小滑块从圆环最高点C 水平飞出,恰好击中导轨上与圆心O 等高的P 点,不计空气阻力.求:(1)滑块运动到圆环最高点C 时的速度的大小; (2)滑块运动到圆环最低点时对圆环轨道压力的大小; (3)滑块在斜面轨道BD 间运动的过程中克服摩擦力做的功. 【答案】(1)Rg (2)6mg (3)12mgR 【解析】 【分析】 【详解】(1)小滑块从C 点飞出来做平抛运动,水平速度为v 0,竖直方向上:,水平方向上:,解得(2)小滑块在最低点时速度为v C 由机械能守恒定律得牛顿第二定律:由牛顿第三定律得:,方向竖直向下(3)从D到最低点过程中,设DB过程中克服摩擦力做功W1,由动能定理h=3R【点睛】对滑块进行运动过程分析,要求滑块运动到圆环最低点时对圆环轨道压力的大小,我们要知道滑块运动到圆环最低点时的速度大小,小滑块从圆环最高点C水平飞出,恰好击中导轨上与圆心O等高的P点,运用平抛运动规律结合几何关系求出最低点时速度.在对最低点运用牛顿第二定律求解.3.如图所示,水平轨道的左端与固定的光滑竖直圆轨道相切于点,右端与一倾角为的光滑斜面轨道在点平滑连接(即物体经过点时速度的大小不变),斜面顶端固定一轻质弹簧,一质量为的滑块从圆弧轨道的顶端点由静止释放,经水平轨道后滑上斜面并压缩弹簧,第一次可将弹簧压缩至点,已知光滑圆轨道的半径,水平轨道长为,其动摩擦因数,光滑斜面轨道上长为,取,求(1)滑块第一次经过圆轨道上点时对轨道的压力大小;(2)整个过程中弹簧具有最大的弹性势能;(3)滑块在水平轨道上运动的总时间及滑块几次经过点.【答案】(1) (2) (3) 3次【解析】本题考查机械能与曲线运动相结合的问题,需运用动能定理、牛顿运动定律、运动学公式、功能关系等知识。

动能和动能定理练习含答案

动能和动能定理练习含答案

动能和动能定理精选练习一夯实基础1.如图,某同学用绳子拉动木箱,使它从静止开始沿粗糙水平路面运动至具有某一速度。

木箱获得的动能一定()A.小于拉力所做的功B.等于拉力所做的功C.等于克服摩擦力所做的功D.大于克服摩擦力所做的功【答案】A【解析】:A对、B错:由题意知,W拉-W阻=ΔE k,则W拉>ΔE k;C、D错:W阻与ΔE k的大小关系不确定。

2.(2019·浙江温州九校高一下学期期中)如图,小飞用手托着质量为m的“地球仪”,从静止开始沿水平方向运动,前进距离L后,速度为v(地球仪与手始终相对静止,空气阻力不可忽略),地球仪与手掌之间的动摩擦因数为μ,则下列说法正确的是()A.手对地球仪的作用力方向竖直向上B.地球仪所受摩擦力大小为μmgC.手对地球仪做的功等于mv2/2 D.地球仪对手做正功【答案】C【解析】:经受力分析知,手对地球仪的作用力斜向前上方,A错;地球仪所受摩擦力f=ma,B错;由动能定理W f=12mv2,C对;地球仪对手做负功,D错。

3.(2019·山东省诸城一中高一下学期期中)2018年2月22日平昌冬奥会短道速滑接力赛,中国男队获得亚军。

观察发现,“接棒”的运动员甲提前站在“交棒”的运动员乙前面,并且开始向前滑行,待乙追上甲时,乙猛推甲,甲获得更大的速度向前冲出。

在乙推甲的过程中,忽略运动员与冰面间在水平方向上的相互作用,则()A .甲对乙的作用力与乙对甲的作用力相同B .乙对甲的作用力一定做正功,甲的动能增大C .甲对乙的作用力可能不做功,乙的动能可能不变D .甲的动能增加量一定等于乙的动能减少量【答案】B【解析】:甲、乙间的相互作用力大小相等方向相反,A 错;根据动能定理可判B 正确,C 、D 错误。

4.在水平路面上,有一辆以36 km/h 行驶的客车,在车厢后座有一位乘客甲,把一个质量为4 kg 的行李以相对客车5 m/s 的速度抛给前方座位的另一位乘客乙,则以地面为参考系行李的动能和以客车为参考系行李的动能分别是( )A .200 J 50 JB .450 J 50 JC .50 J 50 JD .450 J 450 J【答案】B【解析】:行李相对地面的速度v =v 车+v 相对=15 m/s ,所以行李的动能E k =12mv 2=450 J 。

高中物理动能与动能定理答题技巧及练习题(含答案)

高中物理动能与动能定理答题技巧及练习题(含答案)

高中物理动能与动能定理答题技巧及练习题(含答案)一、高中物理精讲专题测试动能与动能定理1.如图所示,质量m =3kg 的小物块以初速度秽v 0=4m/s 水平向右抛出,恰好从A 点沿着圆弧的切线方向进入圆弧轨道。

圆弧轨道的半径为R = 3.75m ,B 点是圆弧轨道的最低点,圆弧轨道与水平轨道BD 平滑连接,A 与圆心D 的连线与竖直方向成37︒角,MN 是一段粗糙的水平轨道,小物块与MN 间的动摩擦因数μ=0.1,轨道其他部分光滑。

最右侧是一个半径为r =0.4m 的半圆弧轨道,C 点是圆弧轨道的最高点,半圆弧轨道与水平轨道BD 在D 点平滑连接。

已知重力加速度g =10m/s 2,sin37°=0.6,cos37°=0.8。

(1)求小物块经过B 点时对轨道的压力大小;(2)若MN 的长度为L 0=6m ,求小物块通过C 点时对轨道的压力大小; (3)若小物块恰好能通过C 点,求MN 的长度L 。

【答案】(1)62N (2)60N (3)10m 【解析】 【详解】(1)物块做平抛运动到A 点时,根据平抛运动的规律有:0cos37A v v ==︒ 解得:04m /5m /cos370.8A v v s s ===︒小物块经过A 点运动到B 点,根据机械能守恒定律有:()2211cos3722A B mv mg R R mv +-︒= 小物块经过B 点时,有:2BNB v F mg m R-= 解得:()232cos3762N BNBv F mg m R=-︒+=根据牛顿第三定律,小物块对轨道的压力大小是62N (2)小物块由B 点运动到C 点,根据动能定理有:22011222C B mgL mg r mv mv μ--⋅=- 在C 点,由牛顿第二定律得:2CNC v F mg m r+=代入数据解得:60N NC F =根据牛顿第三定律,小物块通过C 点时对轨道的压力大小是60N(3)小物块刚好能通过C 点时,根据22Cv mg m r=解得:2100.4m /2m /C v gr s s ==⨯=小物块从B 点运动到C 点的过程,根据动能定理有:22211222C B mgL mg r mv mv μ--⋅=- 代入数据解得:L =10m2.如图所示,不可伸长的细线跨过同一高度处的两个光滑定滑轮连接着两个物体A 和B ,A 、B 质量均为m 。

高考物理《动能和动能定理》真题练习含答案

高考物理《动能和动能定理》真题练习含答案

高考物理《动能和动能定理》真题练习含答案1.[2024·江苏省淮安市学情调研]质量为m 的物体以初速度v 0沿水平面向左开始运动,起始点A 与一水平放置的轻弹簧O 端相距s ,轻弹簧的另一端固定在竖直墙上,如图所示,已知物体与水平面间的动摩擦因数为μ,物体与弹簧相碰后,弹簧的最大压缩量为x ,重力加速度为g ,则从开始碰撞到弹簧被压缩至最短的过程中,克服弹簧弹力所的功为( )A .12 m v 20 -μmg (s +x )B .12m v 20 -μmgx C .μmg (s +x )-12m v 20 D .-μmg (s +x ) 答案:A解析:从开始碰撞到弹簧被压缩至最短的过程中,由动能定理-μmg (s +x )-W =0-12m v 20 ,解得W =12 m v 20 -μmg (s +x ),A 正确.2.[2024·河南省部分学校摸底测试]如图所示,水平圆盘桌面上放有质量为0.1 kg 的小铁碗A (可视为质点),一小孩使圆盘桌面在水平面内由静止开始绕过圆盘中心O 的轴转动,并逐渐增大圆盘转动的角速度,直至小铁碗从圆盘的边缘飞出,飞出后经过0.2 s 落地,落地点与飞出点在地面投影点的距离为80 cm.若不计空气阻力,该过程中,摩擦力对小铁碗所做的功为( )A.0.2 J B .0.4 JC .0.8 JD .1.6 J答案:C解析:小铁碗飞出后做平抛运动,由平抛运动规律可得v =x t,解得v =4 m/s ,小铁碗由静止到飞出的过程中,由动能定理有W =12m v 2,故摩擦力对小铁碗所做的功W =0.8 J ,C 正确.3.(多选)如图所示,在倾角为θ的斜面上,质量为m 的物块受到沿斜面向上的恒力F 的作用,沿斜面以速度v 匀速上升了高度h .已知物块与斜面间的动摩擦因数为μ、重力加速度为g .关于上述过程,下列说法正确的是( )A .合力对物块做功为0B .合力对物块做功为12m v 2 C .摩擦力对物块做功为-μmg cos θh sin θD .恒力F 与摩擦力对物块做功之和为mgh答案:ACD解析:物体做匀速直线运动,处于平衡状态,合外力为零,则合外力做功为零,故A正确,B 错误;物体所受的摩擦力大小为f =μmg cos θ,物体的位移x =h sin θ,摩擦力对物块做功为W f =-fx =-μmg cos θh sin θ,C 正确;物体所受各力的合力做功为零,则W G +W F +W f =0,所以W F +W f =-W G =-(-mgh )=mgh ,D 正确.4.(多选)质量为2 kg 的物体,放在动摩擦因数μ=0.1的水平面上,在水平拉力的作用下由静止开始运动,水平拉力做的功W 和物体发生的位移x 之间的关系如图所示,重力加速度g 取10 m/s 2,则此物体( )A .在位移x =9 m 时的速度是33 m/sB .在位移x =9 m 时的速度是3 m/sC .在OA 段运动的加速度是2.5 m/s 2D .在OA 段运动的加速度是1.5 m/s 2答案:BD解析:运动x =9 m 的过程由动能定理W -μmgx =12m v 2,得v =3 m/s ,A 错误,B 正确;前3 m 过程中,水平拉力F 1=W 1x 1 =153N =5 N ,根据牛顿第二定律,F 1-μmg =ma 得a =1.5 m/s 2,C 错误,D 正确.5.[2024·张家口市期末考试]如图所示,倾角为θ=37°的足够长光滑斜面AB 与长L BC =2 m 的粗糙水平面BC 用一小段光滑圆弧(长度不计)平滑连接,半径R =1.5 m 的光滑圆弧轨道CD 与水平面相切于C 点,OD 与水平方向的夹角也为θ=37°.质量为m 的小滑块从斜面上距B 点L 0=2 m 的位置由静止开始下滑,恰好运动到C 点.已知重力加速度g =10 m/s 2,sin 37°=0.6,cos 37°=0.8.(1)求小滑块与粗糙水平面BC 间的动摩擦因数μ;(2)改变小滑块从斜面上开始释放的位置,小滑块能够通过D 点,求小滑块的释放位置与B 点的最小距离.答案:(1)0.6 (2)6.75 m解析:(1)滑块恰好运动到C 点,由动能定理得mgL 0sin 37°-μmgL BC =0-0解得μ=0.6(2)滑块能够通过D 点,在D 点的最小速度,由mg sin θ=m v 2D R解得v D =3 m/s设滑块在斜面上运动的距离为L ,由动能定理得mgL sin θ-μmgL BC -mgR (1+sin θ)=12m v 2D -0 解得L =6.75 m。

(物理)物理动能与动能定理专项习题及答案解析

(物理)物理动能与动能定理专项习题及答案解析

【答案】(1)8m/s;(2)4.8N;(3)2m 【解析】
【分析】
【详解】
(1)通过 P 点时,由几何关系可知,速度方向与水平方向夹角为 60o,则
vy2 2gh
整理可得,物块通过 P 点的速度
sin 60o vy v
v 8m/s
(2)从 P 到 M 点的过程中,机械能守恒
1 2
mv
2
=mgR(1
【点睛】
经典力学问题一般先对物体进行受力分析,求得合外力及运动过程做功情况,然后根据牛
顿定律、动能定理及几何关系求解。
2.如图所示,粗糙水平桌面上有一轻质弹簧左端固定在 A 点,自然状态时其右端位于 B 点。水平桌面右侧有一竖直放置的光滑轨道 MNP,其形状为半径 R=1.0m 的圆环剪去了左 上角 120°的圆弧,MN 为其竖直直径,P 点到桌面的竖直距离是 h=2.4m。用质量为 m=0.2kg 的物块将弹簧由 B 点缓慢压缩至 C 点后由静止释放,弹簧在 C 点时储存的弹性势 能 Ep=3.2J,物块飞离桌面后恰好 P 点沿切线落入圆轨道。已知物块与桌面间的动摩擦因数 μ=0.4,重力加速度 g 值取 10m/s2,不计空气阻力,求∶ (1)物块通过 P 点的速度大小; (2)物块经过轨道最高点 M 时对轨道的压力大小; (3)C、D 两点间的距离;
【答案】(1) vB
2gR(sin cos ) ; L R
tan
(2) FN mg(3 2 cos ) ;
(3) L
(3 2 cos )R 2(sin cos )
【解析】
【分析】
【详解】
(1)设物体释放后,第一次到达 B 处的速度为 v1 ,根据动能定理可知:
mgR cos

物理动能与动能定理练习全集含解析

物理动能与动能定理练习全集含解析

物理动能与动能定理练习全集含解析一、高中物理精讲专题测试动能与动能定理1.如图所示,质量m =3kg 的小物块以初速度秽v 0=4m/s 水平向右抛出,恰好从A 点沿着圆弧的切线方向进入圆弧轨道。

圆弧轨道的半径为R = 3.75m ,B 点是圆弧轨道的最低点,圆弧轨道与水平轨道BD 平滑连接,A 与圆心D 的连线与竖直方向成37︒角,MN 是一段粗糙的水平轨道,小物块与MN 间的动摩擦因数μ=0.1,轨道其他部分光滑。

最右侧是一个半径为r =0.4m 的半圆弧轨道,C 点是圆弧轨道的最高点,半圆弧轨道与水平轨道BD 在D 点平滑连接。

已知重力加速度g =10m/s 2,sin37°=0.6,cos37°=0.8。

(1)求小物块经过B 点时对轨道的压力大小;(2)若MN 的长度为L 0=6m ,求小物块通过C 点时对轨道的压力大小; (3)若小物块恰好能通过C 点,求MN 的长度L 。

【答案】(1)62N (2)60N (3)10m 【解析】 【详解】(1)物块做平抛运动到A 点时,根据平抛运动的规律有:0cos37A v v ==︒ 解得:04m /5m /cos370.8A v v s s ===︒小物块经过A 点运动到B 点,根据机械能守恒定律有:()2211cos3722A B mv mg R R mv +-︒= 小物块经过B 点时,有:2BNB v F mg m R-= 解得:()232cos3762N BNBv F mg m R=-︒+=根据牛顿第三定律,小物块对轨道的压力大小是62N (2)小物块由B 点运动到C 点,根据动能定理有:22011222C B mgL mg r mv mv μ--⋅=- 在C 点,由牛顿第二定律得:2CNC v F mg m r+=代入数据解得:60N NC F =根据牛顿第三定律,小物块通过C 点时对轨道的压力大小是60N(3)小物块刚好能通过C 点时,根据22Cv mg m r=解得:2100.4m /2m /C v gr s s ==⨯=小物块从B 点运动到C 点的过程,根据动能定理有:22211222C B mgL mg r mv mv μ--⋅=- 代入数据解得:L =10m2.如图所示,质量为m=1kg 的滑块,在水平力F 作用下静止在倾角为θ=30°的光滑斜面上,斜面的末端处与水平传送带相接(滑块经过此位置滑上皮带时无能量损失),传送带的运行速度为v 0=3m/s ,长为L=1.4m ,今将水平力撤去,当滑块滑到传送带右端C 时,恰好与传送带速度相同.滑块与传送带间的动摩擦因数μ=0.25,g=10m/s 2.求(1)水平作用力F 的大小; (2)滑块开始下滑的高度h ;(3)在第(2)问中若滑块滑上传送带时速度大于3m/s ,求滑块在传送带上滑行的整个过程中产生的热量Q . 【答案】(1) (2)0.1 m 或0.8 m (3)0.5 J【解析】 【分析】 【详解】解:(1)滑块受到水平推力F 、重力mg 和支持力F N 处于平衡,如图所示:水平推力 ① 解得:②(2)设滑块从高为h 处下滑,到达斜面底端速度为v 下滑过程由机械能守恒有:,解得:③若滑块冲上传送带时的速度小于传送带速度,则滑块在带上由于受到向右的滑动摩擦力而做匀加速运动;根据动能定理有:④解得:⑤若滑块冲上传送带时的速度大于传送带的速度,则滑块由于受到向左的滑动摩擦力而做匀减速运动;根据动能定理有:⑥解得:⑦(3)设滑块在传送带上运动的时间为t,则t时间内传送带的位移:s=v0t由机械能守恒有:⑧⑨滑块相对传送带滑动的位移⑩相对滑动生成的热量⑪⑫3.如图所示,光滑水平平台AB与竖直光滑半圆轨道AC平滑连接,C点切线水平,长为L=4m的粗糙水平传送带BD与平台无缝对接。

【物理】高考必备物理动能与动能定理技巧全解及练习题(含答案)

【物理】高考必备物理动能与动能定理技巧全解及练习题(含答案)

【物理】高考必备物理动能与动能定理技巧全解及练习题(含答案)一、高中物理精讲专题测试动能与动能定理1.滑板运动是极限运动的鼻祖,许多极限运动项目均由滑板项目延伸而来.如图所示是滑板运动的轨道,BC 和DE 是两段光滑圆弧形轨道,BC 段的圆心为O 点、圆心角 θ=60°,半径OC 与水平轨道CD 垂直,滑板与水平轨道CD 间的动摩擦因数μ=0.2.某运动员从轨道上的A 点以v 0=3m/s 的速度水平滑出,在B 点刚好沿轨道的切线方向滑入圆弧轨道BC ,经CD 轨道后冲上DE 轨道,到达E 点时速度减为零,然后返回.已知运动员和滑板的总质量为m =60kg ,B 、E 两点与水平轨道CD 的竖直高度分别为h =2m 和H =2.5m.求:(1)运动员从A 点运动到B 点过程中,到达B 点时的速度大小v B ; (2)水平轨道CD 段的长度L ;(3)通过计算说明,第一次返回时,运动员能否回到B 点?如能,请求出回到B 点时速度的大小;如不能,请求出最后停止的位置距C 点的距离. 【答案】(1)v B =6m/s (2) L =6.5m (3)停在C 点右侧6m 处 【解析】 【分析】 【详解】(1)在B 点时有v B =cos60︒v ,得v B =6m/s (2)从B 点到E 点有2102B mgh mgL mgH mv μ--=-,得L =6.5m (3)设运动员能到达左侧的最大高度为h ′,从B 到第一次返回左侧最高处有21'202B mgh mgh mg L mv μ--⋅=-,得h ′=1.2m<h =2 m ,故第一次返回时,运动员不能回到B 点,从B 点运动到停止,在CD 段的总路程为s ,由动能定理可得2102B mgh mgs mv μ-=-,得s =19m ,s =2L +6 m ,故运动员最后停在C 点右侧6m 处.2.如图所示,竖直平面内有一固定的光滑轨道ABCD ,其中AB 是足够长的水平轨道,B 端与半径为R 的光滑半圆轨道BCD 平滑相切连接,半圆的直径BD 竖直,C 点与圆心O 等高.现有一质量为m 的小球Q 静止在B 点,另一质量为2m 的小球P 沿轨道AB 向右匀速运动并与Q 发生对心碰撞,碰撞后瞬间小球Q 对半圆轨道B 点的压力大小为自身重力的7倍,碰撞后小球P 恰好到达C 点.重力加速度为g .(1)求碰撞前小球P的速度大小;(2)求小球Q离开半圆轨道后落回水平面上的位置与B点之间的距离;(3)若只调节光滑半圆轨道BCD半径大小,求小球Q离开半圆轨道D点后落回水平面上的位置与B点之间的距离最大时,所对应的轨道半径是多少?【答案】(1)(2)(3)【解析】【分析】【详解】设小球Q在B处的支持力为;碰后小球Q的速度为,小球P的速度为;碰前小球P 的速度为;小球Q到达D点的速度为.(1)由牛顿第三定律得小球Q在B点碰后小球Q在B点由牛顿第二定律得:碰后小球P恰好到C点,由动能定理得:P、Q对心碰撞,由动量守恒得:联立解得:(2)小球Q从B到D的过程中,由动能定理得:解得,所以小球Q能够到达D点由平抛运动规律有:联立解得(3)联立解得:当时x 有最大值所以【点睛】解决本题时要抓住弹簧的形变量相等时弹性势能相等这一隐含的条件,正确分析能量是如何转化,分段运用能量守恒定律列式是关键.3.如图所示,半径为R 的四分之三圆周轨道固定在竖直平面内,O 为圆轨道的圆心,D 为圆轨道的最高点,圆轨道内壁光滑,圆轨道右侧的水平面BC 与圆心等高.质量为m 的小球从离B 点高度为h 处(332R h R ≤≤)的A 点由静止开始下落,从B 点进入圆轨道,重力加速度为g ).(1)小球能否到达D 点?试通过计算说明; (2)求小球在最高点对轨道的压力范围;(3)通过计算说明小球从D 点飞出后能否落在水平面BC 上,若能,求落点与B 点水平距离d 的范围.【答案】(1)小球能到达D 点;(2)03F mg ≤'≤;(3)()()21221R d R ≤≤【解析】 【分析】 【详解】(1)当小球刚好通过最高点时应有:2Dmv mg R =由机械能守恒可得:()22Dmv mg h R -=联立解得32h R =,因为h 的取值范围为332R h R ≤≤,小球能到达D 点; (2)设小球在D 点受到的压力为F ,则2Dmv F mg R ='+ ()22Dmv mg h R ='- 联立并结合h 的取值范围332R h R ≤≤解得:03F mg ≤≤ 据牛顿第三定律得小球在最高点对轨道的压力范围为:03F mg ≤'≤(3)由(1)知在最高点D 速度至少为min D v gR =此时小球飞离D 后平抛,有:212R gt =min min D x v t =联立解得min 2x R R =>,故能落在水平面BC 上,当小球在最高点对轨道的压力为3mg 时,有:2max 3Dv mg mg m R+=解得max 2D v gR = 小球飞离D 后平抛212R gt =', max max D x v t ='联立解得max 22x R =故落点与B 点水平距离d 的范围为:()()21221R d R -≤≤-4.如图所示,水平桌面上有一轻弹簧,左端固定在A 点,自然状态时其右端位于B 点.D 点位于水平桌面最右端,水平桌面右侧有一竖直放置的光滑轨道MNP ,其形状为半径R =0.45m 的圆环剪去左上角127°的圆弧,MN 为其竖直直径,P 点到桌面的竖直距离为R ,P 点到桌面右侧边缘的水平距离为1.5R .若用质量m 1=0.4kg 的物块将弹簧缓慢压缩到C 点,释放后弹簧恢复原长时物块恰停止在B 点,用同种材料、质量为m 2=0.2kg 的物块将弹簧缓慢压缩到C 点释放,物块过B 点后其位移与时间的关系为x =4t ﹣2t 2,物块从D 点飞离桌面后恰好由P 点沿切线落入圆轨道.g =10m/s 2,求:(1)质量为m 2的物块在D 点的速度;(2)判断质量为m 2=0.2kg 的物块能否沿圆轨道到达M 点:(3)质量为m 2=0.2kg 的物块释放后在桌面上运动的过程中克服摩擦力做的功.【答案】(1)2.25m/s (2)不能沿圆轨道到达M 点 (3)2.7J 【解析】 【详解】(1)设物块由D 点以初速度v D 做平抛运动,落到P 点时其竖直方向分速度为:vy =m/s =3m/sy Dv v =tan53°43=所以:v D =2.25m/s(2)物块在内轨道做圆周运动,在最高点有临界速度,则mg =m 2v R,解得:v 2==m/s 物块到达P 的速度:P v ===3.75m/s若物块能沿圆弧轨道到达M 点,其速度为v M ,由D 到M 的机械能守恒定律得:()22222111cos5322M P m v m v m g R =-⋅+︒ 可得:20.3375M v =-,这显然是不可能的,所以物块不能到达M 点(3)由题意知x =4t -2t 2,物块在桌面上过B 点后初速度v B =4m/s ,加速度为:24m/s a =则物块和桌面的摩擦力:22m g m a μ= 可得物块和桌面的摩擦系数: 0.4μ=质量m 1=0.4kg 的物块将弹簧缓慢压缩到C 点,释放后弹簧恢复原长时物块恰停止在B 点,由能量守恒可弹簧压缩到C 点具有的弹性势能为:p 10BC E m gx μ-=质量为m 2=0.2kg 的物块将弹簧缓慢压缩到C 点释放,物块过B 点时,由动能定理可得:2p 2212BC B E m gx m v μ-=可得,2m BC x = 在这过程中摩擦力做功:12 1.6J BC W m gx μ=-=-由动能定理,B 到D 的过程中摩擦力做的功:W 2222201122D m v m v =- 代入数据可得:W 2=-1.1J质量为m2=0.2kg的物块释放后在桌面上运动的过程中摩擦力做的功122.7JW W W=+=-即克服摩擦力做功为2.7 J.5.如图所示,一长度LAB=4.98m,倾角θ=30°的光滑斜面AB 和一固定粗糙水平台BC 平滑连接,水平台长度LBC=0.4m,离地面高度H=1.4m,在C 处有一挡板,小物块与挡板碰撞后原速率反弹,下方有一半球体与水平台相切,整个轨道处于竖直平面内。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

动能和动能定理考试
试题
姓名:考号:
动能和动能定理
高一物理统练
使用时间:2014-05-20 编辑人:王喜宏
本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共100分,考试时间45分钟。

第Ⅰ卷(选择题共70分)
一、选择题(本大题共14道小题,每小题5分,在每道小题中有一个或多个
选项正确,全部选对得5分,有选对但不全得3分,选错得0分)
1.水平地面上有一个重力为G的物体受一水平方向的恒力F的作用,由静止
开始无摩擦地运动,水平位移为s,则物体所具有的动能为()
A.0
B.Gs
C.Fs
D.(G+F)s 2.当某物体动能不变时,下列说法正确的是()
A.速度一定不变 B.机械能可能改变C.加速度可能不为零且不变D.物体所受的每一个
力做功都是零
3.A、B两物体的初动能相等,质量比为3:1,它们和水平地面间的动摩擦
因数相同,则它们在地面上开始滑动到停止的过程中,下面说法中正确的有()
收集于网络,如有侵权请联系管理员删除
收集于网络,如有侵权请联系管理员删除
A .经历的时间之比为1:3
B .经历的时间之比为3:1
C .通过的位移之比为1:3
D .通过的位移之比为3:1 4.两物体质量比为1∶4,速度比为4∶1,则两物体的动能比是( ) A.1∶1
B.1∶4
C. 2∶1
D. 4∶1
5.物体从高h 的斜面顶端A 由静止滑下,到斜面底端后又沿水平面运动到C 点而停止.要使这个物体从C 点沿原路返回到A ,则在C 点处物体应具有的速度大小至少是( ) A.
B .
C.
D.
6.质量为m 的汽车发动机的功率恒为P ,摩擦阻力恒为f ,牵引力为F .汽车由静止开始,经过时间t 行驶了位移s 时,速度达到最大值v m ,对发动机所做的功以下表述错误的是( )
A .Fs
B .Pt
C .fv m t
D .22
1m mv +fs
7.如图所示,小车上有固定支架,支架上用细线拴一个小球,线长为l (小球可看作质点),小车与小球一起以速度v 0沿水平方向向左匀速运动。

当小车突然碰到矮墙后车立即停止运动,此后小球升高的最大高度可能是(线未被拉断)( )
A .大于
B .小于
g
v 220
g
v 220
收集于网络,如有侵权请联系管理员删除
C .等于
D .等于2l
8.质量为m 的物体放在水平面上,它与水平面间的动摩擦因数为μ,重力加速度为g ,用水平力拉物体,运动一段时间后撤去此力,最终物体停止运动,物体运动的v-t 图象如图所示,下列说法正确的是( ) A .水平拉力大小为0
v F m
t B .物体在3t 0时间内位移大小为
3
2
v 0t 0 C .在0~3t 0时间内水平拉力做的功为201
2
mv
D .在0~3t 0时间内物体克服摩擦力做功的平均功率为01
2
μmgv
9.一质点开始时做匀速直线运动,从某时刻起受到一恒力作用,此后,该质点的动能可能( ) A .一直增大
B .先逐渐减小至零,再逐渐增大
C .先逐渐增大至某一最大值,再逐渐减小
D .先逐渐减小至某一非零的最小值,再逐渐增大
10.如图所示,质量为m 的物体用细绳经过光滑小孔牵引在光滑水平面上做匀速圆周运动,拉力为某个值F 时,转动半径为R ,当拉力逐渐减小到
4
F 时,物体以另一线速度仍做匀速圆周运动,半径为2R ,则物体克服外力所做的功是( )
g
v 22
收集于网络,如有侵权请联系管理员删除
A .0
B .4FR
C .34
FR D .
52
FR
11.在变速运动中,物体的速度由0增加到v ,再由
v 增加到2v ,合外力做功分别为W 1和W 2,则W 1与W 2之比为( ) A. 1:1 B. 1:2 C. 1:3 D. 1:4
12.如图所示,A 、B 两球质量相等,A 球用不能伸长的轻绳系于O 点,B 球用轻弹簧系于O ′点,O 与O ′点在同一水平面上.分别将A 、B 球拉到与悬点等高处,使绳和轻弹簧均处于水平,弹簧处于自然状态,将两球分别由静止开始释放,当两球达到各自悬点的正下方时两球恰好仍处在同一水平面上, 则( )
A .两球到达各自悬点的正下方时,两球动能相等
B .两球到达各自悬点的正下方时,A 球动能较大
C .两球到达各自悬点的正下方时,B 球动能较大
D .两球到达各自悬点的正下方时,A 球损失的重力势能较多
13.如图所示,质量为M 的木块静止在光滑水平面上,质量为m 的子弹以水
平速度v 0射入木块,并留在木块里。

已知在子弹射入木块的过程中子弹发生的位移为s 1,木块发生的位移为s 2,子弹进入木块深度为s ,子弹受到阻力大小恒为f ,子弹射入木块后二者的共同速度为v t ,不计空气阻力影响,下列说法中不正确...
的是( ) A. 222
2
01t mv mv fs -= B. 2
fs 2
2t
Mv =
收集于网络,如有侵权请联系管理员删除
C.2)(2220t v M m mv fs +-=
D. 2
22
20t
Mv mv fs -= 14.在新疆旅游时,最刺激的莫过于滑沙运动.某人坐在滑沙板上从沙坡斜面的顶端由静止沿直线下滑到斜面底端时速度为2v 0,设人下滑时所受阻力恒定不变,沙坡长度为L ,斜面倾角为α,人的质量为m ,滑沙板质量不计,重力加速度为g.则( )
A .若人在斜面顶端被其他人推了一把,沿斜面以v 0的初速度下滑,则人到达斜面底端时的速度大小为3v 0
B .若人在斜面顶端被其他人推了一把,沿斜面以v 0的初速度下滑,则人到
达斜面底端时的速度大小为10v =
C .人沿沙坡下滑时所受阻力2
f 2mv F mgsin L
α=+
D .人在下滑过程中重力功率的最大值为m 0P 2mgv sin α=
第Ⅱ卷(非选择题 共30分)
注意事项:
1、用钢笔或圆珠笔直接答在试卷上,用铅笔答卷无效。

2、不能使用改正液、贴纸、计算器。

3、本卷共30分
二、计算题(2小题,共30分,解答应写出必要的文字说明、方程式和重要演算步骤.只写出最后答案的不能得分.有数值计算的题,答案中必须明确写出数值和单位.)
15.一个物体在离地面高h = 0.45m的A点沿光滑曲面轨道从静止开始下滑,并进入粗糙水平轨道BC,如图所示,已知BC段的动摩擦因数μ = 0.3,
g = 10m/s2。

求:
(1) 物体刚滑到B点时的速度大小;
(2) 物体在水平轨道BC上滑行的最大距离。

从A点向下沿光滑的轨道运16.如图所示,质量为m的物体以某一初速v
动,不计空气阻力,若物体通过最低点B的速度为3gR,半圆轨道的半径为R,求:
(1)物体在A点时的速度V0;(2)物体离开C点后还能上升多高. Array
选做题:(10分)
收集于网络,如有侵权请联系管理员删除
17.如图所示,滑块在恒定外力F=2mg的作用下从水平轨道上的A点由静止出发到B点时撤去外力,又沿竖直面内的光滑半圆形轨道运动,且恰好通过轨道最高点C,滑块脱离半圆形轨道后又刚好落到原出发点A,求AB段与滑块间的动摩擦因数。

收集于网络,如有侵权请联系管理员删除。

相关文档
最新文档