汽车常用机构与传动

合集下载

常见的传动机构

常见的传动机构

链条
(liàntiáo)
常用链条(liàntiáo)有滚子链、齿形 链等
滚子链可以做成多排,排数越多 ,传动能力越大
第十页,共三十二页。
链轮(liàn
lún)
链轮的齿形应保证链节能平稳而自由的 进入和退出齿合,并便于加工(jiā gōng)
小直径的链轮为实心
中等直径的链轮为孔板式
大直径的链轮为组合式,组合式链轮 磨损后可更换
六、螺旋 传动 (luóxuán)
螺旋传动是利用螺杆和螺母组成的 螺旋副来实现传动要求的,主要(zhǔyào)用 于将回转运动变为直线运动,同时传递 运动和动力。
第二十六页,共三十二页。
螺旋(luóxuán)传动的 a分.传类力螺旋:以传递动力为主,要求以较小的转矩产生较大的
轴向推力,用于克服工作阻力。如各种起重或加压装置的螺旋。 这种传力螺旋主要是承受很大的轴向力,一般为简写工作,每 次工作时间较短,工作速度也不高。
胶合。
第二十二页,共三十二页。
f.塑形变形 轮齿在过大的应力作用下,轮齿 材料处于屈服状态而产生的齿面 或齿体塑形流动所形成的,属于 齿轮永久变形一大类的失效(shī xiào)形式。
针对齿轮的失效形式,可以采取提高齿芯材料(cáiliào)韧性、 减小齿根应力集中,改用闭式齿轮传动,选用合适的润滑 剂及润滑方法,适当选配主、从懂齿轮的材料(cáiliào)及硬 度,减小齿面粗糙度,并进行适当的磨合(跑合)等方式来 提高齿轮的寿命。
a.可用于两轴中心距离较大的传动; b.皮带具有弹性、可缓冲和冲击与振动,使传动平稳、噪 声小;
c.当过载时,皮带在轮上打滑,可防止其它零件损 坏; d.结构简单、维护方便; e.由于皮带在工作中有滑动,故不能保持精确的传动比。 外廓尺寸大,传动效率(xiào lǜ)低,皮带寿命短; f.由于带传动中存在“弹性滑动”现象 ,故带传动的传

常见旋转机构

常见旋转机构

常见旋转机构旋转机构是一种常见的机械结构,能够将输入的旋转运动转化为输出的旋转运动。

它广泛应用于机械、工程、自动化等领域,在各种机械设备和系统中都有重要作用。

下面将介绍一些常见的旋转机构。

1.齿轮传动:齿轮传动是最常见的旋转机构之一。

它通过齿轮之间的啮合,将输入轴的旋转运动转化为输出轴的旋转运动。

根据齿轮的不同形式和排列方式,可以实现不同的传动比,从而满足不同的工作要求。

常见的齿轮传动包括平行轴齿轮传动、斜齿轮传动、锥齿轮传动等。

2.带传动:带传动是一种基于带子的旋转机构。

它通过带子的张紧和摩擦力来传递转矩和旋转运动。

常见的带传动包括平行带传动、交叉带传动等。

带传动适用于距离较远、转速较低、转矩较小的传动场合。

3.链传动:链传动是一种使用链环连接两个或多个齿轮的旋转机构。

它可以通过链环的张紧来传递转矩和旋转运动。

链传动具有传动效率高、传动比稳定等优点,在工业生产中得到广泛应用。

4.曲柄摇杆机构:曲柄摇杆机构由曲柄、连杆和摇杆组成,常用于将旋转运动转换为直线运动或摇摆运动。

曲柄摇杆机构具有简单、紧凑的结构,适用于需要实现直线运动或摇摆运动的场合。

5.省力摇杆机构:省力摇杆机构是一种特殊的旋转机构,通过合理设计,能够减小输入力所产生的输出力的大小。

它常用于一些需要较大力量的场合,如挖掘机、起重机等。

6.平行四杆机构:平行四杆机构由四个长度相等的杆件组成,其连接方式形成一个平行四边形。

它可以将旋转运动转换为直线运动或者将直线运动转换为旋转运动。

平行四杆机构结构简单,传动可靠,在自动化装置中广泛应用。

7.凸轮摆线机构:凸轮摆线机构是一种借助凸轮和摆线机构实现的旋转机构。

它通过凸轮轮廓的特殊设计,能够将旋转运动转换为摆线运动。

凸轮摆线机构常用于一些需要实现复杂的运动轨迹的场合,如工业机械、汽车发动机等。

8.行星齿轮传动:行星齿轮传动是一种特殊的齿轮传动,由太阳轮、行星轮和内齿圈组成。

太阳轮为输入轴,内齿圈为输出轴。

常见旋转机构

常见旋转机构

常见旋转机构
常见的旋转机构包括:
齿轮机构:由两个或更多齿轮组成,通过齿轮之间的啮合传递动力。

齿轮机构具有传动效率高、结构紧凑、承载能力强等优点,因此在许多机械系统中得到广泛应用。

蜗轮蜗杆机构:由蜗轮和蜗杆组成,通过蜗轮蜗杆之间的摩擦力传递动力。

蜗轮蜗杆机构具有传动比大、传动效率高、承载能力强等优点,常用于一些需要较大传动比的机械系统中。

带轮机构:由带轮和皮带组成,通过皮带与带轮之间的摩擦力传递动力。

带轮机构具有结构简单、维护方便、适用范围广等优点,因此在许多机械系统中得到广泛应用。

链轮机构:由链轮和链条组成,通过链条与链轮之间的摩擦力传递动力。

链轮机构具有传动效率高、承载能力强、适用于远距离传动等优点,因此在一些需要较大传动距离的机械系统中得到广泛应用。

凸轮机构:由凸轮,从动件和机架三个基本构件组成的高副机构。

凸轮是一个具有曲线轮廓或凹槽的构件,一般为主动件,作等速回转运动或往复直线运动。

凸轮机构广泛地应用于轻工、纺织、食品、交通运输、机械传动等领域。

棘轮机构:一种能够实现间歇性运动的旋转机构。

它由棘轮和棘爪组成,通过棘爪与棘轮之间的摩擦力使棘轮转动。

棘轮机构具有结构简单、动作可靠、传动平稳等优点,因此在一些需要间歇性运动的机械系统中得到广泛应用。

以上信息仅供参考,如有需要,建议咨询相关领域的专业人士。

《汽车机械基础》课件——第三章 机械传动与常用机构知识

《汽车机械基础》课件——第三章 机械传动与常用机构知识
图3-4挠性传动工作原理 1-主动轮 2­-挠性元件 3-从动轮
这类传动具有吸收振动载荷以及阻尼振动影响的作用,所以传动平稳,而且结构简单,易于制造。常用于中心距较大情况下的传动。在情况 相同的条件下,与其他传动相比,简化了机构,降低了成本。
2.2.2挠性传动的类型和应用 (1)挠性摩擦传动 (2)挠性啮合传动 (3)牵引式挠性传动
二、螺纹联接的防松
螺纹联接的防松件
螺纹联接多采用单线普通螺纹,其导程角为1.50---3.50,当量摩擦角60---90,一般都具有自锁性; 在静载荷和工作环境温度变化不大的情况下不会自动松脱。但在振动、冲击、变载荷或温度变化很大时,联接就有可能松脱。为保证联接安全可靠,设计时必须考虑放松问题。 1.防松目的:防止因外载荷的变化、材料蠕变等因素造成螺纹联接 松驰,从而使联接失效。 2.防松原理:消除或限制螺纹副之间的相对运动。 3.防松办法及措施 摩擦防松:双螺母、弹簧垫圈、尼龙垫圈、自锁螺母等。 机械防松:开槽螺母与开口销、圆螺母与止动垫圈、弹簧垫片、 轴用带翅垫片、止动垫片、串联钢丝等。 永久防松:端铆、冲点(破坏螺纹)、点焊、粘合。
第三章 机械传动与常用机构知识
学习支持: 知识目标: 通过本章的学习具备联接与支承零部件的基础知识;具备汽车机械所涉及的带传动与链传动的基本知识;具备汽车机械所应用的齿轮传动的基本知识;具备汽车机械中齿轮系与减速器的基本知识;具备常用机构的基本知识。 能力目标: 通过本章的学习能认识相应联接件;掌握带传动、链传动的类型、特点与应用;掌握渐开线齿轮基本特征以及传动特点,掌握渐开线斜齿轮的传动特点与应用;掌握定轴齿轮系的传动比计算方法及轮系中各个齿轮的转动方向的判别,会确定主、从动轮的转向关系;掌握平面连杆机构、凸轮机构、间歇机构、螺旋机构等的基本形式与应用特点。

2013汽车机械基础6常用机构和机械传动

2013汽车机械基础6常用机构和机械传动

图21-8
惯性筛机构
图21-6 缝纫机踏板机构 图21-9 双曲柄机构
图21-10
车门启闭机构
☆ 两连架杆都是曲柄(整周转),主动曲柄匀速转, 从动曲柄变速转。
在双曲柄机构中,如果组成四边形的对边长度分别相等, 则根据曲柄相对位臵的不同,可得到正平行四边形机构和反 平行四边形机构。
特例:平行四边形机构
设曲柄以ω逆时针匀速旋转。 从 AB1 转 到 AB2 , 转 过 180°+θ时为工作行程,所 花时间为t1 ;此时摇杆从C1D 摆到 C2D ,平均速度为 V1, 则 有:
t1 (180 ) /
V1 C1C2 t1 C1C2 /(180 )
曲柄从AB2 继续转过180°-θ到AB1时为回程,所花时间 为t2 ,此时摇杆从C2D摆到C1D,平均速度为V2 ,那么有
特征:两连架杆等长且平行,
连杆作平动。
AB = CD BC = AD
图21-7 摄影车的升降机构
机车车轮联动机构
1)正平行双曲柄机构:
反平行双曲柄机构: 公共汽车车门启闭机构
平行四边形机构存在运动不确定位臵。
可采用两组机构错开排列 的方法予以克服。
C.双摇杆机构-连架杆均为摇杆
例: 鹤式起重机的变速机构: CD(杆3)为原动件, 悬挂重 物的E 点在连杆上→保持E点运动轨迹在近似水平线上。 (平移货物→平稳、减小能量消耗)
K 1 180 K 1

机构急回的作用: 节省空回时间,提高工作效率。
简易刨床
2、压力角和传动角
(1).压力角α
作用在从动件上的驱动力F与该力作用 点绝对速度VC之间所夹的锐角。
分析: BC是二力杆,驱动力F沿BC方向 VC沿连杆BC (⊥CD) α↓ → 有效力

传动系的结构和组成

传动系的结构和组成

传动系的结构和组成
传动系一般由离合器、变速器、万向传动装置、主减速器、差速器和半轴等组成。

离合器:用于切断和连接发动机与变速器之间的动力传递。

变速器:用于改变发动机输出转速和转矩的大小,以适应不同的行驶工况。

万向传动装置:用于将变速器输出的动力传递到驱动轮,同时允许驱动轮在一定范围内相对车架偏转。

主减速器:用于降低变速器输出的转速和增加转矩,以提高车辆的牵引力。

差速器:用于允许左右驱动轮以不同的转速旋转,以适应车辆转弯时内外侧车轮的不同行驶轨迹。

半轴:用于将差速器输出的动力传递到驱动轮。

传动系的各个组成部分协同工作,将发动机的动力有效地传递到驱动轮,实现车辆的行驶。

不同类型的车辆可能会有一些差异,但基本结构和组成大致相同。

传动系的设计和性能对车辆的动力性、燃油经济性和驾驶舒适性等方面都有着重要的影响。

带传动机构的知识点

带传动机构的知识点

带传动机构是机械工程中常见的一种装置,用于将动力传递到不同的部件或机构。

它由多个组件组成,包括轴、齿轮、链条或皮带等。

在本文中,我将逐步介绍带传动机构的基本知识点。

第一步:了解带传动机构的基本原理带传动机构利用齿轮、链条或皮带等来传递力量和运动。

这种机构常见于汽车、机械设备和其他各种工业应用中。

它的原理是通过将动力从一个轴传递到另一个轴,使得不同的部件或机构能够协同工作。

第二步:了解带传动机构的组成部件带传动机构由多个组件组成。

其中最常见的是齿轮、链条和皮带。

齿轮是一种常用的传动元件,它通过齿轮之间的啮合来传递动力。

链条和皮带则通过拉力来传递动力,其优点是运动平稳且不需要润滑。

第三步:了解带传动机构的类型带传动机构根据传动方式的不同可以分为几种类型。

其中最常见的是平行轴齿轮传动,它由两个平行轴上的齿轮组成。

还有交错轴齿轮传动,它由两个交叉的轴上的齿轮组成。

此外,还有链条传动和皮带传动等其他类型。

第四步:了解带传动机构的优缺点带传动机构具有一些优点和缺点。

其中的优点包括传动效率高、传动比可调节、噪音低、维护简单等。

而缺点则包括传动精度低、受环境因素影响较大等。

因此,在选择带传动机构时,需要根据具体应用场景来进行综合考虑。

第五步:了解带传动机构的应用领域带传动机构广泛应用于各个领域。

在汽车行业中,带传动机构常用于发动机和车轮之间的动力传递。

在机械工程中,它常用于各种机械设备的传动系统。

同时,带传动机构也用于家用电器、船舶、飞机等领域。

第六步:了解带传动机构的维护与保养带传动机构在使用过程中需要进行定期维护和保养,以确保其正常运行。

维护工作包括定期检查齿轮的磨损情况、链条或皮带的松紧程度以及润滑油的添加情况等。

同时,还需要注意避免过大的负载和长时间的高速运转,以降低机构的故障风险。

通过以上的步骤,我们对带传动机构的基本知识点有了初步的了解。

带传动机构作为机械工程中常见的一种装置,其原理、组成部件、类型、优缺点以及应用领域都是需要掌握的基本知识。

汽车常用机构与传动ppt课件

汽车常用机构与传动ppt课件

t1 > t2 V2 > V1
摇杆在回程运动速度较大的这种 运动特性称为急回特性。
4、行程速比系数
摇杆摆回速度V2与摆去速度V1的比值。
K
v2 v1
t1 t2
φ1 φ2
180 180
θ θ
已知K时,
θ 180 K 1 K 1
θ > 0,K > 1,机构具有急回特性。
K越大,急回作用越明显。
θ = 0, K=1, 机构不具有急回特性。
A
D
C
B
飞机起落架

基本概念
回 (以曲柄摇杆机构为例)


具有急回特性 的四杆机构
1、摆角ψ 2、极位夹角θ 3、急回特性 4、行程速比系数
曲柄摇杆机构 曲柄滑块机构
摆动导杆机构
1、摆角ψ
设曲柄AB为原动件,摇杆CD为从动件。在曲柄回转 一周的过程中,曲柄与连杆BC有两次共线,此时摇杆CD 分别处于左、右两极线位置C1D和C2D的夹角。
(2)滚动螺旋传动机构 摩擦性质为滚动摩擦。滚动螺旋传动是在具有圆弧形螺旋槽的螺杆 和螺母之间连续装填若干滚动体(多用钢球),当传动工作时,滚 动体沿螺纹滚道滚动并形成循环
2、当机构中最短构件长度lmin与最长构件长度lmax之和大于或等于其余 两构件l´、l˝之和,即:
lmin lmax l l
则不论取哪一构件为机架,均无曲柄存在,为双摇杆机构。
四、平面四杆机构的演化(滑块四杆机构);
1.演化方式(一个转动副转化为移动副)
2.类型
对心曲柄滑块机构 偏置曲柄滑块机构
v
h 2 0
sin
0
a
2 h 2 0

2汽车常见四杆机构

2汽车常见四杆机构
曲柄滑块机构演化为具有两个移动副的四杆机 构,称为双滑块机构。
在图示的曲柄滑块机构中,将转动副B扩大,则 图a所示的曲柄滑块机构,可等效为图b所示的机构。
将圆弧槽mm的半径逐渐增至无穷大,则图2b 所示机构就演化为图示的机构。此时连杆2转化为沿 直线mm移动的滑块2;转动副c则变成为移动副,滑 块3转化为移动导杆。
其连架杆2和4均为曲柄 C
B
A
a
D
(3)最短杆的对边(杆3)为机架 (最短杆为连杆)
C
2
r
B
3
1
o
A
4
D
两连架杆2和4都不能整周转动
故图所示为双摇杆机构。
铰链四杆机构存在曲柄的必要条件
最短杆和最长杆长度之和小于或等于其余两杆长 度之和。
满足这个条件的机构究竟有一个曲柄、两个曲柄 或没有曲柄,还需根据取何杆为机架来判断。
max=900时,=0 →Ft=F 太小易自锁, 限制min,以 保证机构正常工作。
3)最小传动角的位置
曲柄与机架共线的两位置出现最小传动角。
F Ft vC
3)最小传动角的位置 曲柄与机架共线的两位置出现最小传动角。
平面四杆机构的最小传动角位置:
3.死点
在曲柄摇杆机构,如以摇杆3 为原动件,而曲 柄1 为从动件,连杆2与曲柄1共线,这种位置称为死 点。机构处于压力角=90(传力角=0)的位置时, 驱动力的有效力为0。此力对A点不产生力矩,因此 不能使曲柄转动。
➢死点
B
2
C
1
5
A
3
N
P D
利用死点夹紧工件的夹具

树立质量法制观念、提高全员质量意 识。21. 1.1821. 1.18Mo nday , January 18, 2021

常用机构汽车机械基础教案

常用机构汽车机械基础教案

常用机构汽车机械基础教案一、教学目标:1. 了解汽车机械基础知识,掌握常用机构的原理和应用。

2. 培养学生对汽车机械的兴趣和认识,提高动手实践能力。

3. 培养学生团队合作精神,提高分析和解决问题的能力。

二、教学内容:1. 汽车机械概述汽车的定义和发展历程汽车机械系统的组成和功能2. 常用机构介绍传动机构:齿轮、链传动、皮带传动运动机构:连杆、凸轮、曲柄摇杆机构调节机构:液压制动系统、悬挂系统3. 机构分析与设计机构分析的方法和步骤机构设计的考虑因素和原则4. 汽车机械实例分析发动机:内燃机、电动机变速器:手动变速器、自动变速器驱动系统:前驱、后驱、四驱5. 动手实践参观汽车维修店或实验室观察和分析实车机构的运作制作简单的机构模型三、教学方法:1. 讲授法:讲解汽车机械的基本概念、原理和常用机构。

2. 案例分析法:分析实际汽车机械实例,加深对机构应用的理解。

3. 实践操作法:组织学生参观和动手实践,提高实际操作能力。

4. 小组讨论法:分组讨论问题,培养团队合作和沟通能力。

四、教学评价:1. 课堂问答:检查学生对汽车机械基础知识和常用机构的掌握。

2. 小组报告:评估学生在小组讨论中的表现和分析解决问题的能力。

3. 实践报告:评价学生在动手实践中的操作技能和创新能力。

五、教学资源:1. 教材:选用合适的汽车机械基础教材,提供理论知识支持。

2. 课件:制作多媒体课件,辅助讲解和展示图片、视频等资源。

3. 实验室设备:提供汽车机械实验设备,方便学生动手实践。

4. 网络资源:利用互联网查找相关资料,丰富教学内容和案例。

六、教学步骤:1. 导入新课:通过展示汽车发展历程的图片,引起学生兴趣,引出汽车机械概述的内容。

2. 讲解汽车机械系统的组成和功能,让学生了解汽车机械的基本知识。

3. 介绍常用机构,如传动机构、运动机构和调节机构,并讲解其原理和应用。

4. 通过实例分析,让学生了解汽车机械实例的结构和工作原理。

简述常用的传动机构

简述常用的传动机构

简述常用的传动机构
传动机构是指将动力通过机械连接传递到需要运动的部件中的机构,是机械系统中的重要组成部分。

常见的传动机构包括齿轮传动、链传动、带传动、轴传动等。

1. 齿轮传动
齿轮传动是一种常用的传动机构,将动力通过齿轮的咬合传递到需要运动的部件。

齿轮传动的优点是传递功率大、平稳、精度高,缺点是制造成本高、维护麻烦。

2. 链传动
链传动是一种将动力通过链状部件传递的传动机构,适用于需要一定速度范围内的运动,具有传递功率大、结构简单、维护方便等优点。

3. 带传动
带传动是将动力通过带状部件传递的传动机构,适用于高速、高精度、低噪音、易于维护等特点,是许多工业设备中常用的传动方式之一。

4. 轴传动
轴传动是将动力通过轴传递的传动机构,适用于需要一定速度范围内的运动,但传递功率不如其他传动方式大。

轴传动的优点是制造成本低、结构简单、维护方便,缺点是精度较低。

除了上述常见的传动机构,还有一些其他类型的传动机构,例如弹性传动、气动传动等。

不同的传动机构适用于不同的场合,选择合适的传动机构对于机械系统的正常运行至关重要。

写出汽车常用的机构及其应用

写出汽车常用的机构及其应用

汽车中常用的机构包括:
1. 曲柄连杆机构:用于将活塞的往复运动转化为旋转运动,驱动汽车的车轮。

2. 配气机构:用于控制发动机的进气和排气,保证燃烧过程的正常进行。

3. 传动机构:用于将发动机的动力传递到车轮,实现汽车的行驶。

4. 转向机构:用于控制汽车的行驶方向。

5. 制动机构:用于使汽车减速或停止。

6. 悬挂机构:用于缓冲和减少路面冲击,提高汽车的行驶舒适性和稳定性。

这些机构在汽车的设计和制造中起着重要的作用,它们的性能和可靠性直接影响着汽车的性能和安全性。

最新常用机构(机械传动)

最新常用机构(机械传动)

平面连杆机构能够实现多种运动轨迹和运动规 律,广泛应用于各种机械于仪表中。
主要有:四杆机构、六杆 机构、多杆机构等。 平面连杆机构的组成: 机架——固定不动的构件; 连架杆——与机架相联的构件; 连杆——连接两连架杆且作
平面运动的构件; 曲柄——作整周定轴回转的构件; 摇杆——作定轴摆动的构件。
平面四连杆机构的类型: 曲柄摇杆机构 特征:曲柄+摇杆 作用:将曲柄的整周回转转变为摇杆的往复摆动。
1-2.机构设计的原则 原则:利用机构组成原理进行机构设计时,在满 足相同工作要求的条件下,机构的结构越简单、杆组 的级别越低、构件数和运动副数越少越好。 合理的机构设计是机器平稳实用的基础。机器特 定运动的实现,都是通过机构的协调运动来完成的。 一部较复杂的机器一般是由很多常用机构组成的,如 :连杆机构、轮系机构、凸轮机构、间隙机构和其它 机构,它们之间的相互组合,为实现不同的运动方案 提供了基础 ,而这使机械设计更加丰富与更富有挑,K值越大,机构的急回性质越明显。
平面机构具有急回特性的条件: (1)原动件等角速整周转动; (2)输出件具有正、反行程的往复运动; (3)极位夹角Ө>0。
应用:节省回程时间,提高生产率
平面连杆机构的死点 对于曲柄摇杆机构,当摇杆为主动件时,在
连杆与曲柄两次共线的位置,机构均不能运动。 机构的这种位置称为“死点”(机构的死点位置 ) 在“死点”位置,机构的传动角 γ=0。 “死点”位置应用:
平面连杆机构的压力角与传动角 压力角:作用在从动件上的驱动力F与力作用点
绝对速度之间所夹锐角α。 传动角( γ ):压力角的余角
切向分力 Ft= Fcosα = Fsinγ 法向分力 Fn=Fcosγ
γ↑ Ft↑ 对传 动有利,常用γ的大小 来表示机构传力性能的 好坏(越大越好)

常用机构(四连杆机构)

常用机构(四连杆机构)
偏心轮用在: 曲柄销承受较大冲击载荷、曲柄长度 较短及需要装在直轴中部的机器之中 的机构中.
三、平面四杆机构的传动特性
急回特性 死点位置 压力角和传动角
急回特征
当回程所用时间小于工作行程所用时间时,称该机构具有急回特征
极位夹角: 对应从动杆的两个极限位置, 主动件两相应位置所夹锐
角.
急回特性分析: 1 = C 1 = 1 t1 =1800 + 2 = 1 t2 =1800 -
慢 快
(3) 传力特性
压力角和传动角
压力角 从动杆(运动输出件)受力点的力作用线与该点 速度方位线所夹锐角. (不考虑摩擦)
传动角
压力角的余角.(连杆轴线与从动杆轴线所夹锐角)
F
d
V
d
d
1800 d
传动不利,设计时规定 4050 通常,机构在运动过程中传动角是变化的,最小值在哪?
设计
已知活动铰点B、C中心位置,求固定铰链A、D 中心位置。
B1
C1
B2
A●
●D
C2
四杆机构 AB1C1D 为所求.
实现连杆给定的三个位置
C1 C2
B1 B2
B3 C3
D
A
四杆机构 AB1C1D 为所求.
2.具有急回特性的机构
按给定的 K 值,设计曲柄摇杆机构
1) 给定 K、y、LCD
① 分析.
(1) 曲柄存在条件
(以曲柄摇杆机构为例)
设 AB 为曲柄, 且 a<d . 由 △BCD :
b+c>f 、 b+f >c 、 c+f >b 以 fmax = a + d , fmin = d - a 代入并整理得:

汽车机械基础教案项目四

汽车机械基础教案项目四

A.最短杆B.与最短杆相对的构件C.最长杆D.与最短杆相邻的构件8、铰链四杆机构ABCD各杆长度分别为mmlAB40,mmlBC90,mmlCD55,mmlAD100。

若取AB为机架,则此铰链四杆机构为()。

A、双摇杆机构; B、双曲柄机构; C、曲柄摇杆机构9、凸轮机构会产生刚性冲击时,从动件的规律为()。

A、等速运动 B、等加速等减速运动 C、简谐运动10、从动件的推程采用等速运动规律时,在()会发生刚性冲击。

A、推程的起点B、推程的中点C、推程的终点D、推程的起始点和终点11、凸轮机构的从动件运动规律与凸轮的()有关。

A、实际廓线 B、轮廓曲线 C 、表面硬度 D、基圆四、问答题1、什么是机构的急回运动特性?急回特性系数K表示什么意义?2、什么是死点位置?通常采用哪些方法使机构顺利通过死点位置?3、根据下图所注尺寸(单位:mm),判别各铰链四杆机构的类型。

4、凸轮机构中,从动件常用的端部形式有哪几种?各有什么应用特点?5、螺旋传动有哪些类型?简述其特点和应用?6、棘轮机构是如何实现间歇运动的?应用于什么场合?7、槽轮机构是如何实现间歇运动的?应用于什么场合?比较说明。

单元3常用机械传动装置教学目标:1、了解带传动的类型与特点。

2、掌握各种带传动在汽车中的应用。

3、了解带传动和链传动的张紧和维护。

4、了解链传动的运动特性。

5、了解齿轮传动的类型和特点。

6、掌握标准圆柱齿轮几何尺寸的计算。

7、了解齿轮传动的正确啮合条件。

8、了解涡轮传动的特点和应用、基本参数。

9、了解定轴轮系、周转轮系的组成和特点。

10、掌握轮系传动比的计算。

11、了解轮系在汽车中的应用。

2、某机床上有一对标准直齿圆柱齿轮啮合传动,传动比为4,由于小齿轮已损坏,测得大齿轮齿数为84,齿顶圆直径为172mm,请你选择一小齿轮为其配对使用。

3、下左图所示轮系中,已知Z1=18,Z2=24,Z3=20,Z4=30,Z5=2(右旋蜗杆),Z6=40,升降机卷筒直径D=200mm,由轮6带动运转。

汽车常用机构分析-机构的组成及运动简图

汽车常用机构分析-机构的组成及运动简图

电动机
内燃机
机器
2.机器的类型
加工机器:用来改变加工对象的尺寸形状、性质和状态。
车床
铣床
机器
2.机器的类型
运输机器:用来运输人员或物品。
客车
叉车
机器
2.机器的类型
信息机器:用来获取或变换信息。
照相机
传真机
机构
机构是具有确定相对运动的构件的组合,它是用来传递运动和动力的构件系统。机器可以看
成是一个或若干机构的组合。
机器特征: (1)属于人为的实体组合体, (2)各运动实体之间具有确定的相对运动, (3)能代替或减轻人类的劳动,利用机械能做功或进行能量转换,
机器
1.机器的组成
根据组成部分功能不同,一部完整的机器一般包括5个部分。下面以轿车为例,介绍机器各组 成部分的含义:
机器
动力部分:
将其他形式的能量转换为机 械能,是整个机器的动力源。
简图
分析机构运动,确定构件类型和数目 该曲柄连杆机构由曲轴1、连杆2、活塞3、汽 缸体4等构件组成,往复直线运动的活塞通过 连杆驱动曲轴转动。其中,汽缸体4是机架, 活塞3是主动件,其余为从动件。
确定各构件间运动副的类型和数目
2 曲轴1与汽缸体4、连杆2与曲轴1之间均发生 相对转动,构成2个转动副;活塞3既与连杆之 间发生相对转动,又与汽缸体之间发生相对直 线运动,构成1个转动副和1个移动副。
汽车机械基础
模块三 汽车常用机构分析
Hale Waihona Puke 单元六 机构的组成及运动简图
学习目标
1.知识目标 (1)掌握机器、机构,构件和零件的概念。 (2)能区分高副和低副。 (3)能识读机构运动简图。 2.能力目标
能绘制常用机构的运动简图

常见机构的特点和应用

常见机构的特点和应用
常见机构的特点和应用:
类型
特点
应用
连杆机构
结构简单,制造容易,工作可靠,传动距离较远,传递载荷较大,可实现急回运动规律,但不易获得匀速运动或其他任意运动规律,传动不平稳,冲击与振动较大
用于从动件行程较大或承受重载的工作场合,可以实现移动、摆动等复杂的运动规律或运动轨迹
凸轮机构
结构紧凑,工作可靠,调整方便,可获得任意运动规律,但动载荷较大,传动效率较低
广泛应用于各种传动系统,传递回转运动,实现减速或增速、变速以及换向等
齿轮齿条机构
结构简单,成本低,传动效率高,易于实现较长的运动行程;当运动速度较高或为提高运动平稳性时,可采用斜齿或人字齿条机构
广泛应用于各种机器的传动系统,变速操纵装置,自动机的输送、转向、进给机构以及直动与转动的运动转换装置
圆锥齿轮机构
多用于要求微动或增力的场合,如机床夹具以及仪器、仪表,还用于将螺母的回转运动转变为螺杆的直线运动的装置
摩擦轮机构
有过载保护作用;轴和轴承受力较大,工作表面有滑动,而且磨损较快;高速传动时寿命较低
用于仪器及手动装置以传递回转运动
圆柱齿轮机构
载荷和速度的许用范围大,传动比恒定,外廓尺寸小,工作可靠,效率高;制造和安装精度要求较高,精度低时传动噪声较大,无过载保护作用;斜齿圆柱齿轮机构运动平稳,承载能力强,但在传动中会产生轴向力,在使用时必须安装推力轴承或角接触轴承
用来传递两相交轴的运动;直齿圆锥齿轮传递的圆周速度较低,曲齿用于圆周速度较高的场合

螺旋齿轮机构
常用于传递既不平行又不相交的两轴之间的运动,但其齿面间为点啮合,且沿齿高和齿长方向均有滑动,容易磨损,因此只宜用于轻载传动
用于传递空间交错轴之间的运动
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
10
3.运动副
(1)运动副概念:使两构件直接接触并能产生一定相对运动的可动联接 (2)运动副分类:低副、高副 1) 低副 两构件通过面接触而构成的运动副称为低副。 转动副:组成运动副的两构件之间只能绕某一轴线作相对转动,
11
移动副 两构件只能沿某一方向线作相对移动的运动副称为移动副。
12
2)高副 两构件通过点或线接触组成的运动副称为高副。
(3)部件: 一组协同工作的零件组成的独立制造或独立装配的组合体称为部
件,部件是机器的装配单元。如滚动轴承、联轴器、制动器等。
7
大家有疑问的,可以询问和交流
可以互相讨论下,但要小声点
8
二、自由度、约束与运动副
1.构件的自由度
自由度定义:构件相对给定坐标系所具有的独立运动的数目。 平面自由度:
一个杆件(刚体)在平面可以由其上任一点A的坐标x和y, 以及通过A点的垂线AB与横坐标轴的夹角等3个参数来决定, 因此杆件具有3个自由度。 空间自由度:
13
空间运动副
(3)约束与运动副的关系
• 运动副是一种约束,运动副的种类不同对构件的约束个数不同,一个 低副限制构件2个自由度,一个高副限制构件1个自由度。
14
三、构件、运动副与机构的关系
15
四、平面机构的自由度计算
16
五、计算机构自由度时的注意事项
17
18
19
20
21
22
23
24
2
课题1 基础知识
一、机械
机器和机构的统称。 1.机器 (1)机器的组成:动力装置部分,执行装置部分,传动装置部分,操纵、 控制及辅助装置部分组成。 (2)机器的特征:
1)是若干人为实体的组合; 2)各实体之间具有确定的相对运动; 3)能代替或减轻人类劳动、有效完成机械功,变换或传递能量、物 料和信息。
主要内容
单元1.机械机构与传动概述 单元2.常用机械机构 单元3.常用机械传动装置
1
单元1机械传动概述
教学目标
1.掌握汽车常用机构中一些基本概念和汽车常用机构的工作 过程。
2.掌握各基本概念之间的区别和联系 3.掌握常见的机械零件或构件符号。能够根据机构运动简图
判断运动的传递路线。 4.掌握自由度的概念及计算公式。 5.掌握平面机构运动简图的绘制和自由度的计算。
固定速比传动
• 按速比分: 可调速比传动 变速速比传动
• 按相对运动的空间关系分:平空面间机机构构
4
3.构件、零件和部件
(1)构件 1)构件的定义:
组成机构的具有确定运动关系的实体称为构件一般是由若干零件刚 性联接而成。是机器的运动单元。如键、销等; 2)构件的类型
5
6
(2)零件: 是组成机器的基本要素,机器的最小制造单元;如连杆杆身;
一个杆件(刚体),在空间上完全没有约束 Nhomakorabea那么它可以 在3个正交方向上平动,还可以以三个正交方向为轴进行转动, 那么就有6个自由度。
9
2.约束与自由度的关系
• 约束增加,自由度就减少,机构的自由度为组成杆件自由度之和减去 运动副的约束。
• 如果一个构件组合体的自由度F>0,他就可以成为一个机构,即表明 各构件间可有相对运动;如果F=0,则它将是一个结构(structure), 即已退化为一个构件。
25
26
27
28
六、机构具有确定运动的条件
29
30
课题2 机构运动简图
31
32
33
34
35
36
37
38
39
40
41
42
2.机构 (1)机构定义与作用:具有确定相对运动的的实体组合。主要用来传递和变换 运动,而机器主要是传递和变换能量。
3
(2)机构的类型
推压传动机构:连杆机构、凸轮机构、槽轮机构 及棘轮机构; 摩擦传动机构:摩擦轮传动、摩擦带传动; 啮合传动机构:齿轮传动、齿轮齿条传动、蜗轮
• 按工作原理分:蜗完杆全传齿动轮、传螺动旋传动、链传动、齿形带传动、不
相关文档
最新文档