第四章插值和曲线拟合

合集下载

数值计算方法插值与拟合

数值计算方法插值与拟合

数值计算方法插值与拟合数值计算方法在科学计算和工程应用中起着重要的作用,其中插值和拟合是其中两个常用的技术。

插值是指通过已知的离散数据点来构造出连续函数或曲线的过程,拟合则是找到逼近已知数据的函数或曲线。

本文将介绍插值和拟合的基本概念和常见的方法。

一、插值和拟合的基本概念插值和拟合都是通过已知数据点来近似表达未知数据的方法,主要区别在于插值要求通过已知数据点的函数必须经过这些数据点,而拟合则只要求逼近这些数据点。

插值更加精确,但是可能会导致过度拟合;拟合则更加灵活,能够通过调整参数来平衡拟合精度和模型复杂度。

二、插值方法1. 线性插值线性插值是一种简单的插值方法,通过已知数据点构造出线段,然后根据插值点在线段上进行线性插值得到插值结果。

2. 拉格朗日插值拉格朗日插值是一种基于多项式插值的方法,通过已知数据点构造出一个多项式,并根据插值点求解插值多项式来得到插值结果。

3. 分段线性插值分段线性插值是一种更加灵活的插值方法,通过将插值区间分成若干小段,然后在每个小段上进行线性插值。

三、拟合方法1. 最小二乘法拟合最小二乘法是一种常用的拟合方法,通过最小化实际观测点和拟合函数之间的残差平方和来确定拟合函数的参数。

2. 多项式拟合多项式拟合是一种基于多项式函数的拟合方法,通过选择合适的多项式次数来逼近已知数据点。

3. 曲线拟合曲线拟合是一种更加灵活的方法,通过选择合适的曲线函数来逼近已知数据点,常见的曲线包括指数曲线、对数曲线和正弦曲线等。

四、插值与拟合的应用场景插值和拟合在实际应用中具有广泛的应用场景,比如图像处理中的图像重建、信号处理中的滤波器设计、金融中的风险评估等。

五、插值与拟合的性能评价插值和拟合的性能可以通过多种指标进行评价,常见的评价指标包括均方根误差、相关系数和拟合优度等。

六、总结插值和拟合是数值计算方法中常用的技术,通过已知数据点来近似表达未知数据。

插值通过已知数据点构造出连续函数或曲线,拟合则找到逼近已知数据的函数或曲线。

数值计算方法第四章插值1

数值计算方法第四章插值1

代数插值
代数插值
当f(x)是次数不超过n的多项式时,给定n+1个节点,其n次插值多项式就是f(x)本身.
代数插值几何意义
拉格朗日插值 逐次线性插值 牛顿插值 等距节点插值 反插值 埃尔米特插值 分段插值法 三次样条插值
拉格朗日插值 线性插值
格朗日插值 抛物线插值
基函数之和为1.
拉格朗日插值 n次插值
当插值点x∈(a,b)时称为内插,否则称为外插。
内插的精度高于外插的精度。
拉格朗日插值余项
余项 设函数f(x)在包含节点x0 , x1 ,…, xn的区间[a,b]上有n+1阶导数,则
拉格朗日插值
活动14
写出3次拉格朗日插值多项式及余项
拉格朗日插值
拉格朗日插值
作业5
已知函数表
应用拉格朗日插值公式计算f(1.300)的近似值.
数值计算方法
苏 强
江苏师范大学连云港校区
数学与信息工程学院 E-mail: 412707233@
数值计算方法 第四章 插值与曲线拟合
没有明显的解析表达式
使用不便的解析表达式
简单函数代替
插值问题
插值问题
代数插值 插值函数
被插值函数 插值节点
插值区间
三角多项式插值 有理函数插值
代数插值
抛物线插值
三点插值
拉格朗日插值 抛物线插值
抛物线插值
三点插值
拉格朗日插值 抛物线插值
拉格朗日插值 n次插值
称为关于节点
的n次插值基函数.
拉格朗日插值n次插值
基函数的个数等于节点数.
n+1个节点的基函数是n次代数多项式 基函数和每一个节点都有关。节点确定,基函数就唯一的确定。 基函数和被插值函数无关

插值法和曲线拟合的主要差异

插值法和曲线拟合的主要差异

插值法和曲线拟合的主要差异
插值法和曲线拟合是数据处理和分析中常用的方法,它们的主要差异如下:
1. 目标不同:
- 插值法的主要目标是通过已知数据点的函数值推断未知数据点的函数值,以填充数据的空缺部分或者进行数据的重构。

- 曲线拟合的主要目标是通过已知数据点拟合出一条函数曲线,以描述数据点之间的趋势或模式。

2. 数据使用方式不同:
- 插值法使用已知数据点的函数值作为输入,通过构造插值函数来推断未知数据点的函数值。

- 曲线拟合使用已知数据点的函数值作为输入,并通过选择合适的拟合函数参数,使得拟合函数与数据点尽可能接近。

3. 数据点要求不同:
- 插值法要求已知数据点间的函数值比较准确,以保证插值函数的质量,并要求数据点间的间距不会过大,避免出现过度插值或者不稳定的现象。

- 曲线拟合对于数据点的要求相对较松,可以容忍噪声、异常值等因素,因为它不需要将函数曲线完全通过所有数据点。

4. 应用场景不同:
- 插值法常见应用于信号处理、图像处理等领域,可以用于填充缺失数据、图像重构等任务。

- 曲线拟合常见应用于数据分析、模型建立等领域,可以用
于描述数据间的趋势、拟合科学模型等。

综上所述,插值法和曲线拟合在目标、数据使用方式、数据点要求和应用场景等方面存在明显的差异。

插值与拟合方法

插值与拟合方法

插值与拟合方法在实际中,常常要处理由实验或测量所得到的一批离散数据.插值与拟合方法就是要通过这些数据去确定某一类已知函数的参数或寻找某个近似函数,使所得到的近似函数与已知数据有较高的拟合精度.插值问题:要求这个近似函数(曲线或曲面)经过所已知的所有数据点.通常插值方法一般用于数据较少的情况.数据拟合:不要求近似函数通过所有数据点,而是要求它能较好地反映数据的整体变化趋势。

共同点:插值与拟合都是根据实际中一组已知数据来构造一个能够反映数据变化规律的近似函数的方法,由于对近似要求的准则不同,因此二者在数学方法上有很大的差异.插值问题的一般提法:已知某函数)(x f y =(未知)的一组观测(或试验)数据),,2,1)(,(n i y x ii⋅⋅⋅=,要寻求一个函数)(x φ,使iiy x =)(φ),,2,1(n i ⋅⋅⋅=,则)()(x f x ≈φ.实际中,常常在不知道函数)(x f y =的具体表达式的情况下,对于i x x =有实验测量值iy y =),,2,1,0(n i ⋅⋅⋅=,寻求另一函数)(x φ使满足:)()(i i i x f y x ==φ),,2,1,0(n i ⋅⋅⋅=称此问题为插值问题,并称函数)(x φ为)(x f 的插值函数,nx x x x ,,,,21⋅⋅⋅称为插值节点,),,2,1,0()(n i y x ii⋅⋅⋅==φ称为插值条件,即)()(iiix f y x ==φ),,2,1,0(n i ⋅⋅⋅=,则)()(x f x ≈φ.(1) 拉格朗日(Lagrange )插值设函数)(x f y =在1+n 个相异点nx x x x ,,,,21⋅⋅⋅上的函数值为ny y y y ,,,,21⋅⋅⋅,要求一个次数不超过n 的代数多项式nnnx a x a x a a x P +⋅⋅⋅+++=221)(使在节点i x 上有),,2,1,0()(n i y x P ii n ⋅⋅⋅==成立,称之为n 次代数插值问题,)(x P n称为插值多项式.可以证明n 次代数插值是唯一的.事实上: 可以得到j n j n i i j in y x x xx x P j i ∑∏==⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫⎝⎛--=≠00)()( 当1=n 时,有二点一次(线性)插值多项式:101001011)(y x x x x y x x x x x P --+--=当n =2时,有三点二次(抛物线)插值多项式:2120210121012002010212))(())(())(())(())(())(()(y x x x x x x x x y x x x x x x x x y x x x x x x x x x P ----+----+----=(2)牛顿(Newton ) 插值牛顿插值的基本思想:由于)(x f y =关于二节点10,x x 的线性插值为)()()()()()()()()(00101000010101x x x x x f x f x p x x x x x f x f x f x p ---+=---+= 假设满足插值条件)2,1,0()()(2===i x p y x f iii的二次插值多项式一般形式为))(()()(1212x x x x c x x c c x p --+-+= 由插值条件可得⎪⎩⎪⎨⎧=--+-+=-+=)())(()()()()(21202202101011000x f x x x x c x x c c x f x x c c x f c 可以解出⎪⎪⎪⎩⎪⎪⎪⎨⎧------=--==020101121220101100)()()()()()(),(x x x x x f x f x x x f x f c x x x f x f c x f c所以))(()())(()()(10211020102x x x x c x p x x x x c x x c c x p --+=--+-+=类似的方法,可以得到三次插值多项式等,按这种思想可以得到一般的牛顿插值公式.函数的差商及其性质对于给定的函数)(x f ,用),,,(10n x x x f ⋅⋅⋅表示关于节点nx x x ,,,1⋅⋅⋅的n 阶差商,则有一阶差商:01011)()(),(x x x f x f x x f --=,121221)()(),(x x x f x f x x f --= 二阶差商:021021210),(),(),,(x x x x f x x f xx x f --=n 阶差商:0110211),,,(),,,(),,,(x x x x x f x x x f x x x f n n n n -⋅⋅⋅-⋅⋅⋅=⋅⋅⋅-差商有下列性质:(1)差商的分加性:∑∏=≠=-=⋅⋅⋅nk nk j j j kk n x xx f xx x f 0)(01)()(),,,(.(2)差商的对称性:在),,,(1nx x x f ⋅⋅⋅中任意调换jix x ,的次序其值不变.牛顿插值公式: 一次插值公式为))(,()()(01001x x x x f x f x p -+=二次插值公式为))()(,,()())()(,,())(,()()(1021011021001002x x x x x x x f x p x x x x x x x f x x x x f x f x p --+=--+-+=于是有一般的牛顿插值公式为)())()(,,,()()())()(,,,())()(,,())(,()()(11010111010102100100----⋅⋅⋅--⋅⋅⋅+=-⋅⋅⋅--⋅⋅⋅+⋅⋅⋅+--+-+=n n n n n n x x x x x x x x x f x p x x x x x x x x x f x x x x x x x f x x x x f x f x p可以证明:其余项为))(())()(,,,,()(11010n n n x x x x x x x x x x x x f x R --⋅⋅⋅--⋅⋅⋅=-实际上,牛顿插值公式是拉格朗日插值公式的一种变形,二者是等价的.另外还有著名的埃尔米特(Hermite )插值等.(3)样条函数插值方法样条,实质上就是由分段多项式光滑连接而成的函数,一般称为多项式样条.由于样条函数的特殊性质,决定了样条函数在实际中有着重要的应用.样条函数的一般概念定义 设给定区间],[b a 的一个分划b x x x a n=<⋅⋅⋅<<=∆1:,如果函数)(x s 满足条件:(1) 在每个子区间),,2,1](,[1n i x x ii ⋅⋅⋅=-上是k 次多项式; (2) )(x s 及直到k -1阶的导数在],[b a 上连续.则称)(x s 是关于分划△的一个k 次多项式样条函数,nx x x ,,,1⋅⋅⋅称为样条节点,121,,,-⋅⋅⋅n x x x 称为内节点,nx x ,0称为边界节点,这类样条函数的全体记作),(k S P∆,称为k 次样条函数空间.若),()(k S x s P∆∈,则)(x s 是关于分划△的k 次多项式样条函数.k 次多项式样条函数的一般形式为∑∑=-=+-+=ki n j k j jii k x x k i x x s 011)(!!)(βα其中),,1,0(k i i=α和)1,,2,1(-=n j jβ均为任意常数,而)1,,2,1(,0,)()(-=⎪⎩⎪⎨⎧<≥-=-+n j x x x x x x x x jj kj kj在实际中最常用的是2=k 和3的情况,即为二次样条函数和三次样条函数. 二次样条函数:对于],[b a 上的分划b x x x a n=<⋅⋅⋅<<=∆1:,则)2,()(!2!2)(11222102∆βαααP n j j jS x x x x x s ∈-+++=∑-=+其中)1,2,1(,0,)()(22-=⎪⎩⎪⎨⎧<≥-=-+n j x x x x x x x x j j j j . 三次样条函数:对于],[b a 上的分划b x x xa n =<⋅⋅⋅<<=∆10:,则)3,()(!3!3!2)(1133322103∆βααααP n j j jS x x x x x x s ∈-++++=∑-=+其中)1,2,1(,0,)()(33-=⎪⎩⎪⎨⎧<≥-=-+n j x x x x x x x x jjj j .1 二次样条函数插值)2,()(2∆∈P S x s 中含有2+n 个待定常数,故应需要2+n 个插值条件,因此,二次样条插值问题可分为两类:问题(1):已知插值节点ix 和相应的函数值),,2,1,0(n i y i⋅⋅⋅=,以及端点0x (或n x )处的导数值0'y (或ny '),求)2,()(2∆∈PS x s 使得⎩⎨⎧'=''='⋅⋅⋅==))(()(),,2,1,0()(20022n n i i y x s y x s n i y x s 或(5.1)问题(2):已知插值节点ix 和相应的导数值),,2,1,0(n i y i⋅⋅⋅=',以及端点0x (或n x )处的函数值0y (或ny ),求)2,()(2∆∈P S x s 使得⎩⎨⎧==⋅⋅⋅='='))(()(),,2,1,0()(20022n n i i y x s y x s n i y x s 或(5.2)事实上,可以证明这两类插值问题都是唯一可解的.对于问题(1),由条件(5.1)⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧'=+='==-+++==++==++=∑-=00210211222102121211112020201002)(,,3,2,)(2121)(21)(21)(y x x s n j y x x x x x s yx x x s y x x x s j j i i j i jj j ααβααααααααα 引入记号T n ),,,,,(11210-=ββααα X 为未知向量,T nn y y y y ),,,,(10'= C 为已知向量, ⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡---=-0010)(21)(21211)(212110211211021212212222211200x x x x x x x x x x x x x x x n n n n n A 于是,问题转化为求方程组C AX =的解Tn ),,,,,(1121-=ββααα X 的问题,即可得到二次样条函数的)(2x s 的表达式.对于问题(2)的情况类似.2.三次样条函数插值由于)3,()(3∆∈P S x s 中含有3+n 个待定系数,故应需要3+n 个插值条件,因此可将三次样条插值问题分为三类: 问题(1):已知插值节点jx 和相应的函数值),,2,1,0(n j y j⋅⋅⋅=,以及两个端点0x ,n x 处的导数值0'y ,ny ',求)3,()(3∆∈PS x s 使满足条件⎪⎩⎪⎨⎧='='⋅⋅⋅==),0()(),,1,0()(33n j y x s n j y x s j j j j(5.3)问题(2):已知插值节点jx 和相应的函数值),,2,1,0(n j y j⋅⋅⋅=,以及两个端点0x ,nx 处的二阶导数值0y '',n y '',求)3,()(3∆∈PS x s 使满足条件⎪⎩⎪⎨⎧=''=''⋅⋅⋅==),0()(),,1,0()(33n j y x s n j y x s j j j j(5.4)问题(3):类似地,求)3,()(3∆∈PSx s 使满足条件⎪⎩⎪⎨⎧=+=-==)2,1,0)(0()0(),,1,0()(0)(3)(33k x s x s n j y x s k n k j j(5.5)这三类插值问题的条件都是3+n 个,可以证明其解都是唯一的〔8〕.一般的求解方法可以仿照二次样条的情况处理方法,在这里给出一种更简单的方法.仅依问题(1)为例,问题(2)和问题(3)的情况类似处理.由于在)3,()(3∆PS x s ∈区间],[b a 上是一个分段光滑,且具有二阶连续导数的三次多项式,则在子区间],[1+j jx x 上)(3x s ''是线性函数,记),,,1,0)((3n j x s d jj =''=为待定常数.由拉格朗日插值公式可得nj x x h h x x d h x x d x s j j j jj j jj j ,,1,0,,)(1113=-=-+-=''+++显然jjj h d dx s -='''+13)(在],[1+j jx x上为常数.于是在],[1+j j x x 上有31233)(6)(2))(()(j jjj j j j j j x x h d d x x d x x x s y x s --+-+-'+=+(5.6)则当1+=j x x 时,由(5.6)式和问题(1)的条件得121231362)()(+++=-++'+=j j jj j j j j j j y h d d h d h x s y x s故可解得)2(6)(113+++--='j j j jjj j d d h h y y x s(5.7)将(5.7)式代入(5.6)式得)1,,1,0](,[,)(6)(2)()2(6)(1312113-=∈--+-+-⎥⎥⎦⎤⎢⎢⎣⎡+--+=++++n j x x x x x h d d x x d x x d d h h y y y x s j j j jj j j jj j j j j j j j(5.8) 在],[1j j x x-上同样的有),,2,1](,[,)(6)(2)()2(6)(131112111111113n j x x x x x h d d x x d x x d d h h y y y x s j j j j j j j j j j j j j j j j =∈--+-+-⎥⎥⎦⎤⎢⎢⎣⎡+--+=------------(5.9) 根据)(3x s的一阶导数连续性,由(5.9)式得)()2(6)0(311113j j j j j j j j x s d d h h y y x s '=++-=-'---- 结合(5.7)式整理得⎪⎪⎭⎫ ⎝⎛---+=++++--+-+----11111111162j j j j j j j j j j j j j j j j j h y y h y y h h d h h h d d h h h 引入记号⎪⎪⎭⎫ ⎝⎛---+=+=--+--111116,j j j j j j j j j j j j j h y y h y y h h c h h h a ,111--+=-j j j j h h h a .则)1,,2,1(,2)1(11-==++-+-n j c d a d d a j j j j j j(5.10)再由边界条件:nny x s y x s '=''=')(,)(33得⎪⎪⎩⎪⎪⎨⎧⎪⎪⎭⎫ ⎝⎛--'=+⎪⎪⎭⎫ ⎝⎛'--=+----111100010106262n n n n n n n h y y y h d d y h y y h d d(5.11)联立(5.10),(5.11)式得方程组C D A =⋅(5.12)其中⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡---=----2121212112112200n n n n a a a a a aA ,⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡=-n n d d d d 110 D ,⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛--'⎪⎪⎭⎫ ⎝⎛'--=----111110001066n n n n n n hy y y h c c y h y y h C 由方程组(6.12)可以唯一解出),,1,0(n j d j=,代入(5.8)式就可以得三次样条函数)(3x s 的表达式.B样条函数插值方法磨光函数实际中的许多问题,往往是既要求近似函数(曲线或曲面)有足够的光滑性,又要求与实际函数有相同的凹凸性,一般插值函数和样条函数都不具有这种性质.如果对于一个特殊函数进行磨光处理生成磨光函数(多项式),则用磨光函数构造出样条函数作为插值函数,既有足够的光滑性,而且也具有较好的保凹凸性,因此磨光函数在一维插值(曲线)和二维插值(曲面)问题中有着广泛的应用.由积分理论可知,对于可积函数通过积分会提高函数的光滑度,因此,我们可以利用积分方法对函数进行磨光处理.定义 若)(x f 为可积函数,对于0>h ,则称积分⎰+-=22,1)(1)(hx h x h dt t f h x f为)(x f 的一次磨光函数,h 称为磨光宽度.同样的,可以定义)(x f 的k 次磨光函数为)1()(1)(22,1,>=⎰+--k dt t f h x f hx h x h k h k事实上,磨光函数)(,x f h k 比)(x f 的光滑程度要高,且当磨光宽度h 很小时)(,x f h k 很接近于)(x f .等距B样条函数对于任意的函数)(x f ,定义其步长为1的中心差分算子δ如下:⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛+=2121)(x f x f x f δ在此取0)(+=x x f ,则002121+++⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛+=x x x δ是一个单位方波函数(如图5-1),记0)(+=Ωx x δ.并取1=h ,对)(0x Ω进行一次磨光得++++-+++-+++--+-+=-=⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛+==⎰⎰⎰⎰)1(2)1(2121)()(11212100212101x x x dt t dt t dt t t dt t x x xx x x x x x ΩΩ显然)(1x Ω是连续的(如图5-2).)(1x Ωo1-1/2 0 1/2 x -1 0 1 x 图5-1图5-2类似地可得到k 次磨光函数为kk j jk j k j k x k C x ++=+⎪⎭⎫ ⎝⎛-++-=Ω∑21!)1()(11 实际上,可以证明:)(x kΩ是分段k 次多项式,且具有1-k 阶连续导数,其k 阶导数有2+k个间断点,记为)1,,2,1,0(21+⋅⋅⋅=+-=k j k j x j.从而可知)(x kΩ是对应于分划+∞<<⋅⋅⋅<<<-∞∆+110:k x x x 的k 次多项式样条函数,称之为基本样条函数,简称为k 次B样条.由于样条节点为)1,,2,1,0(21+⋅⋅⋅=+-=k j k j xj是等距的,故)(x k Ω又称为k 次等距B样条函数.对于任意函数)(x f 的k 次磨光函数,由归纳法可以得到 [4,8] :⎪⎭⎫⎝⎛+≤≤--Ω=⎰∞+∞--22)()(1)(1,h x t h x dt t f htx h x f k h k 特别地,当1)(=x f 时,有1)(11⎰+∞∞--=-dt htx hk Ω,从而1)(⎰+∞∞-=dx x k Ω,且当k ≥1时有递推关系⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛-Ω⎪⎭⎫ ⎝⎛---⎪⎭⎫ ⎝⎛+Ω⎪⎭⎫ ⎝⎛++=Ω--212121211)(11x x k x k x k x k k k一维等距B样条函数插值等距B样条函数与通常的样条如下的关系: 定理设有区间],[b a 的均匀分划nab h n j jh x x j -=⋅⋅⋅=+=),,,1,0(:0∆,则对任意 k 次样条函数),()(k S x S p k ∆∈都可以表示为B样条函数族1021-=-=⎭⎬⎫⎩⎨⎧⎪⎭⎫⎝⎛+---n j k j k k j h x x Ω的线性组合[14].根据定理 5.1,如果已知曲线上一组点()jjy x ,,其中),,1,0,0(0n j h jh x x j⋅⋅⋅=>+=,则可以构造出一条样条磨光曲线(即为B样条函数族的线性组合)⎪⎭⎫⎝⎛--=∑--=j h x x c x S n kj k j k 01)(Ω 其中)1,,1,(-⋅⋅⋅+--=n k k j c j为待定常数.用它来逼近曲线,既有较好的精度,又有良好的保凸性.实际中,最常用的是3=k 的情况,即一般形式为⎪⎭⎫ ⎝⎛--=∑+-=j h x x c x S n j j 01133)(Ω 其中3+n 个待定系数)1,,0,1(+⋅⋅⋅-=n j c j可以由三类插值条件确定.由插值条件(5.3)得()()()⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧'=-'='==-='=-'='∑∑∑+-=+-=+-=n n j j n i n j j i n j j y j n c h x S ni y j i c x S y j c h x S 113311330113031)(,,1,0,)(1)(ΩΩΩ(5.13)注意到)(3x Ω的局部非零性及其函数值:61)1(,32)0(33=±=ΩΩ,当2≥x 时0)(3=x Ω;且由)21()21()(223--+='x x x ΩΩΩ知,21)1(,0)0(33=±'='ΩΩ,当2≥x 时0)(3='x Ω.则(5.13)中的每一个方程中只有三个非零系数,具体的为⎪⎩⎪⎨⎧'=+-==++'=+-+-+--n n n i i i i y h c c n i y c c c y h c c 2,,1,0,6421111011(5.14)由方程组(5.14)容易求解出)1,,0,1(+⋅⋅⋅-=n j c j,即可得到三次样条函数)(3x S 表达式.类似地,由插值条件(5.4)得待定系数的)1,,0,1(+⋅⋅⋅-=n j c j所满足的方程组为⎪⎩⎪⎨⎧''=+-==++''=+-+-+--nn n n i i i i y h c c c n i y c c c y h c c c 21111021012,,1,0,642(5.15)由插值条件(5.5)得待定系数的)1,,0,1(+⋅⋅⋅-=n j cj所满足的方程组为⎪⎪⎩⎪⎪⎨⎧==++=-+---=-++-=-+-+-+-+--+--+--ni y c c c c c c c c c c c c c c c c c c c i i i i n n n n n n n n ,,1,0,640)()(2)(0)(0)(0)()(4)(1111011111111011(5.16)方程组(5.15),(5.16)也都是容易求解的.注:上述等距B样条插值公式也适用于近似等距的情形,但在端点0x 和n x 处误差可能较大,实际应用时,为了提高在端点0x 和nx 处的精度,可以适当向左右延拓几个节点.二维等距B样条函数插值设有空间曲面),(y x f z =(未知),如果已知二维等距节点()()τj y ih x y x ji++=0,,)0,(>τh 上的值为),,2,1,0;,,2,1,0(m j n i z ij⋅⋅⋅=⋅⋅⋅=,则相应的B样条磨光曲面的一般形式为⎪⎭⎫ ⎝⎛--⎪⎭⎫⎝⎛--=∑∑--=--=j y y i h x x c y x s l m lj k ij n ki τΩΩ0011),( 其中),,2,1,0;,,2,1,0(m j n i c ij⋅⋅⋅=⋅⋅⋅=为待定常数,l k ,可以取不同值,常用的也是2,=l k 和3的情形.这是一种具有良好保凸性的光滑曲面(函数),在工程设计中是常用的,但只能使用于均匀分划或近似均匀分划的情况.(4) 最小二乘拟合方法最小二乘拟合方法的思想:由于一般插值问题并不总是可解的(即当插值条件多于待定系数的个数时,其问题无解),同时,问题的插值条件本身一般是近似的,为此,只要求在节点上近似地满足插值条件,并使它们的整体误差最小,这就是最小二乘拟合法.最小二乘拟合方法可以分为线性最小二乘拟合方法和非线性最小二乘拟合方法.线性最小二乘拟合方法设{}m k kx 0)(=φ是一个线性无关的函数系,则称线性组合∑==mk k k x a x 0)()(φφ为广义多项式.如三角多项式:∑∑==+=mk k mk kkx b kx ax 0sin cos )(φ.设由给定的一组测量数据),(iiy x 和一组正数),,2,1(n i w i⋅⋅⋅=,求一个广义多项式∑==mk k k x a x 0)()(φφ使得目标函数[]21)(∑=-=ni i i i y x w S φ(5.17)达到最小,则称函数)(x φ为数据),,2,1)(,(n i y x ii⋅⋅⋅=关于权系数),,2,1(n i w i⋅⋅⋅=的最小二乘拟合函数,由于)(x φ关于待定系数ia 是线性的,故此问题又称为线性最小二乘问题. 注意:这里{}m k kx 0)(=φ可根据实际来选择,权系数iw 的选取更是灵活多变的,有时可选取1=i w ,或nw i 1=,对于nw i1=,则相应问题称为均方差的极小化问题.最小二乘拟合函数的求解要使最小二乘问题的目标函数(5.17)达到最小,则由多元函数取得极值的必要条件得),,2,1,0(0m k a Sk==∂∂ 即),,2,1,0(0)()(10m k x y x a w i k ni i m k i k k i ⋅⋅⋅⋅==⎥⎦⎤⎢⎣⎡-∑∑==φφ 亦即),,2,1,0()()()(001m k x y w a x x w n i i k i i j mj n i i k i j i ⋅⋅⋅⋅==⎥⎦⎤⎢⎣⎡∑∑∑===φφφ(5.18)是未知量为ma a a a ,,,,21⋅⋅⋅的线性方程组,称(5.18)式为正规方程组.实际中可适当选择函数系{}m k kx 0)(=φ,由正规方程组解出ma a a a ,,,,210⋅⋅⋅,于是可得最小二乘拟合函数∑==mk kk x a x 0)()(φφ.一般线性最小二乘拟合方法将上面一元函数的最小二乘拟合问题推广到多元函数,即为多维线性最小二乘拟合问题.假设已知多元函数),,,(21nx x x f y ⋅⋅⋅=的一组测量数据);,,,(21iniiiy x x x ⋅⋅⋅),,2,1(m i ⋅⋅⋅=和一组线性无关的函数系{}N k nk x x x 021),,,(=⋅⋅⋅φ,求函数∑=⋅⋅⋅=⋅⋅⋅Nk n k k n x x x a x xx 02121),,,(),,,(φφ对于一组正数mw w w ,,,21⋅⋅⋅,使得目标函数[]2121),,,(∑=⋅⋅⋅-=mi ni i i i i x x x y w S φ达到最小.其中待定系数N a a a a,,,,210⋅⋅⋅由正规方程组),,2,1,0(),(),(0N k y a Nj k j k j⋅⋅⋅==∑=φφφ确定,此处ini i i k mi i k ni i i k mi ni i i j i k j y x x x w y x x x x x x w ),,,(),(),,,(),,,(),(21121121⋅⋅⋅=⋅⋅⋅⋅⋅⋅=∑∑==φφφφφφ注:上面的函数φ关于ia 都是线性的,这就是线性最小二乘拟合问题,对于这类问题的正规组总是容易求解的.如果φ关于ia 是非线性的,则相应的问题称为非线性最小二乘拟合问题.非线性最小二乘拟合方法假设已知多元函数),,,(21nx x x f y ⋅⋅⋅=的一组测量数据);,,,(21iniiiy x x x ⋅⋅⋅),,2,1(m i ⋅⋅⋅=,要求一个关于参数),,2,1,0(N j a j⋅⋅⋅=是非线性的函数),,,;,,,(1021Nn a a a x x x ⋅⋅⋅⋅⋅⋅=φφ对一组正数mw w w ,,,21⋅⋅⋅使得目标函数[]21102110),,,;,,,(),,,(∑=⋅⋅⋅⋅⋅⋅-=⋅⋅⋅mi N ni i i i i N a a a x x x y w a a a S φ达到最小,则称之为非线性最小二乘问题.这类问题属于无约束的最优化问题,一般问题的求解是很复杂的,通常情况下,可以采用共轭梯度法、最速下降法、拟牛顿法和变尺度法等方法求解.实例:黄河小浪底调水调沙问题问题的提出2004年6月至7月黄河进行了第三次调水调沙试验,特别是首次由小浪底、三门峡和万家寨三大水库联合调度,采用接力式防洪预泄放水,形成人造洪峰进行调沙试验获得成功.整个试验期为20多天,小浪底从6月19日开始预泄放水,直到7月13日恢复正常供水结束.小浪底水利工程按设计拦沙量为75.5亿立方米,在这之前,小浪底共积泥沙达14.15亿吨.这次调水调试验一个重要目的就是由小浪底上游的三门峡和万家寨水库泄洪,在小浪底形成人造洪峰,冲刷小浪底库区沉积的泥沙.在小浪底水库开闸泄洪以后,从6月27日开始三门峡水库和万家寨水库陆续开闸放水,人造洪峰于29日先后到达小浪底,7月3日达到最大流量2700立方米/每秒,使小浪底水库的排沙量也不断地增加.下面是由小浪底观测站从6月29日到7月10日检测到的试验数据:表5-1: 试验观测数据单位:水流为立方米/每秒,含沙量为公斤/立方米·84··85·注:以上数据主要是根据媒体公开报道的结果整理而成的,不一定与真实数据完全相符.现在,根据试验数据建立数学模型研究下面的问题:(1) 给出估算任意时刻的排沙量及总排沙量的方法;(2) 确定排沙量与水流量的变化关系.模型的建立与求解对于问题(1),根据所给问题的试验数据,要计算任意时刻的排沙量,就要确定出排沙量随时间变化的规律,可以通过插值来实现.考虑到实际中排沙量应该是随时间连续变化的,为了提高精度,我们采用三次B样条函数进行插值.下面构造三次B样条函数)(x S y =.由试验数据,时间是每天的早8点和晚8点,间隔都是12个小时,共24个点)24,,2,1(⋅⋅⋅=i t i.为了计算方便,令)23,,,1,0(122128⋅⋅⋅=+⎥⎦⎤⎢⎣⎡⋅+-=i i t x i i(5.19)则it 对应于)23,,1,0(1⋅⋅⋅=+=i i x i.于是以)23,,1,0(⋅⋅⋅=i x i为插值节点(等距),步长1=h .其相应的排沙量为)23,,1,0(⋅⋅⋅=i y i 对应关系如下表:·86·表5-2: 插值数据对应关系单位:排沙量为公斤函数)(x S y =所满足的条件为 (1)23,,1,0,)(⋅⋅⋅==i y x S ii;(2) 3500)(,56400)(2223222323231212-=--≈'='=--≈'='x x y y x S y x xy yx S y .取)(x S 的三次B样条函数一般形式为∑-=⎪⎭⎫⎝⎛--=24103)(j j j h x x c x S Ω·87·其中)24,,1,0,1(⋅⋅⋅-=j cj为待定常数,1=h .在这里⎪⎪⎪⎩⎪⎪⎪⎨⎧≥<<+-+-≤+-=Ω2,021,342611,3221)(23233x x x x x x x x x且易知⎪⎪⎪⎩⎪⎪⎪⎨⎧≥±===Ω2,01,610,32)(3x x x x和⎪⎪⎩⎪⎪⎨⎧≥±===Ω'2,01,210,0)(3x x x x 根据B样条函数的性质,)(x S ''在[]23,x x 上连续,则有()∑-=--'='='2413)(j jj xx c x S y Ω由插值条件(1),(2)可得到下列方程组()()()⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧'=-'=''=-'='⋅⋅⋅==-=∑∑∑-=-=-=23241323024130241323)()(23,,1,0,)(y j c x S y j c x S i y j i c x S j j j j i j j i ΩΩΩ 即⎪⎩⎪⎨⎧'=+-'=+-⋅⋅⋅==++-+-23242311112223,,1,0,64y c c y c c i y c c c i i i i 将232324112,2y c c y c c '+='-=-代入前24个方程中的第一个和最后一个,便可得到方程组F AC =,其中·88·⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡⋅⋅⋅⋅⋅⋅=⨯232102424,421410141014124c c c c C A ,⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡'-'+=3400048000684000458400266626232322100 y y y y y y F显然A 为满秩阵,方程组F AC =一定有解,用消元法求解可得问题的解为56044.39830=c , 4117111.2031=c , 2159510.7882=c , 9189845.6433=c ,1203106.6364=c , 8239727.8115=c ,8249182.1166=c , 1263543.7217=c ,9287842.9988=c , 2302284.2839=c ,4317419.86810=c , 1304836.24311=c ,3307635.15912=c ,6305423.11913=c ,2270672.36214=c ,4240287.43115=c ,0154177.91216=c ,4103000.92017=c ,99818.406218=c , 43725.454719=c ,49279.775020=c ,32155.445221=c , 2098.444222=c ,7450.777923=c ,-450.777924311.2034,2232324011='+=='-=-y c c y c c . 将)24,,1,0,1(⋅⋅⋅-=j c j代入()∑-=--==24131)(j jj x c x S y Ω(5.20)即得排沙量的变化规律.由(5.19)和(5.20)式可得到第i 时间段(12小时为一段)内,任意时刻]12,0[∈t 的排沙量.则总的排沙量为()dt j t c dx x S Y j j⎰∑⎰-=--Ω==284824132411)(经计算可得1110844.1⨯=Y 吨,即从6月29日至7月10日小浪底水库排沙总量大约为1.844亿吨,此与媒体报道的排沙量基本相符.对于问题(2),研究排沙量与水量的关系,从试验数据可以看出,开始排沙量是随着水流量的增加而增长,而后是随着水流量的减少而减少.显然,变化规律并非是线性的关系,为此,我们问题分为两部分,从开始水流量增加到最大值2720立方米/每秒(即增长的过程)为一段,从水流量的最大值到结束为第二段,分别来研究水流量与排沙量的关系.具体数据如表5-3和5-4.表5-3: 第一阶段试验观测数据 单位:水流为立方米/每秒,含沙量为公斤/立方米表5-4: 第二阶段试验观测数据单位:水流为立方米/每秒,含沙量为公斤/立方米对于第一阶段,由表5-3用Matlab作图(如图5-3)可以看出其变化趋势,我们用多项式作最小二乘拟合.·90··91·图5-3设拟合函数为∑==mk kk x a x 1)(φ确定待定常数),,1,0(m k ak=使得211111102])([∑∑∑===⎥⎦⎤⎢⎣⎡-=-=i i i m k k i k i i y x a y x S φ有最小值.于是可以得到正规方程组为m k x y a x mj i k i i j i j k i ,,1,0,0111111 ==⎪⎭⎫⎝⎛∑∑∑===+ 当3=m 时,即取三次多项式拟合,则3,2,1,0,1113111321112111110111==⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛∑∑∑∑∑==+=+=+=k x y a x a x a x a x i k i i i k i i k i i k i i k i求解可得73321108423.1,103172.1,3.1784,-2492.9318--⨯=⨯-===a a a a .于是可得拟合多项式为332213)(x a x a x a a x +++=φ,最小误差为847.72=S ,拟合效果如图所示.·92·图:三次拟合效果,带*号的为拟合曲线.类似地,当4=m 时,即取四次多项式拟合,则正规方程组为4,3,2,1,0111411143111321112111110111==⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛∑∑∑∑∑∑==+=+=+=+=k x y a x a x a x a x a x i ki i i k i i k i i k i i k i i k i求解可得104633210109312.1,1094.1,102626.7,12.0624,-7434.6557---⨯-=⨯=⨯-===a a a a a 于是可得拟合多项式为443322104)(x a x a x a x a a x ++++=φ,最小误差为102.66=S ,拟合效果如图5-5所示.图5-5:四次拟合效果,带*号的为拟合曲线.从上面的三次多项式拟合和四次多项拟合效果来看,差别不大.基本可以看出排沙量与水流量的关系.图5-6:第二段三·93··94· 次多项式拟合效果对于第二阶段,由表5-4可以类似地处理.我们用线性最小二乘法作三次和四多项式拟合.拟合效果如图5-6和5-7所示,最小误差分别为5.459=S 和1.236=S . 从拟合效果来看,显然四次多项式拟合要比三次多项式拟合好的多.图5-7:第二段四次多项式拟合效果。

插值法与曲线拟合_2023年学习资料

插值法与曲线拟合_2023年学习资料

2.1插值法-分段线性插值示意图-x+1,f+1-x,f-0=X0-xx-Xk+1-x=b-例5:数据如例 ,应用分段线性插值计算f0.5,f0.75的近似值-®
2.1插值法-分段二次插值:-设fx是区间[a,b]上的函数,在节点ax。<x<„<xmb-上的函数值为0,f,„,fm-记h=maxxx+1-x则f闭的二次插值函数P,x-0≤k≤2m=1-定义为:-在区间X X2+2]上-.0-x)f0+-x-X2kx-x2k+2)-fx2k1-x2Xk+1x2K-七k+2)-X X2kX2K+X2K2-xx2kx-x2k+1-fx2k+2-X∈[x2k,x2k+2]-X2k+2X2k 2k+2-X2k+1-显然有p,x=f,k=0,1,,2m-®
2.1插值法-牛顿Newton插值多项式-◆记函数∫x在x,的值fx]=∫x,称f[x]为fx关于x,的阶差商。-◆称-f[xo,x1=-f[xx]-f[xo]-x-x0-为函数fx关于点x,x的一阶差商-◆一 地,fx关于一xo,X,,x的k阶差商为-xx„,x]=fxox2=fxo,x,x-Nxfxo+fxoxFF+f[xo,x,x]xFxoxTx+:F币-F+f[ox,,x]xxox-x-)年田田-®
2.1插值法-拉格朗日Lagrange插值多项式-0+1x=x-xox-xx=xn-D,x=xx-O一xk X1x-+】xxF光-L,x=∑yx-xaox)-k-O-Ix-x,-i=0-或者写成Lx=-i≠k-Y -k=0-xk一x-拉格潮明嫂垅锲应用拉格朗日多项式重新计算123-公式结构紧凑,在理论分析中方便,但如遇 点增减,所有数据需全部重算-®

数学实验第四章插值方法

数学实验第四章插值方法
在对精度要求较高时,这种处理方法可能受到质疑, 2.3456789介于2.34与2.35之间,不适于用Φ(2.35)作为近 似值.于是改进,函数值取二者的中点,即
Φ(2.3456789)≈[(Φ(2.34)+Φ(2.35))]/2=0.990485
对已知的红点按一定的规律插入的兰色点 . 这个规律叫做插值函数
插值函数一般是已知函数的线性组合或者称为
加权平均。插值操作在工程实践和科学实验中有着 非常广泛而又十分重要的应用。例如,信息技术中 的图像重建、图像放大中为避免图像的扭曲失真的 而做的插值补点、建筑工程的外观设计、物理、化 学工程实验数据与模型的分析、天文观测数据、地 理信息数据的处理(如天气预报)以及社会经济现 象的统计分析等等。
本章主要介绍插值的思想、方法和技术;如何 利用MATLAB软件作插值计算;针对实际问题,进 行建模、求解与分析;最后给出实验题目。
4.2.1 引例1:函数查表问题 标准正态分布函数值Φ(2.3456789)等于多少?
一般是通过查表的方法.先对自变量作近似, 2.3456789≈2.35,再查表得到Φ(2.35)=0.99061,所以 (2.Байду номын сангаас456789)≈Φ (2.35)=0.99061.
导言 在工程实践和科学实验中,常常需要从
一组实验观测数据 ( xi , yi ), i= 0,1,…,n,...
中揭示出自变量x与因变量y之间的解析关 系.
一般可以用一个近似的函数关系式y=f(x)来处理这 一问题。给出函数关系式的方法,因观测数据与要求的 不同而异,通常可以采用两种方法:曲线拟合和插值。
拟合主要是考虑到观测数据受随机误差的影响, 寻求整体误差最小、较好地反映观测数据的近似函 数,并不保证或追求所得到的函数一定满足yi=f(xi)。 侧重于从整体上把握问题, 拟合的方法将在第五章

插值法和曲线拟合的主要差异

插值法和曲线拟合的主要差异

插值法和曲线拟合的主要差异引言在数学和统计学中,插值法和曲线拟合是两种常用的数据处理方法。

它们在数据分析、模型构建和预测等领域发挥着重要作用。

本文将详细介绍插值法和曲线拟合的定义、原理、应用以及它们之间的主要差异。

插值法定义插值法是一种通过已知数据点之间的函数关系来推断未知数据点的方法。

它基于一个假设,即已知数据点之间存在一个连续且光滑的函数,并且通过这个函数可以准确地估计其他位置上的数值。

原理插值法通过对已知数据点进行插值操作,得到一个近似函数,然后使用这个函数来估计未知数据点的数值。

常见的插值方法有拉格朗日插值、牛顿插值和样条插值等。

应用插值法在各个领域都有广泛应用,如地图制作中根据少量已知地理坐标点推算其他位置上的坐标;传感器测量中根据离散采样点推断连续时间序列上未采样到的数据;图像处理中通过已知像素点推测其他位置上的像素值等。

主要特点•插值法可以精确地通过已知数据点估计未知数据点的数值,适用于需要高精度估计的场景。

•插值法对输入数据的要求较高,需要保证已知数据点之间存在连续且光滑的函数关系。

•插值法只能在已知数据点之间进行插值,无法对整个数据集进行全局拟合。

曲线拟合定义曲线拟合是一种通过选择合适的函数形式,并调整函数参数来使得函数与给定数据集最为接近的方法。

它不仅可以对已知数据进行拟合,还可以根据拟合结果进行预测和模型构建。

原理曲线拟合首先选择一个适当的函数形式,如多项式、指数函数、对数函数等。

然后使用最小二乘法或最大似然估计等方法来确定函数参数,使得函数与给定数据集之间的误差最小化。

应用曲线拟合广泛应用于各个领域,如经济学中根据历史数据构建经济模型进行预测;物理学中通过实验数据来验证理论模型;生物学中根据实验测量数据拟合生长曲线等。

主要特点•曲线拟合可以对整个数据集进行全局拟合,能够更好地描述数据的整体趋势。

•曲线拟合可以选择不同的函数形式和参数,灵活性较高。

•曲线拟合可能存在过拟合或欠拟合的问题,需要通过模型评估和调整来提高拟合效果。

数值计算04-插值与拟合

数值计算04-插值与拟合

二维插值的定义
第一种(网格节点):
y
O
x
已知 mn个节点 其中 互不相同,不妨设
构造一个二元函数
通过全部已知节点,即
再用
计算插值,即
第二种(散乱节点):
y



0
x
已知n个节点
其中 互不相同,
构造一个二元函数
通过全部已知节点,即
再用
计算插值,即
最邻近插值
y
( x1 , y2 ) ( x2 , y2 )
( x1 , y1 ) ( x2 , y1 )

x
O
注意:最邻近插值一般不连续。具有连续性的最简单 的插值是分片线性插值。
分片线性插值
速度最快,但平滑性差
linear
占有的内存较邻近点插值方法多,运算时间 也稍长,与邻近点插值不同,其结果是连续 的,但在顶点处的斜率会改变 运算时间长,但内存的占有较立方插值方法 要少,三次样条插值的平滑性很好,但如果 输入的数据不一致或数据点过近,可能出现 很差的插值结果 需要较多的内存和运算时间,平滑性很好 二维插值函数独有。插值点处的值和该点值 的导数都连续
x=0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 y=0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6
海拔高度数据为: z=89 90 87 85 92 91 96 93 90 87 82 92 96 98 99 95 91 89 86 84 82 84 96 98 95 92 90 88 85 84 83 81 85 80 81 82 89 95 96 93 92 89 86 86 82 85 87 98 99 96 97 88 85 82 83 82 85 89 94 95 93 92 91 86 84 88 88 92 93 94 95 89 87 86 83 81 92 92 96 97 98 96 93 95 84 82 81 84 85 85 81 82 80 80 81 85 90 93 95 84 86 81 98 99 98 97 96 95 84 87 80 81 85 82 83 84 87 90 95 86 88 80 82 81 84 85 86 83 82 81 80 82 87 88 89 98 99 97 96 98 94 92 87

MATLAB中的曲线拟合与插值

MATLAB中的曲线拟合与插值

MATLAB中的曲线拟合和插值在大量的使用领域中,人们经常面临用一个分析函数描述数据(通常是测量值)的任务。

对这个问题有两种方法。

在插值法里,数据假定是正确的,要求以某种方法描述数据点之间所发生的情况。

这种方法在下一节讨论。

这里讨论的方法是曲线拟合或回归。

人们设法找出某条光滑曲线,它最佳地拟合数据,但不必要经过任何数据点。

图11.1说明了这两种方法。

标有’0'的是数据点;连接数据点的实线描绘了线性内插,虚线是数据的最佳拟合。

11.1 曲线拟合曲线拟合涉及回答两个基本问题:最佳拟合意味着什么?应该用什么样的曲线?可用许多不同的方法定义最佳拟合,并存在无穷数目的曲线。

所以,从这里开始,我们走向何方?正如它证实的那样,当最佳拟合被解释为在数据点的最小误差平方和,且所用的曲线限定为多项式时,那么曲线拟合是相当简捷的。

数学上,称为多项式的最小二乘曲线拟合。

如果这种描述使你混淆,再研究图11.1。

虚线和标志的数据点之间的垂直距离是在该点的误差。

对各数据点距离求平方,并把平方距离全加起来,就是误差平方和。

这条虚线是使误差平方和尽可能小的曲线,即是最佳拟合。

最小二乘这个术语仅仅是使误差平方和最小的省略说法。

图11.1 2阶曲线拟合在MATLAB中,函数polyfit求解最小二乘曲线拟合问题。

为了阐述这个函数的用法,让我们以上面图11.1中的数据开始。

? x=[0 .1 .2 .3 .4 .5 .6 .7 .8 .9 1];? y=[-.447 1.978 3.28 6.16 7.08 7.34 7.66 9.56 9.48 9.30 11.2];为了用polyfit,我们必须给函数赋予上面的数据和我们希望最佳拟合数据的多项式的阶次或度。

如果我们选择n=1作为阶次,得到最简单的线性近似。

通常称为线性回归。

相反,如果我们选择n=2作为阶次,得到一个2阶多项式。

现在,我们选择一个2阶多项式。

? n=2; % polyno mial order? p=polyfit(x, y, n)-9.8108 20.1293 -0.0317-9.8108X2+ 20.1293x -polyfit的输出是一个多项式系数的行向量。

数学建模培训之四--拟合与插值专题

数学建模培训之四--拟合与插值专题

使n个点(xi,yi) 与曲线 y=f(x) 的距离i 的平方和最小 。

J (a1 , a2 , am ) i2 [ f ( xi ) yi ]2
i 1 n i 1
n
n
[ ak rk ( xi ) yi ]
i 1 k 1
m
2
(2)
问题归结为,求 a1,a2, …am 使 J(a1,a2, …am) 最小。
线性最小二乘法的求解:预备知识 超定方程组:方程个数大于未知量个数的方程组
r11a1 r12 a2 r1m am y1 ( n m) r a r a r a y nm m n n1 1 n 2 2
r11 R 其中 rn1 r 12 rn 2
拟合多项式 次数
2.多项式在x处的值y的计算命令:y=polyval(a,x) 3.对超定方程组
Rnmam1 yn1 (m n) ,用 a R \ y
可得最小二乘意义下的解。
例1 对下面一组数据作二次多项式拟合
xi yi 0.1 1.978 0.2 3.28 0.4 6.16 0.5 7.34 0.6 7.66 0.7 9.58 0.8 9.48 0.9 1
xi
内容提纲
1.拟合问题引例及基本理论 2.Matlab求解拟合问题 3.应用实例 4.插值问题引例及基本理论 5.Maltab求解插值问题 6.应用实例
拟合问题
• 在科学计算中经常要建立实验数据的数学 模型。给定函数的实验数据,需要用比较 简单和合适的函数来逼近(或拟合)实验 数据。这种逼近的特点是: • (a) 适度的精度是需要的; • (b) 实验数据有小的误差; • (c) 对于某些问题,可能有某些特殊的信 息能够用来选择实验数据的数学模型。

插值和拟合

插值和拟合

插值和拟合都是函数逼近或者数值逼近的重要组成部分他们的共同点都是通过已知一些离散点集M上的约束,求取一个定义在连续集合S(M包含于S)的未知连续函数,从而达到获取整体规律的目的,即通过"窥几斑"来达到"知全豹"。

简单的讲,所谓拟合是指已知某函数的若干离散函数值{f1,f2,…,fn},通过调整该函数中若干待定系数f(λ1, λ2,…,λ3), 使得该函数与已知点集的差别(最小二乘意义)最小。

如果待定函数是线性,就叫线性拟合或者线性回归(主要在统计中),否则叫作非线性拟合或者非线性回归。

表达式也可以是分段函数,这种情况下叫作样条拟合。

而插值是指已知某函数的在若干离散点上的函数值或者导数信息,通过求解该函数中待定形式的插值函数以及待定系数,使得该函数在给定离散点上满足约束。

插值函数又叫作基函数,如果该基函数定义在整个定义域上,叫作全域基,否则叫作分域基。

如果约束条件中只有函数值的约束,叫作Lagrange插值,否则叫作Hermite插值。

从几何意义上将,拟合是给定了空间中的一些点,找到一个已知形式未知参数的连续曲面来最大限度地逼近这些点;而插值是找到一个(或几个分片光滑的)连续曲面来穿过这些点。

一、概念的引入1. 插值与拟合在现实生活中的应用l 机械制造:汽车外观设计l 采样数据的重新建构:电脑游戏中场景的显示,地质勘探,医学领域(CT)2.概念的定义l 插值:基于[a,b]区间上的n个互异点,给定函数f(x),寻找某个函数去逼近f(x)。

若要求φ(x)在xi处与f(xi)相等,这类的函数逼近问题称为插值问题,xi即是插值点l 逼近:当取值点过多时,构造通过所有点的难度非常大。

此时选择一个次数较低的函数最佳逼近这些点,一般采用最小二乘法l 光顾:曲线的拐点不能太多,条件:①二阶几何连续②不存在多余拐点③曲率变化较小l 拟合:曲线设计过程中用插值或通过逼近方法是生成的曲线光滑(切变量连续)光顾二、插值理论设函数y=f(x)在区间[a,b]上连续,在[a,b]上有互异点x0,x1,…,xn处取值y 0,y1,…,yn。

计算机应用基础-4-积分方程及应用

计算机应用基础-4-积分方程及应用
ˆ J min yi y xi min yi f a, xi
a i 1 a i 1 N 2 N 2
为最小。Matlab调用格式如下:
[a, J m ] lsqcurvefi (Fun, a 0 , x, y) t
4.2 拟合函数
其中 Fun为原型函数的Matlab表示,可以使M函数inline( ) 函数;
%计算插值点的函数值 %将插值多项式展开 %将插值多项式的系数化成6位精度的小数
4.1 插值函数
三 Matlab 自带函数插值 3.1 一维插值
Matlab提供了interp1函数用于一维插值,其调用格式为
yi=interp1(x,Y,xi,method)
对节点(x,Y)进行插值,计算插值点xi的函数值; Method插值算法,默认的为线性插值: nearest:线性最近插值 linear:线性插值(默认) spline:三次样条插值 pchip:分段三次埃尔米特插值 cubic: 双三次插值
a0 为最优化的初值;
x,y 为原始输入和输出数据向量;
a为返回的待定系数向量; Jm为在此待定系数下目标函数的值。
4.2 拟合函数
二 最小二乘多项式拟合
对于离散型函数,若数据点较多,若将每个数据点 都当做插值节点,运算显得非常复杂。在工程试验中, 常测得一组离散数据点(xi,yi), (i=1,2…N),要求 y=(x),这种应变量只有一个自变量的数据拟合方法 称之为直线拟合。(仍然采用最小二乘方法) p=polyfit(x,y,n)
拟合的函数形式可任意, 因此拟合调用需要注明拟合函数, 即需要建立一个Fun的函数,需要初值,而且结果与初值 密切相关。
4.2 拟合函数
【例4-5】已知的数据点来自f(x)=(x2-3x+5)e-5xsinx

《数值计算方法》复习资料

《数值计算方法》复习资料

实用文档《数值计算方法》复习资料第一章数值计算方法与误差分析第二章非线性方程的数值解法第三章线性方程组的数值解法第四章插值与曲线拟合第五章数值积分与数值微分第六章常微分方程的数值解法自测题课程的性质与任务数值计算方法是一门应用性很强的基础课,在学习高等数学,线性代数和算法语言的基础上,通过本课程的学习及上机实习、使学生正确理解有关的基本概念和理论,掌握常用的基本数值方法,培养应用计算机从事科学与工程计算的能力,为以后的学习及应用打下良好基础。

第一章数值计算方法与误差分析一考核知识点误差的来源类型;绝对误差和绝对误差限,相对误差和相对误差限,有效数字;绝对误差的传播。

二复习要求1.知道产生误差的主要来源。

2.了解绝对误差和绝对误差限、相对误差和相对误差限和有效数字等概念以及它们之间的关系。

3.知道四则运算中的误差传播公式。

实用文档三例题例 1 设x*= =3.1415926⋯近似值 x=3.14 = 0.314× 101,即 m=1,它的绝对误差是- 0.001 592 6 ,⋯有即 n=3,故 x=3.14 有 3 位有效数字 .x=3.14准确到小数点后第 2 位 .又近似值 x=3.1416,它的绝对误差是0.0000074 ⋯,有即 m=1,n= 5, x=3.1416 有 5 位有效数字 .而近似值x=3.1415,它的绝对误差是0.0000926 ⋯,有即 m=1,n= 4, x=3.1415 有 4 位有效数字 .这就是说某数有s 位数,若末位数字是四舍五入得到的,那么该数有s 位有效数字;例 2指出下列各数具有几位有效数字,及其绝对误差限和相对误差限:2.000 4-0.002 009 0009 000.00解因为 x1=2.000 4= 0.200 04× 101, 它的绝对误差限 0.000 05=0.5 × 10 1―5,即m=1,n=5, 故 x=2.000 4 有 5 位有效数字 . a1=2,相对误差限x2=- 0.002 00,绝对误差限0.000 005,因为 m=-2,n=3 ,x2=- 0.002 00 有 3 位有效数字 . a1=2 ,相对误差限r ==0.002 5实用文档x3=9 000 ,绝对误差限为0.5× 100,因为 m=4, n=4, x3=9 000 有 4 位有效数字, a=9 ,相对误差限r== 0.000 056x4=9 000.00 ,绝对误差限0.005,因为 m=4, n=6, x4=9 000.00 有 6 位有效数字,相对误差限为r== 0.000 000 56由 x3与 x4可以看到小数点之后的0,不是可有可无的,它是有实际意义的.例 3 ln2=0.69314718⋯,精确到10-3的近似值是多少?解精确到 10-3= 0.001,意旨两个近似值x1,x2满足,由于近似值都是四舍五入得到的,要求满足,近似值的绝对误差限应是=0.0005,故至少要保留小数点后三位才可以。

计算方法 第四章 插值方法

计算方法 第四章 插值方法

§4.2.2 插值多项式的构造
现在考虑一般情况。已知节点 (xi, yi), i=0,1,…,n, x0<x1<…<xn, 则
Ln ( x ) yi li ( x )
i 0 n
( x x0 )...( x xi 1 )( x xi 1 )...( x xn ) yi i 0 ( xi x0 )...( xi xi 1 )( xi xi 1 )...( xi xn )
计算方法 (力学系本科生)
第四章 插值方法
(interpolation methods)
第四章插值方法
§4.1 问题的提出
§4.1 问题的提出
实际背景 • 实验和观察得到的一些离散数据点 ( xi , yi ), yi f ( xi ), i 0,1, 2,..., n, 需要 用这些离散数据点给出简单的函数表达 式 ( x)来近似原来函数 f ( x) 。
§4.2.2 插值多项式的构造
一般情形的拉格朗日插值多项式
设离散数据为(xk,δik), k=0,1,2,…,n, i 是固 定的非零整数 0 i n ,且 x0 x1 ... , n x δik是Kronecher记号
1, i k ik 0, i k
( n 1)
成立。
§4.2.3 拉格朗日插值余项
罗尔(Rolle)定理:若f(x)在[a,b]上连续,在 (a,b)上可导, 且f(a)=f(b), 则存在 (a, b) 满足 f ( ) 0 。
§4.2.3 拉格朗日插值余项
证明:∵ Rn(xi)=f(xi)-Ln(xi)=0, i=0,1,…,n
证明:由插值条件知
c x c x

插值法与曲线拟合

插值法与曲线拟合

故用线性插值求得的近似值为
y
(x , y ) 00
y L2x
(x , y ) 11
y f x
(x , y ) 22
0
x0
x1
x
图2-3
11515 100
121 121
11*115 100 121 100
10.714
15
仿上,用抛物插值公式(2.7)所求得的近似值为
例1 已知 100 10, 121 11, 144 12分别用线性插值和抛物插值
求 115 的值。
14
解 因为115在100和121之间,故取节点x0=100,x1=121相应地有
y0=10,y1=11,于是,由线性插值公式(2.5)可得
L1
(x)
10
*
x 121 100 121
11*
x 100 121 100
为插值多项式Pn (x) 的余项。
17
关于误差有如下定理2中的估计式。
定理2 设 f (x) 在区间 a,b
上有直到n+1阶导数,x0, x1,, xn
为区间 a,b 上n+1个互异的节点, Pn (x) 为满足条件:
Pn (xi ) f (xi )(i 0,1,, n)
(2.9)
的n次插值多项式,则对于任何 x a,b ,有
的n次插值多项式(2.2),这样,由(2.2)式可以求出n+1个n次插 插多项式 l0 (x), l1(x),,ln (x) 。容易看出,这组多项式仅与节点的取
法有关,称它们为在n+1个节点上的n次基本插值多项式或n次插值
基函数。
11
2.2 拉格朗日插值多项式
利用插值基函数立即可以写出满足插值条件(1.3)的n次插值

第4章_插值与拟合-牛顿法

第4章_插值与拟合-牛顿法
设给定函数个互异的节点处的函数值为关于节点的二阶差商缺倒数第二个节点缺最后一个节点最后一个节点倒数第二个节点缺倒数第二个节点缺最后一个节点最后一个节点倒数第二个节点由此定义显然
第4章 插值与拟合
4.3 差商与牛顿插值公式
Lagrange 插值多项式的基函数:
l j ( x)
( x x0 )(x x1 )( x x j 1 )(x x j 1 )( x xn ) ( x j x0 )(x j x1 )( x j x j 1 )(x j x j 1 )( x j xn )
4.3.3 牛顿插值余项
若将 x xi , (i 0,1,, n) 视为一个节点,则由一阶均差定义 有
f ( x) f ( x0 ) f [ x, x0 ](x x0 )
同理,由二阶均差定义 有
f ( x0 ) f ( x) f [ x, x0 ] f [ x, x0 ] f [ x0 , x1 ] f [ x, x0x ,0x1 ]( xx x1 )
j 1 k 0
n
j 1
2.差商的性质
性质1:差商与函数值的关系 f(x) 关于 x0 , x1 ,, xk 1 , xk 的 k 阶差商是 f(x) 在这些点上 函数值的线性组合,即
1 f [ x0 , x1 ,, xk 1 , xk ] f ( x j ) j 0 i 0 x j xi
(i j k )
为 f ( x) 关于节点 xi , x j , xk 的二阶差商
最后一个节点-倒 数第二个节点

缺倒数第二个节点
缺最后一个节点
f [ x0 , x1,, xk 1, xk ]
f [ x0 , x1 ,, xk 2 , xk ] f [ x0 , x1 ,, xk 1 ] xk xk 1

插值与拟合方法

插值与拟合方法

插值与拟合方法插值和拟合是数学中常用的方法,用于根据已知数据点的信息,推断出未知数据点的数值或函数的形式。

插值和拟合方法是经典的数学问题,应用广泛,特别是在数据分析、函数逼近和图像处理等领域。

1.插值方法:插值方法是通过已知数据点的信息,推断出两个已知数据点之间的未知数据点的数值。

插值方法的目的是保证插值函数在已知数据点处与实际数据值一致,并且两个已知数据点之间的连续性良好。

最常用的插值方法是拉格朗日插值法和牛顿插值法。

拉格朗日插值法根据已知数据点的横纵坐标,构造一个多项式函数,满足通过这些数据点。

拉格朗日插值法可以用于任意次数的插值。

牛顿插值法是使用差商的概念进行插值。

差商是指一个多项式在两个数据点之间的斜率。

牛顿插值法通过迭代计算得到与已知数据点一致的多项式。

插值方法的优点是可以精确地经过已知数据点,但是在两个已知数据点之间的插值部分可能会出现震荡现象,从而导致插值结果不准确。

2.拟合方法:拟合方法是通过已知数据点的信息,找出一个函数或曲线,使其能够最好地拟合已知数据点。

拟合方法的目标是寻找一个函数或曲线,尽可能地逼近已知数据点,并且能够在未知数据点处进行预测。

最常用的拟合方法是最小二乘法。

最小二乘法是通过求解最小化残差平方和的问题来进行拟合。

残差是指已知数据点与拟合函数的差异。

最小二乘法的目标是找到一个函数,使得所有数据点的残差平方和最小。

拟合方法的优点是可以得到一个光滑的函数或曲线,从而可以预测未知数据点的数值。

但是拟合方法可能会导致过拟合问题,即过度拟合数据点,导致在未知数据点处的预测结果不准确。

除了最小二乘法,还有其他的拟合方法,如局部加权回归和样条插值等。

局部加权回归是一种基于最小二乘法的拟合方法,它通过赋予不同的数据点不同的权重,来实现对未知数据点的预测。

样条插值是一种基于多项式插值的拟合方法,它将整个数据集分段拟合,并且在分段部分保持连续性和光滑性。

总结:插值和拟合方法是数学中的经典方法,用于根据已知数据点的信息,推断出未知数据点的数值或函数的形式。

《计算方法》第四章 插值方法

《计算方法》第四章 插值方法

Ln ( x) f ( xk ) l k ( x)
k 0
n
n
其中,
l k ( x)
j 0 j k
x xj x k x j (k 0,1,...n) .
20
构造插值多项式的方法:
(1) (2) 先求插值基函数. 构造插值多项式.
以下的问题:如何分析插值的余项?
21
例题 已知连续函数 f (x) 的函数表如下: x f (x) -1 0 1 2 -2 -2 1 2
Return
13
§4.2 拉格朗日多项式 /* Lagrange Polynomial */
1. 构造线性插值基函数的方法:
n=1 已知 x0 , x1 ; y0 , y1 ,求 L1(x) = a0 + a1 x 使得
L1 ( x0 ) y0 , L1 ( x1 ) y1
可见 L1(x) 是过 ( x0 , y0 ) 和 ( x1, y1 ) 两点的直线。
由 l k ( xk ) 1, 得:
1 A ( xk x0 ) ( xk xk 1 ) ( xk xk 1 ) ( xk xn )
l k ( x)
k = 0, 1 ,⋯, n .
( x x0 )( x xk 1 ) ( x xk 1 )( x xn ) , ( x k x0 )( xk xk 1 ) ( xk xk 1 )( xk xn )
18
一般情形
希望找到 li (x),i = 0, …, n 使得 li (xj) = ij ;然后令
Ln ( x ) f ( x k ) l k ( x ),则显然有 Pn(xi) = yi 。
k 0 n
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

线性插值举例
例 解 已知 1001/2 =10,1211/2 =11 求 1151/2 P1(x) = y0+(y1-y0)/(x1-x0)*(x-x0) P1(115) = 10+(11-10)/(121-100)*(115-100) 或 P1(x)=y0L0(x)+y1L1(x ) P1(115) = 10*(115-121)/(100-121) +11*(115-100)/(121-100)
Rn (x) = f (n+1) (ξ ) (n +1 )! wn+1(x)
其中 wn+1(x) = (x-x0)(x-x1) …(x-xn)
第二节 拉格朗日插值
为了得到n次的拉格朗日插值多项式,我们从最简单的一次、 二次插值开始。
一、一次插值(线性插值) 一次插值(线性插值)
x0 x1 求 P1(x) y0 y1 因 P1(x0)=y0 , P1(x1)=y1 所以 P1(x)=y0+(y1-y0)/(x1-x0)*(x-x0) (线性插值多项式) 上式可改写为: P1(x)=y0L0(x)+y1L1(x ) (拉格朗日线性插值多项式) L0(x)=(x-x1)/(x0-x1),L1(x)=(x-x0)/(x1-x0) L0(x)、L1(x)特点: L0(x)= 1 , x = x0 L1(x)= 1 , x = x1 0 , x = x1 , 0 , x = x0 已知
二、牛顿均差插值多项式 由均差定义有 f(x) = f(x0)+f [x0,x](x-x0) ( f[x0,x]=[f(x)-f(x0)]/(x-x0) ) f [x0, x]= f [x0,x1]+f [x0,x1,x](x-x1) f [x0, x1,x] = f [x0,x1,x2]+ f [x0,x1,x2,x](x-x2) …… f [x0,x1,…,xn-1,x] = f [x0,x1,…,xn]+ f[x0,x1,…,xn,x](x-xn) f(x) = f(x0) + f [x0,x1](x-x0) + f [x0,x1,x2](x-x0)(x-x1) + … + f [x0,x1,…,xn](x-x0)(x-x1)…(x-xn-1) + f [x0,x1,…,xn,x](x-x0)(x-x1)…(x-xn) = Pn(x) + Rn(x) Pn(x) = f(x0) + f [x0,x1](x-x0) + f [x0,x1,x2](x-x0)(x-x1) + … + f [x0,x1,…,xn](x-x0)(x-x1)…(x-xn-1) Pn(x)由于满足 Pn(xi)=f(xi) 称作 n 次牛顿(均差)插值多项式。 Rn(x) = f(x)-Pn(x) = w(x)*f(n+1)(ζ)/(n+1)! (w(x)=(x-x0)(x-x1)…(x-xn) ) 称为n次牛顿插值多项式的余项。
第四章 插值和曲线拟合
在实际问题和科学实验中所遇到的函数y=f(x),往往 没有解析表达式 , 只能根据试验观察或其它方法提供一 系列点的函数值; 有时尽管可以写出表达式,但是比较 复杂, 直接使用它感到不方便。我们经常需要利用已知 的数据去寻求某个简单的函数φ(x)来逼近f(x),即用φ(x) φ 作为f(x)的近似表达式。本章的插值法和曲线拟合就是 两种用来求 f(x) 的近似函数φ(x) 的重要方法。 的近似函数φ
一、均差及均差表
1. 均差定义
在区间[a,b]上,函数f(x)关于两点xi , xj的一阶均差定义为 f [xi, xj] = [f(xj)-f(xi)]/(xj-xi) f(x)关于三点xi, xj, xk的二阶均差定义为 f [xi, xj, xk]=(f[xj, xk] - f[xi, xj])/(xk-xi) f(x)关于k+1个点xi-k, xi-k+1, … , xi 的k阶均差定义为 f [xi-k,xi-k+1,…, xi ] = (f [xi-k+1,…,xi ] – f [xi-k, … , xi-1])/(xi-xi-k) f(x)关于一个点 xi 的零阶均差定义为函数本身,即 f [xi] = f(xi) 不论几阶均差,均差均有对称性(任意改变基点的次序后其值 不变)。即 f [x0,x1,…, xk ] = f [ xj 0, xj1,..., xjk ] 其中 xj 0, xj1,..., xjk 是 0, 1, …, k 的任一种排列。(证略)
φ(xi) = yi ,
插值法的几何意义
插值法的几何意义就是通过n+1个点: (xi,yi) (i=0,1,2,…,n) 作一条近似曲线y= φ(x) 代替y=f(x)。如下图所示。 y=f(x) (xn,yn) y= φ(x) y
(x1,y1) (x0,y0) (x2,y2) (xn-1,yn-1)
第一节
一、 插值问题
插值法的基本理论
设函数 y = f(x) 给出了一组函数值 yi = f(xi) , i = 0, 1, …, n ,或 者给出了如下的一张表 x0 , x1 , x2 , … , xn y0 , y1 , y2 , … , yn 构造一个简单的函数φ(x) 作为f(x)的近似表达式,以满足 i=0,1,…, n 我们称这样的问题为插值问题。 其中φ(xi) = yi 称为插值原则;φ(x)称为f(x)的插值函数; f(x)称为被插值函数; x0 , x1 , x2 , … , xn称为插值基点 (或节点)。 根据已知点的函数值求其余点x的函数值φ(x) φ(x)称为插值,x称 φ(x) 为插值点;求f(x)近似函数φ(x) φ(x)的方法称为插值法。 φ(x)
二、插值多项式的误差
函数 f(x)用n次插值多项式Pn(x)近似代替时,截断 误差记为 Rn(x)=f(x)-Pn(x) ξ ∈(a, b) 称 Rn(x)为n次插值多项式Pn(x)的余项。 定理 设函数f(x)在包含基点x0 , x1 , x2 , … , xn 的 区间[a,b]上具有n+1阶导数, Pn(x)为满足Pn(xi) = yi的n次 插值多项式,则对任一点x∈[a,b],总存在相应的点 ∈ ζ∈( ∈(a,b) ,使 ∈(
三、n次拉格朗日插值 次拉格朗日插值
仿照P2 (x)的构造方法,可得出 Pn(x)=L0(x)y0+L1(x)y1+…+Ln(x)yn 其中 L0(x)=[(x-x1)(x-x2)…(x-xn)]/ [(x0-x1)(x0-x2)…(x0-xn)] Lk(x)= [(x-x0)…(x-xk-1)(x-xk+1) …(x-xn)] /[(xk-x0)…(xk-xk-1)(xk-xk+1) …(xk-xn)] ( k = 0, 1, …, n ) 这就是n次拉格朗日插值多项式。 也可写为
ห้องสมุดไป่ตู้
0
x0
x1
x2

Xn-1
xn
x
插值函数φ 的类型 插值函数φ(x)的类型
在插值问题中,插值函数φ(x)的类型可有不同的选择,如代 数多项式、三角多项式、有理函数等,但是最简单而常用的是代 数多项式、三角多项式、 多项式 数多项式,这时就称为代数多项式插值。在本章,我们主要讨论 代数多项式插值 代数多项式插值。 代数多项式插值的任务就是根据 n+1个点 x0 , x1 , x2 , … , xn y0 , y1 , y2 , … , yn 构造一个次数不超过 n 的多项式 Pn(x) = a0 + a1x + a2x2 + … + anxn 使满足插值原则 Pn(xi) = yi , i = 0 , 1 , … , n 。 Pn(x)称为 f(x) 的 n次插值多项式。 次插值多项式
二次插值举例
例 已知函数y=f(x)的观测数据如下表所示,试求其拉格朗 日插值多项式,并计算f(1.5)的近似值。
x y
0 2
1 -1
2 4
解 P2(x) = y0(x-x1)(x-x2)/[(x0-x1)(x0-x2)] +y1(x-x0)(x-x2) /[(x1-x0)(x1-x2)]+y2 (x-x0)(x-x1)/[(x2-x0)(x2-x1)] = 2*(x-1)(x-2)/[(0-1)(0-2)] +(-1)*(x-0)(x-2)/[(1-0)(1- 2)]+4*(x-0)(x-1)/[(2-0)(2-1)] = 4x2-7x+2 f(1.5) ≈ P2 (1.5)=4*1.52-7*1.5+2 = 0.5

n x − xk yi Pn(x) = ∑Li (x) yi = ∑ ∏ xi − xk i=0 i=0 k =0,k ≠i
n n
w(x) Pn(x) = ∑ yi ' i =0 ( x − xi )w ( xi )
其中 w(x) = (x-x0) …(x-xn)
n
n次拉格朗日插值举例 次拉格朗日插值举例
例 已知函数表 x 1.1275 1.1503 1.1735 y 0.1191 0.13954 0.15932 应用朗格拉日插值公式计算f(1.1300)的近似值。 解 P3(x) = L0(x)y0+L1(x)y1+L2(x)y2 +L3(x)y3 = …… f(1.1300) ≈ P3(1.1300) = 0.1214 1.972 0.17903
抛物线插值) 二、二次插值(抛物线插值 二次插值 抛物线插值
二次插值问题:已知f(x)在三个互异点x0,x1,x2的函数值y0,y1,y2 ,要构造次 数不超过二次的多项式P2(x)=a0+a1x+a2x2,使满足 P2(xi)=yi , i = 0, 1, 2 设 P2(x) = L0(x)y0+L1(x)y1+L2(x)y2 , 则 L0(x) = 1, L1(x) = 0, L2(x) = 0 当x = x0 时, P2(x0) = y0 当x = x1时,P2(x1) = y1 L0(x) = 0, L1(x) = 1, L2(x) = 0 当x = x2时,P2(x2) = y2 L0(x) = 0, L1(x) = 0, L2(x) = 1 由上知 L0(x) = 1, x = x0 0, x = x1, x2 令 L0(x)=A0(x-x1)(x-x2) 则 A0=1/[(x0-x1)(x0-x2)] 所以 L0(x)= (x-x1)(x-x2)/[(x0-x1)(x0-x2)] 同理可得 L1(x)=(x-x0)(x-x2)/[(x1-x0)(x1-x2)] L2(x)=(x-x0)(x-x1)/[(x2-x0)(x2-x1)] 综上可得 P2(x)=y0(x-x1)(x-x2)/[(x0-x1)(x0-x2)] +y1(x-x0)(x-x2)/[(x1-x0)(x1-x2)] +y2 (x-x0)(x-x1)/[(x2-x0)(x2-x1)] 该式称为拉格朗日二次插值多项式。
相关文档
最新文档