汽车动力学-轮胎动力学
汽车动力学论述
一、汽车轮胎滚动阻力的产生机理及主要影响因素:1. 产生机理:轮胎的滚动阻力可以分解为弹性迟滞阻力、摩擦阻力和风扇效应阻力。
1) 弹性迟滞阻力充气轮胎在静态压缩作用下会产生变形并且回弹,并由于其内部的摩擦作用而引起能量损失。
当车轮在力或力矩作用下滚动时,对轮胎胎面的每一单元而言,其压缩与回弹的过程将重复不断地进行。
在轮胎等效系统模型中,假定车轮的外圆周与轮辋之间由一些径向布置的线性弹簧和阻尼单元支撑;此外,轮胎胎面也假定由一系列切向排列的弹簧和阻尼单元构成。
当这些单元进入轮胎与路面接触印迹时,其弹簧和阻尼就能充分作用,因而就生成附加的摩擦效应,将它称之为弹性迟滞阻力。
2) 摩擦阻力在轮胎等效模型中,由一系列弹簧-阻尼组成的单元连续滚动进入胎接触印迹区,在轮胎接触印迹内路面与滚动单元带之间在纵向及横向将产生相对运动,即所谓的“部分滑动” 。
3) 风扇效应阻力轮胎在旋转运动时如同风扇一样导致气流损失,其产生的阻力称为风扇效应阻力。
汽车在路面上行驶时,在以上三种阻力的综合作用下就形成了轮胎滚动阻力。
2. 主要影响因素:1) 轮胎材料胎面材料:胎面材料的选用对轮胎滚动阻力影响较大,其滞后损失占整个轮胎的50 %甚至更多。
轮胎帘线:试验表明,同一规格的轮胎使用不同的纤维帘线材料,其滚动阻力有明显差异。
2) 轮胎结构子午化:子午线轮胎的滚动阻力比斜交轮胎低。
扁平化:随着轮胎断面结构的高宽比的不断减小,轮胎的变形越来越小,滞后损失也相应减小,从而降低了滚动阻力。
浙江科技学院 Zhejiang University of Science and Technology期末考察论述 汽车动力学 Vehicle Dynamics姓名 陈杰 学号5无内胎化:轮胎滚动阻力与轮胎质量有直接关系。
轮辋直径:轮辋直径对滚动阻力有一定影响。
轮辋直径增大后,在相同的垂直载荷下,轮胎的相对变形减小,降低了轮胎滚动过程中产生的滞后损失,从而使轮胎滚动阻力降低。
汽车动力学-轮胎动力学
转偏率
轮胎模型
纵向力Fx 侧向力Fy 法向力Fz 轮胎六 侧倾力矩M x 分力 滚动阻力矩M y 回正力矩 M z
➢轮胎模型分类
□轮胎纵滑模型,预测车辆在驱动和制动工况时的纵向力。 □轮胎侧偏和侧倾模型,预测侧向力和回正力矩。 □轮胎垂向振动模型,用于高频垂向振动的评价。
精品课件
9
3.3轮胎模型
滚动阻力系数
fR
FR F z ,w
滚动阻力系数
fR
eR rd
■滚动阻力系数随着胎压增加而降低
■滚动阻力系数随着车轮载荷增加而降低 ■滚动阻力系数随着车速增加而增加
精品课件
15
3.4轮胎纵向力学特性
➢轮胎滚动阻力
□滚动阻力系数测量 ■整车道路测试 ■室内台架测试
精品课件
16
3.4轮胎纵向力学特性
2.道路条件产生的附加阻力
精品课件
24
3.5轮胎垂向力学特性
1.轮胎的垂向特性
➢非滚动动刚度 ➢滚动动刚度
精品课件
25
3.5轮胎垂向力学特性
2.轮胎噪声
轮胎噪声产生的机理: (1)空气泵吸效应 (2)胎面单元振动
3.轮胎垂向振动力学模型
精品课件
弹簧-阻尼模型
3.5轮胎垂向力学特性
4.轮胎振动对汽车性能的影响
➢对汽车平顺性的影响
3.2轮胎的功能、结构及发展
➢轮胎的结构 □胎体 决定轮胎基本性能 □胎圈 便于胎体装卸 □胎面 保护胎体、内胎
■胎冠
■胎肩 ■胎侧
▲常用的充气轮胎有两种,斜交轮胎和子午线轮胎,主要 是胎体帘线角度的不同,前者为20-40度,后者为85-90度。
精品课件
6
轮胎动力学
3、轮胎垂向振动模型
高频垂向振动评价
2017/11/15
第三章
轮胎动力学
轮胎纵滑侧偏模型:
轮胎参数:轮胎尺寸、轮胎压力、 地面条件
侧偏角 外倾角 轮胎模型
侧向力 纵向力 回正力矩
滑移率
垂向载荷
车辆模型
2017/11/15
第三章
轮胎动力学
第三章
轮胎动力学
1. 轮胎胎面:1个厚厚的 橡胶层,提供了与地面的 接触界面,还具有排水和 耐旧的性能。 2. 胎冠带束层:双层或 3 层加强带束层具有垂直 方向上的柔韧度和极高的 横向刚性,提供了转向力。 3. 胎侧:胎侧容纳并保 护胎体帘布层,而胎体帘 布层的功能是将轮胎的胎 面固定在轮辋上。
第三章
轮胎动力学
子午线轮胎的帘布层 相当于轮胎的基本骨架, 其排列方向与轮胎子午 断面一致。由于行驶时 轮胎要承受较大的切向 作用力,为保证帘线的 稳固,在其外部又有若 干层由高强度、不易拉 伸的材料制成的带束层 ( 又称箍紧层 ) ,其帘线 方向与子午断面呈较大 的交角。(85-90度)
2017/11/15
轮胎动力学模型分为理论模型、经验模型、半 经验模型、自适应模型四大类。 理论模型
轮胎理论模型( 有的学者称之为分析轮胎模型)是在简化 的轮胎物理模型的基础上建立的对轮胎力学特性的一种数学 描述的轮胎模型。它虽然精度较高, 但是求解速度一般较低, 用数学表示的公式常常很复杂, 同时需要更多的对轮胎结构
2017/11/15
第三章
轮胎动力学
4. 用于固定在轮辋的 胎唇部分:它内部的胎 唇钢丝圈可以使轮胎牢 牢地固定在轮辋上,使 之结合在一起。 5. 气密层:它保证了
车辆动力学 - 轮胎 - 2解读
使用的模型参数少,拟合方便。
• 1973年,郭孔辉教授于长春汽车研究所领导设计 了我国第一台轮胎静特性试验台QY7329在大量试 验和理论研究的基础上,于1986年提出了一种适 用于较大载荷和侧偏角变化范围的轮胎侧偏特性 半经验模型(单E指数模型),其表达式为:
UniTire轮胎模型
• 到1994年,为满足边界条件,进一步改进为以下 模型
• 另外一个试验轮胎和工况的拟合情况
经典稳态轮胎模型—Magic Formula
3.幂指数统一轮胎模型
郭孔辉院士提出的半经验模型- 幂指数统一轮胎模型
可用于轮胎的稳态侧偏、纵滑和纵滑侧偏联合工况。
通过获得有效的滑移率,也可计算非稳态工况下的轮 胎纵向力、侧向力及回正力矩。
模型特点
一次台架试验得到的试验数据可用于模拟不同的路面 只需改变路面的附着特性参数 纯工况和联合工况的表达式是统一的; 可表达各种垂向载荷下的轮胎特性;
车辆动力学 - 轮胎
北京科技大学USTB 车辆工程专业
轮胎结构
1. 轮胎模型
• 轮胎纵滑模型: 驱动和制动 工况的纵向力 • 轮胎侧偏模型 和侧倾模型: 侧向力,回 正力矩 • 轮胎垂向振动 模型: 高频振动
轮胎的输入与输出的关系
轮胎模型的分类
• 单一工况模型 – 轮胎纵滑模型 • 用于预测驱动和制动工况时的纵向力 – 轮胎侧偏模型和侧倾模型 • 侧向力和回正力矩 – 轮胎垂向振动模型 • 高频垂向振动 • 联合工况模型 – 轮胎纵滑侧偏特性模型
轮胎模型
用于轮胎设计的轮胎模 型:
• 预测轮胎性能,滚动阻力, 耐久性,噪声,胎面磨损, 应力/应变,印迹形状 • 定性或定量模型 • 有限元模型
FEM 有限元模型 tyre model runing over step
汽车动力学-轮胎动力学
◇无量纲,表达式统一,可表达各种垂向载荷下的
轮胎特性,参数拟合方便,能拟合原点刚度。
汽车系统动力学
3.3轮胎模型
□“魔术公式”轮胎模型 Pacejka提出,以三角函数组合的形式来拟合轮胎试验 数据,得出一套公式可以同时表达纵向力、侧向力和 回正力矩的轮胎模型。
汽车系统动力学
主讲:彭琪凯
汽车系统动力学
第三章 充气轮胎动力学
3.1概述 3.2轮胎的功能、结构与发展 3.3轮胎模型 3.4轮胎纵向力学特性 3.5轮胎垂向力学特性 3.6轮胎侧向力学特性
1
汽车系统动力学
3.1概述
1.轮胎运动坐标系
2
Fx □侧向力 F y □法向力 F z □翻转力矩 M x □滚动阻力矩 M y
□纵向力 □回正力矩
Mz
汽车系统动力学
3.1概述
3
2.车轮运动参数 □滑动率(s=0~1) ,表示车轮相对于 纯滚动(或纯滑动)状态的偏离程度。 ▢滑转率(驱动时) ▢滑移率(制动时)
rd uw s 100% rd u r sb w d 100% uw
旋转轴
Fz
uw
车轮运动方向 负侧偏角
8
轮胎模型分类
□轮胎纵滑模型,预测车辆在驱动和制动工况时的纵向力。 □轮胎侧偏和侧倾模型,预测侧向力和回正力矩。
□轮胎垂向振动模型,用于高频垂向振动的评价。
汽车系统动力学
3.3轮胎模型
几种常用的轮胎模型
□幂指数统一轮胎模型
9
由郭孔辉院士提出,用于预测轮胎的稳态特性。
x ▢稳态纯纵滑工况纵向力 Fx x Fz Fx x y y Fz Fy ▢稳态纯侧偏工况纵向力 Fy y
轮胎动力学及建模方法
“魔术公式”轮胎模型(Magic Formula Tire Model)
“魔术公式”轮胎模型表达式:
y DsinC arctanBx EBx arctan Bx
式中,y可以是纵向力侧向力或回正力矩,自 变量x可以在不同的情况下分别表示轮胎的侧 偏角或纵向滑移率
“魔术公式”轮胎模型的特点
•1)统一性强,编程方便,需拟合参数较少, 且各个参数都有明确的物理意义,容易确定 其初值
•2)拟合精度比较高 •3)参数的拟合较困难,计算量大 •4)c值的变化对拟合的误差影响较大 •5)不能很好地拟合小侧偏情况下轮胎的侧偏
特性
1.3轮胎纵向力学特性
1)滚动阻力( Rolling resistance )
第一讲 轮胎动力学及建模方法
1.1轮胎的功能、结构及发展 1.2轮胎模型 1.3轮胎纵向力学特性 1.4轮胎垂向力学特性 1.5轮胎侧向力学特性
1.1轮胎的功能及结构
三种轮胎必备的基本功能:
•1) 支撑垂直负载,同时缓冲路面冲击 •2) 产生纵向的加速和制动力 •3) 产生供转向的侧向力
• A)滚动阻力是如何形成的? • B)构成: • C)滚动阻力的影响因素:
A)滚动阻力是如何形成的?
弹性车轮在硬路面上的滚动 从动轮在硬路面上滚动时的受力情况 加载前后胎侧形状的变化 轮胎径向压缩模式图 由路面变形和轮辙摩擦引起的附加滚动阻力 滚动阻力(波阻)示意图
弹性车轮在硬路面上的滚动
Relative tire temperature and rolling resistance during warm-up
图1-14 Relative tire temperature and rolling resistance during warm-up
汽车系统动力学第三章 充气轮胎动力学
第三章充气轮胎动力学§3-1 概述轮胎是车辆重要的组成部分,直接与地面接触。
其作用是支承整车的重量,与悬架共同缓冲来自路面的不平度激励,以保证车辆具有良好的乘坐舒适性和行驶平顺性;保证车轮和路面具有良好的附着性,以提高车辆驱动性、制动性和通过性,并为车辆提供充分的转向力。
一、轮胎运动坐标系二、车轮运动参数1.滑动率2.轮胎侧偏角a3.轮胎径向变形§3-2 轮胎的功能、结构及发展轮胎的基本功能包括:1)支撑整车重量;2)与悬架元件共同作用,衰减由路面不平引起的振动与冲击;3)传递纵向力,以实现驱动和制动;4)传递侧向力,以使车辆转向并保证行驶稳定性。
为实现以上功能,任何一个充气轮胎都必须具备以下基本结构:(1)胎体(2)胎圈(3)胎面常用的车用充气轮胎有两种,即斜交轮胎和子午线轮胎。
二者在结构上有明显不同,主要区别在于胎体帘线角度的不同。
所谓“帘线角”即为胎体帘布层单线与车轮中心线形成的夹角。
根据车辆动力学研究内容的不同,轮胎模型可分为:(1)轮胎纵滑模型主要用于预测车辆在驱动和制动工况时的纵向力。
(2)轮胎侧偏模型和侧倾模型主要用于预测轮胎的侧向力和回正力矩,评价转向工况下低频转角输入响应。
(3)轮胎垂向振动模型主要用于高频垂向振动的评价,并考虑轮胎的包容特性(包含刚性滤波和弹性滤波特性)。
这里仅对几种常用的轮胎模型给予介绍。
(1)幂指数统一轮胎模型幂指数统一轮胎模型的特点是:。
1)采用了无量纲表达式,其优点在于由纯工况下的一次台架试验得到的试验数据可应用于各种不同的路面。
当路面条件改变时,只要改变路面的附着特性参数,代人无量纲表达式即可得该路面下的轮胎特性。
2)无论是纯工况还是联合工况,其表达式是统一的。
3)可表达各种垂向载荷下的轮胎特性。
4)保证了可用较少的模型参数实现全域范围内的计算精度,参数拟合方便,计算量小。
在联合工况下,其优势更加明显。
5)能拟合原点刚度。
(2)“魔术公式”轮胎模型“魔术公式”轮胎模型的特点是:1)用一套公式可以表达出轮胎的各向力学特性,统一性强,编程方便,需拟合参数较少,且各个参数都有明确的物理意义,容易确定其初值。
轮胎动力学
l −l
接触区
− Rθ +l+ L
+ KR ∫
2
−l sin − 1 R
−π
非接触区
+ KR ∫
2
π
l sin − 1 R
(η e
1
(η e
1
σ
+η e
2
Rθ +l
σ
l− Rθ
σ
+η e
2
Rθ −l− L
σபைடு நூலகம்
)sin θ d θ
) sin θ d θ
简化并积分后得: M = K
2 2 F y = ∫0 l kη (ξ )dξ + ∫2ll + L kη (ξ )dξ 2 L = ∫0 l kη (ξ ) dξ + ∫0 kη (ξ ′) dξ ′
接触区 非接触区
为了确定轮胎在不接触(“自由”)部份的侧向位移 η (ξ ) 。 让我们来观察模型中的一个微元 dξ ′
2009-10-19 16
∫ η (ξ )ξ d ξ
−l
l
+ K σ (η 1 − η 2 )( l + σ )
2009-10-19
22
第二章
Q
轮胎动力学
−l ≤ ξ ≤ l
η (ξ ) = − ξϕ ,
η = − lΨ ,
1
η = lΨ
2
扭角ψ所产生的回正力矩为: 扭转刚度:
M = − 2 Kl Ψ [
l2 + σ ( l + σ )] 3
2009-10-19
11
第二章
轮胎动力学
车辆动力学仿真中的轮胎数学模型研究现状
车辆动力学仿真中的轮胎数学模型研究现状3471039 洛阳工学院 周学建 周志立 张文春 摘要 对车辆动力学仿真中的轮胎数学模型现状进行了分析,简要说明了轮胎动力学建模的新方法并进行了展望。
Abstract The current state of the mathematical m odel of tire dynamics is analysis.The new methods of m odelling are ex2 plained and forecasted. 关键词:车辆 轮胎 动力学 数学模型 车辆的充气轮胎具有支承车辆质量、在车辆驶过不平地面时进行缓冲、为驱动和制动提供足够附着力、提供足够的转向操纵与方向稳定性的作用。
除空气的作用力和重力外,几乎其他影响地面车辆运动的力和力矩皆由轮胎与地面接触而产生。
因此,轮胎动力学特性的研究,对研究车辆性能来说是非常必要的[1]。
车辆运动依赖于轮胎所受的力,如纵向制动力和驱动力、侧向力和侧倾力、回正力矩和侧翻力矩等。
所有这些力都是滑转率、侧偏角、外倾角、垂直载荷、道路摩擦系数和车辆运动速度的函数,如何有效地表达这种函数关系,即建立精确的轮胎动力学数学模型,一直是轮胎动力学研究人员所关心的问题。
轮胎的动力学特性对车辆的动力学特性起着至关重要的作用,特别是对车辆的操纵稳定性、制动安全性、行驶平顺性具有重要的影响。
现代车辆动力学的发展不仅需要建立能反映物理实际的精确轮胎模型,而且需要建立的轮胎数学模型能满足车辆不同方面研究,如多自由度仿真、先进车辆控制系统的需要[2]。
1 轮胎动力学建模方法及研究现状轮胎动力学建模方法有理论方法、经验和半经验方法,建立的模型有理论模型、经验和半经验模型。
1.1 理论模型由于轮胎的结构十分复杂,在侧偏和纵滑时其受力和变形难于确定,另外,轮胎和路面之间的摩擦耦合特性也具有不稳定的多变性。
在目前阶段,很难根据轮胎的物理特性和真实的边界条件来精确地计算轮胎的偏滑特性。
轮胎动力学与仿真
F 1 exp E 2 E2 1/123
1
1
D D D exp D D 2 D
x
0
3
1
2
3
第 17 页
(威海) 汽车工程学院
HARBIN INSTITUTE OF TECHNOLOGY
SCHOOL OF AUTOMOBILE ENGINEERING
规格严格 功夫到家
2.2.3 轮胎半经验模型-UniTire 模型
第1页
(威海) 汽车工程学院
HARBIN INSTITUTE OF TECHNOLOGY
SCHOOL OF AUTOMOBILE ENGINEERING
2.1 轮胎六分力
规格严格 功夫到家
➢ 汽车行驶时, 轮胎受到沿 三个方向的 力以及绕三 个轴的力矩, 即为轮胎六 分力。
第2页
(威海) 汽车工程学院
SCHOOL OF AUTOMOBILE ENGINEERING
规格严格 功夫到家
2.2.1 轮胎理论模型-Gim轮胎模型
➢ 轮胎纵向临界滑动率、侧向临界滑动率和无量纲滑 动率分别为:
s
3F z
xc
c
x
c sx c yc
y
s2 s2
xc
x
s 1 c s 2 c s
s 3F
xx
yy
z
第 13 页
第 21 页
(威海) 汽车工程学院
INSTITUTE OF TECHNOLOGY
SCHOOL OF AUTOMOBILE ENGINEERING
规格严格 功夫到家
2.3.1 轮胎制动-驱动特性理论模型
➢ 轮胎的制动-驱动特性是影响汽车制动安全性与加速性的重 要特性,也是研究制动-驱动工况下的轮胎侧偏特性的基础。 在建立轮胎制动-驱动工况理论模型时,假设:
轮胎动力学特性及模型分析
在对车辆操纵稳定性的稳态特性进行仿真时,可以使用由 H.B.Pacejka教授提出的魔术公式来对轮胎实验数据进行拟合。魔术公 式是一组三角函数组合公式,在侧向加速度≤0.4 g、侧偏角≤5º情况 下,对普通轮胎有很高的拟合精度[4]。纵向力学特性方程如下。
(1) 侧向力学特性方程如下。
(2) 回正力矩力学特性方程如下。
1 轮胎模型基本参数
轮胎基本尺寸常标于轮胎侧面,如195/55R16,其中195代表轮 胎名义断面宽度为195 mm;55代表轮胎扁平比,是轮胎高度与名义 断面宽度之比;R代表子午线轮胎;16代表轮辋直径[1]。轮胎模型的 基本参数为名义载荷、空载轮胎半径、名义气压和车轮质量。
2 轮胎动力学特性 2.1 纵向力学特性
加速和制动时所需的摩擦力来自于轮胎滚动速度和行驶速度之 间的差值,这个差值可以用滑动率κ来进行表示。车轮自由滚动时其 滑动率为0%,车轮抱死时滑动率为100%。干路面上,轮胎刚开始 滑动时,能够产生的摩擦力随滑动率增加而显著增加,在滑动率接近 15%~20%时,其附着力达到最大值。滑动率超过该点抱死车轮的车辆,在干路面上能够缩短制动距离的理论依据。 2.2 侧向力学特性
轮胎回正力矩有别于由主销后倾导致的回正力矩,轮胎回正力矩 是由于充气轮胎前进过程中,接触区相对车轮接触中心不对称变形导致 的。车轮实际接触位置一般在车轮平面以后,车轮受到的侧向力所形成 的合力作用点,位于轮胎接地印迹几何中心后方,该偏移距离称为“充气 轮胎拖距(pneumatic trail)”,回正力矩大小等于侧向力×轮胎拖距。轮胎 产生的回正力矩本身对车辆影响较小,但由于其作用于转向系统,通过 转向系统而引起转向变形角,可对车辆转向不足梯度产生重要影响。 2.4 附着椭圆
车辆操纵动力学中轮胎模型的研究
在车辆操纵动力学模型中轮胎模型的研究一、轮胎力学特性和建模的研究历史与现状轮胎动态特性的研究可以追溯到上个世纪三十年代,Bradly和Allen(1931)为了研究汽车的动态特性,开始涉及到轮胎的动态特性。
接着又有很多科学家致力于轮胎动态特性的研究,德国的Fromm(1941)对轮胎结构进行了简化,推导出了描述轮胎侧偏特性的简单理论模型,第一次对轮胎的侧偏特性进行了理论研究。
Fiala(1954)在弹性“梁”模型的基础上,建立了侧向力,回正力矩与侧偏角和外倾角的关系。
在以后的几十年中,Fiala的理论模型得到了进一步的研究和改进。
Frank(1965)在Fiala理论模型的基础上,把胎体看作一个受弯曲的梁,研究了胎体弯曲对轮胎特性的影响。
从六十年代开始,Pacejka将胎体的变形简化为受拉的“弦”,对轮胎的静态和动态特性进行了大量的理论和试验研究。
并在后来(1989,1991)对模型进行了进一步的改进和发展,形成了著名的“Magic Formula”模型。
Sharp(1986)提出了轮辐式轮胎模型,将轮胎看作完全由相同的径向轮辐组成,这些轮辐与轮毂连接在一起,而且具有弹性。
轮辐的周期性变化会导致迟滞损失。
建立了与实际相当吻合的轮胎模型。
九十年代初,随着汽车先进底盘控制技术,虚拟原型设计以及计算机辅助工程等先进技术的飞速发展,轮胎的动态力学特性研究受到了广泛的重视。
有很多科学家致力于动态特性的研究,也得到了飞速的发展。
我国郭孔辉教授领导的科研小组二十几年来一直致力于轮胎力学特性的理论和试验研究,自行开发了具有多种功能的轮胎力学特性试验台,并利用该试验台在试验研究和理论研究上取得了重大突破。
郭孔辉教授(1986)建立了具有任意印迹压力分布的轮船侧偏特性简化理论模型。
并在该模型基础上先后推导出了纵滑侧偏特性简化理论模刑(1986),用于汽车转向,制动与驱动动态仿真的统一模型(1986),并在大量试验和理论研究的基础上提出了一种适用于较大载荷和侧偏角变化范围的轮胎侧偏特性半经验模型(1986)。
第五章 轮胎式轨道车辆动力学
第五章轮胎式轨道车辆动力学第一节轮胎式轨道车辆一、概 述随着城市对各种轨道交通形式的需求,依靠轮胎走行方式的轨道车辆已成功地运用在一些国家的单轨交通和胶轮地铁中,并扩展到自动化导向交通系统(AGT)中。
近年来,我国的重庆市也采用了这种典型的轮胎走形、导向的轨道交通方式。
单轨交通分为两种形式:跨坐式和悬挂式。
跨坐式单轨交通车辆以高强度混凝土或者钢制箱形梁作为轨道(轨道梁),车体安装在轮胎走行部之上,整个车辆跨坐在轨道梁上方运行,见图1。
而悬挂式单轨车辆使用下部开口的钢制轨道梁,车体悬挂在安装有橡胶轮胎的走行部下方,整个车辆吊挂在轨道下方运行。
在强风情况下,跨坐式单轨车辆比悬挂式单轨车辆更加稳定与支全,因此跨坐式单轨车辆已经发展成一种具有中等运量的城市轨道交通系统,特别在日本得到了较多的应用,本章将以跨坐式单轨方式为基础来阐述轮胎式导向轨道车辆动力学理论。
图1 跨坐式单轨车辆传统的钢轮钢轨车辆主要靠带轮缘的锥型踏面走行与导向,而轮胎式轨道交通车辆的曲线通过是依靠走行部导向轮胎的引导实现。
轮胎式轨道交通车辆都设有走行轮和导向轮,走行轮承担车体重量,担负牵引、制动等走行功能,导向车轮负责引导车辆沿着轨道行驶。
按照导向轮的安装位置,采用橡胶轮胎走行的AGT系统车辆可分为外侧导向式和内侧导向式两大类。
外侧导向式车辆的导向轮胎安装在走行部的外侧,与U形轨道相配合,如图2所示。
内侧导向式车辆的导向轮胎安装在走行部的内侧,与倒T形轨道相配合,如图3所示。
图2 外侧导向式AGT系统车辆图3 内侧导向式AGT系统车辆图5—4 AGT系统车辆的走行部橡胶充气轮胎走行部具有以下特点:①黏着系数大,橡胶与钢或混凝土的摩擦系数显著高于钢与钢之间的摩擦系数,故橡胶轮胎车辆的加速和减速性能明显优于钢轮—钢轨系统的车辆,这在市内站距较短时对于提高平均运行速度非常有利,同时也有利于运行安全性。
高的黏着系数还使橡胶轮胎车辆能适应在大坡度的线路上运用,线路坡度最大可达10%,便于丘陵、山地城市的选线,以及具有地下线路与地面高架线路连接需要的地方。
同济大学《汽车理论》第一章汽车轮胎力学与空气动力学精选全文完整版
3.FY-α曲线
FY k
k—侧偏刚度。
FY一定时希望侧 偏角越小越好,所 以 |k| 越大越好。
三、轮胎结构、工作条件对侧偏特性的影响
轮胎的尺寸、型式和结构参数对侧偏刚度有显著影响。
大尺寸轮胎
大尺寸轮胎
子午线轮胎
侧偏刚度大
钢丝子午线轮胎
斜交轮胎 纤维子午线轮胎
侧偏刚度小
小尺寸轮胎
(1)扁平率小,k大
纵向滑移率 侧偏角 经向变形 车轮外倾角 车轮转速 前轮转向角
轮胎 模型
纵向力 侧向力 法向力 侧倾力矩 滚动助力矩 回正力矩
轮胎模型是汽车动力学研究的难点
• 目前还没有如此完备的轮胎模型 • 目前在车轮动力学研究中使用的三类轮胎
模型
–轮胎纵滑模型:主要用于汽车动力性、制动性 能研究
–轮胎侧偏模型:主要用于操纵稳定性研究 –轮胎垂直振动模型:主要用于NVH研究
第一节 轮胎力学
轮胎的基本知识
175/65 R 14 82 H
速度标记
负荷指数 轮辋直径 (in) 轮胎型号(R为子 午线,-为斜交胎) 扁平率(%) 轮胎宽度
➢轮胎的扁 平率:表征 轮胎的胎面 高度H与宽 度R的比值 (百分比)。
速度标记
速度标记 (GSY)
最高车速 (km/h)
速度标记 (GSY)
2.有外倾时FY与γ、α的关系
1)α=0
FY FYγ kγ
2)α≠0
FY FYαFYγ kkγ
3)有γ,FY=0,即a点
kkγ 0
kγ
k
4)γ过大对汽车产生 不良影响
影响轮胎与路面 的良好接触
汽车轮胎
5)外倾时产生的回正力矩
摩托车轮胎
第三章 轮胎动力学.
“H”表示速度级别:此轮胎最高时速为210km/h。不同的英文 字母表示不同的速度级别。
2020/9/30
第三章 轮胎动力学
轮胎的轮廓是由扁平率决定的,现代轿车的轮胎高宽比多是50%至 70%之间,这个百分比数值又称为系列,例如70%称为70系列。系列越 小,轮胎形状越扁平。现在兴起的低扁平化轮胎与地面接触面大,抓 地力强,除了具有操纵稳定性好外,还具有高速耐久力好和制动力好 的优点,因为扁平轮胎不容易产生“驻波”。
纵向滑移率 s
纵向力 Fx
侧偏角
径向变形
车轮外倾角
车轮转速
轮胎模型
侧向力 Fy 法向力 Fz 侧倾力矩 M x 滚动阻力矩 M y
横摆角 t
回正力矩 M z
2020/9/30
第三章 轮胎动力学
根据研究内容不同,轮胎模型可分为: 1、轮胎纵滑模型
预测车辆在制动和驱动时的纵向力
2、轮胎侧偏模型和侧倾模型
2020/9/30
第三章 轮胎动力学
汽车行驶必需经过轮胎的胎面花纹与路面的磨擦力产 生的抓地力执行其加速,减速及转向等功能。决定轮 胎抓地力的因素如下:轮胎接触面积、轮胎橡胶成分 及轮胎花纹、轮胎负荷、转向控制、滚动、耐磨。
在容易引起磨耗差异的胎肩部分,加入拱形设计, 提高块状刚性,使安静性和行车的安定性等各种 性能都能保持到其末期
uw
2020/9/30
第三章 轮胎动力学
轮胎侧偏角
车轮侧偏角表示车辆平面与车轮中 心运动方向的夹角,顺时针为正。 定义如下:
ar
c
tan
vw uw
轮胎径向变形
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
13
轮胎滚动阻力
□弹性迟滞阻力 ■产生过程
■驻波 高速工况;增加能量损失,产生大量热,限制最高 安全行驶速度。
汽车系统动力学
3.4轮胎纵向力学特性
轮胎滚动阻力
□摩擦阻力 □风扇效应阻力 □滚动阻力系数 滚动阻力 FR FR,弹性迟滞 FR,摩擦 FR,风扇
FR 滚动阻力系数 f R F z ,w eR f 滚动阻力系数 R rd
汽车系统动力学
3.5轮胎垂向力学特性
1.轮胎的垂向特性
22
2.轮胎噪声
3.轮胎垂向振动力学模型 4.轮胎振动对汽车性能的影响
汽车系统动力学
3.5轮胎垂向力学特性
1.轮胎和变形曲线来表示轮胎的刚度特性。
静刚度 静载荷与垂向变形的关系。
曲线斜率即为静刚度,可认为轮胎的静刚度不随载荷的变 化而变化。
制动
□传递侧向力,使车辆转向并保证行驶稳定性
汽车系统动力学
3.2轮胎的功能、结构及发展
轮胎的结构
□胎体 决定轮胎基本性能 □胎圈 便于胎体装卸 □胎面 保护胎体、内胎 ■胎冠 ■胎肩 ■胎侧
5
▢常用的充气轮胎有两种,斜交轮胎和子午线轮胎,主要 是胎体帘线角度的不同,前者为20-40度,后者为85-90度。
汽车系统动力学
3.5轮胎侧向力学特性
3.整车建模中对轮胎模型的考虑
在基本的线性操纵动力学模型中,轮胎只需产生与垂向载荷和侧 偏角呈线性关系的侧向力(包括回正力矩) 如果车辆模型考虑车辆载荷重新分配,轮胎模型还必须包括侧向 力和轮胎垂直载荷的关系 如果建模中考虑车身侧倾角与车轮外倾角的关系,轮胎模型必须 包括车轮外倾对轮胎力的影响 在非线性域分析中,轮胎模型必须能充分考虑大侧偏角情况下的 受力情况,并进行精确计算 如果车辆模型包括纵向自由度,轮胎模型必须包括纵向力。在需 要同时考虑纵向力和侧向力的联合工况下,轮胎模型必须能在两个 方向准确地分配所能获得的轮胎力。
汽车系统动力学
3.5轮胎垂向力学特性
1.轮胎的垂向特性
24
非滚动动刚度
滚动动刚度
汽车系统动力学
3.5轮胎垂向力学特性
2.轮胎噪声
轮胎噪声产生的机理: (1)空气泵吸效应 (2)胎面单元振动
25
3.轮胎垂向振动力学模型
弹簧-阻尼模型
汽车系统动力学
3.5轮胎垂向力学特性
4.轮胎振动对汽车性能的影响
汽车系统动力学
主讲:彭琪凯
汽车系统动力学
第三章 充气轮胎动力学
3.1概述 3.2轮胎的功能、结构与发展 3.3轮胎模型 3.4轮胎纵向力学特性 3.5轮胎垂向力学特性 3.6轮胎侧向力学特性
1
汽车系统动力学
3.1概述
1.轮胎运动坐标系
2
Fx □侧向力 F y □法向力 F z □翻转力矩 M x □滚动阻力矩 M y
弹簧-阻尼模型
3.5轮胎垂向力学特性
4.轮胎振动对汽车性能的影响
28
对汽车燃油经济性的影响
轮胎的振动必然将汽车行 驶中的一部分动能转变成轮胎 的变形,将生成热量并传到大 气中去,使汽车的能量损失, 使燃油经济性变差。
对汽车安全性的影响
汽车行驶过程中轮胎发生振动, 将影响轮胎与路面的附着能力,过 大的轮胎振动会导致轮毂轴承的异 常磨损,恶化汽车的技术状况,影 响汽车的行驶安全。
8
轮胎模型分类
□轮胎纵滑模型,预测车辆在驱动和制动工况时的纵向力。 □轮胎侧偏和侧倾模型,预测侧向力和回正力矩。
□轮胎垂向振动模型,用于高频垂向振动的评价。
汽车系统动力学
3.3轮胎模型
几种常用的轮胎模型
□幂指数统一轮胎模型
9
由郭孔辉院士提出,用于预测轮胎的稳态特性。
x ▢稳态纯纵滑工况纵向力 Fx x Fz Fx x y y Fz Fy ▢稳态纯侧偏工况纵向力 Fy y
4.轮胎振动对汽车性能的影响
27
对汽车操纵稳定性的影响
轮胎在汽车转弯行驶时发 生振动,会引起车身异常振动。 汽车转向盘发生摆振,驾驶员 无法操纵汽车行驶,导致汽车 的操纵稳定性变差。
对汽车行驶速度的影响
由于汽车振动时,汽车的 操纵稳定性变差,驾驶员不得 不使汽车减速以确保汽车安全 行驶。
汽车系统动力学
W
0
x
塑性路面
压实阻力
推土阻力 剪切阻力
x FR,塑性 FR FR,塑性
▢塑性路面阻力随胎 压的增加而增大
汽车系统动力学
3.4轮胎纵向力学特性
2.道路条件产生的附加阻力
17
湿路面
Wt uw E 扰流阻力 FR,扰流 ( ) 10 N 湿路面上的轮胎滚动阻力 F R,湿路 FR FR,扰流
汽车系统动力学
3.2轮胎的功能、结构及发展与比较
6
斜交轮胎
子午线轮胎
汽车系统动力学
3.2轮胎的功能、结构及发展
轮胎的发展 轮胎的材料、胎面花纹以及内部结构影响轮胎的物理 特性。
□低滚动阻力
7
□良好的平顺性
□良好的操稳性 □良好的附着性 □低噪声
汽车系统动力学
3.3轮胎模型
什么是轮胎模型?
纵向滑动率 s 侧偏角 车辆运动 参数 径向变形 车轮外倾角 车轮转速 转偏率 轮胎模型 纵向力Fx 侧向力Fy 法向力Fz 轮胎六 侧倾力矩M x 分力 滚动阻力矩M y 回正力矩 M z
汽车系统动力学
32
问题
什么是轮胎的驻波现象?
汽车的重量会使轮胎接触地面的部分稍有变形.车行驶时变形的部 分离开了路面后将恢复原状.如果从轮胎表面一个点来看,轮胎转一 次,这个点就发生一次变形和复原的过程.变形和复原是要时间的,在 高速行驶的时候,其复原速度赶不上轮胎的转速的话,就会在轮胎接 地面后侧引起驻波的异常形变现象,这就是驻波现象 在这种状态下,驻波的这部分花纹受到剧烈的摩擦而急剧升温 ,不 久就引起胎面橡胶从内部胎体剥落的现象.然后爆胎!更惨的是,从发 生驻波现象到爆胎,开车的人不会有任何感觉和预兆 ~不象漏个气,方 向跑偏什么的,这是高速上独有的致命的现象----驻波现象, 引起驻波现象的直接原因就是轮胎变形大,同时高速行驶,轮胎复 原速度赶不上轮胎的转速.所以在跑高速的时候(160公里以上) 要求更高的胎压减少变形,减少变形另外的方法是减少载重,速度越 高,就不能太接近胎壁上标的那个最大荷重了。
汽车系统动力学
3.4轮胎纵向力学特性
3. 轮胎侧偏引起的附加阻力
18
侧向载荷的影响
F ' R,侧偏 FR cos Fy sin
F ' R,侧偏 FR FR (1 cos ) Fy sin
由侧偏角引起的附加 滚动阻力系数
由轮胎侧偏 附加的阻力
f R,侧偏
Fy sin FR (1 cos ) Fz ,W
uw
vw □轮胎侧偏角 arctan( ) 顺时针方向为正 uw
Fy
负的轮胎侧向力产生正的侧偏角 □轮胎径向变形
vw
轮胎印迹
无负载轮胎径向半径与负载时半径之差。
汽车系统动力学
rd
3.2轮胎的功能、结构及发展
轮胎的功能
□支撑整车质量
□与悬架共同作用,衰减
4
由路面不平引起的振动 与冲击
□传递纵向力,实现驱动和
▢稳态纯侧偏工况回正力矩 M z Fy Dx ▢稳态纵滑侧偏联合工况
◇无量纲,表达式统一,可表达各种垂向载荷下的
轮胎特性,参数拟合方便,能拟合原点刚度。
汽车系统动力学
3.3轮胎模型
□“魔术公式”轮胎模型 Pacejka提出,以三角函数组合的形式来拟合轮胎试验 数据,得出一套公式可以同时表达纵向力、侧向力和 回正力矩的轮胎模型。
汽车系统动力学
32
14
■滚动阻力系数随着胎压增加而降低 ■滚动阻力系数随着车轮载荷增加而降低
■滚动阻力系数随着车速增加而增加
汽车系统动力学
3.4轮胎纵向力学特性
轮胎滚动阻力
□滚动阻力系数测量 ■整车道路测试 ■室内台架测试
15
汽车系统动力学
3.4轮胎纵向力学特性
2.道路条件产生的附加阻力
16
路面不平
不平路面阻力 FR,不平
□Fiala模型
□Gim模型
□Dugoff模型
□有限元模型
……
汽车系统动力学
3.4轮胎纵向力学特性
1.干、硬的平坦路面上轮胎滚动阻力及其产生机理 2.道路条件引起的附加阻力 3.轮胎侧偏引起的附加阻力 4.总的车轮滚动阻力 5.轮胎纵向力与滑动率的关系
12
汽车系统动力学
3.4轮胎纵向力学特性
1.干、硬的平坦路面上轮胎滚动阻力及其产生机理
汽车系统动力学
弹簧-阻尼模型
3.5轮胎侧向力学特性
1.纯转向工况
29
前轮外倾角
侧偏角
垂向载荷
汽车系统动力学
30
不同垂向载荷作用下的轮胎侧向力与侧偏角关系
汽车系统动力学
3.5轮胎侧向力学特性
2.联合工况 轮胎的垂向载荷、侧向力与纵向力之间相互影响
31
摩擦椭圆
车辆转弯加速或转弯制动时,由于受摩擦力的限制,轮胎 不能同时获得最大的侧向力和最大的纵向力。
□纵向力 □回正力矩
Mz
汽车系统动力学
3.1概述
3
2.车轮运动参数 □滑动率(s=0~1) ,表示车轮相对于 纯滚动(或纯滑动)状态的偏离程度。 ▢滑转率(驱动时) ▢滑移率(制动时)
rd uw s 100% rd u r sb w d 100% uw
旋转轴
Fz
uw