小学五年级行程应用题及答案
行程问题的应用题及答案
行程问题的应用题及答案1、龟兔进行10000米赛跑,兔子的速度是乌龟的速度的5倍。
当它们从起点一起出发后,乌龟不停地跑,兔子跑到某一地点开始睡觉,兔子醒来时乌龟已经领先它5000米;兔子奋起直追,但乌龟到达终点时,兔子仍落后100米。
那么兔子睡觉期间,乌龟跑了多少米?分析:兔子跑了10000-100=9900米,这段时间里乌龟跑了9900*1/5=1980米,兔子睡觉时乌龟跑了10000-1980=8020米答:兔子睡觉期间乌龟跑了8020米。
2、小明从家到学校有两条一样长的路,一条是平路,另一条是一半上坡路、一半下坡路。
小明上学走两条路所用的时间一样多。
已知下坡的速度是平路的1.5倍,那么上坡的速度是平路的多少倍?分析:解法1:设路程为180,则上坡和下坡均是90。
设走平路的速度是2,则下坡速度是3。
走下坡用时间90/3=30,走平路一共用时间180/2=90,所以走上坡时间是90-30=60 走与上坡同样距离的平路时用时间90/2=45 因为速度与时间成反比,所以上坡速度是下坡速度的45/60=0.75倍。
解法2:因为距离和时间都相同,所以平均速度也相同,又因为上坡和下坡路各一半也相同,设距离是1份,时间是1份,则下坡时间=0.5/1.5=1/3,上坡时间=1-1/3=2/3,上坡速度=(1/2)/(2/3)=3/4=0.75解法3:因为距离和时间都相同,所以:1/2*路程/上坡速度+1/2*路程/1.5=路程/1,得:上坡速度=0.75答:上坡的速度是平路的0.75倍。
3、一只小船从甲地到乙地往返一次共用2小时,回来时顺水,比去时的速度每小时多行驶8千米,因此第二小时比第一小时多行驶6千米。
那么甲、乙两地之间的距离是多少千米?分析:解法1,第二小时比第一小时多走6千米,说明逆水走1小时还差6/2=3千米没到乙地。
顺水走1小时比逆水多走8千米,说明逆水走3千米与顺水走8-3=5千米时间相同,这段时间里的路程差是5-3=2千米,等于1小时路程差的1/4,所以顺水速度是每小时5*4=20千米(或者说逆水速度是3*4=12千米)。
小学五年级-行程问题
行程问题(一)例1 甲、乙两车同时从东、西两地相向开出,甲车每小时行56千米,乙车每小时行48千米。
两车在距中点32千米处相遇,东、西两地相距多少千米?分析与解答从图中可以看出,两车相遇时,甲车比乙车多行了32×2=64(千米)。
两车同时出发,为什么甲车会比乙车多行64千米呢?因为甲车每小时比乙车多行56-48=8(千米)。
64里包含8个8,所以此时两车各行了8小时,东、西两地的路程只要用(56+48)×8就能得出。
32×2÷(56-48)=8(小时)(56+48)×8=832(千米)答:东、西两地相距832千米。
练习一1,小玲每分钟行100米,小平每分钟行80米,两人同时从学校和少年宫出发,相向而行,并在离中点120米处相遇。
学校到少年宫有多少米?2,一辆汽车和一辆摩托车同时从甲、乙两地相对开出,汽车每小时行40千米,摩托车每小时行65千米,当摩托车行到两地中点处时,与汽车还相距75千米。
甲、乙两地相距多少千米?3,甲、乙二人同时从东村到西村,甲每分钟行120米,乙每分钟行100米,结果甲比乙早5分钟到达西村。
东村到西村的路程是多少米?例2 快车和慢车同时从甲、乙两地相向开出,乙车每小时行40千米,经过3小时,快车已驶过中点25千米,这时快车与慢车还相距7千米。
慢车每小时行多少千米?分析与解答快车3小时行驶40×3=120(千米),这时快车已驶过中点25千米,说明甲、乙两地间路程的一半是120-25=95(千米)。
此时,慢车行了95-25-7=63(千米),因此慢车每小时行63÷3=21(千米)。
(40×3-25×2-7)÷3=21(千米)答:慢车每小时行21千米。
练习二1,兄弟二人同时从学校和家中出发,相向而行。
哥哥每分钟行120米,5分钟后哥哥已超过中点50米,这时兄弟二人还相距30米。
弟弟每分钟行多少米?2,汽车从甲地开往乙地,每小时行32千米。
小学应用题行程问题专项练习210题(有答案解析)
行程问题专项练习210题(有答案)1.王叔叔骑自行车从甲地到乙地,如果每小时行12千米,5小时到达,如果想提前1小时到达,每小时需要行多少千米?2.一辆小汽车每小时行98千米,这辆小汽车往返甲地到乙地一次要6小时,甲、乙两地之间的距离是多少千米?3.甲、乙两车同时从A、B两城出发相向而行.甲每小时行60千米,乙每小时行50千米,出发2小时后乙车行了全程的,A、B两城相距多少千米?4.甲乙两地相距405千米,一辆汽车从甲地开往乙地,4小时行驶了180千米.照这样的速度,再行驶多少小时,这辆汽车就可以到达乙地?5.快车和慢车从甲、乙两地同时相对开出,1.4小时后两车相遇,快车每小时行53千米,慢车每小时行45千米,甲、乙两地间的公路长多少千米?6.甲、乙两辆汽车从相距255千米A、B两地同时相向开出,甲车的速度是45千米/时,乙车的速度是40千米/时,他们几小时后相遇?7.甲、乙两车同时从A地开往B地,乙车6小时达到,甲车每小时比乙车慢8千米,因此比乙车迟到一小时达到.A、B两地间的路程是多少千米?8.甲乙两港相距120千米,一艘轮船从甲港驶往乙港用了5.5小时,返回时因为顺水比去时少用了1小时,求这艘轮船往返的平均速度.9.甲乙两人从东西两地同时出发,相向而行,甲每分钟行75米,乙每分钟行的是甲的,经过1小时相遇,求东西两地的距离是多少?10.上海至天津铁路长1375千米.一列火车从上海开往天津,当行了总路程的时,接到通知要求火车提速到每小时行110千米,再经过多少小时到达天津?11.甲、乙两站相距620千米,一列客车从甲站开往乙站,同时一列货车从乙站开往甲站,经过5小时在途中相遇,已知货车每小时行55千米,客车每小时行多少千米?(列方程解)12.客车每小时行65千米,货车每小时行60千米,客车从甲站先开出2小时,货车从乙站开出后,经4小时,两车相遇,甲乙两站相距多少千米?13.甲乙两人骑自行车从相距90千米的南北两地同时出发,相向而行.甲每小时行10千米乙的速度是甲的1.25倍,经过多长时间两人相遇?14.慢车每小时行驶58千米,快车每小时行驶85千米,两车相向而行,经过5小时相遇,相遇时快车比慢车多行多少千米?15.A、B二人从相距900米的两地同时相对而行,A的速度是60米/秒,B的速度是90米/秒,请问两人多长时间相遇?(请用两种方法解答)16.小明骑车从甲地到乙地,两地相距是12千米,他去时每小时行6千米,回来时每小时行4千米,小明来回平均每小时行多少千米?17.小强有一本书要给小刚,他们约好同时从家出发迎面而行.已知两家之间的路程是960米,小强的速度是8018.客车和货车同时从甲、乙两地相向而行,客车每小时行50.6千米,货车每小时行48.8千米,4.5小时相遇.甲、乙两地相距多少千米?19.沪宁高速公路全长约270千米,一辆轿车以96千米/时的速度从上海开往南京,已经行驶126千米,还需要多少小时到达南京?20.甲、乙两站相距246千米,A、B两辆汽车分别从甲站、乙站同时相向开出1.5小时后相遇.A汽车的速度是89千米/小时,B汽车的速度是多少.21.在一幅比例尺为1:9000000 的地图上量得A、B 两地的距离是5厘米,如果有两辆汽车同时从A、B 两地相对开出,速度分别为每小时行30千米和45 千米,问两辆汽车经过几小时后相遇?22.甲车从A地开往B地要10小时,乙车从B地开往A地要15小时,某日两车分别从两地同时相向开出,结果在距中点120千米处相遇.A、B两地相距多少千米?23.两列火车同时从甲、乙两地相向而行,4.2小时在途中相遇.已知慢车每小时行驶80千米,快车的速度是慢车的1.5倍.甲、乙两地相距多少千米?关系式:算式:24.两列火车从甲乙两地同时相对开出,4小时后在距离中点24千米处相遇.已知慢车的速度是快车的.快车和慢车的速度各是多少千米/小时?25.甲、乙两车同时从东、西两城出发相向而行,4小时相遇,已知甲车平均每小时行85千米,乙车平均每小时行65千米.东、西两城相距多少千米?26.一条公路,甲车行驶全程要12小时,乙车行驶全程时间是甲车的,如果两车同时从这条公路两端相向而行,几小时相遇?27.一只轮船从甲港出发顺水每小时航行24千米,3小时到达乙港.这只轮船返回时逆水航行,4小时回到甲港.这只轮船往返一次平均每小时行多少千米?28.甲、乙两辆汽车同时从扬州开往南京,经过4小时后,甲车落在乙车后面28千米.甲车每小时行68千米,乙车每小时行多少千米?29.姜堰与上海的公路长252千米,甲乙两辆大客同时从姜堰驶往上海,甲客车每小时行80千米,0.8小时后两车相距16千米.乙客车每小时至少行多少千米?30.一辆出租车和一辆中巴车分别从宁波北站和慈溪东站两地同时出发,在离中点4.5千米处相遇,已知中巴车速度是出租车速度的,求宁波北站与慈溪东站的路程.31.客车货车同时从A城开往B城,客车每小时行48千米,货车每小时行56千米,经过6小时,两车相距多少千米?32.小刚骑车上坡速度是每小时5千米,原路返回下坡速度是10千米,求小刚上、下坡的平均速度.33.甲、乙两列火车从相距700米的两地相对开出,甲车每小时行80千米,乙车每小时行75千米,甲车开出1小时后,乙车再开出,乙车开出多少小时后与甲车相遇?34.六一儿童节,学生们乘坐一辆旅游车去二龙山游玩.汽车在平面路段和上山路段各行了3小时,在平原一般车速是80千米/小时,在山区一般车速是40千米/小时;最后到达了山顶.这段路程有多长?35.甲乙两辆汽车分别从南京和上海同时出发,在沪宁高速公路上相对而行.甲车每小时行103千米,乙车每小时行112千米,经过1.2小时两车还相距16.08千米.沪宁高速公路全长多少千米?36.龟兔赛跑,全程2000米,龟每分钟爬25米,兔每分钟跑320米.兔自以为速度快,在途中睡了一觉,结果龟到终点时,兔离终点还有400米,兔在途中睡了几分钟?37.一辆汽车从甲地开往乙地,每小时以42.5千米的速度行了1.4小时,这时距终点还有26千米,甲乙两地相距多少千米?38.甲乙两地相距1020千米,一列客车和一列货车同时从甲乙两地相对开出,6小时相遇,已知客车与货车的速度比是9:8,求客车与货车每小时各行多少千米?39.小华和同学们到宋山参加野营活动,上山时,小华平均每分钟走60级台阶,下山平均每分钟走100级台阶,小华上山比下山多用8分钟,求从山脚到山顶共有多少级台阶?40.甲、乙两车从A、B两地同时出发经过6小时相遇,甲车每小时比乙车快5千米,两车的速度比是7:8,求A、B两地相距多少千米?41.泰州到姜堰的公路长18千米,从姜堰到泰州骑摩托车大约需20分钟,乘公共汽车大约需要30分钟.星期六爸爸和小华准备从姜堰到泰州去玩,爸爸从泰州骑摩托车,小华乘公共汽车,他们同时出发,当爸爸到达泰州后,小明离泰州还有多远?42.汽车上山的速度为36千米/小时,行5小时到达山顶,到山顶后立即按原路下山,速度为45千米/小时.汽车上山和下山共用多少小时?43.从甲城到乙城,原计划6小时行完全程,由于途中有4.8千米的道路不平,速度相当于原来的,因此晚到1244.小明在三段相等的时间内跑完一段路程.已知他在每段时间内的平均速度分别是每小时跑9千米、8千米和7千米,求小明跑这段路程的平均速度.45.甲地到乙地的公路长250千米,一辆客车和一辆货车同时从甲地开往乙地,客车每小时行100千米,货车每小时行80千米.客车到达乙地时,货车行了多少千米?46.甲乙两人同时从AB两地相对而行,甲走到全程的时与乙相遇.如果甲每小时走4.5千米,乙5小时可以走完全程.AB两地相距多少千米?47.李雷和韩梅梅住在同一条小河边,两家相距300米,一天李雷和韩梅梅约定同时从家里出发,沿这条小河边行走,李雷每分钟走60米,韩梅梅每分钟走90米,多少分钟后两人相距3000米?(分情况思考.)48.某基地设有甲、乙应急直升飞机,执行山区抢救任务.某日,甲直升机以400km/h的速度,乙直升机以300km/h 的速度,飞往某地.甲直升机提前0.5h到达,乙直升机迟到0.5h.基地与某地的飞行距离是多少km?49.在比例尺是1:4000000的地图上,量得甲、乙两地相距20厘米,两列火车同时从甲、乙两地相对开出、甲车每小时行60千米,乙车每小时行40千米,几小时后相遇?50.一个人从东村步行到西村,走了路长的后,离中点还有km.东西两村之间路长多少千米?51.一架飞机所带燃料最多可以用8.8小时,飞机去时顺风,每小时可飞1800千米,返回时逆风,每小时可飞1500千米,这架飞机最多飞出多少千米就需要往回飞?52.甲乙两人同时骑自行车由A城到B城.甲每小时行12千米,乙每小时行9千米.甲在途中停留了4小时,因此甲比乙迟到1小时.问AB两城相距多少千米?53.客车从甲地,货车从乙地同时相对开出.6小时后,客车距离乙地还有全程的,货车超过中点54千米.已知客车比货车每小时多行15千米,甲乙两地间的路程是多少千米?54.A、B两辆汽车从同一地点向相反方向开出,A汽车每小时行驶40千米,B汽车每小时行驶45千米,如果A汽车先开2小时后,B汽车才开出.A汽车出发多少小时后两辆汽车相距335千米?55.A、B两地相距460千米,甲列车从A地开出2小时后,乙列车从B地出发,经4小时与甲列车相遇,已知甲列车比乙列车每小时多行10千米,问甲车平均每小时行多少千米?56.一辆客车和一辆货车分别从甲乙两地同时出发相向而行,客车平均每小时行82千米,货车平均每小时行66千米,4小时后两车还相距70千米,甲乙两地相距多少千米?57.甲、乙两人步行速度之比是7:5,甲、乙分别从A、B两地同时出发.如果相向而行,0.5小时后相遇,如果他们同向而行,那么甲追上乙需要多长时间?58.甲车每小时行6千米,乙车每小时行5千米,两车于相隔10千米的两地同时相背而行,几小时后两人相隔65千米?59.一人从A地走到B地要走两个路程相等的平坡、一上坡、一个坡(上下坡路程相等),平坡速度4km一小时、上坡速度3km一小时、下坡速度6km一小时共走了6小时问一个平坡和一个上坡多少km?60.从A地到B地,甲车需10个小时,乙车需8个小时,现甲、乙两车分别从A、B两地同时相向而行,而在距A、B两地中点40千米处相遇,求A、B两地相距多少千米?61.甲乙二人从AB两地相向而行,甲每小时走10千米,乙每小时走15千米,6小时后甲乙二人相距的长度,正好是全长的25%,求AB两地长多少千米?(写出所有可能)62.一个圆形跑道,全长700米.甲乙两人同时同地出发,相背而行.甲每秒钟跑7.5米,乙每秒跑6.5米,几秒钟后两人相遇?63.小花参加了一场3000米的赛跑,她以6米每秒的速度跑了一段路程后,又以4米每秒的速度跑完了其余的路程,一共花了10分钟,小花以6米每秒的速度跑了多少米?64.轮船从甲港开往乙港,顺水而行每小时行28千米,返回甲港时逆水而行用了6小时,已知水速是每小时4千米,甲乙两港相距多少千米?65.客轮从甲地开往乙地,已知甲乙两地相距270千米,客轮从甲地顺水以每小时27千米的速度航行到乙地要用9小时,这样水速度是每小时多少千米?66.一辆快车和一辆慢车同时从甲乙两地相向而行,3小时后,快车距乙地还有全程的,慢车距甲地还有54千米,已知快车每小时比慢车多行5千米,甲乙两地相距多少千米?67.狗和兔子赛跑,狗每分钟跑400米,兔子每分钟跑320米,5分钟后狗和兔子相距多少?68.一辆汽车从甲地开往乙地,如果把车速提高,那么要比原定时间提前1小时到达,如果以原速行驶162千米,再把速度提高,也比原定时间提前1行驶到达.甲、乙两地相距多少千米?69.沪杭高铁列车已经开通,运行时最高时速达到416.6千米/时.一列高铁列车从杭州开往上海,已经行了全程的,恰好距中点25千米处,沪杭高铁长约多少千米?70.总路程是50千米,上坡、平路、下坡的路程比为1:2:3,行各段的时间比4:5:6,上坡速度是3km/h,求行完全程的时间.71.甲乙丙三车的速度比是11:9:7,三车同时出发,甲车从东站向西站行驶,乙丙两车从西站向东站行驶,甲乙两车相遇时,甲车比乙车多行了54千米,甲丙相遇时,丙车行了_________ 千米.72.小珊骑自行车从家去实验小学要20分钟,如果她从家乘校车要8分钟.一天小珊从家骑自行车出发5分钟后,因车有故障,正好校车经过,立即改乘校车,问还要多长时间才能到达学校?73.一架飞机从甲地开往乙,原计划每分钟飞行9千米,现在按每分钟12千米的速度飞行,结果比原计划提前半小时到达,甲、乙两地相距多少千米?74.一艘轮船从A港开往B港,计划每小时行20千米,实际每小时比计划多行2.4千米,这样行了4.5小时后,离B港还有11千米,求AB两港相距多少千米?75.某小学组织学生排队去郊游,步行速度为每秒1米,队尾的王老师以每秒2.5米的速度赶到排头,然后立即返回队尾,共用了10秒钟.队伍长多少米?76.甲乙两地相距48千米,其中一部分是上坡路,其余是下坡路.某人骑自行车从甲地到乙地后沿原路返回.去时用了4小时12分,返回时用了3小时48分.已知自行车的上坡速度是每小时10千米,求自行车下坡的速度.77.甲、乙两车从A、B两地相向而行,3小时后两车相距120千米,照这样的速度又行驶3小时,仍然相距120千米.求 A、B两地的路程.78.两个顽皮的孩子逆着自动扶梯行驶的方向行走,男孩每秒可走3级楼梯,女孩每秒可走2级楼梯,结果从扶梯的一端男孩走了100秒,女孩走了300秒,问:该扶梯共有多少级扶梯?79.从甲地到乙地的路全是上坡路和下坡路,其中上坡路的路程是下坡路的2倍.一辆汽车从甲地到乙地,行上坡路的速度是下坡路的一半,行1.5h到达,从乙地返回甲地,要行多少h?80.甲乙两车同时从A地开往B地,当甲车行完全程的时,乙车离B地还有140千米,照这样的速度,当甲车到达B地时,乙车行完全程的,A、B两地相距多少千米?81.小王每分钟步行40米,小张每分钟步行50米,他们从甲到乙.小李每分钟骑车150米,从乙地到甲地.他们3人同时出发,在小张小李相遇后1分钟,小王与小李相遇.那么,小李骑车从乙地到甲地要多少分钟?(得数保留整数)82.甲乙两辆客车上午8时同时从两个车站出发,相向而行,经过一段时间,两车同时到达一条河的两岸.由于河上的桥正在维修,车辆禁止通行,两车需交换乘客,然后按原路返回各自出发的车站,到站时已是下午2点.甲车每小时行40千米,乙车每小时行 45千米,两地相距多少千米?(交换乘客的时间略去不计)83.一艘轮船从甲港出发到乙港,顺水航行每小时行25千米,8小时到达乙港,接着逆水航行往回返,每小时行20千米,求这艘轮船往返一次的平均速度.84.甲、乙、丙三人同时从A地出发去距A地100千米的B地,甲与丙以25千米/时的速度乘车行进,而乙却以5千米/时的速度步行,过了一段时间后,丙下车改以5千米/时的速度步行,而甲驾车以原速折回,将乙载上而前往B地,这样甲、乙、丙三人同时到达B地,此旅程共用时数为多少小时?85.甲乙两人相距1200米,两人相向而行,甲每分钟70米,乙每分钟50米,甲带一条狗,来往奔跑于甲乙两人之间,每分钟200米,甲乙相遇时,狗跑了多少米?86.公路两边的电线杆间隔都是30米,一位乘客坐在行驶的汽车中,他从看到第1根电线杆到看到第26根电线杆正好是3分钟,求这辆汽车的速度是每小时行多少千米?87.甲乙两城的公路长360千米,小王自己驾车从甲城去乙城,出发前他去加油站加满了一箱油,当行了240千米时,他看了一下燃油表,发现邮箱里的油还剩下,汽车到乙城要不要再加油?(请计算说明)88.小明和小红同时从A地出发,小明向西行30米,小红向东行20米,然后两人以相同的速度相向而行.当他们相遇时,在A点的哪个方向?距A点有多远?89.客、货两车同时从甲、乙两地相对开出,6小时后,客车行的路程与未行的路程比是7:1,货车超过中点54千米,已知客车比货车每小时多行15千米,甲、乙两地相距多少千米?90.一辆长途客车从甲地开往乙地后立即返回甲地,往返共用了20小时,往返所用的时间比是3:2,回来每小时比去时快25千米,甲乙两地相距多少千米?91.在60米赛跑中,甲冲过终点线时,比乙领先10米,乙比丙领先29米.假如乙和丙的速度始终不变,那么当乙到达终点时,将比丙领先多少米?92.一列客车从甲地出发开往乙地,同时一列货车从乙地出发开往甲地,12小时后客车距乙地还有全程的的路程,货车则超过中点50千米.已知客车每小时比货车多行18千米,甲、乙两地的路程是多少千米?93.小强骑自行车从家到学校去,平常只用20分钟.由于途中有2千米正在修路,只好推车步行,步行速度只有骑车的1/3,结果用了36分钟才到学校.小强家到学校有多少千米?94.两条公路成十字交叉型,甲从十字路口南1200米处向北直行,乙从十字路口处向东直行.甲、乙同时出发10分钟后,两人与十字路口的距离相等.出发后100分钟,两人与十字路口的距离再次相等,此时距十字路口多少米?96.一辆汽车每小时行驶50千米,所带的汽油最多可以用6小时,在不加油的情况下,为保证返回出发地,最多开出多少千米就应往回行驶了?97.甲、乙两地相距420千米,一辆汽车从甲地开往乙地,每小时行60千米,行了240千米后遇到从乙地开来的另一辆汽车.如果从乙地开往甲地的汽车每小时行40千米,算一算,这两辆汽车是不是同时开出的?98.小军和小亮在400米的环形跑道上,从同一地点相背出发,经过50秒后两人第一次相遇.小军每秒跑4.5米,小亮每秒跑多少米?99.某校开展行军活动,以每小时20千米的平均速度前进,在行军中,排尾的通讯员以每小时25千米的速度追赶排头,当赶上排头后又立即返回,当通讯员回去到排尾时,队伍前进了3千米,示通讯员从排头返回排尾进走了多少千米?(列式解答)100.一列火车从甲城开往乙城.如果以每小时24千米的速度行驶,它将于下午1时到达乙城;如果以每小时40千米的速度行驶,它将于上午11时到达乙城.要使这列火车于中午12时到达乙城,那么这列火车应以怎样的速度行驶?101.甲乙两车分别从A、B两地同时相向而行,经过4小时相遇.相遇时甲乙两车行驶的路程比是8:7;已知乙车每小时比甲车少行15千米.求甲乙两车从出发到相遇所行的路程各是多少千米?102.趣味应用题龟兔赛跑,比赛全程2000米,龟每分钟爬25米,兔每分钟跑400米,兔子觉得龟跑得太慢了,跑了一会儿就睡了一觉,当龟到达终点时,兔离终点还有800米.兔子中途睡了几分钟?103.上海到北京大约有1200千米的路程,乘高铁从上海去北京只要4.8小时,从上海到北京的快速火车的平均速度只有100千米/时,求高铁的速度是快速火车的几倍?104.一辆客车从广州开往武汉,同时一辆货车同时从武汉开往广州,4小时后两车相遇,相遇后又经过3小时,这时客车距武汉还有45千米,货车距广州还有70千米,广州到武汉相距多少千米?105.一列火车提速前平均每小时行72千米,比提速后平均每小时少行34千米,这列火车提速后24小时能行多少千米?106.快车和慢车同时从甲乙两地相对开出,快车每小时行33千米,相遇是已行了全程的七分之四,已知慢车行完全程需要8小时,求甲乙两地的路程.107.一辆汽车从甲地到乙地,每小时行驶160千米,已经行了12小时,离乙地还有485千米,甲地到乙地有多少千米?108.学校举行趣味赛跑,在120m的跑道上,丽丽背着小梁以每分25米的速度走了一段路,然后小梁背着丽丽以每分15米的速度走到终点.他们的平均速度是每分20米,丽丽、小梁各走了多少路程?109.山脚到山顶有24千米.一个人以每小时4千米的速度上山,他立即从原路下山,已知下山的速度是6千米,他上山和下山的平均速度是多少千米?110.一列火车从上海开往天津,行了全程的,剩下的路程,如果每小时行106千米,5小时可以到达天津.上海到天津的铁路长多少千米?111.一辆汽车从甲地开往乙地,每分行525米,预计40分到达,行到一半路时,机器发生故障,用5分修理完毕,如何仍需在预定时间到达,行驶余下的路程需要每分比原来快多少米?112.一辆货车从甲地开往乙地,如果按原速度行驶,将不能准时到达乙地.如果把车速提高,可以比原定时间早1小时到达;如果以原速行驶120千米后,再将速度提高,则可提前40分钟到达.那么甲、乙两地间的距离是多少千米?113.A、B两地相距66千米,甲、丙两人从A地向B地行走,乙从B地向A地行走.甲每小时行12千米,乙每小时行10千米,丙每小时行8千米.三人同时出发,多少小时后,乙刚好走到甲、丙两人距离的中点?114.要下雨了,小莉看见远处有闪电,4秒后听到了雷声,请问闪电的地方离小莉有多远?(雷声在空气中的传播速度是0.34千米/秒.)115.甲乙两地相距120千米,一辆客车和一辆货车同时从甲地驶往乙地,结果客车比货车早半小时到达乙地,已知客、货两车的速度比为6:5,求货车的速度是每小时多少千米?116.一辆客车和一辆卡车同时从甲乙两站相对开出,4小时后两车在途中相遇.客车行全部路程用9小时,卡车每小时行40千米.问甲、乙两站相距多少千米?117.杭州湾跨海大桥全长36千米,总投资118亿元,已于2008年5月1日正式通车.宁波至上海原来的全程约330千米,现在途经跨海大桥全程大约只有220千米.一辆时速为110千米的汽车,从上海开往宁波,现在比原来可以节约多少时间?118.客、货两辆汽车同时从南京、射阳两地相向而行,客车每小时行40千米,9小时到达目的地.货车每小时行60千米.(1)货车从射阳到南京要多少小时?(2)当货车到达终点时,客车离目的地多少千米?(3)当客车行4小时时,货车离终点的路程是全程的几分之几?(4)当客车行全程的时,两车相距多少千米?119.甲车的速度是乙车速度的75%,两车从A、B两地同时相向而行,在中点5km处相遇.问A、B两地之间的路程是多少?120.甲乙两车同时从A地开往B地,行完全程甲车要10小时,乙车要15小时,当甲车到达B地后,立即返回在距B地72千米处与乙车相遇,求AB两地相距多少千米?121.一架飞机以每小时250千米的速度从甲地飞往乙地后,立即在空中掉头,以每小时200千米的速度按原路飞回甲地,一共用了6.75小时.甲、乙两地的空中距离是多少千米?122.客货两车同时从甲地开往乙地,当客车行了全程的时,货车才行了全程的.已知客车比货车早1.2小时到达乙地.货车从甲地开到乙地用了多少小时?123.两列火车分别从AB两地相对开出,慢车每小时行55千米,快车每小时行65千米,两车同时行了1小时,刚好行了全长的.这时慢车行了全长的百分之几?124.A、B两地相距264千米,甲乘坐客车从A地去B地,平均每小时行80千米,乙骑摩托车从B地去A地,平均每小时行32千米,当甲行了200千米时与乙相遇,求甲比乙提前几小时出发的?125.从A地到B地,甲以每小时5千米的速度走完全程的一半,又以每小时4千米的速度走完剩下的一半路程;乙用一半的时间每小时走5千米,另一半时间每小时走4千米.试经过计算断定,甲乙两人哪个用的时间少?126.李平骑车从家到县城,原计划用5小时30分,由于途中有3.6千米的道路不平,而走这段不平的路时的速度相当于原速度的,因此晚到12分钟.问李平家距县城多远?。
五年级数学上册《行程问题》经典应用题
五年级数学上册《行程问题》经典应用题例1:两个县城相距22千米,甲、乙二人同时从两城出发,相对而行,甲每小时行6千米,乙每小时行5千米,几小时后相遇?解:总路程÷速度和=相遇时间22÷(6+5)=2(小时)答:2小时后相遇。
例2:两个县城相距22千米,甲、乙二人同时从两城出发,相对而行,2小时后相遇,甲每小时行6千米,乙每小时行多少千米?解:总路程÷相遇时间=速度和22÷2=11(千米)速度和—甲速度=乙速度11—6=5(千米)答:乙每小时行5千米。
例3:甲、乙二人同时从A、B两个县城相对而行,甲每小时行6千米,乙每小时行5千米,2小时后二人还相距4千米。
两个县城相距多远?解:速度和×相遇时间=总路程(6+5)×2=22(千米)22+4=26(千米)答:两个县城之间相距26千米。
例4:东西两地相距60千米,甲骑自行车,乙步行,同时从两地出发,相对而行,3小时后相遇。
已知甲每小时的速度比乙快10千米,二人每小时的速度各是多少千米?解:总路程÷相遇时间=速度和60÷3=20(千米)利用和差问题的解法:甲:(20+10)÷2=15(千米)乙:(20—10)÷2=5 (千米)答:甲的速度是每小时15千米,乙的速度是每小时5千米。
例5:体育场的环形跑道长600米,小刚和小华在跑道的同一起跑线上,同时向相反方向起跑,小刚每分钟跑152米,小华每分钟跑148米。
几分钟后他们第1次相遇?几分钟后第3次相遇?解:总路程÷速度和=相遇时间600÷(152+148)=2(分钟)600×3÷(152+148)=6(分钟)答:2分钟后他们第1次相遇,6分钟后第3次相遇。
例6:A港和B港相距662千米,上午9点一艘“寒山”号快艇从甲港开往乙港,中午12点另一艘“天远”号快艇从乙港开往甲港,到16点两艇相遇,“寒山”号每小时行54千米,“天远”号的速度比“寒山”号快多少千米?解:寒山号一共行了多少千米?(16—9)×54=378(千米)天远号行了多少千米?662—378=284(千米)天远号速度多少?284÷(16—12)=71(千米)天远号比寒山号每小时快多少千米?71—54=17(千米)答:天远号比寒山号每小时快17千米。
50个行程应用题及答案
13、如图,有一个圆,两只小虫分别从直径的两端A与 C 同时出 发,绕圆周相向而行。它们第一次相遇在离A点 8 厘米处的 B点, 第二次相遇在离 c 点处 6 厘米的D点,问,这个圆周的长是多少 ? 解: 如上图所示,第一次相遇,两只小虫共爬 行了半个圆周,其中从A点出发的小虫爬了 8 厘米,第二次相遇,两 只小虫从出发共爬行了 1 个半圆周,其中从A点出发的应爬行 8×3=24( 厘米 ) , 比半个圆周多 6 厘米,半个圆周长为 8×3—6=18( 厘米 ) ,一个圆周长就是:
6、 小王的步行速度是 4.8 千米 / 小时,小张的步行速度是 5.4 千米 / 小时,他 们两人从甲地到乙地去 . 小李骑自行车的速度是 10.8 千米 / 小时,从乙地到甲地 去. 他们 3 人同时出发,在小张与小李相遇后 5 分钟,小王又与小李相遇 . 问: 小李骑车从乙地到甲地需要多少时间?
4、小明每天早晨 6:50 从家出发, 7:20 到校,老师要求他明天提早 6 分钟到 校。如果小明明天早晨还是 6:50 从家出发,那么,每分钟必须比往常多走 25 米才能按老师的要求准时到校。问:小明家到学校多远?(第六届《小数报》 数学竞赛初赛题第 1 题) 解:原来花时间是 30 分钟,后来提前 6 分钟,就是路上要花时间为 24 分钟。
解法二:汽车到 B 地时,自行车离 B 地(40 ÷2. 5×3)=48( 千米 ) ,这 48 千 米就是自行车比汽车一共少走的路程,除以自行车每小时比汽车少走的路程, 就可以得出汽车走完全程所用的时间, 也就可以求出两地距离为 40×〔( 40÷2.5 ×3)÷( 40-40÷2.5 )〕=80(千米)
7、快车和慢车分别从 A,B 两地同时开出,相向而行 . 经过 5 小时两车相遇 . 已 知慢车从 B 到 A 用了 12.5 小时,慢车到 A 停留半小时后返回 . 快车到 B 停留 1 小时后返回 . 问:两车从第一次相遇到再相遇共需多少时间?
五年级数学行程应用题
五年级数学行程应用题一、行程应用题20题及解析。
1. 甲、乙两人分别从A、B两地同时出发相向而行,甲每小时行5千米,乙每小时行4千米,经过3小时两人相遇。
A、B两地相距多少千米?- 解析:这是一个相遇问题,根据公式:路程 = 速度和×相遇时间。
甲、乙的速度和为5 + 4=9千米/小时,相遇时间是3小时,所以A、B两地相距9×3 = 27千米。
2. 一辆汽车从甲地开往乙地,速度是每小时60千米,5小时到达。
如果速度变为每小时75千米,那么几小时可以到达?- 解析:首先根据公式路程 = 速度×时间,求出甲地到乙地的路程为60×5 = 300千米。
当速度变为75千米/小时时,再根据时间 = 路程÷速度,可得时间为300÷75 = 4小时。
3. 小明和小红在周长为400米的环形跑道上跑步,小明的速度是每分钟200米,小红的速度是每分钟150米。
如果两人同时同地同向出发,几分钟后小明第一次追上小红?- 解析:这是一个追及问题,在环形跑道上同向出发,追及路程就是跑道的周长。
根据追及时间 = 追及路程÷速度差,小明和小红的速度差为200 - 150 = 50米/分钟,追及路程为400米,所以追及时间为400÷50 = 8分钟。
4. 甲、乙两车分别从相距600千米的A、B两地同时出发,相向而行,甲车每小时行40千米,乙车每小时行60千米。
几小时后两车相距100千米?- 解析:分两种情况讨论。
- 情况一:两车还未相遇时相距100千米,此时两车行驶的路程和为600 - 100 = 500千米,速度和为40+60 = 100千米/小时,根据时间 = 路程和÷速度和,可得时间为500÷100 = 5小时。
= 700千米,速度和为100千米/小时,时间为700÷100 = 7小时。
5. 一艘轮船从甲港开往乙港,顺水每小时行25千米,4小时到达。
50个行程应用题及答案
50个行程应用题及答案1、甲、乙二人以均匀的速度分别从A、B两地同时出发,相向而行,他们第一次相遇地点离A地4千米,相遇后二人继续前进,走到对方出发点后立即返回,在距B地3千米处第二次相遇,求两次相遇地点之间的距离.解:第二次相遇两人总共走了3个全程,所以甲一个全程里走了4千米,三个全程里应该走4*3=12千米,通过画图,我们发现甲走了一个全程多了回来那一段,就是距B地的3千米,所以全程是12-3=9千米,所以两次相遇点相距9-(3+4)=2千米。
2、甲、乙、丙三人行路,甲每分钟走60米,乙每分钟走米,丙每分钟走75米,甲乙从东镇去西镇,丙从西镇去东镇,三人同时出发,丙与乙相遇后,又经过2分钟与甲相遇,求东西两镇间的路程有多少米解:那2分钟是甲和丙相遇,所以距离是(60+75)×2=270米,这距离是乙丙相遇时间里甲乙的路程差所以乙丙相遇时间=270÷()=36分钟,所以路程=36×(60+75)=4860米。
~3、A,B两地相距540千米。
甲、乙两车往返行驶于A,B两地之间,都是到达一地之后立即返回,乙车较甲车快。
设两辆车同时从A地出发后第一次和第二次相遇都在途中P地。
那么两车第三次相遇为止,乙车共走了多少千米解:根据总结:第一次相遇,甲乙总共走了2个全程,第二次相遇,甲乙总共走了4个全程,乙比甲快,相遇又在P点,所以可以根据总结和画图推出:从第一次相遇到第二次相遇,乙从第一个P点到第二个P点,路程正好是第一次的路程。
所以假设一个全程为3份,第一次相遇甲走了2份乙走了4份。
第二次相遇,乙正好走了1份到B地,又返回走了1份。
这样根据总结:2个全程里乙走了(540÷3)×4=180×4=720千米,乙总共走了720×3=2160千米。
4、小明每天早晨6:50从家出发,7:20到校,老师要求他明天提早6分钟到校。
如果小明明天早晨还是6:50从家出发,那么,每分钟必须比往常多走25米才能按老师的要求准时到校。
小学数学五年级《行程问题》练习题(含答案)
《行程问题》练习题(含答案)行程问题是一类常见的重要应用题,在历次数学竞赛中经常出现.行程问题包括:相遇问题、追及问题、流水行船问题、环形行程问题等等,思维灵活性大,辐射面广,但万变不离根本,就是距离、速度、时间三个基本量之间的关系,即:距离=速度×时间 .在这三个量中,已知两个,可求出第三个未知量.这一讲就是通过例题加深对这三个基本数量关系的理解.解决行程问题时,画图分析是一个非常有效的方法,我们一定要养成画图解决问题的好习惯!【复习1】甲、乙两辆汽车从东、西两地同时相向开出,甲车每小时行56千米,乙车每小时行48千米,两车在离中点32千米处相遇.求东、西两地间的距离是多少千米?分析:画图分析.相遇时甲车比乙车多行:32×2=64(千米),甲车每小时比乙车多行:56-48=8(千米),甲、乙两车从同时出发到相遇要:64÷8=8(小时),东、西两地间的距离是:(56+48)×8=832(千米).【复习2】如右图,A,B是圆的直径的两端,甲在A点,乙在B点同时出发反向而行,两人在C点第一次相遇,在D点第二次相遇。
已知C离A有80米,D离B有60米,求这个圆的周长.分析:从A点出发到第一次相遇,两人共走了0.5圈;从A点出发到第二次相遇,两人共走了1.5圈。
因为1.5÷0.5=3,所以第二相遇时甲走的路程是第一次相遇时的3倍,即弧ACD=AC×3=240(米),则弧AB=240—BD=180(米),圆周长为180×2=360(米)【复习3】两名运动员在湖的周围环形道上练习长跑. 甲每分钟跑250米,乙每分钟跑200米,两人同时同地同向出发,经过45分钟甲追上乙;如果两人同时同地反向出发,经过多少分钟两人相遇?分析:在封闭的环形道上同向运动属追及问题,反向运动属相遇问题.同地出发,其实追及路程或相隔距离就是环形道一周的长.这道题的解题关键就是先求出环形道一周的长度. 环形道一周的长度:(250-200)×45=2250(米).反向出发的相遇时间:2250÷(250+200)=5(分钟).【例1】汽车往返于A,B两地,去时速度为40千米/时,要想来回的平均速度为48千米/时,回来时的速度应为多少?分析:假设AB两地之间的距离为480÷2=240千米,那么总时间=480÷48=10(小时),回来时的速度=240÷(10-240÷40)=60(千米/时).【前铺】汽车上山以30千米/时的速度,到达山顶后立即以60千米/时的速度下山.求该车的平均速度.分析:注意平均速度=总路程÷总时间,我们可以把上山的路程看作“1”,那么就有:(1+1)÷(113060)=40(千米/时),在这里我们使用的是特殊值代入法,当然可以选择其他方便计算的数值,比如上山路程可以看作60千米,总时间=(60÷30)+(60÷60)=3,总路程=60×2=120,平均速度=120÷3=40(千米/时).【例2】一只蚂蚁沿等边三角形的三条边由A点开始爬行一周. 在三条边上它每分钟分别爬行50cm,20cm,40cm(如右图).它爬行一周平均每分钟爬行多少厘米?分析:假设每条边长为200厘米,则总时间=200÷50+200÷20+200÷40=4+10+5=19(分钟),爬行一周的平均速度=200×3÷19=113119(厘米/分钟).【例3】老王开汽车从A到B为平地(见右图),车速是30千米/时;从B到C为上山路,车速是22.5千米/时;从C到D为下山路,车速是36千米/时. 已知下山路是上山路的2倍,从A到D全程为72千米,老王开车从A到D共需要多少时间?分析:设上山路为x千米,下山路为2x千米,则上下山的平均速度是:(x+2x)÷(x÷22.5+2x ÷36)=30(千米/时),正好是平地的速度,所以行AD总路程的平均速度就是30千米/时,与平地路程的长短无关.因此共需要72÷30=2.4(时).【例4】小明放学后,沿某路公共汽车路线以不变速度步行回家,该路公共汽车也以不变速度不停地运行. 每隔9分钟就有辆公共汽车从后面超过他,每隔7分钟就遇到迎面开来的一辆公共汽车. 问:该路公共汽车每隔多少分钟发一次车?公共汽车的速度是小明步行速度的几倍?分析:假设小明在路上向前行走了63(7、9的最小公倍数)分钟后,立即回头再走63分钟,回到原地.这时在前63分钟他迎面遇到63÷7=9(辆)车,后63分钟有63÷9=7(辆)车追上他,那么在两个63分钟里他共遇到朝同一方向开来的16辆车,所以发车的时间间隔为:63×2÷(9+7)=778(分).公共汽车的发车时间以及速度都是不变的,所以车与车之间的间隔也是固定不变的. 根据每隔9分钟就有辆公共汽车从后面超过他,我们可以得到:间隔=9×(车速-步速);每隔7分钟就遇到迎面开来的一辆公共汽车,我们可以得到:间隔=7×(车速+步速),所以9×(车速-步速)=7×(车速+步速),化简可得:车速=8倍的步速.【巩固】小红放学后沿着公共汽车的线路以4千米/时的速度往家走,一边走一边数来往的公共汽车. 到家时迎面来的公共汽车数了11辆,后面追过的公共汽车数了9辆. 如果公共汽车按相等的时间间隔发车,那么公共汽车的平均速度是多少?分析:我们可以假设小红放学走到家共用99分钟,那么条件就可以转化为:“每隔9分钟就有辆公共汽车迎面开来,每隔11分钟就有辆公共汽车从后面超过他”.根据汽车间隔一定,可得:间隔=11×(车速-步速)=9×(车速+步速),化简可得:车速=10倍的步速.所以车速为40千米/时.【例5】一条电车线路的起点站和终点站分别是甲站和乙站,每隔5分钟有一辆电车从甲站发出开往乙站,全程要走15分钟. 有一个人从乙站出发沿电车线路骑车前往甲站. 他出发的时候,恰好有一辆电车到达乙站. 在路上他又遇到了10辆迎面开来的电车。
50个行程应用题及答案
50个行程应用题及答案1、甲、乙二人以均匀的速度分别从A、B两地同时出发,相向而行,他们第一次相遇地点离A地4千米,相遇后二人继续前进,走到对方出发点后立即返回,在距B地3千米处第二次相遇,求两次相遇地点之间的距离.解:第二次相遇两人总共走了3个全程,所以甲一个全程里走了4千米,三个全程里应该走4*3=12千米,通过画图,我们发现甲走了一个全程多了回来那一段,就是距B地的3千米,所以全程是12-3=9千米,所以两次相遇点相距9-(3+4)=2千米。
2、甲、乙、丙三人行路,甲每分钟走60米,乙每分钟走米,丙每分钟走75米,甲乙从东镇去西镇,丙从西镇去东镇,三人同时出发,丙与乙相遇后,又经过2分钟与甲相遇,求东西两镇间的路程有多少米解:那2分钟是甲和丙相遇,所以距离是(60+75)×2=270米,这距离是乙丙相遇时间里甲乙的路程差}所以乙丙相遇时间=270÷()=36分钟,所以路程=36×(60+75)=4860米。
3、A,B两地相距540千米。
甲、乙两车往返行驶于A,B两地之间,都是到达一地之后立即返回,乙车较甲车快。
设两辆车同时从A地出发后第一次和第二次相遇都在途中P地。
那么两车第三次相遇为止,乙车共走了多少千米解:根据总结:第一次相遇,甲乙总共走了2个全程,第二次相遇,甲乙总共走了4个全程,乙比甲快,相遇又在P点,所以可以根据总结和画图推出:从第一次相遇到第二次相遇,乙从第一个P点到第二个P点,路程正好是第一次的路程。
所以假设一个全程为3份,第一次相遇甲走了2份乙走了4份。
第二次相遇,乙正好走了1份到B地,又返回走了1份。
这样根据总结:2个全程里乙走了(540÷3)×4=180×4=720千米,乙总共走了720×3=2160千米。
4、小明每天早晨6:50从家出发,7:20到校,老师要求他明天提早6分钟到校。
如果小明明天早晨还是6:50从家出发,那么,每分钟必须比往常多走25米才能按老师的要求准时到校。
(典型)小学数学应用题《行程综合》试题(附答案解析)
(典型)小学数学应用题《行程综合》试题(附答案解析)火车过桥问题1、一个车队以4米/秒的速度缓缓通过一座长200米的大桥,共用115秒。
已知每辆车长5米,两车间隔10米。
问:这个车队共有多少辆车?车队的长为:4×115-200=260(米);设这个车队共有x辆车,可得方程:5x+(x-1)×10=2605x+10x-10=260,15x=270,x=18;答:这个车队共有18辆车.2、一个车队以5米/秒的速度缓缓通过一座长200米的大桥,共用145秒.已知每辆车长5米,两车间隔8米.问:这个车队共有多少辆车?145×5=725 米 725-200=525米 525+8=533米 533÷(5+8)=41辆3、以同一速度行驶的一列火车,经过一根有信号灯的电线杆用了9秒,通过一座468米长的铁桥用了35秒,这列火车长多少米?杆长+车长)÷9=(桥长+车长)÷3526车长=4212车长=162火车的速度:468÷(35-9)=18车长:18×35-468=162所以,这列火车长162米!4、一座铁路桥长1200米,一列火车开过大桥需要75秒,火车开过路旁一信号杆需要15秒,求火车的速度和车身长5秒是火车开过桥长1200米加上车长的时间15秒是火车开过自己车长的时间火车开过1200米,用的时间就是 75-15 =60秒,火车速度就是 1200/60 =20 米/秒,火车的车长就是 20×15 =300米5、李云靠窗坐在一列时速60千米的火车里,看到一辆有 30节车厢的货车迎面驶来,当货车车头经过窗口时,他开始计时,直到最后一节车厢驶过窗口时,所计的时间是18秒.已知货车车厢长15.8米,车厢间距1.2 米,货车车头长10米.问货车行驶的速度是多少?两列车的速度和为:(15.8×30+1.2×30+10)÷18=260/9(米/秒)=104千米/小时;货车的速度:104-60=44(千米/小时)答:货车行驶的速度为44千米/小时.6、小刚在铁路旁边沿铁路方向的公路上散步,他散步的速度是2米/秒,这时迎面开来一列火车,从车头到车尾经过他身旁共用了18秒。
小学五年级行程应用题及答案
小学五年级行程应用题及答案1 、甲乙两车同时从AB两地相对开出。
甲行驶了全程的5/11, 假如甲每小时行驶 4.5 千米,乙行了 5 小时。
求 AB两地相距多少千米?解: AB距离 =(4.5 ×5)/ ( 5/11 )=49.5 千米2、一辆客车和一辆货车分别从甲乙两地同时相向开出。
货车的速度是客车的五分之四,货车行了全程的四分之一后,再行 28 千米与客车相遇。
甲乙两地相距多少千米?解:客车和货车的速度之比为5:4那么相遇时的行程比 =5:4相遇时货车行全程的4/9此时货车行了全程的1/4距离相遇点还有4/9-1/4=7/36那么全程 =28/ (7/36 )=144 千米3、甲乙两人绕城而行,甲每小时行 8 千米,乙每小时行 6 千米。
此刻两人同时从同一地址相背出发,乙碰到甲后,再行4 小时回到原出发点。
求乙绕城一周所需要的时间?解:甲乙速度比 =8:6=4:3相遇时乙行了全程的3/7那么 4 小时就是行全程的4/7因此乙行一周用的时间 =4/ (4/7 )=7 小时4、甲乙两人同时从 A 地步行走向 B 地,当甲走了全程的 14 时,乙离 B 地还有 640 米,当甲走余下的 56 时,乙走完整程的 710,求AB两地距离是多少米?解:甲走完 1/4 后余下 1-1/4=3/4那么余下的 5/6 是 3/4 ×5/6=5/8此时甲一共走了1/4+5/8=7/8那么甲乙的行程比 =7/8 :7/10=5 :4因此甲走全程的1/4 时,乙走了全程的1/4 ×4/5=1/5那么 AB距离 =640/(1-1/5 )=800 米5、甲,乙两辆汽车同时从 A,B 两地相对开出 , 相向而行。
甲车每小时行 75 千米,乙车行完整程需 7 小时。
两车开出 3 小时后相距15 千米, A,B 两地相距多少千米?解:一种状况:此时甲乙还没有相遇乙车 3 小时行全程的 3/7甲 3 小时行 75×3=225 千米AB 距离 =(225+15)/ (1-3/7 )=240/ (4/7 )=420 千米一种状况:甲乙已经相遇(225-15)/ (1-3/7 )=210/ (4/7 )=367.5 千米6、甲,已两人要走完这条路,甲要走 30 分,已要走 20 分,走3 分后,甲发现有东西没拿,拿东西耽搁 3 分,甲再走几分钟跟已相遇?解:甲相当于比乙晚出发3+3+3=9分钟将所有行程看作单位 1那么甲的速度 =1/30乙的速度 =1/20甲拿完东西出发时,乙已经走了1/20 ×9=9/20那么甲乙合走的距离1-9/20=11/20甲乙的速度和 =1/20+1/30=1/12那么再有( 11/20 )/ (1/12 )=6.6 分钟相遇7、甲,乙两辆汽车从 A 地出发,同向而行,甲每小时走 36 千米,乙每小时走 48 千米,若甲车比乙车早出发 2 小时,则乙车经过多少时间才追上甲车?解:行程差 =36×2=72 千米速度差 =48-36=12 千米 / 小时乙车需要 72/12=6 小时追上甲8、甲乙两人分别从相距 36 千米的 ab 两地同时出发 , 相向而行 , 甲从a 地出发至 1 千米时, 发现有物件过去在 a 地,便立刻返回,去了物件又立刻从 a 地向b 地前进,这样甲、乙两人恰幸亏a,b 两地的终点处相遇,又知甲每小时比乙多走0.5 千米,求甲、乙两人的速度?解:甲在相遇时实质走了36×1/2+1 ×2=20 千米乙走了 36×1/2=18 千米那么甲比乙多走20-18=2 千米那么相遇时用的时间 =2/0.5=4 小时因此甲的速度 =20/4=5 千米 / 小时乙的速度 =5-0.5=4.5千米/小时9、两列火车同时从相距 400 千米两地相向而行 , 客车每小时行60 千米,货车小时行40 千米,两列火车行驶几小时后,相遇有相距100千米?解:速度和 =60+40=100千米 / 小时分两种状况,没有相遇那么需要时间 =(400-100)/100=3 小时已经相遇那么需要时间 =(400+100)/100=5 小时10、甲每小时行驶 9 千米,乙每小时行驶 7 千米。
五年级列方程解应用题(行程问题)
30x=240
x=8
答:8小时后乙车追上甲车.
解答:设乙车每小时行x千米,
85×2.4+2.4x=456
பைடு நூலகம்204+2.4x=456
2.4x=252
x=105
答:乙车每小时行105千米.
4、甲乙两列火车分别从相距600千米的两地同时相向而行,2.5小时后两车还相距220千米。已知甲车每小时行80千米,乙车每小时行多少千米?
解答:设乙车每小时行x千米,由题意得,
1、甲乙两地相距300千米,一辆汽车由甲地开出5小时后,距离乙地还有74.5千米,这辆汽车平均每小时行多少千米?
解:设这辆汽车平均每小时行x千米,
5x+74.5=300
5x+74.5-74.5=300-74.5
5x=225.5
5x÷5=225.5÷5
x=45.1
所以x=45.1是方程的解。
答:这辆汽车平均每小时行45.1千米.
80×2.5+2.5x+220=600,
200+2.5x+220=600,
2.5x+420=600,
2.5x=600﹣420,
2.5x=180,
x=72
答:乙车每小时行72千米。
5、两个码头之间相距100千米,甲、乙两艘轮船分别同时从两个码头出发向相反方面开出,甲船每小时行38千米,乙船每小时行32千米。经过几小时两船相距450千米?(列方程解)
2、两地铁路长568千米,甲乙两列火车同时从两地相对开出,甲火车每小时行驶154千米,乙火车每小时行驶130千米,经过几小时两车相遇?(列方程解答)
解答:设经过x小时相遇
行程问题的应用题及答案
行程问题的应用题及答案1、龟兔进行10000米赛跑,兔子的速度是乌龟的速度的5倍。
当它们从起点一起出发后,乌龟不停地跑,兔子跑到某一地点开始睡觉,兔子醒来时乌龟已经领先它5000米;兔子奋起直追,但乌龟到达终点时,兔子仍落后100米。
那么兔子睡觉期间,乌龟跑了多少米?分析:兔子跑了10000-100=9900米,这段时间里乌龟跑了9900*1/5=1980米,兔子睡觉时乌龟跑了10000-1980=8020米答:兔子睡觉期间乌龟跑了8020米。
2、小明从家到学校有两条一样长的路,一条是平路,另一条是一半上坡路、一半下坡路。
小明上学走两条路所用的时间一样多。
已知下坡的速度是平路的1.5倍,那么上坡的速度是平路的多少倍?分析:解法1:设路程为180,则上坡和下坡均是90。
设走平路的速度是2,则下坡速度是3。
走下坡用时间90/3=30,走平路一共用时间180/2=90,所以走上坡时间是90-30=60 走与上坡同样距离的平路时用时间90/2=45 因为速度与时间成反比,所以上坡速度是下坡速度的45/60=0.75倍。
解法2:因为距离和时间都相同,所以平均速度也相同,又因为上坡和下坡路各一半也相同,设距离是1份,时间是1份,则下坡时间=0.5/1.5=1/3,上坡时间=1-1/3=2/3,上坡速度=(1/2)/(2/3)=3/4=0.75解法3:因为距离和时间都相同,所以:1/2*路程/上坡速度+1/2*路程/1.5=路程/1,得:上坡速度=0.75答:上坡的速度是平路的0.75倍。
3、一只小船从甲地到乙地往返一次共用2小时,回来时顺水,比去时的速度每小时多行驶8千米,因此第二小时比第一小时多行驶6千米。
那么甲、乙两地之间的距离是多少千米?分析:解法1,第二小时比第一小时多走6千米,说明逆水走1小时还差6/2=3千米没到乙地。
顺水走1小时比逆水多走8千米,说明逆水走3千米与顺水走8-3=5千米时间相同,这段时间里的路程差是5-3=2千米,等于1小时路程差的1/4,所以顺水速度是每小时5*4=20千米(或者说逆水速度是3*4=12千米)。
最新的行程问题应用题及答案
最新的行程问题应用题及答案例1、甲、乙二人分别从相距30千米的两地同时出发相向而行,甲每小时走6千米,乙每小时走4千米,问:二人几小时后相遇? [分析]出发时甲、乙二人相距30千米,以后两人的距离每小时都缩短6+4=10(千米),即两人的速度的和(简称速度和),所以30千米里有几个10千米就是几小时相遇。
解:30÷(6+4)=30÷10=3(小时)答:3小时后两人相遇。
例2、甲、乙二人从相距100千米的A、B两地同时出发相向而行,甲骑车,乙步行,在行走过程中,甲的车发生故障,修车用了1小时。
在出发4小时后,甲、乙二人相遇,又已知甲的速度为乙的2倍,且相遇时甲的车已修好,那么,甲、乙二人的速度各是多少?〔分析〕甲的速度为乙的2倍,因此,乙走了4小时的路,甲只要2小时就可以了,这样就可以求出甲的速度。
解:甲的速度为:100÷(4-1+4÷2)=100÷5=20(千米/小时)乙的速度为:20÷2=10(千米/小时)答:甲的速度为20千米/小时,乙的速度为10千米/小时。
延伸阅读:基本数量关系应用题:【练习巩固】1、甲乙两列火车同时从相距700千米的两地相向而行,甲列车每小时行85千米,乙列车每小时行90千米,几小时两列火车相遇?2、甲乙两车从两地同时出发相向而行,甲车每小时行40千米,乙车每小时行60千米,经过3小时相遇。
两地相距多少千米?3、甲乙两艘轮船从相距654千米的两地相对开出,8小时两船还相距22千米。
已知乙船每小时行42千米,甲船每小时行多少千米?4、甲乙两艘轮船同时从相距126千米的两个码头相对开出,3小时相遇,甲船每小时航行22千米,乙船每小时航行多少千米?5、甲、乙两车同时从相距480千米的两地相对而行,甲车每小时行45千米,途中因汽车故障甲车停了1小时,5小时后两车相遇。
乙车每小时行多少千米?6、甲、乙两地相距280千米,一辆汽车和一辆拖拉机同时分别从两地相对开出,经过4小时两车相遇。
行程问题应用题及答案
行程问题应用题及答案一1、羊跑5步的时间马跑3步,马跑4步的距离羊跑7步,现在羊已跑出30米,马开始追它。
问:羊再跑多远,马可以追上它?2、甲乙辆车同时从a b两地相对开出,几小时后再距中点40千米处相遇?已知,甲车行完全程要8小时,乙车行完全程要10小时,求a b 两地相距多少千米?3、在一个600米的环形跑道上,兄两人同时从同一个起点按顺时针方向跑步,两人每隔12分钟相遇一次,若两个人速度不变,还是在原来出发点同时出发,哥哥改为按逆时针方向跑,则两人每隔4分钟相遇一次,两人跑一圈各要多少分钟?4、慢车车长125米,车速每秒行17米,快车车长140米,车速每秒行22米,慢车在前面行驶,快车从后面追上来,那么,快车从追上慢车的车尾到完全超过慢车需要多少时间?5、在300米长的环形跑道上,甲乙两个人同时同向并排起跑,甲平均速度是每秒5米,乙平均速度是每秒4.4米,两人起跑后的第一次相遇在起跑线前几米?6、一个人在铁道边,听见远处传来的火车汽笛声后,在经过57秒火车经过她前面,已知火车鸣笛时离他1360米,(轨道是直的),声音每秒传340米,求火车的速度(得出保留整数)7、猎犬发现在离它10米远的前方有一只奔跑着的野兔,马上紧追上去,猎犬的步子大,它跑5步的路程,兔子要跑9步,但是兔子的动作快,猎犬跑2步的时间,兔子却能跑3步,问猎犬至少跑多少米才能追上兔子。
8、AB两地,甲乙两人骑自行车行完全程所用时间的比是4:5,如果甲乙二人分别同时从AB两地相对行使,40分钟后两人相遇,相遇后各自继续前行,这样,乙到达A地比甲到达B地要晚多少分钟?9、甲乙两车同时从AB两地相对开出。
第一次相遇后两车继续行驶,各自到达对方出发点后立即返回。
第二次相遇时离B地的距离是AB全程的1/5。
已知甲车在第一次相遇时行了120千米。
AB两地相距多少千米?10、一船以同样速度往返于两地之间,它顺流需要6小时;逆流8小时。
如果水流速度是每小时2千米,求两地间的距离?11、快车和慢车同时从甲乙两地相对开出,快车每小时行33千米,相遇是已行了全程的七分之四,已知慢车行完全程需要8小时,求甲乙两地的路程。
50个行程应用题及答案
50个行程应用题及答案1、甲、乙二人以均匀的速度分别从A、B两地同时出发,相向而行,他们第一次相遇地点离A地4千米,相遇后二人继续前进,走到对方出发点后立即返回,在距B地3千米处第二次相遇,求两次相遇地点之间的距离.解:第二次相遇两人总共走了3个全程,所以甲一个全程里走了4千米,三个全程里应该走4*3=12千米,通过画图,我们发现甲走了一个全程多了回来那一段,就是距B地的3千米,所以全程是12-3=9千米,所以两次相遇点相距9-(3+4)=2千米。
2、甲、乙、丙三人行路,甲每分钟走60米,乙每分钟走67.5米,丙每分钟走75米,甲乙从东镇去西镇,丙从西镇去东镇,三人同时出发,丙与乙相遇后,又经过2分钟与甲相遇,求东西两镇间的路程有多少米?解:那2分钟是甲和丙相遇,所以距离是(60+75)×2=270米,这距离是乙丙相遇时间里甲乙的路程差所以乙丙相遇时间=270÷(67.5-60)=36分钟,所以路程=36×(60+75)=4860米。
3、A,B两地相距540千米。
甲、乙两车往返行驶于A,B两地之间,都是到达一地之后立即返回,乙车较甲车快。
设两辆车同时从A地出发后第一次和第二次相遇都在途中P地。
那么两车第三次相遇为止,乙车共走了多少千米?解:根据总结:第一次相遇,甲乙总共走了2个全程,第二次相遇,甲乙总共走了4个全程,乙比甲快,相遇又在P点,所以可以根据总结和画图推出:从第一次相遇到第二次相遇,乙从第一个P点到第二个P点,路程正好是第一次的路程。
所以假设一个全程为3份,第一次相遇甲走了2份乙走了4份。
第二次相遇,乙正好走了1份到B地,又返回走了1份。
这样根据总结:2个全程里乙走了(540÷3)×4=180×4=720千米,乙总共走了720×3=2160千米。
4、小明每天早晨6:50从家出发,7:20到校,老师要求他明天提早6分钟到校。
小学五年级行程应用题及答案
小学五年级行程应用题及答案某小学五年级的学生们在一个星期六的早上参加了一次研学活动。
本次活动他们去了城市博物馆和公园,这里是他们一次有趣又有学问的行程。
以下是对这次行程的应用题及答案。
题目一:行程安排请根据以下信息,填写学生们这次行程的起始时间和结束时间。
- 学生们在早上8点30分集合,准备出发。
- 从集合地点到城市博物馆的路程需要40分钟。
- 在博物馆参观并学习两个小时。
- 从博物馆到公园的路程需要30分钟。
- 在公园享受户外活动和野餐的时间为一个半小时。
答案:- 行程起始时间:早上8点30分- 到达城市博物馆的时间:早上9点10分- 离开城市博物馆的时间:上午11点10分- 到达公园的时间:上午11点40分- 行程结束时间:下午1点10分题目二:行程时间计算请计算学生们这次行程的总时间,并填写下面的表格。
活动 | 路程时间 | 参观时间城市博物馆 | X分钟 | Y小时公园 | X分钟 | Y小时答案:活动 | 路程时间 | 参观时间城市博物馆 | 40分钟 | 2小时公园 | 30分钟 | 1.5小时题目三:行程总时间请根据上面的表格计算学生们这次行程的总时间。
答案:- 前往城市博物馆的路程时间:40分钟- 在城市博物馆参观的时间:2小时- 前往公园的路程时间:30分钟- 在公园的活动时间:1.5小时总时间 = 前往城市博物馆的路程时间 + 在城市博物馆参观的时间 + 前往公园的路程时间 + 在公园的活动时间总时间 = 40分钟 + 2小时 + 30分钟 + 1.5小时总时间 = 4小时 + 10分钟答案:学生们这次行程的总时间为4小时10分钟。
题目四:行程顺序请将以下行程按照其发生顺序重新排列,并写出行程的起始时间和结束时间。
- 学生们在早上8点30分集合- 从集合地点到城市博物馆的路程需要40分钟- 在博物馆参观并学习两个小时- 从博物馆到公园的路程需要30分钟- 在公园享受户外活动和野餐的时间为一个半小时答案:1. 行程起始时间:早上8点30分2. 从集合地点到城市博物馆的路程(40分钟)3. 到达城市博物馆的时间(早上9点10分)4. 在博物馆参观并学习两个小时(上午9点10分 - 上午11点10分)5. 从博物馆到公园的路程(30分钟)6. 到达公园的时间(上午11点40分)7. 在公园享受户外活动和野餐的时间(上午11点40分 - 下午1点10分)8. 行程结束时间:下午1点10分总结:本次小学五年级的行程安排了参观城市博物馆和在公园享受户外活动的活动。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
小学五年级行程应用题及答案
1、甲乙两车同时从AB两地相对开出。
甲行驶了全程的5/11,如果甲每小时行驶4.5千米,乙行了5小时。
求AB两地相距多少千米?
解:AB距离=(4.5×5)/(5/11)=49.5千米
2、一辆客车和一辆货车分别从甲乙两地同时相向开出。
货车的速度是客车的五分之四,货车行了全程的四分之一后,再行28千米与客车相遇。
甲乙两地相距多少千米?
解:客车和货车的速度之比为5:4
那么相遇时的路程比=5:4
相遇时货车行全程的4/9
此时货车行了全程的1/4
距离相遇点还有4/9-1/4=7/36
那么全程=28/(7/36)=144千米
3、甲乙两人绕城而行,甲每小时行8千米,乙每小时行6千米。
现在两人同时从同一地点相背出发,乙遇到甲后,再行4小时回到原出发点。
求乙绕城一周所需要的时间?
解:甲乙速度比=8:6=4:3
相遇时乙行了全程的3/7
那么4小时就是行全程的4/7
所以乙行一周用的时间=4/(4/7)=7小时
4、甲乙两人同时从A地步行走向B地,当甲走了全程的14时,乙离B地还有640米,当甲走余下的56时,乙走完全程的710,求AB两地距离是多少米?
解:甲走完1/4后余下1-1/4=3/4
那么余下的5/6是3/4×5/6=5/8
此时甲一共走了1/4+5/8=7/8
那么甲乙的路程比=7/8:7/10=5:4
所以甲走全程的1/4时,乙走了全程的1/4×4/5=1/5
那么AB距离=640/(1-1/5)=800米
5、甲,乙两辆汽车同时从A,B两地相对开出,相向而行。
甲车每小时行75千米,乙车行完全程需7小时。
两车开出3小时后相距15千米,A,B两地相距多少千米?
解:一种情况:此时甲乙还没有相遇
乙车3小时行全程的3/7
甲3小时行75×3=225千米
AB距离=(225+15)/(1-3/7)=240/(4/7)=420千米一种情况:甲乙已经相遇
(225-15)/(1-3/7)=210/(4/7)=367.5千米
6、甲,已两人要走完这条路,甲要走30分,已要走20分,走3分后,甲发现有东西没拿,拿东西耽误3分,甲再走几分钟跟已相遇?
解:甲相当于比乙晚出发3+3+3=9分钟
将全部路程看作单位1
那么甲的速度=1/30
乙的速度=1/20
甲拿完东西出发时,乙已经走了1/20×9=9/20
那么甲乙合走的距离1-9/20=11/20
甲乙的速度和=1/20+1/30=1/12
那么再有(11/20)/(1/12)=6.6分钟相遇
7、甲,乙两辆汽车从A地出发,同向而行,甲每小时走36千米,乙每小时走48千米,若甲车比乙车早出发2小时,则乙车经过多少时间才追上甲车?
解:路程差=36×2=72千米
速度差=48-36=12千米/小时
乙车需要72/12=6小时追上甲
8、甲乙两人分别从相距36千米的ab两地同时出发,相向而行,甲从a地出发至1千米时,发现有物品以往在a地,便立即返回,去了物品又立即从a地向b地行进,这样甲、乙两人恰好在a,b两地的终点处相遇,又知甲每小时比乙多走0.5千米,求甲、乙两人的速度?
解:
甲在相遇时实际走了36×1/2+1×2=20千米
乙走了36×1/2=18千米
那么甲比乙多走20-18=2千米
那么相遇时用的时间=2/0.5=4小时
所以甲的速度=20/4=5千米/小时
乙的速度=5-0.5=4.5千米/小时
9、两列火车同时从相距400千米两地相向而行,客车每小时行60千米,货车小时行40千米,两列火车行驶几小时后,相遇有相距100千米?
解:速度和=60+40=100千米/小时
分两种情况,
没有相遇
那么需要时间=(400-100)/100=3小时
已经相遇
那么需要时间=(400+100)/100=5小时
10、甲每小时行驶9千米,乙每小时行驶7千米。
两者在相距6千米的两地同时向背而行,几小时后相距150千米?
解:速度和=9+7=16千米/小时
那么经过(150-6)/16=144/16=9小时相距150千米
11、甲乙两车从相距600千米的两地同时相向而行已知甲车每小时行42千米,乙车每小时行58千米两车相遇时乙车行了多少千米?
解:
速度和=42+58=100千米/小时
相遇时间=600/100=6小时
相遇时乙车行了58×6=148千米
或者
甲乙两车的速度比=42:58=21:29
所以相遇时乙车行了600×29/(21+29)=348千米
12、两车相向,6小时相遇,后经4小时,客车到达,货车还有188千米,问两地相距?
解:将两车看作一个整体
两车每小时行全程的1/6
4小时行1/6×4=2/3
那么全程=188/(1-2/3)=188×3=564千米
13、甲乙两地相距600千米,客车和货车从两地相向而行,6小时相遇,已知货车的速度是客车的3分之2,求二车的速度?
解:二车的速度和=600/6=100千米/小时
客车的速度=100/(1+2/3)=100×3/5=60千米/小时
货车速度=100-60=40千米/小时
14、小兔和小猫分别从相距40千米的A、B两地同时相向而行,经过4小时候相聚4千米,再经过多长时间相遇?
解:速度和=(40-4)/4=9千米/小时
那么还需要4/9小时相遇
15、甲、乙两车分别从ab两地开出甲车每小时行50千米乙车每小时行40千米甲车比乙车早1小时到两地相距多少?
解:甲车到达终点时,乙车距离终点40×1=40千米
甲车比乙车多行40千米
那么甲车到达终点用的时间=40/(50-40)=4小时
两地距离=40×5=200千米
16、两辆车从甲乙两地同时相对开出,4时相遇。
慢车是快车速度的五分之三,相遇时快车比慢车多行80千米,两地相距多少?
解:快车和慢车的速度比=1:3/5=5:3
相遇时快车行了全程的5/8
慢车行了全程的3/8
那么全程=80/(5/8-3/8)=320千米
17、甲乙两人分别从A、B两地同时出发,相向而行,甲每分钟行100米,乙每分钟行120米,2小时后两人相距150米。
A、B两地的最短距离多少米?最长距离多少米?
解:最短距离是已经相遇,最长距离是还未相遇
速度和=100+120=220米/分
2小时=120分
最短距离=220×120-150=26400-150=26250米
最长距离=220×120+150=26400+150=26550米。