【2019年整理】微积分上考试大纲
19考研数学(3)大纲
2019年数学三考试大纲考试科目:微积分、线性代数、概率论与数理统计考试形式和试卷结构一、试卷满分及考试时间试卷满分为150分,考试时间为180分钟.二、答题方式答题方式为闭卷、笔试.三、试卷内容结构微积分 约56%线性代数 约22%概率论与数理统计 约22%四、试卷题型结构单项选择题选题 8小题,每小题4分,共32分填空题 6小题,每小题4分,共24分解答题(包括证明题) 9小题,共94分微积分一、函数、极限、连续考试内容函数的概念及表示法 函数的有界性、单调性、周期性和奇偶性 复合函数、反函数、分段函数和隐函数 基本初等函数的性质及其图形 初等函数 函数关系的建立数列极限与函数极限的定义及其性质 函数的左极限和右极限 无穷小量和无穷大量的概念及其关系 无穷小量的性质及无穷小量的比较 极限的四则运算 极限存在的两个准则:单调有界准则和夹逼准则 两个重要极限:0sin lim 1x x x →= 1lim 1e xx x →∞⎛⎫+= ⎪⎝⎭ 函数连续的概念 函数间断点的类型 初等函数的连续性 闭区间上连续函数的性质 考试要求1.理解函数的概念,掌握函数的表示法,会建立应用问题的函数关系.2.了解函数的有界性、单调性、周期性和奇偶性.3.理解复合函数及分段函数的概念,了解反函数及隐函数的概念.4.掌握基本初等函数的性质及其图形,了解初等函数的概念.5.了解数列极限和函数极限(包括左极限与右极限)的概念.6.了解极限的性质与极限存在的两个准则,掌握极限的四则运算法则,掌握利用两个重要极限求极限的方法.7.理解无穷小量的概念和基本性质,掌握无穷小量的比较方法.了解无穷大量的概念及其与无穷小量的关系.8.理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型.9.了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质.二、一元函数微分学考试内容导数和微分的概念 导数的几何意义和经济意义 函数的可导性与连续性之间的关系 平面曲线的切线与法线 导数和微分的四则运算 基本初等函数的导数 复合函数、反函数和隐函数的微分法 高阶导数 一阶微分形式的不变性 微分中值定理 洛必达(L'Hospital )法则 函数单调性的判别 函数的极值 函数图形的凹凸性、拐点及渐近线 函数图形的描绘 函数的最大值与最小值考试要求1.理解导数的概念及可导性与连续性之间的关系,了解导数的几何意义与经济意义(含边际与弹性的概念),会求平面曲线的切线方程和法线方程.2.掌握基本初等函数的导数公式、导数的四则运算法则及复合函数的求导法则,会求分段函数的导数,会求反函数与隐函数的导数.3.了解高阶导数的概念,会求简单函数的高阶导数.4.了解微分的概念、导数与微分之间的关系以及一阶微分形式的不变性,会求函数的微分.5.理解罗尔(Rolle )定理、拉格朗日( Lagrange )中值定理,了解泰勒(Taylor )定理、柯西(Cauchy )中值定理,掌握这四个定理的简单应用.6.会用洛必达法则求极限.7.掌握函数单调性的判别方法,了解函数极值的概念,掌握函数极值、最大值和最小值的求法及其应用.8.会用导数判断函数图形的凹凸性(注:在区间(,)a b 内,设函数()f x 具有二阶导数.当()0f x ''>时,()f x 的图形是凹的;当()0f x ''<时,()f x 的图形是凸的),会求函数图形的拐点和渐近线.9.会描述简单函数的图形.三、一元函数积分学考试内容原函数和不定积分的概念 不定积分的基本性质 基本积分公式 定积分的概念和基本性质 定积分中值定理 积分上限的函数及其导数 牛顿-莱布尼茨(Newton- Leibniz )公式 不定积分和定积分的换元积分法与分部积分法 反常(广义)积分 定积分的应用考试要求1.理解原函数与不定积分的概念,掌握不定积分的基本性质和基本积分公式,掌握不定积分的换元积分法与分部积分法.2.了解定积分的概念和基本性质,了解定积分中值定理,理解积分上限的函数并会求它的导数,掌握牛顿-莱布尼茨公式以及定积分的换元积分法和分部积分法.3.会利用定积分计算平面图形的面积、旋转体的体积和函数的平均值,会利用定积分求解简单的经济应用问题.4.了解反常积分的概念,会计算反常积分.四、多元函数微积分学考试内容多元函数的概念 二元函数的几何意义 二元函数的极限与连续的概念 有界闭区域上二元连续函数的性质 多元函数偏导数的概念与计算 多元复合函数的求导法与隐函数求导法 二阶偏导数 全微分 多元函数的极值和条件极值、最大值和最小值 二重积分的概念、基本性质和计算 无界区域上简单的反常二重积分考试要求1.了解多元函数的概念,了解二元函数的几何意义.2.了解二元函数的极限与连续的概念,了解有界闭区域上二元连续函数的性质.3.了解多元函数偏导数与全微分的概念,会求多元复合函数一阶、二阶偏导数,会求全微分,会求多元隐函数的偏导数.4.了解多元函数极值和条件极值的概念,掌握多元函数极值存在的必要条件,了解二元函数极值存在的充分条件,会求二元函数的极值,会用拉格朗日乘数法求条件极值,会求简单多元函数的最大值和最小值,并会解决简单的应用问题.5.了解二重积分的概念与基本性质,掌握二重积分的计算方法(直角坐标、极坐标),了解无界区域上较简单的反常二重积分并会计算.五、无穷级数考试内容常数项级数的收敛与发散的概念 收敛级数的和的概念 级数的基本性质与收敛的必要条件 几何级数与p 级数及其收敛性 正项级数收敛性的判别法 任意项级数的绝对收敛与条件收敛 交错级数与莱布尼茨定理 幂级数及其收敛半径、收敛区间(指开区间)和收敛域 幂级数的和函数 幂级数在其收敛区间内的基本性质 简单幂级数的和函数的求法 初等函数的幂级数展开式考试要求1.了解级数的收敛与发散、收敛级数的和的概念.2.了解级数的基本性质及级数收敛的必要条件,掌握几何级数及p 级数的收敛与发散的条件,掌握正项级数收敛性的比较判别法和比值判别法.3.了解任意项级数绝对收敛与条件收敛的概念以及绝对收敛与收敛的关系,了解交错级数的莱布尼茨判别法.4.会求幂级数的收敛半径、收敛区间及收敛域.5.了解幂级数在其收敛区间内的基本性质(和函数的连续性、逐项求导和逐项积分),会求简单幂级数在其收敛区间内的和函数.6.了解e x ,sin x ,cos x ,ln(1)x +及(1)x α+的麦克劳林(Maclaurin )展开式.六、常微分方程与差分方程考试内容常微分方程的基本概念 变量可分离的微分方程 齐次微分方程 一阶线性微分方程 线性微分方程解的性质及解的结构定理 二阶常系数齐次线性微分方程及简单的非齐次线性微分方程 差分与差分方程的概念 差分方程的通解与特解 一阶常系数线性差分方程 微分方程的简单应用考试要求1.了解微分方程及其阶、解、通解、初始条件和特解等概念.2.掌握变量可分离的微分方程、齐次微分方程和一阶线性微分方程的求解方法.3.会解二阶常系数齐次线性微分方程.4.了解线性微分方程解的性质及解的结构定理,会解自由项为多项式、指数函数、正弦函数、余弦函数的二阶常系数非齐次线性微分方程.5.了解差分与差分方程及其通解与特解等概念.6.了解一阶常系数线性差分方程的求解方法.7.会用微分方程求解简单的经济应用问题.线性代数一、行列式考试内容行列式的概念和基本性质行列式按行(列)展开定理考试要求1.了解行列式的概念,掌握行列式的性质.2.会应用行列式的性质和行列式按行(列)展开定理计算行列式.二、矩阵考试内容矩阵的概念矩阵的线性运算矩阵的乘法方阵的幂方阵乘积的行列式矩阵的转置逆矩阵的概念和性质矩阵可逆的充分必要条件伴随矩阵矩阵的初等变换初等矩阵矩阵的秩矩阵的等价分块矩阵及其运算考试要求1.理解矩阵的概念,了解单位矩阵、数量矩阵、对角矩阵、三角矩阵的定义及性质,了解对称矩阵、反对称矩阵及正交矩阵等的定义和性质.2.掌握矩阵的线性运算、乘法、转置以及它们的运算规律,了解方阵的幂与方阵乘积的行列式的性质.3.理解逆矩阵的概念,掌握逆矩阵的性质以及矩阵可逆的充分必要条件,理解伴随矩阵的概念,会用伴随矩阵求逆矩阵.4.了解矩阵的初等变换和初等矩阵及矩阵等价的概念,理解矩阵的秩的概念,掌握用初等变换求矩阵的逆矩阵和秩的方法.5.了解分块矩阵的概念,掌握分块矩阵的运算法则.三、向量考试内容向量的概念向量的线性组合与线性表示向量组的线性相关与线性无关向量组的极大线性无关组等价向量组向量组的秩向量组的秩与矩阵的秩之间的关系向量的内积线性无关向量组的正交规范化方法考试要求1.了解向量的概念,掌握向量的加法和数乘运算法则.2.理解向量的线性组合与线性表示、向量组线性相关、线性无关等概念,掌握向量组线性相关、线性无关的有关性质及判别法.3.理解向量组的极大线性无关组的概念,会求向量组的极大线性无关组及秩.4.理解向量组等价的概念,理解矩阵的秩与其行(列)向量组的秩之间的关系.5.了解内积的概念.掌握线性无关向量组正交规范化的施密特(Schmidt)方法.四、线性方程组考试内容线性方程组的克拉默(Cramer)法则线性方程组有解和无解的判定齐次线性方程组的基础解系和通解非齐次线性方程组的解与相应的齐次线性方程组(导出组)的解之间的关系非齐次线性方程组的通解考试要求1.会用克拉默法则解线性方程组.2.掌握非齐次线性方程组有解和无解的判定方法.3.理解齐次线性方程组的基础解系的概念,掌握齐次线性方程组的基础解系和通解的求法.4.理解非齐次线性方程组解的结构及通解的概念.5.掌握用初等行变换求解线性方程组的方法.五、矩阵的特征值和特征向量考试内容矩阵的特征值和特征向量的概念、性质相似矩阵的概念及性质矩阵可相似对角化的充分必要条件及相似对角矩阵实对称矩阵的特征值和特征向量及相似对角矩阵考试要求1.理解矩阵的特征值、特征向量的概念,掌握矩阵特征值的性质,掌握求矩阵特征值和特征向量的方法.2.理解矩阵相似的概念,掌握相似矩阵的性质,了解矩阵可相似对角化的充分必要条件,掌握将矩阵化为相似对角矩阵的方法.3.掌握实对称矩阵的特征值和特征向量的性质.六、二次型考试内容二次型及其矩阵表示合同变换与合同矩阵二次型的秩惯性定理二次型的标准形和规范形用正交变换和配方法化二次型为标准形二次型及其矩阵的正定性考试要求1.了解二次型的概念,会用矩阵形式表示二次型,了解合同变换与合同矩阵的概念.2.了解二次型的秩的概念,了解二次型的标准形、规范形等概念,了解惯性定理,会用正交变换和配方法化二次型为标准形.3.理解正定二次型、正定矩阵的概念,并掌握其判别法.概率论与数理统计一、随机事件和概率考试内容随机事件与样本空间事件的关系与运算完备事件组概率的概念概率的基本性质古典型概率几何型概率条件概率概率的基本公式事件的独立性独立重复试验考试要求1.了解样本空间(基本事件空间)的概念,理解随机事件的概念,掌握事件的关系及运算.2.理解概率、条件概率的概念,掌握概率的基本性质,会计算古典型概率和几何型概率,掌握概率的加法公式、减法公式、乘法公式、全概率公式以及贝叶斯(Bayes)公式等.3.理解事件的独立性的概念,掌握用事件独立性进行概率计算;理解独立重复试验的概念,掌握计算有关事件概率的方法.二、随机变量及其分布考试内容随机变量 随机变量分布函数的概念及其性质 离散型随机变量的概率分布 连续型随机变量的概率密度 常见随机变量的分布 随机变量函数的分布考试要求1.理解随机变量的概念,理解分布函数{}()F x P X x =≤(x -∞<<+∞)的概念及性质,会计算与随机变量相联系的事件的概率.2.理解离散型随机变量及其概率分布的概念,掌握0-1分布、二项分布(,)B n p 、几何分布、超几何分布、泊松(Poisson )分布()P λ及其应用.3.掌握泊松定理的结论和应用条件,会用泊松分布近似表示二项分布.4.理解连续型随机变量及其概率密度的概念,掌握均匀分布(,)U a b 、正态分布2(,)N μσ、指数分布及其应用,其中参数为(0)λλ>的指数分布()E λ的概率密度为e ,0()0,0x xf x x λλ-⎧>⎪=⎨≤⎪⎩若若 5.会求随机变量函数的分布.三、多维随机变量的分布考试内容多维随机变量及其分布函数 二维离散型随机变量的概率分布、边缘分布和条件分布 二维连续型随机变量的概率密度、边缘概率密度和条件密度 随机变量的独立性和不相关性 常见二维随机变量的分布 两个及两个以上随机变量简单函数的分布考试要求1.理解多维随机变量的分布函数的概念和基本性质.2.理解二维离散型随机变量的概率分布和二维连续型随机变量的概率密度,掌握二维随机变量的边缘分布和条件分布.3.理解随机变量的独立性和不相关性的概念,掌握随机变量相互独立的条件,理解随机变量的不相关性与独立性的关系.4.掌握二维均匀分布和二维正态分布221212(,;,;)N μμσσρ,理解其中参数的概率意义. 5.会根据两个随机变量的联合分布求其函数的分布,会根据多个相互独立随机变量的联合分布求其简单函数的分布.四、随机变量的数字特征考试内容随机变量的数学期望(均值)、方差、标准差及其性质 随机变量函数的数学期望 切比雪夫(Chebyshev )不等式 矩、协方差、相关系数及其性质考试要求1.理解随机变量数字特征(数学期望、方差、标准差、矩、协方差、相关系数)的概念,会运用数字特征的基本性质,并掌握常用分布的数字特征.2.会求随机变量函数的数学期望.3.了解切比雪夫不等式.五、大数定律和中心极限定理考试内容切比雪夫大数定律 伯努利(Bernoulli )大数定律 辛钦(Khinchine )大数定律 棣莫弗—拉普拉斯(De Moivre -Laplace )定理 列维—林德伯格(Levy -Lindberg )定理考试要求1.了解切比雪夫大数定律、伯努利大数定律和辛钦大数定律(独立同分布随机变量序列的大数定律).2.了解棣莫弗—拉普拉斯中心极限定理(二项分布以正态分布为极限分布)、列维—林德伯格中心极限定理(独立同分布随机变量序列的中心极限定理),并会用相关定理近似计算有关随机事件的概率.六、数理统计的基本概念考试内容总体 个体 简单随机样本 统计量 经验分布函数 样本均值 样本方差和样本矩 2χ分布 t 分布 F 分布 分位数 正态总体的常用抽样分布考试要求1.了解总体、简单随机样本、统计量、样本均值、样本方差及样本矩的概念,其中样本方差定义为2211()1ni i S X X n ==--∑ 2.了解产生2χ变量、t 变量和F 变量的典型模式;了解标准正态分布、2χ分布、t 分布和F 分布的上侧α分位数,会查相应的数值表. 3.掌握正态总体的样本均值、样本方差、样本矩的抽样分布.4.了解经验分布函数的概念和性质.七、参数估计考试内容点估计的概念 估计量和估计值 矩估计法 最大似然估计法考试要求1.了解参数的点估计、估计量与估计值的概念.2.掌握矩估计法(一阶矩、二阶矩)和最大似然估计法.。
微积分考试大纲
附件3《微积分》考试大纲第一部分:总要求考生应按本大纲的要求,了解或理解“微积分”中函数、极限和连续、一元函数微分学、一元函数积分学、多元函数微积分学、无穷级数、常微分方程的基本概念与基本理论;学会、掌握或熟练掌握上述各部分的基本方法。
应注意各部分知识的结构及知识的内在联系;应具有一定的抽象思维能力、逻辑推理能力、运算能力;有运用基本概念、基本理论和基本方法正确地推理证明,准确地计算;能综合运用所学知识分析并解决简单的实际问题。
第二部分:考试内容一、函数、极限和连续函数的概念,复合函数的概念;基本初等函数的性质与图形,极限的基本性质,极限的存在准则(单调有界数列必有极限以及夹逼定理),两个重要极限,函数极限与数列极限的关系,无穷小与无穷大概念,极限存在与无穷小的关系;函数在一点连续的概念,初等函数的连续性,闭区间上连续函数的性质(有界性、最值性与介值性)。
二、一元函数微分学导数的概念及其几何、物理意义,导数的四则运算法则,基本初等函数的导数公式,复合函数的求导法,隐函数以及由参数方程所确定的函数的求导法,高阶导数的概念:罗尔(Rolle )定理,拉格朗日(Lagrange)定理,洛必达(L'Hospital)法则,五个基本的麦克劳林(Maclaurin)公式,函数单调性与曲线的凹凸性,函数极值的概念和求法,函数的最大值与最小值的求法。
三、一元函数积分学原函数与不定积分的概念及其几何意义,不定积分的基本性质与运算法则。
基本积分公式表,不定积分的换元法与分部积分法;定积分的概念及其几何意义,定积分的基本性质,变上限的积分及其求导,原函数存在定理,牛顿——莱布尼兹(Newton-Leibniz)公式,定积分的换元法与分部积分法;定积分的应用(计算平面图形面积、立体体积、变力沿直线所作的功等);广义积分(无穷区间广义积分)。
四、多元函数微积分二元函数及多元函数概念,有界闭区域上二元连续函数的性质(最大值与最小值定理,介值定理);偏导函数的概念及其几何意义,高阶偏导函数的概念,混合偏导数与求导次序无关的定理,复合函数的求导法,隐函数的求导法,多元函数的极值,函数的最大值与最小值,条件极值的概念与拉格朗日乘数法;二重积分的概念、二重积分的性质,二重积分的计算法(在直角坐标系与极坐标系下),重积分的应用(立体体积、物体的质量等)。
《微积分》学习大纲
《微积分》学习大纲一、本课程所学主要内容、各内容之间的相互联系本课程包含了一元函数及多元函数微分学和积分学、微分方程和差分方程、无穷级数四部分,它们是几乎所有专业必学内容。
各部分之间的相互联系如下:第一部分,一元函数微积分,主要包括一元函数微分学和积分学两部分。
其中最为重要的是极限与连续、导数与微分、不定积分与定积分等概念和计算方法,还有它们的一些应用。
一元函数微积分是高等数学的基础部分和重要支柱。
第二部分,多元函数微积分,主要包括二元函数微分学和重积分两部分。
其中最为重要的是偏导数、全微分及二重积分的概念和计算方法,还有它们的一些应用。
多元函数微积分是在第一部分基础上的拓展,其应用范围更为广泛。
第三部分,微分方程和差分方程,主要介绍微分方程和差分方程以它们的应用,其中最为重要的是一阶、二阶微分方程的求解方法,还有它们的一些应用。
微分方程的基础是一元函数微积分。
第四部分,无穷级数,是利用极限理论以及微积分等知识将“有限个常数求和”的问题拓展为“无穷多个常数求和或无穷多个函数求和”,即常数项级数和函数项级数。
从“有限”到“无限”其实就是量变引起质变的一个过程,这一点在第一部分极限和定积分中已经有所体现。
请读者在学习中仔细体会。
需要特别说明的是,极限是贯穿于微积分始终的一个最基本的概念,同时也是应用最为广泛、最重要的工具。
许多概念都是利用极限定义的,比如,连续、导数和偏导数、定积分和重积分、级数收敛和发散等等。
因此,可以说极限是整个高等数学这座高楼大厦的根基。
二、各部分学习要求第一部分一元函数微积分(第一~ 六章)通过一元函数微积分的学习,读者应该:1.正确理解以下概念并了解它们之间的联系:●函数—反函数—复合函数—初等函数●数列极限—函数极限●无穷小—无穷大—无穷小的比较●连续—间断(点)—可导—可微●原函数—不定积分—定积分—广义积分2.牢固掌握并能熟练使用以下公式:●导数基本公式●微分基本公式●积分基本公式●牛顿—莱布尼滋公式3.熟练掌握以下法则和方法:●求极限的各种法则和方法●求导数的各种法则和方法●求微分的各种法则和方法●求积分的各种法则和方法4.能够利用所学知识解决以下实际问题:●求平面曲线上某点处的切线方程和法线方程●求变速直线运动的瞬时速度与加速度●求物体转动的角速度●求电流强度和线密度●经济中边际分析与弹性分析●函数单调性、凹凸性的判断●求函数的极值与最值●求函数增量或某点附近函数值的近似值●求平面图形的面积、平面曲线段的弧长●连续函数的平均值●求旋转体或已知截面表达式的立体体积●求变力沿直线作功●求液体的侧压力●求非均匀细杆的质量5.能够利用所学知识,进行有关的讨论或证明:●方程根的讨论或证明●某些等式或不等式的证明第二部分多元函数微积分(第七~ 九章)通过多元函数微积分的学习,读者应该:1.正确理解以下概念并了解它们之间的联系:●多元函数—二重极限—连续—间断(点或线)●偏导数—全微分●二重积分2.熟练掌握以下方法:●求偏导数的各种方法●求全微分的各种方法●求二重积分的各种方法3.能够利用所学知识解决以下实际问题:●求空间曲线上某点处的切线方程和法平面方程●求空间曲面上某点处的切平面方程和法线方程●经济中偏边际分析与偏弹性分析●求二元函数的极值与最值●求二元函数全增量的近似值●求立体的体积●求非均匀平面薄板的质量第三部分微分方程与差分方程(财大版第十三章;高教版第十章)通过微分方程与差分方程的学习,读者应该:1.正确理解以下概念并了解它们之间的联系:●微分方程—微分方程的阶—微分方程的解、通解、特解●差分方程—差分方程的阶—差分方程的解、通解、特解2.熟练掌握以下方法:●求各种一阶微分方程的通解和特解(主要包括可分离变量、齐次、一阶线性、贝努利微分方程)的方法;●求高阶微分方程的通解和特解(主要包括可降阶、二阶常系数线性微分方程)的方法;●一阶常系数线性差分方程的求解方法。
2019高等数学考试大纲共6页文档
全国教师教育网络联盟入学联考专科起点升本科高等数学考试大纲全国教师教育网络联盟入学联考专科起点升本科高等数学课程考试大纲总要求考生应理解或了解“高等数学”中函数,极限,连续,一元函数微分,微分中值定理,不定积分与定积分,二元函数积微分的基本概念,基本理论与基本方法,掌握上述各部分知识的内在联系,应具有一定的抽象思维能力,逻辑推理能力,运算能力,空间想象能力,能正确,简捷地计算,能综合应用所学知识分析并处理简单的实际问题。
第一部分考试内容一、函数、极限和连续(一)函数1.知识范围(1)函数的概念函数的定义函数的表示法分段函数(2)函数的简单性质单调性奇偶数有界性周期性(3)反函数反函数的定义反函数的图像(4)隐函数(5)函数的四则运算与复合运算(6)基本初等函数幂函数指数函数对数函数三角函数反三角函数(7)初等函数2.要求(1)理解函数的概念,理解函数的两个要素:函数的定义域与函数的对应法则(2)理解函数的奇偶性和单调性,了解函数的有界性和周期性。
(3)了解反函数的概念,会求单调函数的反函数(4)理解和掌握函数的四则运算和复合运算,熟练掌握复合函数的复合过程。
(5)掌握基本初等函数的简单性质及其图象,了解初等函数的概念。
(二) 极限1. 知识范围(1)函数极限的概念函数在一点处极限的定义,左、右极限及其与极限的关系,x 趋于无穷时函数的极限。
(2)极限四则运算法则(3)两个重要极限(4)无穷小量和无穷大量无穷小量与穷大量的定义,无穷小量与无穷大量的关系,无穷小量与无穷大量的性质,无穷小量的阶。
2. 要求(1)了解函数极限的直观概念。
理解函数在点0x 处的极限。
理解函数在∞→x 时的极限(2)理解函数在点0x 处左、右极限的概念,理解函数在一点处极限存在的充分必要条件(3)熟练掌握用两个重要极限求极限的方法(4)掌握极限的四则运算法则(5)理解无穷小量概念,了解无穷大量概念,掌握无穷小量性质。
了解无穷小量的阶的概念。
高等数学C类(微积分)上考试大纲
《微积分(上)》考试大纲(C 类)一、考试的基本要求要求考生较系统地掌握《微积分》中函数、极限、连续、一元函数微分学、不定积分的基本概念和基本理论;掌握上述各部分的基本方法。
应注意各部分知识的结构及知识的内在联系;应具有一定的抽象思维能力、逻辑推理能力、运算能力、空间想象能力;能运用基本概念、基本理论和基本方法正确地推理证明,准确、简捷地计算;能综合运用所学知识分析并解决简单的实际问题。
本大纲对内容的要求由低到高,对概念和理论分为“了解”和“理解”两个层次;对方法和运算分为“会”、“掌握”和“熟练掌握”三个层次。
二、试卷满分及考试时间试卷满分为100分,考试时间为120分钟。
三、答题方式答题方式为闭卷、笔试。
四、试卷题型结构及比例单项选择题 5小题,每小题3分,共15分填空题 5小题,每小题3分,共15分解答题 7小题,每小题8分,共56分证明题 2小题,共14分五、考试内容及要求一、函数、极限和连续考试内容函数的概念及表示法;函数的有界性、单调性、周期性和奇偶性;复合函数、反函数、分段函数和隐函数;基本初等函数的性质及其图形;初等函数;经济学中几个常见的函数;函数关系的建立。
数列极限与函数极限的定义及其性质;函数的左极限与右极限;无穷小量与无穷大量的概念极其关系;无穷小的性质及无穷小量的比较;极限的四则运算;极限存在的两个准则:单调有界准则和夹逼准则;两个重要极限:1sin lim 0=→x x x ,e xx x =+∞→)11(lim 。
函数连续的概念;函数间断点的类型;初等函数的连续性;闭区间上连续函数的性质。
考试要求1.理解函数的概念,掌握函数的表示法,会建立简单实际问题的函数关系式。
2.理解函数的单调性、奇偶性、有界性和周期性。
3.理解复合函数及分段函数的概念,熟练掌握复合函数的复合过程。
4.了解反函数的概念,了解函数)(x f y =与其反函数)(1x fy -=之间的关系(定义域、值域、图象),会求单调函数的反函数。
《高等数学基础(原“微积分”)》考试大纲
《高等数学基础(原“微积分”)》考试大纲考试目的本考试为北京大学医学网络教育学院医学信息、药学等专业专科、本科层次学生2011~2012学年《高等数学基础-微积分》课程考试,旨在认定其学习是否达到了预期的课程要求,同时为北医网络学院下一步教学的实施及评估提供依据。
考试总要求考生应重点掌握极限、导数或微分、积分的基本计算,理解微分学与积分学的联系-牛顿莱布尼兹公式,能够运用微积分基本计算,求函数曲线在某点的切线方程,会求一般曲边梯形的面积,及特殊封闭曲线所围图形的面积如: 计算圆面积,椭圆面积,掌握旋转体体积的定积分计算方法如:圆球体积,圆锥体体积的计算公式的推导,并具有求出简单函数最值的能力。
至少掌握一种判定驻点是否是极值点的方法。
了解微积分在医药行业中的基本应用。
考试内容试卷结构一览表试卷形式试卷总分:100分考试时间:90分钟答题方式:试卷分为试题册、答题卡,所有题型均为客观题,答案涂在答题卡上试卷题型比例:客观题:100% 单选或多选(本期考试为单选)总成绩构成网上作业百题得分*30%+期末成绩*70%单选题25题每题得分4分共100分每题四个选项择最佳选项题型说明与题型示例一. 函数 (12分)● 会求简单函数的定义域 (,1][2,)f D =-∞+∞ 。
题型示例 (,1][2,)-∞+∞ .题型示例 函数)2)(1(x x --的定义域为:[1,2] 曲线图形为半圆。
注意与前题的区别。
●会判定基本初等函数的单调性: 3,3,ln x y x y y x ===是单调增加函数(图像)。
题型示例 非单调增加函数的是:3:,:3,:ln ,:sin x A y x B y C y x y D x ====。
● 会判定简单函数的有界性: 2211, , ,sin 11x x y y y e y x e x --====++均有界。
题型示例 ( ) 函数是无界的 (单调函数的最大值最小值在端点达到)。
《微积分》考试大纲.doc
南昌理工学院2020年专升本《微积分》考试大纲(一)关于考试大纲的几点说明:1.《微积分》是财经、管理类专业后续经济数学和专业课的基础,是教学计划中的一门核心基础课。
2.考试要求与性质南昌理工学院专升本《微积分》考试是具有选拔性质的水平考试,其目的是选拔优秀的专科生进入我校本科学习。
为此,本课程的考试要求既要考核知识,又要考核能力,因此,要求考生复习本课程时应注意系统掌握本大纲所规定的基础知识、基本技能,提高运算能力,发展逻辑思维能力和运用数学知识分析、解决实际的能力。
3.本大纲对内容的要求由低到高,对概念和理论分为“了解”和“理解”两个层次;对方法和运算分为“会”、“掌握”和“熟练掌握”三个层次。
4.本课程考试方式为闭卷:答卷时间为120分钟:评分采用百分制;考试内容为本大纲所规定的“考核知识点”和“考核目标和基本要求”的内容,试题的难度按易、中、难三个层次的比例为30:50:20。
5.题型①填空题:共5小题,每小题4分,计20分。
②单项选择题(在四个备选答案中有且只有一个正确):共5小题,每小题4分,计 20分。
③解答题(包括证明题):共6道题,计60分。
6.参考教材:《经济应用数学》,哈尔滨工程大学,涂青主编(二)考试内容及各知识点具体要求一、函数、极限和连续(一)函数1.知识范围(1)函数的概念 函数的定义,函数的表示法,分段函数,隐函数.(2)函数的性质 单调性,奇偶性,有界性,周期性.(3)反函数 反函数的定义,反函数的图像(4)基本初等函数 幂函数,指数函数,对数函数,三角函数,反三角函数.(5)函数的四则运算与复合运算(6)初等函数(7)常用经济函数2.要求(1)理解函数的概念。
会求函数的表达式、定义域及函数值。
会求分段函数的定义域、函数值,会作出简单的分段函数的图像。
(2)理解函数的单调性、奇偶性、有界性和周期性。
(3)了解函数)(x f y = 与其反函数)(1x fy -=之间的关系(定义域、值域、图像),会求单调函数的反函数。
微积分复习提纲
高等数学复习提纲基本内容:1、函数基本概念及性质。
基本初等函数:幂函数、指数函数、对数函数、三角函数、反三角函数。
初等函数:由基本初等函数和常数经过有限次的四则运算和有限次的函数复合步骤所构成并可用一个式子表示的函数,称为初等函数。
注:分段函数一般不是初等函数。
特例:2,0,0x x y x x x ≥⎧==⎨-<⎩为初等函数。
2、极限定义:n lim n a a →∞=⇔对任给0ε>,存在,N 当n N >时,有||n a a ε-<.(等价定义)3、无穷小的定义与性质。
1)若函数f(x)当x x 0→(或∞→x )时的极限为零,则称f(x)当x x 0→(或∞→x )时为无穷小量。
注:(1)无穷小量是个变量而不是个很小的数.(2)零是常数中唯一的无穷小量。
2)无穷小的性质:有限个无穷小的代数和是无穷小、有界函数与无穷小的乘积是无穷小、常数与无穷小的乘积是无穷小、有限个无穷小的乘积也是无穷小。
3)函数极限与无穷小的关系:()()A x f x x x =∞→→lim 0的充要条件是()α+=A x f ,其中A 为常数,α是当x x 0→(或∞→x )时的无穷小。
4、无穷大的定义。
若当x x 0→(或∞→x )时,f(x)的绝对值无限增大,则称函数f(x)当x x 0→(或∞→x )时为无穷 大量。
注:无穷大是变量,不是一个绝对值很大的数。
5、无穷大与无穷小互为倒数。
6、极限的运算法则。
00型:1)用0sin lim 1x x x →=。
2)因式分解法2339lim x x x →--。
3)分子分母有理化法1131lim --→x x x 。
∞∞型: 分子分母同除以一个非零因式, 如:2232123lim x x x x x →∞+--+。
7、两个重要极限。
1)0sin lim1x xx→= 2)e x xx =⎪⎭⎫ ⎝⎛+∞→11lim 以及()e x xx =+→1lim10。
数学三考试大纲
年数学三考试大纲考试科目:微积分、线性代数、概率论与数理统计考试形式和试卷结构一、试卷满分及考试时间试卷满分为分,考试时间为分钟.二、答题方式答题方式为闭卷、笔试.三、试卷内容结构微积分 约线性代数 约概率论与数理统计 约四、试卷题型结构单项选择题选题 小题,每小题分,共分填空题 小题,每小题分,共分解答题(包括证明题) 小题,共分微积分一、函数、极限、连续考试内容函数的概念及表示法 函数的有界性、单调性、周期性和奇偶性 复合函数、反函数、分段函数和隐函数 基本初等函数的性质及其图形 初等函数 函数关系的建立数列极限与函数极限的定义及其性质 函数的左极限和右极限 无穷小量和无穷大量的概念及其关系 无穷小量的性质及无穷小量的比较 极限的四则运算 极限存在的两个准则:单调有界准则和夹逼准则 两个重要极限:0sin lim 1x x x →= 1lim 1e xx x →∞⎛⎫+= ⎪⎝⎭ 函数连续的概念 函数间断点的类型 初等函数的连续性 闭区间上连续函数的性质 考试要求.理解函数的概念,掌握函数的表示法,会建立应用问题的函数关系..了解函数的有界性、单调性、周期性和奇偶性..理解复合函数及分段函数的概念,了解反函数及隐函数的概念..掌握基本初等函数的性质及其图形,了解初等函数的概念..了解数列极限和函数极限(包括左极限与右极限)的概念..了解极限的性质与极限存在的两个准则,掌握极限的四则运算法则,掌握利用两个重要极限求极限的方法..理解无穷小量的概念和基本性质,掌握无穷小量的比较方法.了解无穷大量的概念及其与无穷小量的关系..理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型..了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质.二、一元函数微分学考试内容导数和微分的概念 导数的几何意义和经济意义 函数的可导性与连续性之间的关系 平面曲线的切线与法线 导数和微分的四则运算 基本初等函数的导数 复合函数、反函数和隐函数的微分法 高阶导数 一阶微分形式的不变性 微分中值定理 洛必达(')法则 函数单调性的判别 函数的极值 函数图形的凹凸性、拐点及渐近线 函数图形的描绘 函数的最大值与最小值考试要求.理解导数的概念及可导性与连续性之间的关系,了解导数的几何意义与经济意义(含边际与弹性的概念),会求平面曲线的切线方程和法线方程..掌握基本初等函数的导数公式、导数的四则运算法则及复合函数的求导法则,会求分段函数的导数,会求反函数与隐函数的导数..了解高阶导数的概念,会求简单函数的高阶导数..了解微分的概念、导数与微分之间的关系以及一阶微分形式的不变性,会求函数的微分..理解罗尔()定理、拉格朗日( )中值定理,了解泰勒()定理、柯西()中值定理,掌握这四个定理的简单应用..会用洛必达法则求极限..掌握函数单调性的判别方法,了解函数极值的概念,掌握函数极值、最大值和最小值的求法及其应用..会用导数判断函数图形的凹凸性(注:在区间(,)a b 内,设函数()f x 具有二阶导数.当()0f x ''>时,()f x 的图形是凹的;当()0f x ''<时,()f x 的图形是凸的),会求函数图形的拐点和渐近线..会描述简单函数的图形.三、一元函数积分学考试内容原函数和不定积分的概念 不定积分的基本性质 基本积分公式 定积分的概念和基本性质 定积分中值定理 积分上限的函数及其导数 牛顿莱布尼茨( )公式 不定积分和定积分的换元积分法与分部积分法 反常(广义)积分 定积分的应用考试要求.理解原函数与不定积分的概念,掌握不定积分的基本性质和基本积分公式,掌握不定积分的换元积分法与分部积分法..了解定积分的概念和基本性质,了解定积分中值定理,理解积分上限的函数并会求它的导数,掌握牛顿莱布尼茨公式以及定积分的换元积分法和分部积分法..会利用定积分计算平面图形的面积、旋转体的体积和函数的平均值,会利用定积分求解简单的经济应用问题..了解反常积分的概念,会计算反常积分.四、多元函数微积分学考试内容多元函数的概念 二元函数的几何意义 二元函数的极限与连续的概念 有界闭区域上二元连续函数的性质 多元函数偏导数的概念与计算 多元复合函数的求导法与隐函数求导法 二阶偏导数 全微分 多元函数的极值和条件极值、最大值和最小值 二重积分的概念、基本性质和计算 无界区域上简单的反常二重积分考试要求.了解多元函数的概念,了解二元函数的几何意义..了解二元函数的极限与连续的概念,了解有界闭区域上二元连续函数的性质..了解多元函数偏导数与全微分的概念,会求多元复合函数一阶、二阶偏导数,会求全微分,会求多元隐函数的偏导数..了解多元函数极值和条件极值的概念,掌握多元函数极值存在的必要条件,了解二元函数极值存在的充分条件,会求二元函数的极值,会用拉格朗日乘数法求条件极值,会求简单多元函数的最大值和最小值,并会解决简单的应用问题..了解二重积分的概念与基本性质,掌握二重积分的计算方法(直角坐标、极坐标),了解无界区域上较简单的反常二重积分并会计算.五、无穷级数考试内容常数项级数的收敛与发散的概念 收敛级数的和的概念 级数的基本性质与收敛的必要条件 几何级数与p 级数及其收敛性 正项级数收敛性的判别法 任意项级数的绝对收敛与条件收敛 交错级数与莱布尼茨定理 幂级数及其收敛半径、收敛区间(指开区间)和收敛域 幂级数的和函数 幂级数在其收敛区间内的基本性质 简单幂级数的和函数的求法 初等函数的幂级数展开式考试要求.了解级数的收敛与发散、收敛级数的和的概念..了解级数的基本性质及级数收敛的必要条件,掌握几何级数及p 级数的收敛与发散的条件,掌握正项级数收敛性的比较判别法和比值判别法..了解任意项级数绝对收敛与条件收敛的概念以及绝对收敛与收敛的关系,了解交错级数的莱布尼茨判别法..会求幂级数的收敛半径、收敛区间及收敛域..了解幂级数在其收敛区间内的基本性质(和函数的连续性、逐项求导和逐项积分),会求简单幂级数在其收敛区间内的和函数..了解e x ,sin x ,cos x ,ln(1)x +及(1)x α+的麦克劳林()展开式.六、常微分方程与差分方程考试内容常微分方程的基本概念 变量可分离的微分方程 齐次微分方程 一阶线性微分方程 线性微分方程解的性质及解的结构定理 二阶常系数齐次线性微分方程及简单的非齐次线性微分方程 差分与差分方程的概念 差分方程的通解与特解 一阶常系数线性差分方程 微分方程的简单应用考试要求.了解微分方程及其阶、解、通解、初始条件和特解等概念..掌握变量可分离的微分方程、齐次微分方程和一阶线性微分方程的求解方法..会解二阶常系数齐次线性微分方程..了解线性微分方程解的性质及解的结构定理,会解自由项为多项式、指数函数、正弦函数、余弦函数的二阶常系数非齐次线性微分方程..了解差分与差分方程及其通解与特解等概念..了解一阶常系数线性差分方程的求解方法..会用微分方程求解简单的经济应用问题.线性代数一、行列式考试内容行列式的概念和基本性质行列式按行(列)展开定理考试要求.了解行列式的概念,掌握行列式的性质..会应用行列式的性质和行列式按行(列)展开定理计算行列式.二、矩阵考试内容矩阵的概念矩阵的线性运算矩阵的乘法方阵的幂方阵乘积的行列式矩阵的转置逆矩阵的概念和性质矩阵可逆的充分必要条件伴随矩阵矩阵的初等变换初等矩阵矩阵的秩矩阵的等价分块矩阵及其运算考试要求.理解矩阵的概念,了解单位矩阵、数量矩阵、对角矩阵、三角矩阵的定义及性质,了解对称矩阵、反对称矩阵及正交矩阵等的定义和性质..掌握矩阵的线性运算、乘法、转置以及它们的运算规律,了解方阵的幂与方阵乘积的行列式的性质..理解逆矩阵的概念,掌握逆矩阵的性质以及矩阵可逆的充分必要条件,理解伴随矩阵的概念,会用伴随矩阵求逆矩阵..了解矩阵的初等变换和初等矩阵及矩阵等价的概念,理解矩阵的秩的概念,掌握用初等变换求矩阵的逆矩阵和秩的方法..了解分块矩阵的概念,掌握分块矩阵的运算法则.三、向量考试内容向量的概念向量的线性组合与线性表示向量组的线性相关与线性无关向量组的极大线性无关组等价向量组向量组的秩向量组的秩与矩阵的秩之间的关系向量的内积线性无关向量组的正交规范化方法考试要求.了解向量的概念,掌握向量的加法和数乘运算法则..理解向量的线性组合与线性表示、向量组线性相关、线性无关等概念,掌握向量组线性相关、线性无关的有关性质及判别法..理解向量组的极大线性无关组的概念,会求向量组的极大线性无关组及秩..理解向量组等价的概念,理解矩阵的秩与其行(列)向量组的秩之间的关系..了解内积的概念.掌握线性无关向量组正交规范化的施密特()方法.四、线性方程组考试内容线性方程组的克拉默()法则线性方程组有解和无解的判定齐次线性方程组的基础解系和通解非齐次线性方程组的解与相应的齐次线性方程组(导出组)的解之间的关系非齐次线性方程组的通解考试要求.会用克拉默法则解线性方程组..掌握非齐次线性方程组有解和无解的判定方法..理解齐次线性方程组的基础解系的概念,掌握齐次线性方程组的基础解系和通解的求法..理解非齐次线性方程组解的结构及通解的概念..掌握用初等行变换求解线性方程组的方法.五、矩阵的特征值和特征向量考试内容矩阵的特征值和特征向量的概念、性质相似矩阵的概念及性质矩阵可相似对角化的充分必要条件及相似对角矩阵实对称矩阵的特征值和特征向量及相似对角矩阵考试要求.理解矩阵的特征值、特征向量的概念,掌握矩阵特征值的性质,掌握求矩阵特征值和特征向量的方法..理解矩阵相似的概念,掌握相似矩阵的性质,了解矩阵可相似对角化的充分必要条件,掌握将矩阵化为相似对角矩阵的方法..掌握实对称矩阵的特征值和特征向量的性质.六、二次型考试内容二次型及其矩阵表示合同变换与合同矩阵二次型的秩惯性定理二次型的标准形和规范形用正交变换和配方法化二次型为标准形二次型及其矩阵的正定性考试要求.了解二次型的概念,会用矩阵形式表示二次型,了解合同变换与合同矩阵的概念..了解二次型的秩的概念,了解二次型的标准形、规范形等概念,了解惯性定理,会用正交变换和配方法化二次型为标准形..理解正定二次型、正定矩阵的概念,并掌握其判别法.概率论与数理统计一、随机事件和概率考试内容随机事件与样本空间 事件的关系与运算 完备事件组 概率的概念 概率的基本性质 古典型概率 几何型概率 条件概率 概率的基本公式 事件的独立性 独立重复试验考试要求.了解样本空间(基本事件空间)的概念,理解随机事件的概念,掌握事件的关系及运算..理解概率、条件概率的概念,掌握概率的基本性质,会计算古典型概率和几何型概率,掌握概率的加法公式、减法公式、乘法公式、全概率公式以及贝叶斯()公式等..理解事件的独立性的概念,掌握用事件独立性进行概率计算;理解独立重复试验的概念,掌握计算有关事件概率的方法.二、随机变量及其分布考试内容随机变量 随机变量分布函数的概念及其性质 离散型随机变量的概率分布 连续型随机变量的概率密度 常见随机变量的分布 随机变量函数的分布考试要求.理解随机变量的概念,理解分布函数{}()F x P X x =≤(x -∞<<+∞)的概念及性质,会计算与随机变量相联系的事件的概率..理解离散型随机变量及其概率分布的概念,掌握-分布、二项分布(,)B n p 、几何分布、超几何分布、泊松()分布()P λ及其应用..掌握泊松定理的结论和应用条件,会用泊松分布近似表示二项分布..理解连续型随机变量及其概率密度的概念,掌握均匀分布(,)U a b 、正态分布2(,)N μσ、指数分布及其应用,其中参数为(0)λλ>的指数分布()E λ的概率密度为e ,0()0,0x xf x x λλ-⎧>⎪=⎨≤⎪⎩若若 .会求随机变量函数的分布.三、多维随机变量的分布考试内容多维随机变量及其分布函数 二维离散型随机变量的概率分布、边缘分布和条件分布 二维连续型随机变量的概率密度、边缘概率密度和条件密度 随机变量的独立性和不相关性 常见二维随机变量的分布 两个及两个以上随机变量简单函数的分布考试要求.理解多维随机变量的分布函数的概念和基本性质..理解二维离散型随机变量的概率分布和二维连续型随机变量的概率密度,掌握二维随机变量的边缘分布和条件分布..理解随机变量的独立性和不相关性的概念,掌握随机变量相互独立的条件,理解随机变量的不相关性与独立性的关系..掌握二维均匀分布和二维正态分布221212(,;,;)N μμσσρ,理解其中参数的概率意义. .会根据两个随机变量的联合分布求其函数的分布,会根据多个相互独立随机变量的联合分布求其简单函数的分布.四、随机变量的数字特征考试内容随机变量的数学期望(均值)、方差、标准差及其性质 随机变量函数的数学期望 切比雪夫()不等式 矩、协方差、相关系数及其性质考试要求.理解随机变量数字特征(数学期望、方差、标准差、矩、协方差、相关系数)的概念,会运用数字特征的基本性质,并掌握常用分布的数字特征..会求随机变量函数的数学期望..了解切比雪夫不等式.五、大数定律和中心极限定理考试内容切比雪夫大数定律 伯努利()大数定律 辛钦()大数定律 棣莫弗—拉普拉斯( -)定理 列维—林德伯格(-)定理考试要求.了解切比雪夫大数定律、伯努利大数定律和辛钦大数定律(独立同分布随机变量序列的大数定律)..了解棣莫弗—拉普拉斯中心极限定理(二项分布以正态分布为极限分布)、列维—林德伯格中心极限定理(独立同分布随机变量序列的中心极限定理),并会用相关定理近似计算有关随机事件的概率.六、数理统计的基本概念考试内容总体 个体 简单随机样本 统计量 经验分布函数 样本均值 样本方差和样本矩 2χ分布 t 分布 F 分布 分位数 正态总体的常用抽样分布考试要求.了解总体、简单随机样本、统计量、样本均值、样本方差及样本矩的概念,其中样本方差定义为2211()1ni i S X X n ==--∑ .了解产生2χ变量、t 变量和F 变量的典型模式;了解标准正态分布、2χ分布、t 分布和F 分布的上侧α分位数,会查相应的数值表..掌握正态总体的样本均值、样本方差、样本矩的抽样分布..了解经验分布函数的概念和性质.七、参数估计考试内容点估计的概念估计量和估计值矩估计法最大似然估计法考试要求.了解参数的点估计、估计量与估计值的概念..掌握矩估计法(一阶矩、二阶矩)和最大似然估计法.。
2019年《高等数学》考试大纲.doc
《高等数学》考试大纲一、考试题型:单项选择题选题 8小题,每题4分,共32分填空题 6小题,每题4分,共24分解答题(包括证明题) 9小题,共94分二、考试内容:微积分学约60%微分方程与无穷级数约30%向量代数与空间解析几何约10%(一)函数、极限、连续考试内容:集合及其运算确界存在定理函数的概念及表示法函数的有界性、单调性、周期性和奇偶性复合函数、反函数、分段函数和隐函数基本初等函数的性质及其图形初等函数函数关系的建立数列极限与函数极限的定义及其性质函数的左极限和右极限无穷小量和无穷大量的概念及其关系无穷小量的性质及无穷小量的比较极限的四则运算极限存在的两个准则:(单调有界准则和夹逼准)两个重要极限函数连续的概念函数间断点的类型初等函数的连续性闭区间上连续函数的性质考试要求:1.了解集合的上、下确界,理解确界存在定理,理解函数的概念,掌握函数的表示法,会建立应用问题的函数关系。
2.了解函数的有界性、单调性、周期性和奇偶性。
3.理解复合函数及分段函数的概念,了解反函数及隐函数的概念。
4.掌握基本初等函数的性质及其图形,了解初等函数的概念。
5.了解数列极限和函数极限(包括左极限与右极限)的概念。
6.了解极限的性质与极限存在的两个准则,掌握极限的四则运算法则,掌握利用两个重要极限求极限的方法。
7.理解无穷小的概念和基本性质,掌握无穷小量的比较方法,了解无穷大量的概念及其与无穷小量的关系。
8.理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型。
9.了解连续函数的性质和初等函数的连续性,了解函数的一致连续性理解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理、一致连续),并会应用这些性质。
(二)一元函数微分学考试内容:导数和微分的概念导数的几何意义和经济意义函数的可导性与连续性之间的关系平面曲线的切线与法线导数和微分的四则运算基本初等函数的导数复合函数.反函数和隐函数的微分法高阶导数一阶微分形式的不变性 微分中值定理 洛必达(L'Hospital )法则 函数单调性的判别 函数的极值 函数图形的凹凸性、拐点及渐近线 函数图形的描绘 函数的最大值与最小值考试要求:1.理解导数的概念及可导性与连续性之间的关系,了解导数的几何意义与经济意义(含边际与弹性的概念),会求平面曲线的切线方程和法线方程。
(整理)《微积分》上考试大纲.
《微积分》上考试大纲试卷题型:一、填充题(每题3分,共15分)二、选择题(每题3分,共18分)三、计算下列极限(每题6分,共12分)四、求下列函数的导数或积分(每题6分,共36分五、解下列各题(共19分)第一章:函数基本内容:1.函数:定义域、表示法、分段函数2.函数的4个常见性态:有界性、单调性、奇偶性、周期性3.反函数4.复合函数5.基本初等函数6.初等函数题型:1.求函数的定义域(具体、抽象)2.求复合函数(1)已知(2)已知3.求函数的反函数4.函数的奇偶性的判断第二章:极限与连续基本内容:1.数列极限(1)定义(2)收敛数列的重要性质:收敛→有界2.函数的极限3.函数的极限(1)定义(2)单侧极限(3)充要条件(4)保号性定理4.无穷大量与无穷小量(1)定义(2)无穷小的运算(3)无穷大与无穷小的关系(4)无穷小量的阶5.极限运算及性质(+,-,×,÷,及无穷小运算)6.重要极限7.在处连续的定义8.初等函数的连续性9.闭区间上连续函数性质(有界、最值、介值)题型:1.求极限(包括数列极限)方法:(1)用连续函数性质、定义(2)用罗比塔法则(注意条件)(3)利用重要极限(4)等价无穷小代换(5)分段函数分段点用充要条件2.已知极限求待定系数3.无穷小阶的比较(包括找无穷小,无穷大)4. 求连续区间(1)间断点的判断(第几类什么名称)(2)已知连续求待定系数第三章:导数、微分、边际与弹性基本内容:1.导数的定义2.可导与连续的关系4.导数公式5.导数运算法则(+,-,×,÷,复合,隐函数,对数求导法)6.高阶导数(二阶)7.微分定义8.微分公式题型:1.求函数的导数或微分(包括高阶导数)(1)一般函数(公式,四则运算)(2)复合函数(3)隐函数(4)对数求导法(5)变上限函数的导数2.求在某点的切线方程第四章:中值定理及导数应用基本内容:1.三个中值定理:罗尔中值定理,拉格朗日中值定理,柯西中值定理2.函数单调性的判定定理3.极值的概念(1)极值的定义(2)极值的必要条件(3)极值的判定定理(第一、二充分条件)4.曲线凹凸性的概念(1)凹凸性的定义(2)凹凸性的判断5.函数的渐进线(1)水平渐进线(2)垂直渐进线题型:1.中值定理及应用(条件判断,证明不等式)2.判断函数的单调区间方法:(1)求定义,(2)求一阶导数,(2)列表,用定理判断3.求极值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《微积分》上考试大纲
试卷题型:
一、填充题(每题3分,共15分)
二、选择题(每题3分,共18分)
三、计算下列极限(每题6分,共12分)
四、求下列函数的导数或积分(每题6分,共36分
五、解下列各题(共19分)
第一章:函数
基本内容:
1.函数:定义域、表示法、分段函数
2 .函数的4个常见性态:有界性、单调性、奇偶性、周期性
3.反函数
4.复合函数
5.基本初等函数
6.初等函数题型:
1.求函数的定义域(具体、抽象)
2.求复合函数
(1)已知f(x),(X)求f〔(x)l f〔f(X),〔(X)】(2)已知f I (x)1求f (x)
3.求函数的反函数
4.函数的奇偶性的判断
第二章:极限与连续
基本内容:
1.数列极限
⑴定义
(2)收敛数列的重要性质:收敛—有界
2. 函数X 一;:=的极限
3. 函数x >X o的极限
(1) 定义
(2) 单侧极限
(3) 充要条件
(4) 保号性定理
4. 无穷大量与无穷小量
(1)定义
⑵无穷小的运算
⑶无穷大与无穷小的关系
⑷无穷小量的阶
5.极限运算及性质(+,- ,X,十,u n及无穷小运算)
6.重要极限
7. f(X)在X o处连续的定义
8.初等函数的连续性
9.闭区间上连续函数性质(有界、最值、介值)
题型:
1•求极限(包括数列极限)
方法:(1 )用连续函数性质、定义
(2)用罗比塔法则(注意条件)
(3)利用重要极限
(4)等价无穷小代换
(5)分段函数分段点用充要条件
2.已知极限求待定系数
3.无穷小阶的比较(包括找无穷小,无穷大)
4.求连续区间
(1)间断点的判断(第几类什么名称)
(2)已知连续求待定系数
第三章:导数、微分、边际与弹性
基本内容:
1•导数的定义
2•可导与连续的关系
4.导数公式
5.导数运算法则(+ , -,X,宁,复合,隐函数,对数求导法)
6.高阶导数(二阶)
7.微分定义dy二f(x)dx
8.微分公式
题型:
1.求函数的导数或微分(包括高阶导数)题型:
(1)一般函数(公式,四则运算)
(2)复合函数
(3)隐函数
(4)对数求导法
(5)变上限函数的导数
2.求在某点的切线方程第四章:中值定理及导数应用基本内容:1.三个中值定理:罗尔中值定理,拉格朗日中值定理,柯西中值定理2.函数单调性的判定定理
3.极值的概念
(1)极值的定义
(2)极值的必要条件
(3)极值的判定定理(第一、二充分条件)
4.曲线凹凸性的概念
(1)凹凸性的定义
(2)凹凸性的判断
5.函数的渐进线
(1)水平渐进线
(2)垂直渐进线
1.中值定理及应用(条件判断,证明不等式)
题型:
2.判断函数的单调区间方法:(1)求定义,(2)求一阶导数,(2)列表,用定理判断
3.求极值。
方法:(1)求定义,(2)求一阶导数,求出驻点与不可导点(2)列表用第一充分条件判断;或驻点用第二充分条件判断。
4.求最值(闭区间上连续函数的最值,应用题)
5.求函数的凹向区间和拐点。
方法:(1)求定义,(2)求二阶导数,求出二阶导数为零的点与不可导点(2)列表,用定理判断。
6.求渐进线
7.罗比塔法则求极限(已归纳到第二章)
第五章:不定积分
基本内容:
1.原函数的定义
2.不定积分定义
3.不定积分性质
(1)不定积分与微分互为逆运算
(2)代数和的积分等于积分的代数和
(3)常数可以提到积分号前面
4.基本积分公式(1)---(13);(14)---(22)
5.常用积分方法
(1)基本公式
(2)恒等变形
(3) 凑微分
(4) 第二换元法
(5) 分部积分法
题型:
1 .求积分
第六章:定积分及其应用
基本内容:
定积分定义
定积分的性质(7个)
积分上限函数概念
x
定义: (x)二 f(t)dt a
b
牛顿一莱布尼兹公式f f(x)dx=F(x) a
无限区间上的积分
(1) a f(x)dx= lim a f(x)dx
b b
(2) f(x)dx*m a f(x)dx
'H -.<i C ' H -.C
无界函数的积分
b b
(1) a 为暇点,[f (x)dx 二慟十j a +E f (x)dx
(2)
求导 (3) 原函数存在定理
(1) 二
F(b) - F(a) (3) - f(x)dx 「- f(x)dx c f(x)dx
b b -;
a f (x
)dx 「m a f(x)dx b
c (3) a<c<b,c 为暇点,f f(x)dx=J f(x)dx + a a 题型:
1. 不计算积分比较积分值的大小,估值
2. 求定积分
3. 求广义积分
4. 求平面图形面积
5. 变上限函数的求导(已归纳到第三章) 参考书:吴传生《微积分》
习题重点:例题,习题 赵树嫄《微积分》 习题重点:E 型练习题
(2) b 为暇点, b f (x)dx
c。