2013年高考题答案详细解释

合集下载

2013年高考试题答案和解析

2013年高考试题答案和解析

2013年普通高等学校招生全国统一考试语文本试题卷共8页,六大题23小题。

全卷满分150分。

考试用时150分钟。

注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。

用统一提供的2B铅笔将答题卡上试卷类型A后的方框涂黑。

2.选择题的作答:每小题选出答案后,用统一提供的2B铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其它答案标号。

答在试题卷、草稿纸上无效。

3.非选择题的作答:用统一提供的签字笔直接答在答题卡上对应的答题区域内。

答在试题卷、草稿纸上无效。

4.考生必须保持答题卡的整洁。

考试结束后,请将本试题卷和答题卡一并上交。

一、语文基础知识(共15分,共5小题,每小题3分)1.下列各组词语中,加点字的注音全都正确的一组是A.踹(chuài)水竞(jìnɡ)赛蘸(zhàn)酒擂(léi)鼓助威B.跋涉(shè)陡(dǒu)峭攀登(dēnɡ)餐霜饮雪(xiě)C.善(shàn)良谦逊(sùn)璞(pú)玉不事雕琢(zhuó)D.荆棘(jí)飘泊(bó)青苔(tāi)红漆(qī)雕花2.下列各组词语中,没有错别字的一组是A.彷徨愁怨寂寥静默凄婉惆伥B.顾盼精捍步履稳健风神潇洒C.睿智禀赋崇高品质趋善避恶D.辩难商榷典藉满架旁稽博采3.依次填入下列横线处的词语,最恰当的一组是①宋人画雪常不用铅粉,把背景用墨衬黑,一层层,留出山头的白,树梢的白,甚至花蕾上的白,虚实映衬,意境悠远。

②因为睡不着,打开窗帘,遥望夜空,满天,斜月晶莹,薄雾似轻纱漫卷,。

我思念那个小山村,那个让我魂牵梦绕的地方!A.而是点染星汉如梦如幻B.总是浸染星云如诗如画C.却是绘染星光诗意盎然D.只是渲染星斗诗意朦胧4.下列各项中,没有语病的一项是A.《美丽中国》以歌舞为主,融入京剧演唱、茶艺表演、少林武术等元素,加上奇幻的灯光,震撼的音响,一幅美丽中国的大写意,声光舞影流溢着浓郁的中国情。

2013年全国高考理综试题及答案详解

2013年全国高考理综试题及答案详解

2013年普通高等学校招生全国统一考试理科综合能力测试二、选择题:本题共8小题,每小题6分。

在每小题给出的四个选项中,第14~18题只有一项符合题目要求,第19~21题有多项符合题目要求。

全部选对的得6分,选对但不全的得3分,有选错的得0分。

14.一物块静止在粗糙的水平桌面上。

从某时刻开始,物块受到一方向不变的水平拉力作用。

假设物块与桌面间的最大静摩擦力等于滑动摩擦力。

以a表示物块的加速度大小,F表示水平拉力的大小。

能正确描述F与a之间的关系的图像是15.如图,在固定斜面上的一物块受到一外力F的作用,F平行于斜面上。

若要物块在斜面上保持静止,F的取值应有一定范围,已知其最大值和最小值分别为F1和F2(F2>0).由此可求出A.物块的质量 B.斜面的倾角C.物块与斜面间的最大静摩擦力 C.物块对斜面的正压力16.如图,在光滑水平桌面上有一边长为L、电阻为R的正方形导线框;在导线框右侧有一宽度为d(d>L )的条形匀强磁场区域,磁场的边界与导线框的一边平行,磁场方向竖直向下。

导线框以某一初速度向右运动,t=0是导线框的的右边恰与磁场的左边界重合,随后导线框进入并通过磁场区域。

下列v-t图像中,可能正确描述上述过程的是17.空间有一圆柱形匀强磁场区域,该区域的横截面的半径为R,磁场方向垂直横截面。

一质量为m、电荷量为q(q>0)的粒子以速率v0沿横截面的某直径射入磁场,离开磁场时速度方向偏离入射方向60°。

不计重力,该磁场的磁感应强度大小为A. B. C. D.18.如图,在光滑绝缘水平面上,三个带电小球a,b和c分别位于边长为l的正三角形的三个顶点上;a、b带正电,电荷量均为q,c带负电。

整个系统置于方向水平的匀强电场中。

已知静电力常量为k。

若三个小球均处于静止状态,则匀强电场场强的大小为A. B. C. D.2l19.在物理学发展过程中,观测、实验、假说和逻辑推理等方法都起到了重要作用。

2013年普通高等学校招生全国统一考试答案及解析

2013年普通高等学校招生全国统一考试答案及解析
C.申不害、慎到、韩非都学过黄老之术,他们著作的语句与《黄帝书》也多有相同相似,可见这三人的引用阐发,与《黄帝书》后来享有崇高地位极有关系。
D.《论语》引用老子“无为而治”等意见,并加以阐发,这不但证明老子年长于孔子,大概也能印证史书上孔子曾经问学地老子一事。
二、古代诗文阅读(36分)
(一)文言文阅读(19)分
2013年普通高等学校招生全国统一考试
语文
注意事项:
1. 本试卷分第Ⅰ卷(阅读题)和第Ⅱ卷(表达题)两部分。第Ⅰ卷1至8页,第Ⅱ卷9至10页。
2. 答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置。
3. 全部答案在答题卡上完成,答在本试题上无效。
4. 考试结束,将本试题和答题卡一并交回。
C.马文升尽心军事,关注民生。他任兵部尚书十多年,对屯田、边备等职责勇于进言。在代吏部尚书时,南京等地遭遇风雨灾害,他又请求皇上救助灾地百姓。
D.马文升文武全才,名声远扬。朝廷大事往往等他决断,又有显赫边功,外国皆闻其名。为人重气节,品行端正,以至于大盗各处骚扰,也不去钧州他的家乡。
7 .把文中划横线的句子翻译成现代汉语。(10分)
在半明半暗的灯光中,他走近墙壁,修长的身影清晰地投射在墙上。全厅鸦雀无声,人们一个个伸长脖子,争看究竟。他像要放飞一只鸽子似的,双手合拢报幕:
“骑士跳栏!”
骑士模样的形状在墙上蹦了一下。
“玉兔食菜!”
顿时,出现一只兔子在啃白菜。
“山羊爬坡!”
果然,山羊模样的影子开始步履艰难地爬一个陡坡。
第Ⅰ卷 阅读题
甲 必考题
一、现代文阅读(9分,每小题3分)
阅读下面的文字,完成1~3题

2013年高考数学全国卷1(完整版试题+答案+解析)

2013年高考数学全国卷1(完整版试题+答案+解析)

2013年普通高等学校招生全国统一考试(全国卷)理科数学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共6页.考试时间120分钟.满分150分.答题前,考生务必用0.5毫米的黑色签字笔将自己的姓名、座号、考号填写在第Ⅰ卷答题卡和第Ⅱ卷答题纸规定的位置. 参考公式:样本数据n x x x ,,21的标准差nx x x x x x s n 22221)()()(-++-+-=其中x 为样本平均数球的面积公式24R S π=第Ⅰ卷(选择题 共60分)注意事项:1.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案,不能答在试题卷上. 2.第Ⅰ卷只有选择题一道大题.一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.复数ii++121(i 是虚数单位)的虚部是 A .23 B .21C .3D .1 2.已知R 是实数集,{}11,12+-==⎭⎬⎫⎩⎨⎧<=x y y N x xM ,则=M C N R A .)2,1(B .[]2,0C .∅D .[]2,13.现有10个数,其平均数是4,且这10个数的平方和是200,那么这个数组的标准差是 A .1 B .2 C .3 D .44.设n S 为等比数列{}n a 的前n 项和,0852=-a a ,则=24S S A .5 B .8 C .8- D .15 5.已知函数)62sin()(π-=x x f ,若存在),0(π∈a ,使得)()(a x f a x f -=+恒成立,则a的值是A .6π B .3π C .4π D .2π 6.已知m 、n 表示直线,γβα,,表示平面,给出下列四个命题,其中真命题为 (1)βααβα⊥⊥⊂=则,,,m n n m (2)m n n m ⊥==⊥则,,,γβγαβα (3),,βα⊥⊥m m 则α∥β (4)βαβα⊥⊥⊥⊥则,,,n m n mA .(1)、(2)B .(3)、(4)C .(2)、(3)D .(2)、(4)7.已知平面上不共线的四点C B A O ,,,,若||,23BC AB OC OB OA -=等于A .1B .2C .3D .4 8.已知三角形ABC ∆的三边长成公差为2的等差数列,且最大角的正弦值为23,则这个三角形的周长是A .18B .21C .24D .15 9.函数xx x f 1lg )(-=的零点所在的区间是 A .(]1,0 B .(]10,1 C .(]100,10 D .),100(+∞ 10.过直线y x =上一点P 引圆22670x y x +-+=的切线,则切线长的最小值为A .22 B . 223 C .210 D .211.已知函数b ax x x f 2)(2-+=.若b a ,都是区间[]4,0内的数,则使0)1(>f 成立的概率是A .43 B .41 C .83D .8512.已知双曲线的标准方程为116922=-y x ,F 为其右焦点,21,A A 是实轴的两端点,设P 为双曲线上不同于21,A A 的任意一点,直线P A P A 21,与直线a x =分别交于两点N M ,,若0=⋅FN FM ,则a 的值为A .916 B .59 C .925 D .516题图第13第Ⅱ卷(非选择题 共90分)注意事项:1. 请用0.5毫米的黑色签字笔将每题的答案填写在第Ⅱ卷答题纸的指定位置.书写的答案如需改动,要先划掉原来的答案,然后再写上新答案.2. 不在指定答题位置答题或超出答题区域书写的答案无效.在试题卷上答题无效. 3. 第Ⅱ卷共包括填空题和解答题两道大题. 二、填空题:本大题共4小题,每小题4分,共16分. 13.如图所示的程序框图输出的结果为__________.14. 若一个底面是正三角形的三棱柱的正视图如下图所示,其在一个球面上,则该球的表面积为__________.15.地震的震级R 与地震释放的能量E 的关系为)4.11(lg 32-=E R .2011年3月11日,日本东海岸发生了9.0级特大地震,2008年中国汶川的地震级别为8.0级,那么2011年地震的能量是2008年地震能量的 倍. 16.给出下列命题: ①已知,,a b m都是正数,且bab a >++11,则a b <; ②已知()f x '是()f x 的导函数,若,()0x R f x '∀∈≥,则(1)(2)f f <一定成立; ③命题“x R∃∈,使得2210x x -+<”的否定是真命题; ④“1,1≤≤y x 且”是“2≤+y x ”的充要条件.其中正确命题的序号是 .(把你认为正确命题的序号都填上)第14题图三、解答题:本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分)已知向量),2cos 2sin 3()2cos ,1(y xx b x a +==→→与共线,且有函数)(x f y =.(Ⅰ)若1)(=x f ,求)232cos(x -π的值;(Ⅱ)在ABC ∆中,角C B A ,,,的对边分别是c b a ,,,且满足b c C a 2cos 2=+,求函数)(B f 的取值范围.18.(本小题满分12分)已知等差数列{}n a 的前n 项和为n S ,公差,50,053=+≠S S d 且1341,,a a a 成等比数列. (Ⅰ)求数列{}n a 的通项公式; (Ⅱ)设⎭⎬⎫⎩⎨⎧n n a b 是首项为1,公比为3的等比数列,求数列{}n b 的前n 项和n T .已知四棱锥BCDE A -,其中1====BE AC BC AB ,2=CD ,ABC CD 面⊥,BE∥CD ,F 为AD 的中点. (Ⅰ)求证:EF ∥面ABC ; (Ⅱ)求证:面ACD ADE 面⊥; (III )求四棱锥BCDE A -的体积.20.(本小题满分12分)在某种产品表面进行腐蚀性检验,得到腐蚀深度y 与腐蚀时间x 之间对应的一组数据:现确定的研究方案是:先从这6组数据中选取2组,用剩下的4组数据求线性回归方程,再对被选取的2组数据进行检验.(Ⅰ)求选取的2组数据恰好不相邻的概率;(Ⅱ)若选取的是第2组和第5组数据,根据其它4组数据,求得y 关于x 的线性回归方程26139134ˆ+=x y,规定由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2微米,则认为得到的线性回归方程是可靠的,判断该线性回归方程是否可靠.AB CDEF已知函数1)(2++=x bax x f 在点))1(,1(--f 的切线方程为03=++y x . (Ⅰ)求函数()f x 的解析式;(Ⅱ)设x x g ln )(=,求证:)()(x f x g ≥在),1[+∞∈x 上恒成立.22.(本小题满分14分)实轴长为34的椭圆的中心在原点,其焦点1,2,F F 在x 轴上.抛物线的顶点在原点O ,对称轴为y 轴,两曲线在第一象限内相交于点A ,且12AF AF ⊥,△12AF F 的面积为3. (Ⅰ)求椭圆和抛物线的标准方程;(Ⅱ)过点A 作直线l 分别与抛物线和椭圆交于C B ,,若AB AC 2=,求直线l 的斜率k .参考答案及评分标准一.选择题(本大题共12小题,每小题5分,共60分.)B D B A D B B D BC C B二.填空题(本大题共4小题,每小题4分,共16分.)13.2 14.π31915. 2310 16. ①③三.解答题17.(本小题满分12分) 解:(Ⅰ)∵→a 与→b 共线∴yxx x 2cos 2cos2sin 31=+21)6sin()cos 1(21sin 232cos 2cos 2sin 32++=++=+=πx x x x x x y …………3分∴121)6sin()(=++=πx x f ,即21)6sin(=+πx …………………………………………4分211)6(sin 21)3(cos 2)3(2cos )232cos(22-=-+=--=-=-ππππx x x x…………………………………………6分 (Ⅱ)已知b c C a 2cos 2=+由正弦定理得:CA C A C C A C ABC C A sin cos 2cos sin 2sin cos sin 2)sin(2sin 2sin cos sin 2+=++==+∴21cos =A ,∴在ABC ∆中 ∠3π=A …………………………………………8分 21)6sin()(++=πB B f∵∠3π=A ∴320π<<B ,6566πππ<+<B …………………………………………10分∴1)6sin(21≤+<πB ,23)(1≤<B f ∴函数)(B f 的取值范围为]23,1( …………………………………………12分18.(本小题满分12分) 解:(Ⅰ)依题意得⎪⎩⎪⎨⎧+=+=⨯++⨯+)12()3(5025452233112111d a a d a d a d a …………………………………………2分 解得⎩⎨⎧==231d a , …………………………………………4分 1212)1(23)1(1+=+=-+=-+=∴n a n n d n a a n n 即,.……………………………6分(Ⅱ)13-=n nna b ,113)12(3--⋅+=⋅=n n n n n a b …………………………………………7分 123)12(37353-⋅+++⋅+⋅+=n n n T n n n n n T 3)12(3)12(3735333132⋅++⋅-++⋅+⋅+⋅=- ……………………9分n n n n T 3)12(3232323212+-⋅++⋅+⋅+=--nnn n n 323)12(31)31(3231⋅-=+---⋅+=- ∴nn n T 3⋅= …………………………………………12分19.(本小题满分12分)解:(Ⅰ)取AC 中点G,连结FG 、BG , ∵F,G 分别是AD,AC 的中点∴FG ∥CD,且FG=21DC=1 .∵BE ∥CD ∴FG 与BE 平行且相等∴EF ∥BG . ……………………………2分ABC BG ABC EF 面面⊂⊄,∴EF ∥面ABC ……………………………4分 (Ⅱ)∵△ABC 为等边三角形 ∴BG ⊥AC 又∵DC ⊥面ABC,BG ⊂面ABC ∴DC ⊥BGABCDEF G∴BG 垂直于面ADC 的两条相交直线AC,DC ,∴BG ⊥面ADC . …………………………………………6分 ∵EF ∥BG ∴E F ⊥面ADC∵EF ⊂面ADE ,∴面ADE ⊥面ADC . …………………………………………8分 (Ⅲ)连结EC,该四棱锥分为两个三棱锥E -ABC 和E -ADC .43631232313114331=+=⨯⨯+⨯⨯=+=---ACD E ABC E BCDE A V V V .………………………12分另法:取BC 的中点为O ,连结AO ,则BC AO ⊥,又⊥CD 平面ABC ,∴C CD BC AO CD =⊥ , , ∴⊥AO 平面BCDE ,∴AO 为BCDE A V -的高,43232331,2321)21(,23=⨯⨯=∴=⨯+==-BCDE A BCDE V S AO . 20.(本小题满分12分)解:(Ⅰ)设6组数据的编号分别为1,2,3,4,5,6.设抽到不相邻的两组数据为事件A ,从6组数据中选取2组数据共有15种情况:(1,2)(1,3)(1,4)(1,5)(1,6)(2,3)(2,4)(2,5)(2,6)(3,4)(3,5)(3,6)(4,5)(4,6)(5,6),其中事件A 包含的基本事件有10种. …………………………………………3分所以321510)(==A P .所以选取的2组数据恰好不相邻的概率是32. ………………………6分(Ⅱ) 当10=x 时,;2|1026219|,262192613910134ˆ<-=+⨯=y……………………………………9分 当30=x 时,;2|1626379|,263792613930134ˆ<-=+⨯=y所以,该研究所得到的回归方程是可靠的. …………………………………………12分 21.(本小题满分12分)解:(Ⅰ)将1-=x 代入切线方程得2-=y ∴211)1(-=+-=-ab f ,化简得4-=-a b . …………………………………………2分 222)1(2)()1()(x xb ax x a x f +⋅+-+='12424)(22)1(-===-+=-'bb a b a f . …………………………………………4分解得:2,2-==b a∴122)(2+-=x x x f . …………………………………………6分 (Ⅱ)由已知得122ln 2+-≥x x x 在),1[+∞上恒成立化简得22ln )1(2-≥+x x x即022ln ln 2≥+-+x x x x 在),1[+∞上恒成立 . …………………………………………8分 设22ln ln )(2+-+=x x x x x h ,21ln 2)(-++='xx x x x h ∵1≥x ∴21,0ln 2≥+≥xx x x ,即0)(≥'x h . …………………………………………10分 ∴)(x h 在),1[+∞上单调递增,0)1()(=≥h x h∴)()(x f x g ≥在),1[+∞∈x 上恒成立 . …………………………………………12分22.(本小题满分14分)解(1)设椭圆方程为22221(0)x y a b a b+=>>,12,AF m AF n ==由题意知⎪⎪⎩⎪⎪⎨⎧==+=+6344222mn n m c n m …………………………………………2分解得92=c ,∴39122=-=b .∴椭圆的方程为131222=+y x …………………………………………4分 ∵3=⨯c y A ,∴1=A y ,代入椭圆的方程得22=A x ,将点A 坐标代入得抛物线方程为y x 82=. …………………………………………6分(2)设直线l 的方程为)22(1-=-x k y ,),(),,(2211y x C y x B2013年高考数学全国卷1(完整版试题+答案+解析)- 11 - / 11 由AB AC 2= 得)22(22212-=-x x , 化简得22221=-x x …………………………………………8分 联立直线与抛物线的方程⎪⎩⎪⎨⎧=-=-yx x k y 8)22(12, 得0821682=-+-k kx x ∴k x 8221=+① …………………………………………10分 联立直线与椭圆的方程⎪⎩⎪⎨⎧=+-=-124)22(122y x x k y 得0821632)2168()41(2222=--+-++k k x k k x k ∴22241821622kk k x +-=+② …………………………………………12分 ∴2222418216)228(222221=++---=-kk k k x x 整理得:0)4121)(2416(2=+--k k k ∴42=k ,所以直线l 的斜率为42 . …………………………………………14分。

2013年高考语文新课标全国卷Ⅱ及答案详细解析

2013年高考语文新课标全国卷Ⅱ及答案详细解析

2013年普通高等学校招生全国统一考试(新课标全国卷Ⅱ)语文试题第Ⅰ卷阅读题甲必考题一、现代文阅读(9分,每小题3分)阅读下面的文字,完成1~3题20世纪后期,陕西凤雏村出土了刻有“凤”字的甲骨四片,这些“凤”字的形体大致相同,均为头上带有象征神权或王权的抽象化了的毛角的短尾鸟。

东汉许慎《说文解字》云:“鸑鷟,凤属,神鸟也。

……江中有鸑鷟,似兔而大,赤目。

”据此,古代传说中鸣于岐山、兆示周王朝兴起的神鸟凤凰,其原型应该是一种形象普通、类似水鸭的短尾水鸟。

那么,普通的短尾鸟“凤”为何在周代变为华冠长尾、祥瑞美丽的神鸟了呢?我们看到,在商代早期和中期的青铜器纹饰中,只有鸟纹而没有凤纹,真正的凤形直到殷商晚期才出现,而且此时是华冠短尾鸟和华丽而饰有眼翎的长尾鸟同时出现,可见“凤”是由鸟演变而来的。

综观甲骨文和商代青铜器,凤鸟的演变应该是鸟在先,凤在后,贯穿整个商代的不是凤而是鸟。

“天命玄鸟,降而生商”,在商人的历史中鸟始终扮演着图腾始祖的重要角色。

《左传》记载郯子说:“我高祖少皞挚之立也,凤鸟适至,故纪于鸟,为鸟师而鸟名。

凤鸟氏历正也,……九扈为九农正。

”凤鸟氏成为“历正”之官,是由于它知天时,九扈成为“九农正”,也是由于它们带来了耕种、耘田和收获的信息。

殷人先祖之所以“鸟师而鸟名”,应该是由于这些随着信风迁批的鸟,给以少皞为首的商人的农业生产带来了四季节令的消息。

对凤鸟的崇拜起于商代,其鼎盛却在周代。

正是在周代,“凤”完成了其发展程序中最后也是最重要的环节:变为神鸟凤凰。

许多历史资料记载了周王室在克商前后对“天命”的重视。

《尚书》“周书”十二篇中大量出现的“命”字多指天命,“殷革夏命”也是常见的语句。

武王在甲子日牧野之战结束后,紧接着就“不革服”“格于庙”(来不及换衣服就到神庙参拜),这个“庙”自然不可能是周庙,而是商人的神庙。

这说明周王室急于把商人的正统接过来,成为中原合法的统治者。

周人之所以宣扬天命,归根结底在于强调“周改殷命”是出自天的意志和抉择。

2013年全国统一高考真题数学试卷(理科)(新课标ⅰ)(含答案及解析)

2013年全国统一高考真题数学试卷(理科)(新课标ⅰ)(含答案及解析)

2013年全国统一高考数学试卷(理科)(新课标Ⅰ)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一个是符合题目要求的.1.(5分)已知集合A={x|x2﹣2x>0},B={x|﹣<x<},则()A.A∩B=∅B.A∪B=R C.B⊆A D.A⊆B2.(5分)若复数z满足(3﹣4i)z=|4+3i|,则z的虚部为()A.﹣4B.C.4D.3.(5分)为了解某地区中小学生的视力情况,拟从该地区的中小学生中抽取部分学生进行调查,事先已经了解到该地区小学、初中、高中三个学段学生的视力情况有较大差异,而男女生视力情况差异不大.在下面的抽样方法中,最合理的抽样方法是()A.简单的随机抽样B.按性别分层抽样C.按学段分层抽样D.系统抽样4.(5分)已知双曲线C:(a>0,b>0)的离心率为,则C的渐近线方程为()A.y=B.y=C.y=±x D.y=5.(5分)执行程序框图,如果输入的t∈[﹣1,3],则输出的s属于()A.[﹣3,4]B.[﹣5,2]C.[﹣4,3]D.[﹣2,5] 6.(5分)如图,有一个水平放置的透明无盖的正方体容器,容器高8cm,将一个球放在容器口,再向容器注水,当球面恰好接触水面时测得水深为6cm,如不计容器的厚度,则球的体积为()A.B.C.D.7.(5分)设等差数列{a n}的前n项和为S n,若S m﹣1=﹣2,S m=0,S m+1=3,则m=()A.3B.4C.5D.68.(5分)某几何体的三视图如图所示,则该几何体的体积为()A.16+8πB.8+8πC.16+16πD.8+16π9.(5分)设m为正整数,(x+y)2m展开式的二项式系数的最大值为a,(x+y)2m+1展开式的二项式系数的最大值为b,若13a=7b,则m=()A.5B.6C.7D.810.(5分)已知椭圆E:的右焦点为F(3,0),过点F的直线交椭圆E于A、B两点.若AB的中点坐标为(1,﹣1),则E的方程为()A.B.C.D.11.(5分)已知函数f(x)=,若|f(x)|≥ax,则a的取值范围是()A.(﹣∞,0]B.(﹣∞,1]C.[﹣2,1]D.[﹣2,0] 12.(5分)设△A n B n C n的三边长分别为a n,b n,c n,△A n B n C n的面积为S n,n=1,2,3…若b1>c1,b1+c1=2a1,a n+1=a n,,,则()A.{S n}为递减数列B.{S n}为递增数列C.{S2n﹣1}为递增数列,{S2n}为递减数列D.{S2n﹣1}为递减数列,{S2n}为递增数列二.填空题:本大题共4小题,每小题5分.13.(5分)已知两个单位向量,的夹角为60°,=t+(1﹣t).若•=0,则t=.14.(5分)若数列{a n}的前n项和为S n=a n+,则数列{a n}的通项公式是a n=.15.(5分)设当x=θ时,函数f(x)=sinx﹣2cosx取得最大值,则cosθ=.16.(5分)若函数f(x)=(1﹣x2)(x2+ax+b)的图象关于直线x=﹣2对称,则f(x)的最大值为.三、解答题:解答应写出文字说明,证明过程或演算步骤.17.(12分)如图,在△ABC中,∠ABC=90°,AB=,BC=1,P为△ABC内一点,∠BPC=90°.(1)若PB=,求PA;(2)若∠APB=150°,求tan∠PBA.18.(12分)如图,三棱柱ABC﹣A1B1C1中,CA=CB,AB=AA1,∠BAA1=60°.(Ⅰ)证明AB⊥A1C;(Ⅱ)若平面ABC⊥平面AA1B1B,AB=CB=2,求直线A1C与平面BB1C1C所成角的正弦值.19.(12分)一批产品需要进行质量检验,检验方案是:先从这批产品中任取4件作检验,这4件产品中优质品的件数记为n.如果n=3,再从这批产品中任取4件作检验,若都为优质品,则这批产品通过检验;如果n=4,再从这批产品中任取1件作检验,若为优质品,则这批产品通过检验;其他情况下,这批产品都不能通过检验.假设这批产品的优质品率为50%,即取出的产品是优质品的概率都为,且各件产品是否为优质品相互独立.(Ⅰ)求这批产品通过检验的概率;(Ⅱ)已知每件产品检验费用为100元,凡抽取的每件产品都需要检验,对这批产品作质量检验所需的费用记为X(单位:元),求X的分布列及数学期望.20.(12分)已知圆M:(x+1)2+y2=1,圆N:(x﹣1)2+y2=9,动圆P与圆M外切并与圆N内切,圆心P的轨迹为曲线C.(Ⅰ)求C的方程;(Ⅱ)l是与圆P,圆M都相切的一条直线,l与曲线C交于A,B两点,当圆P 的半径最长时,求|AB|.21.(12分)已知函数f(x)=x2+ax+b,g(x)=e x(cx+d),若曲线y=f(x)和曲线y=g(x)都过点P(0,2),且在点P处有相同的切线y=4x+2.(Ⅰ)求a,b,c,d的值;(Ⅱ)若x≥﹣2时,f(x)≤kg(x),求k的取值范围.四、请考生在第22、23、24题中任选一道作答,并用2B铅笔将答题卡上所选的题目对应的题号右侧方框涂黑,按所涂题号进行评分;多涂、多答,按所涂的首题进行评分,不涂,按本选考题的首题进行评分.22.(10分)(选修4﹣1:几何证明选讲)如图,直线AB为圆的切线,切点为B,点C在圆上,∠ABC的角平分线BE交圆于点E,DB垂直BE交圆于D.(Ⅰ)证明:DB=DC;(Ⅱ)设圆的半径为1,BC=,延长CE交AB于点F,求△BCF外接圆的半径.23.已知曲线C1的参数方程为(t为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρ=2sinθ.(1)把C1的参数方程化为极坐标方程;(2)求C1与C2交点的极坐标(ρ≥0,0≤θ<2π).24.已知函数f(x)=|2x﹣1|+|2x+a|,g(x)=x+3.(Ⅰ)当a=﹣2时,求不等式f(x)<g(x)的解集;(Ⅱ)设a>﹣1,且当x∈[﹣,]时,f(x)≤g(x),求a的取值范围.2013年全国统一高考数学试卷(理科)(新课标Ⅰ)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一个是符合题目要求的.1.(5分)已知集合A={x|x2﹣2x>0},B={x|﹣<x<},则()A.A∩B=∅B.A∪B=R C.B⊆A D.A⊆B【考点】1D:并集及其运算;73:一元二次不等式及其应用.【专题】59:不等式的解法及应用;5J:集合.【分析】根据一元二次不等式的解法,求出集合A,再根据的定义求出A∩B和A∪B.【解答】解:∵集合A={x|x2﹣2x>0}={x|x>2或x<0},∴A∩B={x|2<x<或﹣<x<0},A∪B=R,故选:B.【点评】本题考查一元二次不等式的解法,以及并集的定义,属于基础题.2.(5分)若复数z满足(3﹣4i)z=|4+3i|,则z的虚部为()A.﹣4B.C.4D.【考点】A5:复数的运算.【专题】5N:数系的扩充和复数.【分析】由题意可得z==,再利用两个复数代数形式的乘除法法则化简为+i,由此可得z的虚部.【解答】解:∵复数z满足(3﹣4i)z=|4+3i|,∴z====+i,故z的虚部等于,故选:D.【点评】本题主要考查复数的基本概念,两个复数代数形式的乘除法法则的应用,属于基础题.3.(5分)为了解某地区中小学生的视力情况,拟从该地区的中小学生中抽取部分学生进行调查,事先已经了解到该地区小学、初中、高中三个学段学生的视力情况有较大差异,而男女生视力情况差异不大.在下面的抽样方法中,最合理的抽样方法是()A.简单的随机抽样B.按性别分层抽样C.按学段分层抽样D.系统抽样【考点】B3:分层抽样方法.【专题】21:阅读型.【分析】若总体由差异明显的几部分组成时,经常采用分层抽样的方法进行抽样.【解答】解:我们常用的抽样方法有:简单随机抽样、分层抽样和系统抽样,而事先已经了解到该地区小学、初中、高中三个学段学生的视力情况有较大差异,而男女生视力情况差异不大.了解某地区中小学生的视力情况,按学段分层抽样,这种方式具有代表性,比较合理.故选:C.【点评】本小题考查抽样方法,主要考查抽样方法,属基本题.4.(5分)已知双曲线C:(a>0,b>0)的离心率为,则C的渐近线方程为()A.y=B.y=C.y=±x D.y=【考点】KC:双曲线的性质.【专题】5D:圆锥曲线的定义、性质与方程.【分析】由离心率和abc的关系可得b2=4a2,而渐近线方程为y=±x,代入可得答案.【解答】解:由双曲线C:(a>0,b>0),则离心率e===,即4b2=a2,故渐近线方程为y=±x=x,故选:D.【点评】本题考查双曲线的简单性质,涉及的渐近线方程,属基础题.5.(5分)执行程序框图,如果输入的t∈[﹣1,3],则输出的s属于()A.[﹣3,4]B.[﹣5,2]C.[﹣4,3]D.[﹣2,5]【考点】3B:分段函数的解析式求法及其图象的作法;EF:程序框图.【专题】27:图表型;5K:算法和程序框图.【分析】本题考查的知识点是程序框图,分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是计算一个分段函数的函数值,由条件为t<1我们可得,分段函数的分类标准,由分支结构中是否两条分支上对应的语句行,我们易得函数的解析式.【解答】解:由判断框中的条件为t<1,可得:函数分为两段,即t<1与t≥1,又由满足条件时函数的解析式为:s=3t;不满足条件时,即t≥1时,函数的解析式为:s=4t﹣t2故分段函数的解析式为:s=,如果输入的t∈[﹣1,3],画出此分段函数在t∈[﹣1,3]时的图象,则输出的s属于[﹣3,4].故选:A.【点评】要求条件结构对应的函数解析式,要分如下几个步骤:①分析流程图的结构,分析条件结构是如何嵌套的,以确定函数所分的段数;②根据判断框中的条件,设置分类标准;③根据判断框的“是”与“否”分支对应的操作,分析函数各段的解析式;④对前面的分类进行总结,写出分段函数的解析式.6.(5分)如图,有一个水平放置的透明无盖的正方体容器,容器高8cm,将一个球放在容器口,再向容器注水,当球面恰好接触水面时测得水深为6cm,如不计容器的厚度,则球的体积为()A.B.C.D.【考点】LG:球的体积和表面积.【专题】11:计算题;5F:空间位置关系与距离.【分析】设正方体上底面所在平面截球得小圆M,可得圆心M为正方体上底面正方形的中心.设球的半径为R,根据题意得球心到上底面的距离等于(R﹣2)cm,而圆M的半径为4,由球的截面圆性质建立关于R的方程并解出R=5,用球的体积公式即可算出该球的体积.【解答】解:设正方体上底面所在平面截球得小圆M,则圆心M为正方体上底面正方形的中心.如图.设球的半径为R,根据题意得球心到上底面的距离等于(R﹣2)cm,而圆M的半径为4,由球的截面圆性质,得R2=(R﹣2)2+42,解出R=5,∴根据球的体积公式,该球的体积V===.故选:A.【点评】本题给出球与正方体相切的问题,求球的体积,着重考查了正方体的性质、球的截面圆性质和球的体积公式等知识,属于中档题.7.(5分)设等差数列{a n}的前n项和为S n,若S m﹣1=﹣2,S m=0,S m+1=3,则m=()A.3B.4C.5D.6【考点】83:等差数列的性质;85:等差数列的前n项和.【专题】11:计算题;54:等差数列与等比数列.【分析】由a n与S n的关系可求得a m+1与a m,进而得到公差d,由前n项和公式及S m=0可求得a1,再由通项公式及a m=2可得m值.【解答】解:a m=S m﹣S m﹣1=2,a m+1=S m+1﹣S m=3,所以公差d=a m﹣a m=1,+1S m==0,m﹣1>0,m>1,因此m不能为0,得a1=﹣2,所以a m=﹣2+(m﹣1)•1=2,解得m=5,另解:等差数列{a n}的前n项和为S n,即有数列{}成等差数列,则,,成等差数列,可得2•=+,即有0=+,解得m=5.又一解:由等差数列的求和公式可得(m﹣1)(a1+a m﹣1)=﹣2,m(a1+a m)=0,(m+1)(a1+a m+1)=3,可得a1=﹣a m,﹣2a m+a m+1+a m+1=+=0,解得m=5.故选:C.【点评】本题考查等差数列的通项公式、前n项和公式及通项a n与S n的关系,考查学生的计算能力.8.(5分)某几何体的三视图如图所示,则该几何体的体积为()A.16+8πB.8+8πC.16+16πD.8+16π【考点】L!:由三视图求面积、体积.【专题】16:压轴题;27:图表型.【分析】三视图复原的几何体是一个长方体与半个圆柱的组合体,依据三视图的数据,得出组合体长、宽、高,即可求出几何体的体积.【解答】解:三视图复原的几何体是一个长方体与半个圆柱的组合体,如图,其中长方体长、宽、高分别是:4,2,2,半个圆柱的底面半径为2,母线长为4.∴长方体的体积=4×2×2=16,半个圆柱的体积=×22×π×4=8π所以这个几何体的体积是16+8π;故选:A.【点评】本题考查了几何体的三视图及直观图的画法,三视图与直观图的关系,柱体体积计算公式,空间想象能力9.(5分)设m为正整数,(x+y)2m展开式的二项式系数的最大值为a,(x+y)2m+1展开式的二项式系数的最大值为b,若13a=7b,则m=()A.5B.6C.7D.8【考点】DA:二项式定理.【专题】5P:二项式定理.【分析】根据二项式系数的性质求得a和b,再利用组合数的计算公式,解方程13a=7b求得m的值.【解答】解:∵m为正整数,由(x+y)2m展开式的二项式系数的最大值为a,以及二项式系数的性质可得a=,同理,由(x+y)2m+1展开式的二项式系数的最大值为b,可得b==.再由13a=7b,可得13=7,即13×=7×,即13=7×,即13(m+1)=7(2m+1),解得m=6,故选:B.【点评】本题主要考查二项式系数的性质的应用,组合数的计算公式,属于中档题.10.(5分)已知椭圆E:的右焦点为F(3,0),过点F的直线交椭圆E于A、B两点.若AB的中点坐标为(1,﹣1),则E的方程为()A.B.C.D.【考点】K3:椭圆的标准方程.【专题】5D:圆锥曲线的定义、性质与方程.【分析】设A(x1,y1),B(x2,y2),代入椭圆方程得,利用“点差法”可得.利用中点坐标公式可得x1+x2=2,y1+y2=﹣2,利用斜率计算公式可得==.于是得到,化为a2=2b2,再利用c=3=,即可解得a2,b2.进而得到椭圆的方程.【解答】解:设A(x1,y1),B(x2,y2),代入椭圆方程得,相减得,∴.∵x1+x2=2,y1+y2=﹣2,==.∴,化为a2=2b2,又c=3=,解得a2=18,b2=9.∴椭圆E的方程为.故选:D.【点评】熟练掌握“点差法”和中点坐标公式、斜率的计算公式是解题的关键.11.(5分)已知函数f(x)=,若|f(x)|≥ax,则a的取值范围是()A.(﹣∞,0]B.(﹣∞,1]C.[﹣2,1]D.[﹣2,0]【考点】7E:其他不等式的解法.【专题】16:压轴题;59:不等式的解法及应用.【分析】由函数图象的变换,结合基本初等函数的图象可作出函数y=|f(x)|的图象,和函数y=ax的图象,由导数求切线斜率可得l的斜率,进而数形结合可得a的范围.【解答】解:由题意可作出函数y=|f(x)|的图象,和函数y=ax的图象,由图象可知:函数y=ax的图象为过原点的直线,当直线介于l和x轴之间符合题意,直线l为曲线的切线,且此时函数y=|f(x)|在第二象限的部分解析式为y=x2﹣2x,求其导数可得y′=2x﹣2,因为x≤0,故y′≤﹣2,故直线l的斜率为﹣2,故只需直线y=ax的斜率a介于﹣2与0之间即可,即a∈[﹣2,0]故选:D.【点评】本题考查其它不等式的解法,数形结合是解决问题的关键,属中档题.12.(5分)设△A n B n C n的三边长分别为a n,b n,c n,△A n B n C n的面积为S n,n=1,2,3…若b1>c1,b1+c1=2a1,a n+1=a n,,,则()A.{S n}为递减数列B.{S n}为递增数列C.{S2n﹣1}为递增数列,{S2n}为递减数列D.{S2n﹣1}为递减数列,{S2n}为递增数列【考点】82:数列的函数特性;8H:数列递推式.【专题】16:压轴题;54:等差数列与等比数列;55:点列、递归数列与数学归纳法.=a n可知△A n B n C n的边B n C n为定值a1,由b n+1+c n+1﹣【分析】由a n+12a1=及b1+c1=2a1得b n+c n=2a1,则在△A n B n C n中边长B n C n=a1为定值,另两边A n C n、A n B n的长度之和b n+c n=2a1为定值,由此可知顶点A n在以B n、C n为焦点的椭圆上,根据b n+1﹣c n+1=,得b n﹣c n=,可知n→+∞时b n→c n,据此可判断△A n B n C n的边B nC n的高h n随着n的增大而增大,再由三角形面积公式可得到答案.【解答】解:b1=2a1﹣c1且b1>c1,∴2a1﹣c1>c1,∴a1>c1,∴b1﹣a1=2a1﹣c1﹣a1=a1﹣c1>0,∴b1>a1>c1,又b1﹣c1<a1,∴2a1﹣c1﹣c1<a1,∴2c1>a1,∴,由题意,+a n,∴b n+1+c n+1﹣2a n=(b n+c n﹣2a n),∴b n+c n﹣2a n=0,∴b n+c n=2a n=2a1,∴b n+c n=2a1,由此可知顶点A n在以B n、C n为焦点的椭圆上,﹣c n+1=,∴=a1﹣b n,又由题意,b n+1﹣a1=,∴b n﹣a1=,∴b n+1∴,c n=2a1﹣b n=,∴[][]=[﹣]单调递增(可证当n=1时>0)故选:B.【点评】本题主要考查由数列递推式求数列通项、三角形面积海伦公式,综合考查学生分析解决问题的能力,有较高的思维抽象度,是本年度全国高考试题中的“亮点”之一.二.填空题:本大题共4小题,每小题5分.13.(5分)已知两个单位向量,的夹角为60°,=t+(1﹣t).若•=0,则t=2.【考点】9H:平面向量的基本定理;9O:平面向量数量积的性质及其运算.【专题】5A:平面向量及应用.【分析】由于•=0,对式子=t+(1﹣t)两边与作数量积可得=0,经过化简即可得出.【解答】解:∵,,∴=0,∴tcos60°+1﹣t=0,∴1=0,解得t=2.故答案为2.【点评】熟练掌握向量的数量积运算是解题的关键.14.(5分)若数列{a n}的前n项和为S n=a n+,则数列{a n}的通项公式是a n=(﹣2)n﹣1.【考点】88:等比数列的通项公式.【专题】54:等差数列与等比数列.【分析】把n=1代入已知式子可得数列的首项,由n≥2时,a n=S n﹣S n﹣1,可得数列为等比数列,且公比为﹣2,代入等比数列的通项公式分段可得答案.【解答】解:当n=1时,a1=S1=,解得a1=1当n≥2时,a n=S n﹣S n﹣1=()﹣()=,整理可得,即=﹣2,故数列{a n}从第二项开始是以﹣2为首项,﹣2为公比的等比数列,故当n≥2时,a n=(﹣2)n﹣1,经验证当n=1时,上式也适合,故答案为:(﹣2)n﹣1【点评】本题考查等比数列的通项公式,涉及等比数列的判定,属基础题.15.(5分)设当x=θ时,函数f(x)=sinx﹣2cosx取得最大值,则cosθ=﹣.【考点】GP:两角和与差的三角函数;H4:正弦函数的定义域和值域.【专题】16:压轴题;56:三角函数的求值.【分析】f(x)解析式提取,利用两角和与差的正弦函数公式化为一个角的正弦函数,由x=θ时,函数f(x)取得最大值,得到sinθ﹣2cosθ=,与sin2θ+cos2θ=1联立即可求出cosθ的值.【解答】解:f(x)=sinx﹣2cosx=(sinx﹣cosx)=sin(x﹣α)(其中cosα=,sinα=),∵x=θ时,函数f(x)取得最大值,∴sin(θ﹣α)=1,即sinθ﹣2cosθ=,又sin2θ+cos2θ=1,联立得(2cosθ+)2+cos2θ=1,解得cosθ=﹣.故答案为:﹣【点评】此题考查了两角和与差的正弦函数公式,同角三角函数间的基本关系,以及正弦函数的定义域与值域,熟练掌握公式是解本题的关键.16.(5分)若函数f(x)=(1﹣x2)(x2+ax+b)的图象关于直线x=﹣2对称,则f(x)的最大值为16.【考点】57:函数与方程的综合运用;6E:利用导数研究函数的最值.【专题】11:计算题;16:压轴题;51:函数的性质及应用;53:导数的综合应用.【分析】由题意得f(﹣1)=f(﹣3)=0且f(1)=f(﹣5)=0,由此求出a=8且b=15,由此可得f(x)=﹣x4﹣8x3﹣14x2+8x+15.利用导数研究f(x)的单调性,可得f(x)在区间(﹣∞,﹣2﹣)、(﹣2,﹣2+)上是增函数,在区间(﹣2﹣,﹣2)、(﹣2+,+∞)上是减函数,结合f(﹣2﹣)=f(﹣2+)=16,即可得到f(x)的最大值.【解答】解:∵函数f(x)=(1﹣x2)(x2+ax+b)的图象关于直线x=﹣2对称,∴f(﹣1)=f(﹣3)=0且f(1)=f(﹣5)=0,即[1﹣(﹣3)2][(﹣3)2+a•(﹣3)+b]=0且[1﹣(﹣5)2][(﹣5)2+a•(﹣5)+b]=0,解之得,因此,f(x)=(1﹣x2)(x2+8x+15)=﹣x4﹣8x3﹣14x2+8x+15,求导数,得f′(x)=﹣4x3﹣24x2﹣28x+8,令f′(x)=0,得x1=﹣2﹣,x2=﹣2,x3=﹣2+,当x∈(﹣∞,﹣2﹣)时,f′(x)>0;当x∈(﹣2﹣,﹣2)时,f′(x)<0;当x∈(﹣2,﹣2+)时,f′(x)>0;当x∈(﹣2+,+∞)时,f′(x)<0∴f(x)在区间(﹣∞,﹣2﹣)、(﹣2,﹣2+)上是增函数,在区间(﹣2﹣,﹣2)、(﹣2+,+∞)上是减函数.又∵f(﹣2﹣)=f(﹣2+)=16,∴f(x)的最大值为16.故答案为:16.【点评】本题给出多项式函数的图象关于x=﹣2对称,求函数的最大值.着重考查了函数的奇偶性、利用导数研究函数的单调性和函数的最值求法等知识,属于中档题.三、解答题:解答应写出文字说明,证明过程或演算步骤.17.(12分)如图,在△ABC中,∠ABC=90°,AB=,BC=1,P为△ABC内一点,∠BPC=90°.(1)若PB=,求PA;(2)若∠APB=150°,求tan∠PBA.【考点】HP:正弦定理;HR:余弦定理.【专题】58:解三角形.【分析】(I)在Rt△PBC,利用边角关系即可得到∠PBC=60°,得到∠PBA=30°.在△PBA中,利用余弦定理即可求得PA.(II)设∠PBA=α,在Rt△PBC中,可得PB=sinα.在△PBA中,由正弦定理得,即,化简即可求出.【解答】解:(I)在Rt△PBC中,=,∴∠PBC=60°,∴∠PBA=30°.在△PBA中,由余弦定理得PA2=PB2+AB2﹣2PB•ABcos30°==.∴PA=.(II)设∠PBA=α,在Rt△PBC中,PB=BCcos(90°﹣α)=sinα.在△PBA中,由正弦定理得,即,化为.∴.【点评】熟练掌握直角三角形的边角关系、正弦定理和余弦定理是解题的关键.18.(12分)如图,三棱柱ABC﹣A1B1C1中,CA=CB,AB=AA1,∠BAA1=60°.(Ⅰ)证明AB⊥A1C;(Ⅱ)若平面ABC⊥平面AA1B1B,AB=CB=2,求直线A1C与平面BB1C1C所成角的正弦值.【考点】LW:直线与平面垂直;LY:平面与平面垂直;MI:直线与平面所成的角.【专题】5F:空间位置关系与距离;5G:空间角.【分析】(Ⅰ)取AB的中点O,连接OC,OA1,A1B,由已知可证OA1⊥AB,AB ⊥平面OA1C,进而可得AB⊥A1C;(Ⅱ)易证OA,OA1,OC两两垂直.以O为坐标原点,的方向为x轴的正向,||为单位长,建立坐标系,可得,,的坐标,设=(x,y,z)为平面BB1C1C的法向量,则,可解得=(,1,﹣1),可求|cos <,>|,即为所求正弦值.【解答】解:(Ⅰ)取AB的中点O,连接OC,OA1,A1B,因为CA=CB,所以OC⊥AB,由于AB=AA1,∠BAA1=60°,所以△AA1B为等边三角形,所以OA1⊥AB,又因为OC∩OA1=O,所以AB⊥平面OA1C,又A1C⊂平面OA1C,故AB⊥A1C;(Ⅱ)由(Ⅰ)知OC⊥AB,OA1⊥AB,又平面ABC⊥平面AA1B1B,交线为AB,所以OC⊥平面AA1B1B,故OA,OA1,OC两两垂直.以O为坐标原点,的方向为x轴的正向,||为单位长,建立如图所示的坐标系,可得A(1,0,0),A1(0,,0),C(0,0,),B(﹣1,0,0),则=(1,0,),=(﹣1,,0),=(0,﹣,),设=(x,y,z)为平面BB1C1C的法向量,则,即,可取y=1,可得=(,1,﹣1),故cos<,>==,又因为直线与法向量的余弦值的绝对值等于直线与平面的正弦值,故直线A1C与平面BB1C1C所成角的正弦值为:.【点评】本题考查直线与平面所成的角,涉及直线与平面垂直的性质和平面与平面垂直的判定,属难题.19.(12分)一批产品需要进行质量检验,检验方案是:先从这批产品中任取4件作检验,这4件产品中优质品的件数记为n.如果n=3,再从这批产品中任取4件作检验,若都为优质品,则这批产品通过检验;如果n=4,再从这批产品中任取1件作检验,若为优质品,则这批产品通过检验;其他情况下,这批产品都不能通过检验.假设这批产品的优质品率为50%,即取出的产品是优质品的概率都为,且各件产品是否为优质品相互独立.(Ⅰ)求这批产品通过检验的概率;(Ⅱ)已知每件产品检验费用为100元,凡抽取的每件产品都需要检验,对这批产品作质量检验所需的费用记为X(单位:元),求X的分布列及数学期望.【考点】CG:离散型随机变量及其分布列;CH:离散型随机变量的期望与方差.【专题】5I:概率与统计.【分析】(Ⅰ)设第一次取出的4件产品中恰有3件优质品为事件A1,第一次取出的4件产品全是优质品为事件A2,第二次取出的4件产品全是优质品为事件B1,第二次取出的1件产品是优质品为事件B2,这批产品通过检验为事件A,依题意有A=(A1B1)∪(A2B2),且A1B1与A2B2互斥,由概率得加法公式和条件概率,代入数据计算可得;(Ⅱ)X可能的取值为400,500,800,分别求其概率,可得分布列,进而可得期望值.【解答】解:(Ⅰ)设第一次取出的4件产品中恰有3件优质品为事件A1,第一次取出的4件产品全是优质品为事件A2,第二次取出的4件产品全是优质品为事件B1,第二次取出的1件产品是优质品为事件B2,这批产品通过检验为事件A,依题意有A=(A1B1)∪(A2B2),且A1B1与A2B2互斥,所以P(A)=P(A1B1)+P(A2B2)=P(A1)P(B1|A1)+P(A2)P(B2|A2)==(Ⅱ)X可能的取值为400,500,800,并且P(X=800)=,P(X=500)=,P(X=400)=1﹣﹣=,故X的分布列如下:X 400 500 800P故EX=400×+500×+800×=506.25【点评】本题考查离散型随机变量及其分布列涉及数学期望的求解,属中档题.20.(12分)已知圆M:(x+1)2+y2=1,圆N:(x﹣1)2+y2=9,动圆P与圆M外切并与圆N内切,圆心P的轨迹为曲线C.(Ⅰ)求C的方程;(Ⅱ)l是与圆P,圆M都相切的一条直线,l与曲线C交于A,B两点,当圆P 的半径最长时,求|AB|.【考点】J3:轨迹方程;J9:直线与圆的位置关系.【专题】5B:直线与圆.【分析】(I)设动圆的半径为R,由已知动圆P与圆M外切并与圆N内切,可得|PM|+|PN|=R+1+(3﹣R)=4,而|NM|=2,由椭圆的定义可知:动点P的轨迹是以M,N为焦点,4为长轴长的椭圆,求出即可;(II)设曲线C上任意一点P(x,y),由于|PM|﹣|PN|=2R﹣2≤4﹣2=2,所以R ≤2,当且仅当⊙P的圆心为(2,0)R=2时,其半径最大,其方程为(x﹣2)2+y2=4.分①l的倾斜角为90°,此时l与y轴重合,可得|AB|.②若l的倾斜角不为90°,由于⊙M的半径1≠R,可知l与x轴不平行,设l与x轴的交点为Q,根据,可得Q(﹣4,0),所以可设l:y=k(x+4),与椭圆的方程联立,得到根与系数的关系利用弦长公式即可得出.【解答】解:(I)由圆M:(x+1)2+y2=1,可知圆心M(﹣1,0);圆N:(x﹣1)2+y2=9,圆心N(1,0),半径3.设动圆的半径为R,∵动圆P与圆M外切并与圆N内切,∴|PM|+|PN|=R+1+(3﹣R)=4,而|NM|=2,由椭圆的定义可知:动点P的轨迹是以M,N为焦点,4为长轴长的椭圆,∴a=2,c=1,b2=a2﹣c2=3.∴曲线C的方程为(x≠﹣2).(II)设曲线C上任意一点P(x,y),由于|PM|﹣|PN|=2R﹣2≤3﹣1=2,所以R≤2,当且仅当⊙P的圆心为(2,0)R=2时,其半径最大,其方程为(x﹣2)2+y2=4.①l的倾斜角为90°,则l与y轴重合,可得|AB|=.②若l的倾斜角不为90°,由于⊙M的半径1≠R,可知l与x轴不平行,设l与x轴的交点为Q,则,可得Q(﹣4,0),所以可设l:y=k(x+4),由l于M相切可得:,解得.当时,联立,得到7x2+8x﹣8=0.∴,.∴|AB|===由于对称性可知:当时,也有|AB|=.综上可知:|AB|=或.【点评】本题综合考查了两圆的相切关系、直线与圆相切问题、椭圆的定义及其性质、直线与椭圆相交问题转化为方程联立得到根与系数的关系、弦长公式等基础知识,需要较强的推理能力和计算能力及其分类讨论的思想方法.21.(12分)已知函数f(x)=x2+ax+b,g(x)=e x(cx+d),若曲线y=f(x)和曲线y=g(x)都过点P(0,2),且在点P处有相同的切线y=4x+2.(Ⅰ)求a,b,c,d的值;(Ⅱ)若x≥﹣2时,f(x)≤kg(x),求k的取值范围.【考点】3R:函数恒成立问题;6H:利用导数研究曲线上某点切线方程.【专题】16:压轴题;53:导数的综合应用.【分析】(Ⅰ)对f(x),g(x)进行求导,已知在交点处有相同的切线及曲线y=f (x)和曲线y=g(x)都过点P(0,2),从而解出a,b,c,d的值;(Ⅱ)由(I)得出f(x),g(x)的解析式,再求出F(x)及它的导函数,通过对k的讨论,判断出F(x)的最值,从而判断出f(x)≤kg(x)恒成立,从而求出k的范围.【解答】解:(Ⅰ)由题意知f(0)=2,g(0)=2,f′(0)=4,g′(0)=4,而f′(x)=2x+a,g′(x)=e x(cx+d+c),故b=2,d=2,a=4,d+c=4,从而a=4,b=2,c=2,d=2;(Ⅱ)由(I)知,f(x)=x2+4x+2,g(x)=2e x(x+1)设F(x)=kg(x)﹣f(x)=2ke x(x+1)﹣x2﹣4x﹣2,则F′(x)=2ke x(x+2)﹣2x﹣4=2(x+2)(ke x﹣1),由题设得F(0)≥0,即k≥1,令F′(x)=0,得x1=﹣lnk,x2=﹣2,①若1≤k<e2,则﹣2<x1≤0,从而当x∈(﹣2,x1)时,F′(x)<0,当x∈(x1,+∞)时,F′(x)>0,即F(x)在(﹣2,x1)上减,在(x1,+∞)上是增,故F(x)在[﹣2,+∞)上的最小值为F(x1),而F(x1)=﹣x1(x1+2)≥0,x≥﹣2时F(x)≥0,即f(x)≤kg(x)恒成立.②若k=e2,则F′(x)=2e2(x+2)(e x﹣e﹣2),从而当x∈(﹣2,+∞)时,F′(x)>0,即F(x)在(﹣2,+∞)上是增,而F(﹣2)=0,故当x≥﹣2时,F(x)≥0,即f(x)≤kg(x)恒成立.③若k>e2时,F′(x)>2e2(x+2)(e x﹣e﹣2),而F(﹣2)=﹣2ke﹣2+2<0,所以当x>﹣2时,f(x)≤kg(x)不恒成立,综上,k的取值范围是[1,e2].【点评】此题主要考查利用导数研究曲线上某点切线方程,函数恒成立问题,考查分类讨论思想,解题的关键是能够利用导数工具研究函数的性质,此题是一道中档题.四、请考生在第22、23、24题中任选一道作答,并用2B铅笔将答题卡上所选的题目对应的题号右侧方框涂黑,按所涂题号进行评分;多涂、多答,按所涂的首题进行评分,不涂,按本选考题的首题进行评分.22.(10分)(选修4﹣1:几何证明选讲)如图,直线AB为圆的切线,切点为B,点C在圆上,∠ABC的角平分线BE交圆于点E,DB垂直BE交圆于D.(Ⅰ)证明:DB=DC;(Ⅱ)设圆的半径为1,BC=,延长CE交AB于点F,求△BCF外接圆的半径.【考点】NC:与圆有关的比例线段.【专题】5B:直线与圆.【分析】(I)连接DE交BC于点G,由弦切角定理可得∠ABE=∠BCE,由已知角平分线可得∠ABE=∠CBE,于是得到∠CBE=∠BCE,BE=CE.由已知DB⊥BE,可知DE为⊙O的直径,Rt△DBE≌Rt△DCE,利用三角形全等的性质即可得到DC=DB.(II)由(I)可知:DG是BC的垂直平分线,即可得到BG=.设DE的中点为O,连接BO,可得∠BOG=60°.从而∠ABE=∠BCE=∠CBE=30°.得到CF⊥BF.进而得到Rt△BCF的外接圆的半径=.【解答】(I)证明:连接DE交BC于点G.由弦切角定理可得∠ABE=∠BCE,而∠ABE=∠CBE,∴∠CBE=∠BCE,BE=CE.又∵DB⊥BE,∴DE为⊙O的直径,∠DCE=90°.∴△DBE≌△DCE,∴DC=DB.(II)由(I)可知:∠CDE=∠BDE,DB=DC.故DG是BC的垂直平分线,∴BG=.设DE的中点为O,连接BO,则∠BOG=60°.从而∠ABE=∠BCE=∠CBE=30°.∴CF⊥BF.∴Rt△BCF的外接圆的半径=.【点评】本题综合考查了圆的性质、弦切角定理、等边三角形的性质、三角形全等、三角形的外接圆的半径等知识,需要较强的推理能力、分析问题和解决问题的能力.23.已知曲线C1的参数方程为(t为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρ=2sinθ.(1)把C1的参数方程化为极坐标方程;(2)求C1与C2交点的极坐标(ρ≥0,0≤θ<2π).【考点】Q4:简单曲线的极坐标方程;QH:参数方程化成普通方程.【专题】11:计算题;35:转化思想;4R:转化法;5S:坐标系和参数方程.【分析】(1)曲线C1的参数方程消去参数t,得到普通方程,再由,能求出C1的极坐标方程.(2)曲线C2的极坐标方程化为直角坐标方程,与C1的普通方程联立,求出C1与C2交点的直角坐标,由此能求出C1与C2交点的极坐标.【解答】解:(1)将,消去参数t,化为普通方程(x﹣4)2+(y﹣5)2=25,即C1:x2+y2﹣8x﹣10y+16=0,将代入x2+y2﹣8x﹣10y+16=0,得ρ2﹣8ρcosθ﹣10ρsinθ+16=0.∴C1的极坐标方程为ρ2﹣8ρcosθ﹣10ρsinθ+16=0.(2)∵曲线C2的极坐标方程为ρ=2sinθ.∴曲线C2的直角坐标方程为x2+y2﹣2y=0,。

2013年高考全国新课标1卷文科综合试题及其详细解析.

2013年高考全国新课标1卷文科综合试题及其详细解析.

2013年普通高等学校招生全国统一考试文科综合能力测试(新课标I )第Ⅰ卷本卷共35小题,每小题4分,共140分。

在每个小题给出的四个选项中,只有一项是符合题目要求的。

1.【答案】C 【命题立意】本题考查农业区位因素,考查从区域图中获取相关信息、调动相关区域知识的能力,属简单题。

【解题思路】情人节是北半球冬季,此时美国气温低,不利于玫瑰花的生长,而哥伦比亚地处热带,气温高,利于玫瑰花的生长。

而两国地形、降水、土壤都比较复杂,不限定具体地方很难比较,故A 、B 、D 错误。

2.【答案】C【命题立意】本题考查交通运输方式的选择,考查从区域图中获取相关信息、调动相关区域知识的能力,属简单题。

【解题思路】从图中可以看出哥伦比亚距美国本土约20个纬度以上,运输距离较远,而玫瑰花属于易变质的鲜货,需要快速运到市场,所以选择速度最快的航空运输。

3.【答案】A【命题立意】本题考查农业区位条件的比较,考查学生比较分析能力。

属简单题。

【解题思路】从图中可以看出墨西哥为美国邻国,比哥伦比亚距美国近,故运输费用低,A 项正确;墨西哥比哥伦比亚纬度高,热量条件不具优势,B 项错误;两国同为发展中国家,技术优势不明显,C 项错误,而鲜花的品种从题中无法判断,故D 项错误。

图2为45ºN 附近某区域的遥感影像,其中深色部分为植被覆盖区,浅色部分为高原荒漠区;终年冰雪覆盖的山峰海拔3424米,距海约180千米.读图2,完成4~6题。

4.【答案】B【命题立意】本题考查降水的影响因素,考查学生提取信息,读图判断分析问题的能力,难度较大。

【解题思路】由题干可知该区域位于45°N ,并且距海(180km)较近,读图可知西侧有山脉且有植被覆盖,东侧为高原荒漠。

有纬度位置可知该区应当受西风带影响,西侧为西风迎风坡,降水量大,植被覆盖好,东侧为西风背风坡雨影地区,降水少,形成高原荒漠,所以导致图示区域内降水差异的主导因素是是地形,而不是大气环流、纬度位置、洋流。

2013高考试题及答案

2013高考试题及答案

2013高考试题及答案2013年的高考是我国教育史上的重要里程碑,它关乎千万考生的未来,也引起了广泛的关注和讨论。

本文将全面回顾2013年高考试题,并附有解答,帮助读者更好地理解和回顾这一历史性的考试。

第一部分语文一、阅读理解(共两节,30分)第一节(共15小题;每小题2分,满分30分)阅读下面的短文,从每题所给的A、B、C和D项中,选出最佳选项,并在答题卡上将该项涂黑。

Passage 1(1)What is most important in a book? Many people would say the story is most important. However, many other people would say "The way it is written" is most important.(2)A good writer puts a lot of thought into the way he or she writes. In fact, a good writer doesn't just write; he or she "crafts" the book. A writer sometimes says that a book didn't "work" and that it needed to be "fixed". This is because the writer is like a craftsman. He or she works and works on a book until it is perfect.(3)Being a good writer is hard work. For a writer, writing takes a lot of time and effort. A writer might have to rewrite the same pages manytimes before he or she is happy with them. A writer may throw out several "first drafts" and may have to start all over again.(4)A good story is important. But readers can't enjoy a good story if they can't understand it. To make a story understandable, a writer must make it clear and easy to follow. The writing must flow smoothly. The writer must also make sure to put the right words in the right places.1. According to the passage, which of the following is most important ina book?A. The story.B. The characters.C. The writing style.D. The setting.答案:C2. What does a writer mean when he or she says a book needed to be "fixed"?A. The story has a mistake.B. The book was torn.C. The writer didn't like the book.D. The book needed some changes.答案:D......第二部分数学一、选择题1. x-2/x=13,那么x-3/x值是?A. 15B. 16C. 17D. 18答案:B2. 设90°<A<180°,且sinA = cos2A,则tan2A的值是?A. 1B. 2C. 3D. 4答案:C......第三部分英语一、单项填空1. — Do you know if Susan saw a doctor yesterday?— She _____ to see one, but I'm not sure if she did.A. wentB. had goneC. would goD. would have gone答案:A2. We decided to go hiking _____ it rained heavily.A. althoughB. ifC. unlessD. because答案:A......第四部分物理一、选择题1. 当光通过空气、水和玻璃的界面传播时,改变光传播方向的主要原因是:A. 自转B. 光非均匀传播C. 反射D. 折射答案:D2. 从理论上讲,有用的能量是指:A. 纳什B. 分子内的热运动C. 宏观上可转换成其他形式的能量D. 原子内的电子运动答案:C......通过以上试题的回顾和解答,我们能够看到2013年高考试题在科目设置、题型设计以及考查内容等方面的特点。

2013年高考英语试题及详细答案(全国一卷)【可修改文字】

2013年高考英语试题及详细答案(全国一卷)【可修改文字】

可编辑修改精选全文完整版2013年普通高等学校招生全国统一考试(精校版)全国一卷英语试题第Ⅰ卷第一部分听力(共两节,满分30分)第一节(共5小题:每小题1.5分,满分7.5分)听下面5段对话。

每段对话后有一个小脱.从题中所给的A. B.C三个选项中选出最佳选项,并标在试卷的相应位置。

听完每段对话后,你都有10秒钟的时间来回答有关小题和阅读下一小题。

每段对话仅读一遍。

1.What will the couple do soon probably?A.Go to change some clothes.B.Write an essay together.C.Eat out together.2.Whe re are the two speakers probably now?A. In a restaurant.B.At a garage.C. In a hospital.3.Why didn’t the woman drive her car?A. Her car broken down.B. The gas ran out.C. Her car was lent,4.What’s the probabl e relationship between the speakers?A.Colleagues.B.Good friends.C.Boyfriend and girlfriend5.What’s the man’s decision?A. Repairing the typewriter.B. Buying a typewriter.C. Thinking about repairing.第二节(共15小题;每小题1.5分,满分22.5分)听下面5段对话。

每段对话后有几个小题,从题中所给的A、B、C三个选项中选出最佳选项,并标在试卷的相应位置。

听每段对话前,你将有时间阅读各个小题,每小题5秒钟:听完后,各小题给出5秒钟的做答时间。

2013年河北省高考数学试卷详细解析

2013年河北省高考数学试卷详细解析

2013年河北省高考数学试卷(理科)(参考答案与试题解析)一、填空题(本大题共有14题,满分56分)考生应在答题纸相应编号的空格内直接填写结果,每个空格填对得4分,否则一律得零分.1.(4分)(2013•上海)计算:= .考点:数列的极限.1483908专题:计算题.分析:由数列极限的意义即可求解.解答:解:==,故答案为:.点评:本题考查数列极限的求法,属基础题.2.(4分)(2013•上海)设m∈R,m2+m﹣2+(m2﹣1)i是纯虚数,其中i是虚数单位,则m= ﹣2 .考点:复数的基本概念.1483908专题:计算题.分析:根据纯虚数的定义可得m2﹣1=0,m2﹣1≠0,由此解得实数m的值.解答:解:∵复数z=(m2+m﹣2)+(m﹣1)i为纯虚数,∴m2+m﹣2=0,m2﹣1≠0,解得m=﹣2,故答案为:﹣2.点评:本题主要考查复数的基本概念,得到 m2+m﹣2=0,m2﹣1≠0,是解题的关键,属于基础题.3.(4分)(2013•上海)若=,x+y= 0 .考点: 二阶行列式的定义.专题: 常规题型.分析: 利用行列式的定义,可得等式,配方即可得到结论.解答: 解:∵,∴﹣∴()∴故答案为点评: 本题考查二阶行列式的定义,考查学生的计算能力,属于基础题.4.(4分)(2013•上海)已知△ABC的内角A、B、C所对的边分别是a、b、c,若3a2+2ab+3b2﹣3c2=0,则角C的大小是.考点:余弦定理.1483908专题:解三角形.分析:把式子3a2+2ab+3b2﹣3c2=0变形为,再利用余弦定理即可得出.解答:解:∵3a2+2ab+3b2﹣3c2=0,∴,∴==.∴C=.故答案为.点评:熟练掌握余弦定理及反三角函数是解题的关键.5.(4分)(2013•上海)设常数a∈R,若的二项展开式中x7项的系数为﹣10,则a= ﹣2 .考点:二项式系数的性质.1483908专题:计算题.分析:利用二项展开式的通项公式求得二项展开式中的第r+1项,令x的指数为7求得x7的系数,列出方程求解即可.解答:解:的展开式的通项为T r+1=C5r x10﹣2r()r=C5r x10﹣3r a r令10﹣3r=7得r=1,∴x7的系数是aC51∵x7的系数是﹣10,∴aC51=﹣10,解得a=﹣2.故答案为:﹣2.点评:本题主要考查了二项式系数的性质.二项展开式的通项公式是解决二项展开式的特定项问题的工具.6.(4分)(2013•上海)方程+=3x﹣1的实数解为log34 .考点:函数的零点.1483908专题:函数的性质及应用.分析:化简方程+=3x﹣1为 =3x﹣1,即(3x﹣4)(3x+2)=0,解得 3x=4,可得x的值.解答:解:方程+=3x﹣1,即 =3x﹣1,即 8+3x=3x﹣1( 3x+1﹣3),化简可得 32x﹣2•3x﹣8=0,即(3x﹣4)(3x+2)=0.解得 3x=4,或 3x=﹣2(舍去),∴x=log34,故答案为 log34.点评:本题主要考查指数方程的解法,指数函数的值域,一元二次方程的解法,属于基础题.7.(4分)(2013•上海)在极坐标系中,曲线ρ=cosθ+1与ρcosθ=1的公共点到极点的距离为.考点:点的极坐标和直角坐标的互化;两点间的距离公式.1483908专题:计算题.分析:联立ρ=cosθ+1与ρcosθ=1消掉θ即可求得ρ,即为答案.解答:解:由ρ=cosθ+1得,cosθ=ρ﹣1,代入ρcosθ=1得ρ(ρ﹣1)=1,解得ρ=或ρ=(舍),所以曲线ρ=cosθ+1与ρcosθ=1的公共点到极点的距离为,故答案为:.点评:本题考查两点间距离公式、极坐标与直角坐标的互化,属基础题.8.(4分)(2013•上海)盒子中装有编号为1,2,3,4,5,6,7,8,9的九个球,从中任意取出两个,则这两个球的编号之积为偶数的概率是(结果用最简分数表示).专题:概率与统计.分析:利用组合知识求出从1,2,3,4,5,6,7,8,9九个球中,任意取出两个球的取法种数,再求出从5个奇数中任意取出2个奇数的取法种数,求出取出的两个球的编号之积为奇数的概率,利用对立事件的概率求出取出两个球的编号之积为偶数的概率.解答:解:从1,2,3,4,5,6,7,8,9九个球中,任意取出两个球的取法种数为种.取出的两个球的编号之积为奇数的方法种数为种.则取出的两个球的编号之积为奇数的概率为.所以取出两个球的编号之积为偶数的概率是.故答案为点评:本题考查了古典概型及其概率计算公式,考查了简单的排列组合知识,考查了对立事件的概率,解答的关键是明确取到的两数均为奇数时其乘积为奇数,是基础题.9.(4分)(2013•上海)设AB是椭圆Γ的长轴,点C在Γ上,且∠CBA=,若AB=4,BC=,则Γ的两个焦点之间的距离为.考点:椭圆的标准方程;椭圆的简单性质.1483908专题:圆锥曲线的定义、性质与方程.分析:由题意画出图形,设椭圆的标准方程为,由条件结合等腰直角三角形的边角关系解出C的坐标,再根据点C在椭圆上求得b值,最后利用椭圆的几何性质计算可得答案.解答:解:如图,设椭圆的标准方程为,由题意知,2a=4,a=2.因点C在椭圆上,∴,∴b2=,∴c2=a2﹣b2=4﹣=,c=,则Γ的两个焦点之间的距离为.故答案为:.点评:本题考查椭圆的定义、解三角形,以及椭圆的简单性质的应用.10.(4分)(2013•上海)设非零常数d是等差数列x1,x2,…,x19的公差,随机变量ξ等可能地取值x1,x2,…,x19,则方差Dξ=30d2.考点:极差、方差与标准差.1483908专题:概率与统计.分析:利用等差数列的前n项和公式可得x1+x2+…+x19=和数学期望的计算公式即可得出Eξ,再利用方差的计算公式即可得出Dξ=即可得出.解答:解:由题意可得Eξ===x1+9d.∴x n﹣Eξ=x1+(n﹣1)d﹣(x1+9d)=(n﹣10)d,===30d2.故答案为30d2.点评:熟练掌握等差数列的前n项和公式、数学期望和方差的计算公式是解题的关键.11.(4分)(2013•上海)若cosxcosy+sinxsiny=,sin2x+sin2y=,则sin(x+y)= .考点:三角函数的和差化积公式;两角和与差的余弦函数.1483908专题:三角函数的求值.分析:利用两角差的余弦公式及cosxcosy+sinxsiny=,可得cos(x﹣y)=,再利用和差化积公式sin2x+sin2y=,得到2sin(x+y)cos(x﹣y)=,即可得出sin(x+y).解答:解:∵cosxcosy+sinxsiny=,∴cos(x﹣y)=.∵sin2x+sin2y=,∴2sin(x+y)cos(x﹣y)=,∴,∴sin(x+y)=.故答案为.点评:熟练掌握两角和差的正弦余弦公式及和差化积公式是解题的关键.12.(4分)(2013•上海)设a为实常数,y=f(x)是定义在R上的奇函数,当x<0时,f(x)=9x++7.若f(x)≥a+1对一切x≥0成立,则a的取值范围为..考点:函数奇偶性的性质;基本不等式.1483908专题:函数的性质及应用.分析:先利用y=f(x)是定义在R上的奇函数求出x≥0时函数的解析式,将f(x)≥a+1对一切x≥0成立转化为函数的最小值≥a+1,利用基本不等式求出f(x)的最小值,解不等式求出a的范围.解答:解:因为y=f(x)是定义在R上的奇函数,所以当x=0时,f(x)=0;当x>0时,则﹣x<0,所以f(﹣x)=﹣9x﹣+7因为y=f(x)是定义在R上的奇函数,所以f(x)=9x+﹣7;因为f(x)≥a+1对一切x≥0成立,所以当x=0时,0≥a+1成立,所以a≤﹣1;当x>0时,9x+﹣7≥a+1成立,只需要9x+﹣7的最小值≥a+1,因为9x+﹣7≥2=6|a|﹣7,所以6|a|﹣7≥a+1,解得,所以.故答案为..点评:本题考查函数解析式的求法;考查解决不等式恒成立转化成求函数的最值;利用基本不等式求函数的最值.13.(4分)(2013•上海)在xOy平面上,将两个半圆弧(x﹣1)2+y2=1(x≥1)和(x ﹣3)2+y2=1(x≥3),两条直线y=1和y=﹣1围成的封闭图形记为D,如图中阴影部分,记D绕y轴旋转一周而成的几何体为Ω.过(0,y)(|y|≤1)作Ω的水平截面,所得截面积为4π+8π.试利用祖恒原理、一个平放的圆柱和一个长方体,得出Ω的体积值为2π2+16π.考点:进行简单的合情推理.1483908专题:计算题;阅读型.分析:由题目给出的Ω的水平截面的面积,可猜想水平放置的圆柱和长方体的量,然后直接求出圆柱的体积与长方体的体积作和即可.解答:解:因为几何体为Ω的水平截面的截面积为4+8π,该截面的截面积由两部分组一部分为定值8π,看作是截一个底面积为8π,高为2的长方体得到的,对于4,看作是把一个半径为1,高为2π的圆柱平放得到的,如图所示,这两个几何体与Ω放在一起,根据祖恒原理,每个平行水平面的截面积相等,故它们的体积相等,即Ω的体积为π•12•2π+2•8π=2π2+16π.故答案为2π2+16π.点评:本题考查了简单的合情推理,解答的关键是由几何体Ω的水平截面面积想到水平放置的圆柱和长方体的有关量,是中档题.14.(4分)(2013•上海)对区间I上有定义的函数g(x),记g(I)={y|y=g(x),x∈I}.已知定义域为[0,3]的函数y=f(x)有反函数y=f﹣1(x),且f﹣1([0,1))=[1,2),f ﹣1((2,4])=[0,1).若方程f(x)﹣x=0有解xx0= 2 .0,则专题:函数的性质及应用.分析:根据互为反函数的两函数定义域、值域互换可判断:当x∈[0,1)时,x∈[1,2)时f(x)的值域,进而可判断此时f(x)=x无解;由f(x)在定义域[0,3]上存在反函数可知:x∈[2,3]时,f(x)的取值集合,再根据方程f(x)=x有解即可得到x0的值.解答:解:因为g(I)={y|y=g(x),x∈I},f﹣1([0,1))=[1,2),f﹣1(2,4])=[0,1),所以对于函数f(x),当x∈[0,1)时,f(x)∈(2,4],所以方程f(x)﹣x=0即f(x)=x无解;当x∈[1,2)时,f(x)∈[0,1),所以方程f(x)﹣x=0即f(x)=x无解;所以当x∈[0,2)时方程f(x)﹣x=0即f(x)=x无解,又因为方程f(x)﹣x=0有解x0,且定义域为[0,3],故当x∈[2,3]时,f(x)的取值应属于集合(﹣∞,0)∪[1,2]∪(4,+∞),故若f(x0)=x0,只有x0=2,故答案为:2.点评:本题考查函数的零点及反函数,考查学生分析解决问题的能力,属中档题.二、选择题(本大题共有4题,满分20分)每题有且只有一个正确答案,考生应在答题纸的相应编号上,将代表答案的小方格涂黑,选对得5分,否则一律得零分.15.(5分)(2013•上海)设常数a∈R,集合A={x|(x﹣1)(x﹣a)≥0},B={x|x≥a ﹣1},若A∪B=R,则a的取值范围为()A.(﹣∞,2)B.(﹣∞,2]C.(2,+∞)D.[2,+∞)考点:并集及其运算;一元二次不等式的解法.1483908专题:不等式的解法及应用.分析:当a>1时,代入解集中的不等式中,确定出A,求出满足两集合的并集为R时的a的范围;当a=1时,易得A=R,符合题意;当a<1时,同样求出集合A,列出关于a的不等式,求出不等式的解集得到a的范围.综上,得到满足题意的a范围.解答:解:当a>1时,A=(﹣∞,1]∪[a,+∞),B=[a﹣1,+∞),若A∪B=R,则a﹣1≤1,∴1<a≤2;当a=1时,易得A=R,此时A∪B=R;当a<1时,A=(﹣∞,a]∪[1,+∞),B=[a﹣1,+∞),若A∪B=R,则a﹣1≤a,显然成立∴a<1;综上,a的取值范围是(﹣∞,2].故选B.点评:此题考查了并集及其运算,二次不等式,以及不等式恒成立的条件,熟练掌握并集的定义是解本题的关键.16.(5分)(2013•上海)钱大姐常说“便宜没好货”,她这句话的意思是:“不便宜”是“好货”的()A.充分条件B.必要条件C.充分必要条件D.既非充分又非必要条件考点:必要条件、充分条件与充要条件的判断.1483908分析:因为“好货不便宜”是“便宜没好货”的逆否命题,根据互为逆否命题的真假一致得到:“好货不便宜”是真命题.再据命题的真假与条件的关系判定出“不便宜”是“好货”的必要条件.解答:解:“好货不便宜”是“便宜没好货”的逆否命题,根据互为逆否命题的真假一致得到:“好货不便宜”是真命题.所以“好货”⇒“不便宜”,所以“不便宜”是“好货”的必要条件,故选B点评:本题考查互为逆否命题的真假一致;考查据命题的真假判定条件关系,属于基础题.17.(5分)(2013•上海)在数列(a n)中,a n=2n﹣1,若一个7行12列的矩阵的第i 行第j列的元素c ij=a i•a j+a i+a j(i=1,2,…,7;j=1,2,…,12),则该矩阵元素能取到的不同数值的个数为()A.18B.28C.48D.63考点:数列的函数特性.1483908分析:由于该矩阵的第i行第j列的元素c ij=a i•a j+a i+a j=(2i﹣1)(2j﹣1)+2i﹣1+2j﹣1=2i+j﹣1(i=1,2,...,7;j=1,2,...,12),要使a ij=a mn(i,m=1,2, (7)j,n=1,2,…,12).则满足2i+j﹣1=2m+n﹣1,得到i+j=m+n,由指数函数的单调性可得:当i+j≠m+n 时,a ij≠a mn,因此该矩阵元素能取到的不同数值为i+j的所有不同和,即可得出.解答:解:该矩阵的第i行第j列的元素c ij=a i•a j+a i+a j=(2i﹣1)(2j﹣1)+2i﹣1+2j﹣1=2i+j﹣1(i=1,2,…,7;j=1,2,…,12),当且仅当:i+j=m+n时,a ij=a mn(i,m=1,2,…,7;j,n=1,2,…,12),因此该矩阵元素能取到的不同数值为i+j的所有不同和,其和为2,3, (19)共18个不同数值.故选A.点评:由题意得出:当且仅当i+j=m+n时,a ij=a mn(i,m=1,2,…,7;j,n=1,2,…,12)是解题的关键.18.(5分)(2013•上海)在边长为1的正六边形ABCDEF中,记以A为起点,其余顶点为终点的向量分别为、、、、;以D为起点,其余顶点为终点的向量分别为、、、、.若m、M 分别为(++)•(++)的最小值、最大值,其中{i,j,k}⊆{1,2,3,4,5},{r,s,t}⊆{1,2,3,4,5},则m、M满足()A.m=0,M>0B.m<0,M>0C.m<0,M=0D.m<0,M<0考点:平面向量数量积的运算;进行简单的合情推理.1483908专题:平面向量及应用.分析:利用向量的数量积公式,可知只有,其余数量积均小于等于0,从而可结论.解答:解:由题意,以A为起点,其余顶点为终点的向量分别为、、、、;以D为起点,其余顶点为终点的向量分别为、、、、,∴利用向量的数量积公式,可知只有,其余数量积均小于等于0,∵m、M分别为(++)•(++)的最小值、最大值,∴m<0,M<0故选D.点评:本题考查向量的数量积运算,考查学生分析解决问题的能力,分析出向量数量积的正负是关键.三、解答题(本大题共有5题,满分74分)解答下列各题必须在答题纸相应编号的规定区域内写出必要的步骤.19.(12分)(2013•上海)如图,在长方体ABCD﹣A′B′C′D′中,AB=2,AD=1,AA′=1.证明直线BC′平行于平面D′AC,并求直线BC′到平面D′AC的距离.考点:点、线、面间的距离计算;直线与平面平行的判定.1483908专题:空间位置关系与距离.分析:建立空间直角坐标系,求出平面D′AC的一个法向量为=(2,1,﹣2),再根据 =﹣0,可得⊥,可得直线BC′平行于平面D′AC.求出点B到平面D′AC的距离d= 的值,即为直线BC′到平面D′AC的距离.解答:解:以D′A′所在的直线为x轴,以D′C′所在的直线为y轴,以D′D所在的直线为z轴,建立空间直角坐标系.则由题意可得,点A(1,0,0 )、B(1,2,1)、C(0,2,1)、C′(0,2,0)、D′(0,0,0).设平面D′AC的一个法向量为=(u,v,w),则由⊥,⊥,可得,.∵=(1,0,1),=(0,2,1),∴,解得.令v=1,可得 u=2,w=﹣2,可得=(2,1,﹣2).由于=(﹣1,0,﹣1),∴=﹣0,故有⊥.再由BC′不在平面D′AC内,可得直线BC′平行于平面D′AC.由于=(1,0,0),可得点B到平面D′AC的距离d===,故直线BC′到平面D′AC的距离为.点评:本题主要考查利用向量法证明直线和平面平行,求直线到平面的距离的方法,体现了转化的数学思想,属于中档题.20.(14分)(2013•上海)甲厂以x千克/小时的速度匀速生产某种产品(生产条件要求1≤x≤10),每小时可获得的利润是100(5x+1﹣)元.(1)要使生产该产品2小时获得的利润不低于3000元,求x的取值范围;(2)要使生产900千克该产品获得的利润最大,问:甲厂应该选取何种生产速度?并求此最大利润.考点:函数模型的选择与应用.1483908专题:应用题.分析:(1)求出生产该产品2小时获得的利润,建立不等式,即可求x的取值范围;(2)确定生产900千克该产品获得的利润函数,利用配方法,可求最大利润.解答:解:(1)生产该产品2小时获得的利润为100(5x+1﹣)×2=200(5x+1﹣)根据题意,200(5x+1﹣)≥3000,即5x2﹣14x﹣4≥0∴x≥3或x≤﹣∵1≤x≤10,∴3≤x≤10;(2)设利润为 y元,则生产900千克该产品获得的利润为y=100(5x+1﹣)×=90000()=9×104[+]∵1≤x≤10,∴x=6时,取得最大利润为=457500元故甲厂应以6千克/小时的速度生产,可获得最大利润为457500元.点评:本题考查函数模型的建立,考查解不等式,考查函数的最值,确定函数的模型是关键.21.(14分)(2013•上海)已知函数f(x)=2sin(ωx),其中常数ω>0(1)若y=f(x)在[﹣,]上单调递增,求ω的取值范围;(2)令ω=2,将函数y=f(x)的图象向左平移个单位,在向上平移1个单位,得到函数y=g(x)的图象,区间[a,b](a,b∈R,且a<b)满足:y=g(x)在[a,b]上至少含有30个零点.在所有满足上述条件的[a,b]中,求b﹣a的最小值.考点:正弦函数的单调性;根的存在性及根的个数判断;函数y=Asin(ωx+φ)的图象变换.1483908专题:三角函数的图像与性质.分析:(1)已知函数y=f(x)在上单调递增,且ω>0,利用正弦函数的单调性可得,且,解出即可;(2)利用变换法则“左加右减,上加下减”即可得到g(x)=2.令g(x)=0,即可解出零点的坐标,可得相邻两个零点之间的距离.若b﹣a最小,则a和b 都是零点,此时在区间[a,mπ+a](m∈N*)恰有2m+1个零点,所以在区间[a,14π+a]是恰有29个零点,从而在区间(14π+a,b]至少有一个零点,即可得到a,b满足的条件.进一步即可得出b﹣a的最小值.解答:解:(1)∵函数y=f(x)在上单调递增,且ω>0,∴,且,解得.(2)f(x)=2sin2x,∴把y=f(x)的图象向左平移个单位,在向上平移1个单位,得到,∴函数y=g(x)=,令g(x)=0,得,或x=(k∈Z).∴相邻两个零点之间的距离为或.若b﹣a最小,则a和b都是零点,此时在区间[a,π+a],[a,2π+a],…,[a,mπ+a](m∈N*)分别恰有3,5,…,2m+1个零点,所以在区间[a,14π+a]是恰有29个零点,从而在区间(14π+a,b]至少有一个零点,∴.另一方面,在区间恰有30个零点,因此b﹣a的最小值为.点评:本题综合考查了三角函数的单调性、周期性、函数的零点等基础知识与基本技能,考查了分析问题和解决问题的能力、推理能力和计算能力.22.(16分)(2013•上海)如图,已知双曲线C1:,曲线C2:|y|=|x|+1,P是平面内一点,若存在过点P的直线与C1,C2都有公共点,则称P为“C1﹣C2型点“(1)在正确证明C1的左焦点是“C1﹣C2型点“时,要使用一条过该焦点的直线,试写出一条这样的直线的方程(不要求验证);(2)设直线y=kx与C2有公共点,求证|k|>1,进而证明原点不是“C1﹣C2型点”;(3)求证:圆x2+y2=内的点都不是“C1﹣C2型点”考点:直线与圆锥曲线的关系;点到直线的距离公式;双曲线的简单性质.1483908专题:新定义;圆锥曲线的定义、性质与方程.分析:(1)由双曲线方程可知,双曲线的左焦点为(),当过左焦点的直线的斜率不存在时满足左焦点是“C1﹣C2型点”,当斜率存在时,要保证斜率的绝对值大于等于该焦点与(0,1)连线的斜率;(2)由直线y=kx与C2有公共点联立方程组有实数解得到|k|>1,分过原点的直线斜率不存在和斜率存在两种情况说明过远点的直线不可能同时与C1和C2有公共点;(3)由给出的圆的方程得到圆的图形夹在直线y=x±1与y=﹣x±1之间,进而说明当|k|≤1时过圆内的点且斜率为k的直线与C2无公共点,当|k|>1时,过圆内的点且斜率为k的直线与C2有公共点,再由圆心到直线的距离小于半径列式得出k的范围,结果与|k|>1矛盾.从而证明了结论.解答:(1)解:C1的左焦点为(),写出的直线方程可以是以下形式:或,其中.(2)证明:因为直线y=kx与C2有公共点,所以方程组有实数解,因此|kx|=|x|+1,得.若原点是“C1﹣C2型点”,则存在过原点的直线与C1、C2都有公共点.考虑过原点与C2有公共点的直线x=0或y=kx(|k|>1).显然直线x=0与C1无公共点.如果直线为y=kx(|k|>1),则由方程组,得,矛盾.所以直线y=kx(|k|>1)与C1也无公共点.因此原点不是“C1﹣C2型点”.(3)证明:记圆O:,取圆O内的一点Q,设有经过Q的直线l与C1,C2都有公共点,显然l不与x轴垂直,故可设l:y=kx+b.若|k|≤1,由于圆O夹在两组平行线y=x±1与y=﹣x±1之间,因此圆O也夹在直线y=kx±1与y=﹣kx±1之间,从而过Q且以k为斜率的直线l与C2无公共点,矛盾,所以|k|>1.因为l与C1由公共点,所以方程组有实数解,得(1﹣2k2)x2﹣4kbx﹣2b2﹣2=0.因为|k|>1,所以1﹣2k2≠0,因此△=(4kb)2﹣4(1﹣2k2)(﹣2b2﹣2)=8(b2+1﹣2k2)≥0,即b2≥2k2﹣1.因为圆O的圆心(0,0)到直线l的距离,所以,从而,得k2<1,与|k|>1矛盾.因此,圆内的点不是“C1﹣C2型点”.点评:本题考查了双曲线的简单几何性质,考查了点到直线的距离公式,考查了直线与圆锥曲线的关系,直线与圆锥曲线联系在一起的综合题在高考中多以高档题、压轴题出现,主要涉及位置关系的判定,弦长问题、最值问题、对称问题、轨迹问题等.突出考查了数形结合、分类讨论、函数与方程、等价转化等数学思想方法.属难题.23.(18分)(2013•上海)给定常数c>0,定义函数f(x)=2|x+c+4|﹣|x+c|.数列a1,a2,a3,…满足a n+1=f(a n),n∈N*.(1)若a1=﹣c﹣2,求a2及a3;(2)求证:对任意n∈N*,a n+1﹣a n≥c;(3)是否存在a1,使得a1,a2,…,a n,…成等差数列?若存在,求出所有这样的a1;若不存在,说明理由.考点:数列的函数特性;等差关系的确定;数列与函数的综合.1483908专题:等差数列与等比数列.分析:(1)对于分别取n=1,2,a n+1=f(a n),n∈N*.去掉绝对值符合即可得出;(2)由已知可得f(x)=,分三种情况讨论即可证明;(3)由(2)及c>0,得a n+1≥a n,即{a n}为无穷递增数列.分以下三种情况讨论:当a1<﹣c﹣4时,当﹣c﹣4≤a1<﹣c时,当a1≥﹣c时.即可得出a1的取值范围.解答:解:(1)a2=f(a1)=f(﹣c﹣2)=2|﹣c﹣2+c+4|﹣|﹣c﹣2+c|=4﹣2=2,a3=f(a2)=f(2)=2|2+c+4|﹣|2+c|=2(6+c)﹣(c+2)=c+10.(2)由已知可得f(x)=当a n≥﹣c时,a n+1﹣a n=c+8>c;当﹣c﹣4≤a n<﹣c时,a n+1﹣a n=2a n+3c+8≥2(﹣c﹣4)+3c+8=c;当a n<﹣c﹣4时,a n+1﹣a n=2a n﹣c>﹣2(﹣c﹣4)﹣c﹣8=c.∴对任意n∈N*,a n+1﹣a n≥c;(3)由(2)及c>0,得a n+1≥a n,即{a n}为无穷递增数列.又{a n}为等差数列,所以存在正数M,当n>M时,a n≥﹣c,从而a n+1=f(a n)=a n+c+8,由于{a n}为等差数列,因此公差d=c+8.①当a1<﹣c﹣4时,则a2=f(a1)=﹣a1﹣c﹣8,又a2=a1+d=a1+c+8,故﹣a1﹣c﹣8=a1+c+8,即a1=﹣c﹣8,从而a2=0,当n≥2时,由于{a n}为递增数列,故a n≥a2=0>﹣c,∴a n+1=f(a n)=a n+c+8,而a2=a1+c+8,故当a1=﹣c﹣8时,{a n}为无穷等差数列,符合要求;②若﹣c﹣4≤a1<﹣c,则a2=f(a1)=3a1+3c+8,又a2=a1+d=a1+c+8,∴3a1+3c+8=a1+c+8,得a1=﹣c,应舍去;③若a1≥﹣c,则由a n≥a1得到a n+1=f(a n)=a n+c+8,从而{a n}为无穷等差数列,符合要求.综上可知:a1的取值范围为{﹣c﹣8}∪[﹣c,+∞).点评:本题综合考查了分类讨论的思方法、如何绝对值符号、递增数列、等差数列等基础知识与方法,考查了推理能力和计算能力.。

2013年高考真题——语文(江苏卷) 解析版含答案

2013年高考真题——语文(江苏卷) 解析版含答案

2013年普通高考语文江苏卷详解详析第Ⅰ卷一、语言文字运用(15分)1。

【答案】D【命题立意】本题考查识记现代汉语普通话常用字的字音,能力层级为A。

【解析】A项“亢”与“伉”读(kàng)、“吭"读(háng)和“沆”读(hàng) ,B项“稂”、“锒"、“琅”读(láng)、“阆”读(làng),C项“孩”、“骸" 读(hái)、骇读(hài)、“赅”读(gāi).本题考查词语信息量较大,有的两组词语之间联系不大,这就需要考生的复习备考要适当增加记忆积累的范围。

本题可以采用排除法来逐步缩小答题范围.2。

【答案】B【命题立意】本题考查正确使用成语,能力层级为E。

【解析】第一空根据语境应填“买椟还珠",“买椟还珠" 用来比喻没有眼光取舍不当;第二空根据“儒、释、道哪一条路上行走”一句,所以选填“殊途同归”最为恰当,“殊途同归”指通过不同的途径,到达同一个目的地。

比喻采取不同的方法而得到相同的结果;第三空根据“他的危机感丝毫未减”,选填“如履薄冰”,“如履薄冰”指比喻行事极为谨慎,存有戒心.本题成语的考查数量虽然较多,但题干中明确的语境降低了解题的难度,三个空都可依据这一点3。

【答案】改变自己比改变环境(世界)更容易。

【命题立意】本题考查语言表达准确、鲜明、生动,能力层级为E。

【解析】题干中已明确答题的方向:画线句子的含义。

因此在答此题的时候要注意由点到面的思维,针对“穿鞋”上升到“改变自己”,针对“给全世界铺上地毯"上升到“改变世界”。

再组织恰当的语言表述.4. 【答案】大多数作家需要十年左右的创作积累,才能进入创作成熟期。

【命题立意】本题考查图表转述能力。

能力层级为E。

【解析】本题采用图表分析的形式,旨在考查考生的语言综合运用能力,尤其是图文转换能力。

图表分析题要求考生能够根据图表中的有关内容来分析有关材料,辨别、提取、挖掘其中隐含的信息,进而对材料进行综合性评价。

2013年北京高考语文试卷标准答案以及详细解析

2013年北京高考语文试卷标准答案以及详细解析

2013年普通高等学校招生全国统一考试语文(北京卷)本试卷共8页,150分。

考试时长150分钟。

考生务必将答案答在答题卡上,在试卷上作答无效。

考试结束后,将本试卷和答题卡一并交回。

一、本大题共5小题。

每小题3分,共15分。

1.下列词语,字形与加点字的注音全部正确的一项是()A.养殖业与日剧增便笺.(jiān)独辟蹊.(xī)径B.醉醺醺席不暇暖泥淖.(nào)向隅.(yú)而泣C.滥摊子自由竞争卷帙.(dié)运筹帷幄.(wò)D.颤巍巍信笔涂鸭蠹.(dù)虫湮.(yīn)没无闻1. BA选项养殖业,与日俱增;C选项烂摊子,卷帙(zhì);D选项信笔涂鸦,湮(yān)没无闻。

第一题字音字形依旧简单,但是我们应该注意到的是A选项字音都对,字形均错,这打破了以往高考字音错一、字形错一的规律,说明字音字形考查方式灵活多变,已经不再限制在“字音和字形”二题合一,而是在转变为字“音形”题,表面看起来难度提升了,其实是降低了难度。

2.下列语句中,没有语病的一项是()A.近几年,食品药品在安全方面出现的问题被媒体接连曝光,不同职能部门各管一段的监管模式也因此受到了社会的质疑。

B.第九届中国国际园林博览会在北京永定河西岸盛大开幕,对于513公顷的园博园,为了方便游客,专门开设了电瓶车专线。

C.据世界黄金协会分析,2013年春节前后中国黄金需求高涨的原因,主要由于消费者对中国经济前景充满信心所致。

D.日前,交通管理部门就媒体对酒驾事故的连续报道做出了积极回应,表示要进一步加大对交通违法行为的查处。

2. AB选项“对于513公顷的园博园”一句,删去“对于”;C选项“原因,主要在于……所致”,删去“所致”;D选项“加大对交通违法行为的查处”后加“力度”。

病句题着重考查句式成分,我们抛开所谓的六种病句模式,会发现今年的错误选项全部可以通过增加或者减少句子中的词语达到修改目的。

2013年高考语文试卷标准答案以及详细解析

2013年高考语文试卷标准答案以及详细解析

2013年普通高等学校招生全国统一考试语文(北京卷)试题答案及精析本试卷共8页,150分。

考试时长150分钟。

考生务必将答案答在答题卡上,在试卷上作答无效。

考试结束后,将本试卷和答题卡一并交回。

一、本大题共5小题。

每小题3分,共15分。

1.下列词语,字形与加点字的注音全部正确的一项是()A.养殖业与日剧增便笺.(jiān)独辟蹊.(xī)径B.醉醺醺席不暇暖泥淖.(nào)向隅.(yú)而泣C.滥摊子自由竞争卷帙.(dié)运筹帷幄.(wò)D.颤巍巍信笔涂鸭蠹.(dù)虫湮.(yīn)没无闻1. BA选项养殖业,与日俱增;C选项烂摊子,卷帙(zhì);D选项信笔涂鸦,湮(yān)没无闻。

第一题字音字形依旧简单,但是我们应该注意到的是A选项字音都对,字形均错,这打破了以往高考字音错一、字形错一的规律,说明字音字形考查方式灵活多变,已经不再限制在“字音和字形”二题合一,而是在转变为字“音形”题,表面看起来难度提升了,其实是降低了难度。

2.下列语句中,没有语病的一项是()A.近几年,食品药品在安全方面出现的问题被媒体接连曝光,不同职能部门各管一段的监管模式也因此受到了社会的质疑。

B.第九届中国国际园林博览会在北京永定河西岸盛大开幕,对于513公顷的园博园,为了方便游客,专门开设了电瓶车专线。

C.据世界黄金协会分析,2013年春节前后中国黄金需求高涨的原因,主要由于消费者对中国经济前景充满信心所致。

D.日前,交通管理部门就媒体对酒驾事故的连续报道做出了积极回应,表示要进一步加大对交通违法行为的查处。

2. AB选项“对于513公顷的园博园”一句,删去“对于”;C选项“原因,主要在于……所致”,删去“所致”;D选项“加大对交通违法行为的查处”后加“力度”。

病句题着重考查句式成分,我们抛开所谓的六种病句模式,会发现今年的错误选项全部可以通过增加或者减少句子中的词语达到修改目的。

2013年高考语文全国卷1(含详细答案)

2013年高考语文全国卷1(含详细答案)
他风度翩翩走上前台,朗声说道:
ห้องสมุดไป่ตู้“诸位,敝人十分愿意应邀在此介绍一种奇迹,迄今无人能窥见其奥妙。近年来,敝人深入自己影子的心灵,努力探索其需求和爱好。兄弟十分愿意把来龙去脉演述一番,以报答诸位的美意。请看!我至亲至诚的终身伴侣——我的影子的实际存在。”
在半明半暗的灯光中,他走近墙壁,修长的身影清晰地投射在墙上。全厅鸦雀无声,人们一个个伸长脖子,争看究竟。他像要放飞一只鸽子似的,双手合拢报幕:
7.把文中画横线的句子翻译成现代汉语。(10分)
(1)在班列中最为耆硕,帝亦推心任之,诸大臣莫敢望也。
(2)家居,非事未尝入州城。语及时事,辄颦蹙不答。
(二)古代诗歌阅读(11分)
阅读下面这首宋词,完成8,9题。
鹊桥仙
陆 游
华灯纵博,雕鞍驰射,谁记当年豪举①?酒徒一一半取封候,独去作江边渔父。
轻舟八尺,低篷三扇,占断 洲烟雨②。镜湖③元自属闲人,又何必君恩赐与?
过去对于古书真伪及年代的讨论,只能以纸上材料证明纸上材料,没有其他的衡量标准,因而难有定论。用来印证《老子》的古书,大多受到辨伪家的怀疑,年代确不可移的,恐怕要数到《韩非子》《吕氏春秋》和《淮南子》,但这几本书成书太晚,没有多少作用。近年战国秦汉简帛佚籍大量出土,为学术界提供了许多前所未见的地下材料,这使我们有可能重新考虑《老子》的时代问题。
“可是,您总不会否认这把戏确实很妙,是吗?”
“给它这块鸡脯。”
“梨!看着它如何吃梨一定妙不可言。”
“很好。诸位,现在先吃鸡脯。噢,劳驾哪位递给我一条餐巾?谢谢!”
所有人都兴致勃勃地加入了这场娱乐。
“再给它吃点饼,你这影子可有点干瘦呵!”
“喂,机灵鬼,你的影子喝酒不?给它这杯酒,喝了可以解愁。”

2013年高考英语试题浙江卷详细解析

2013年高考英语试题浙江卷详细解析

2011年普通高等学校招生全国统一考试(浙江卷)解析英语第一部分英语知识运用(共两节,满分80分)从A B C D 四个选项中,选出可以填入空白处地最佳选项,并在答题卡上将该项涂黑。

1. -I’m sorry I didn’t make it to your party last night.-- ______, I know you’re busy these days.A. Of courseB. No kiddingC. That’s all nightD. Don’t mention it【答案】C【解析】情景交际今年首次出现在第一题,说明了高考重视应用的趋势。

完整的问句和答句的后半句都是提示信息:根据问句中的I’msorry…可以排除选项A、B;根据后半句―我知道你最近几天很忙‖可以排除选项D。

2. Experts think that ______recently discovered painting may be ______ Picsso.A. the ;不填B. a ;theC. a; 不填D. the; a【答案】D【解析】本题考点为冠词,每年必考一题,常为区分某名词是特指还是泛指。

根据句意―专家们认为这幅最近本发现的画作可能是一幅毕加索的作品。

‖可知前一空应该是表示特指的定冠词the;后一空用不定冠词a加上毕加索的名字(该单词学生在不认识的情况下,可以观察到其开头字母大写,应该是人名或地名类的专有名词,再由全句判断得出词义),表示其众多作品之一,泛指。

3. Bats are surprisingly long lived creatures some ______a life span of around 20 years.A. havingB. hadC. haveD. to have【答案】A【解析】本题的考点为独立主格结构,判断依据是逗号前后主语不同,前者是所有蝙蝠,而后者是某些蝙蝠(主语前后不一致又没有用连词引导的从句结构,这是少见的―独立主格‖标志)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

① 5 +
② 7 ++
③ 9 +++
④ 11 ++++
⑤ 13
⑥ 15
+++++ +++++
注:发酵时间为3天,其他条件与图12相同
预测结果中,酵母菌的量为13g时酒精的产量已达到最高, 继续增加酵母菌的用量酒精产量不再增加。可能原因是高浓 度酒精抑制酵母菌活性或淀粉酶解物已被完全利用(2分)。 因而在此装置和发酵时间为3天时,酵母菌最适宜的量是13g
• 请设计实验对此因素进行探究并预测实验结果(用 表格形式呈现;用“+”表示酒精量,最高含量为 “+++++”)。 • (4)请对预测的结果进行分析,并得出结论。
实验组号 发酵时间(天) ① 3 ② 4 ③ 5 ④ 6 ⑤ 7 ⑥ 8 ⑦ 9
预测结果
+
++
+++
++++
+++++
+++++
+++++
注:酵母菌加量为5g,其他条件与图12相同
预测结果中,发酵7天酒精的产量已达到最高,大于7天酒精含量 不再增加,可能原因是高浓度酒精抑制酵母菌活性或淀粉酶解物 已被完全利用(2分) ,因而在此装置和酵母菌加量为5g时,最好 的发酵时间为7天(1分)。
补充答案a
实验组号 酵母菌的量 ( g) 预测结果
(1分)。
补充答案b
实验组号
通气时间(min) 预测结果

1 +

2 ++

3 +++

4 ++++

5 +++++

6 +++++
注:发酵时间为3天,酵母菌的量为5g,其他条件与图12相同
预测结果中,通气时间为5min时酒精的产量已达到最高,继 续增加通气时间酒精产量不再增加。可能原因是高浓度酒精 抑制酵母菌活性或者淀粉酶解物已被完全利用(2分)。因而在 此装置和酵母菌的量为5g、发酵时间为3天时,最适宜的通气 时间是5min(1分)。
• 实验过程中,通气阀②需要偶尔短时间打开,目的 是 释放CO2 (2分) 排出/除去CO2 (2分);排气、减压(1分) 。 _______________________________________ • (2)第3天,取出少量发酵液,滴加含有 _____________________ 重铬酸钾(1分) K2Cr2O7 (1分) 的浓硫酸溶液来检测酒 精。 • (3)检测后发现,尽管酵母菌菌种合适、淀粉酶解物 充足、操作正确、发酵温度和pH适宜,但酒精含量 (+)比预期低。他们展开了讨论,认为还有其他影 发酵时间(2分) 酵母菌的量、通气时间/量(2分); 响因素,如______________________________ ______________________________________ , 发酵初期通入 O2量、含O2量、 O2浓度(2分);实验时间、时间( 2分)
• (2013· 广东高考)某新能源研兴趣小组尝试用木 薯块根的淀粉制备燃料酒精。他们用酶将木薯淀 粉降解成单糖。查阅资料后,安装的酒精发酵装 置、采用的发酵条件如图。
• (1)向发酵瓶中加入5 g酵母菌开始实验。发酵初期, 通气阀①需要偶尔短时间打开,并在A通气口处 打气,以利于________________________ 酵母菌生长和繁殖(2分) ________________________________ 酵母菌的增殖、分裂、增加(2分):生长(2分) ;
相关文档
最新文档