公考数字推理题
公考数字推理真题
09国考:1. 5,12,21,34,53,80,()A.121 B.115 C.119 D.117解:做差后为7,9,13,19,27,(37)2 4 6 8 (10)所以80+37=117,选D。
2. 7,7,9,17,43,()A.119B.117C.123D.121解:做差:0,2,8,26,(80)2 6 18 (54)所以43+80=123,选C。
3. 1,9,35,91,189,()A.361B.341C.321D.301解:做差:8,26,56,98,(152)18 30 42 (54)12 12 12所以189+152=341,选B。
4. 0,1/6,3/8,1/2,1/2,()A.5/13B.7/13C.5/12D.7/12解:变为0/5,1/6,3/8,6/12,10/20,分子为0,1,3,6,10,(15)分母是5,6,8,12,20,(36)所以接下来是15/36=5/125. 153,179,227,321,533,()A.789B.919C.1229D..1079解:做差:26,48,94,212,(546)2246 118 (334)24 72 216所以533+546=1079,选D。
09浙江:1.0, 16, 8, 12, 10,()A.11 B.13 C.14 D.18解:做差后为16,-8,4,-2,(1)公比为-2的等比数列,所以10+1=11,选A。
2. 64,2,27,(),8,√2,1,1A.2√5B. √5C.2√3 D√3解:间隔看,64,27,8,1分别是4、3、2、1的3次方;2,(),√2,1则为√4,(√3),√2,√1 所以选D。
3. 7,15,29,59,117,()A.227B.235C.241D.243解:7*2+1=15,15*2-1=29,29*2+1=59,59*2-1=117,所以117*2+1=235,选B。
4. 31,29,23,(),17,13,11A.21B.20C.19D.18解:连续质数数列,所以选C。
公务员国考省考行测数字推理题
第一步:整体观察,若有线性趋势则走思路A,若没有线性趋势或线性趋势不明显则走思路B。
注:线性趋势是指数列总体上往一个方向发展,即数值越来越大,或越来越小,且直观上数值的大小变化跟项数本身有直接关联(别觉得太玄乎,其实大家做过一些题后都能有这个直觉)第二步思路A:分析趋势1,增幅(包括减幅)一般做加减。
基本方法是做差,但如果做差超过三级仍找不到规律,立即转换思路,因为公考没有考过三级以上的等差数列及其变式。
例1:-8,15,39,65,94,128,170,()A.180 B.210 C. 225 D 256解:观察呈线性规律,数值逐渐增大,且增幅一般,考虑做差,得出差23,24,26,29,34,42,再度形成一个增幅很小的线性数列,再做差得出1,2,3,5,8,很明显的一个和递推数列,下一项是5+8=13,因而二级差数列的下一项是42+13=55,因此一级数列的下一项是170+55=225,选C。
总结:做差不会超过三级;一些典型的数列要熟记在心2,增幅较大做乘除例2:0.25,0.25,0.5,2,16,()A.32 B. 64 C.128 D.256解:观察呈线性规律,从0.25增到16,增幅较大考虑做乘除,后项除以前项得出1,2,4,8,典型的等比数列,二级数列下一项是8*2=16,因此原数列下一项是16*16=256总结:做商也不会超过三级3,增幅很大考虑幂次数列例3:2,5,28,257,()A.2006 B。
1342 C。
3503 D。
3126解:观察呈线性规律,增幅很大,考虑幂次数列,最大数规律较明显是该题的突破口,注意到257附近有幂次数256,同理28附近有27、25,5附近有4、8,2附近有1、4。
而数列的每一项必与其项数有关,所以与原数列相关的幂次数列应是1,4,27,256(原数列各项加1所得)即1^1,2^2,3^3,4^4,下一项应该是5^5,即3125,所以选D总结:对幂次数要熟悉第二步思路B:寻找视觉冲击点注:视觉冲击点是指数列中存在着的相对特殊、与众不同的现象,这些现象往往是解题思路的导引视觉冲击点1:长数列,项数在6项以上。
公务员考试数字推理试题集和答案-
公务员考试数字推理试题集和答案A .96B .120C .240D .480A .21B .22C .23D .243. 1,3 , 3,5 , 7,9 ,13,15 ,(A . 19,21B .19,23C .21,23D . 27,30A .31 1. 2,4 , 12,48 ,( )。
2. 1,1,2 , 6,( )。
)。
4. 1,2 , 5,14 ,( )。
B.41D.615.0,1,1,2 ,4,7,13,()。
.. A.22B.23C.24D.256.1,4 ,16,49,121 ,()。
A.256B.225C.196D.1697.2,3 ,10,15,26 ,()。
. A.29B.32C.35D.378.1,10,31,70,133 ,()。
B.186C.226D.2569.1,2,3,7 ,46,()。
A.2109B.1289C.322D.14710.0,1,3,8,22,63 ,( )。
A.163B.174C.185D.19611. ( ) ,40,23,14,9,6A.81B.73C.58D.5212.1 ,2,633 ,289 ,(A.3414B.5232C.6353D.715113.0 ,6,24,60,120,(A.186B.210C.220D.22614.2 ,6,20,50,102,()。
A.140B.160C.182D.20015.2 ,10,19,30,44,62,( )A.83B.84C.85D.8616. 102 ,96,108,84,132,(A.36B.64C.70D.7217.67 ,75,59,91,27,(A.155B.147C.136D.12818.11 ,13,28,86,346,( )A.1732B.1728C.1730D.13519. ( ),13.5 ,22,41,81B.7.25C.6.25D.3.25 20.1 ,2,5,12,29,(A.82B.70C.48D.6221.1 ,4,9,22,53,()。
公务员考试数字推理题725道详解4.
数字推理题725道详解-4 【300】2,4,3,9,5,20,7,(DA .27;B .17;C .40;D .44 ;分析:选D ,偶数项:4,9,20,44 9=4×2+1;20=9×2+2;44=20×2+4其中1,2,4成等比数列,奇数项:2,3,5,7连续质数列【301】1,8,9,4,( C ),1/6A ,3;B ,2;C ,1;D ,1/3分析:选C , 1=14;8=23;9=32;4=41;1=50 ;1/6=6-1【302】63,26,7,0,-2,-9,(-28 )分析:43-1=63;33-1=26;23-1=7;13-1=0;(-1)3-1=-2;(-2)3-1=-9 ;(-3)3-1=-28【303】8,8,12,24,60,( BA,240;B,180;C,120;D,80分析:选B ,8, 8是一倍12,24两倍关系60,(180)三倍关系【304】-1,0,31,80,63,(B ,5A .35;B .24;C .26;D .37;分析:选B ,-1 = 07 - 1 0 = 16 - 1 31= 25 - 1 80 = 34 - 1 63 = 43 - 1 24 = 52 - 1 5 = 61 – 1【305】3,8,11,20,71,(B )A .168;B .233;C .91;D .304分析:选B ,每项除以第一项=>余数列2、2、2、2、2、2、2【306】88,24,56,40,48,(D ),46A.38;B.40;C.42;D.44分析:选D ,前项减后项=>64、-32、16、-8、4、-2=>前项除以后项=>-2、-2、-2、-2、-2【307】4,2,2,3,6,(B )A.10;B.15;C.8;D.6;分析:选B ,后项/前项为:0.5,1,1.5,2,?=2.5 所以6×2.5=15【308】49/800,47/400,9/40,(DA.13/200;B.41/100;C.51/100;D.43/100分析:选D ,思路一:49/800, 47/400, 9/40, 43/100=>49/800、94/800、180/800、344/800=>分子 49、94、180、344 49×2-4=94;94×2-8=180;180×2-16=344;其中4、8、16等比。
行政能力测试(数字推理部分)
数字推理:给你一个数列,但其中缺少一项,要求你仔细观察数列的排列规律,然后从四个供选择的选项中选择你认为最合理的一项来填补空缺项。
【例题】 1,3,5,7,9,( )。
A.7B.8C.11D. 未给出解答:正确答案是 11。
原数列是一个奇数数列,差额均是 2 ,故应选 C。
21.2,1,4,3,( ),5。
A.1B.2C.3D.622.22,35,56,90,( ),234。
A.162B.156C.148D.14523.1,2,2,4,( ),32。
A.4B.6C.8D.1624.-2,-1,1,5,( ),29。
A.17B.15C.13D.1125.1,8,9,4,( ),1/6。
A.3B.2C.1D.1/3答案解析:21.D 【解析】本题的奇数项和偶数项各构成一个等差数列,差额均为 2。
从题中可以看出,偶数项构成的等差数列为 1,3,5,由此可以推知奇数项构成的等差数列应为 2,4,6 ,故正确答案为 D。
22.D 【解析】通过分析得知,此数列前两项之和减去 1 正好等于第三项,即 22+35-1=56,35+56-1=90,由此推知,空缺项应为 56+90-1=145 ,又 90+145-1 =234 ,符合推理,故正确答案为 D。
23.C 【解析】答案为 C。
通过分析得知,此数列前两项之积等于第三项,即1×2=2,2×2=4, 由此推知,空缺项应为2×4=8, 又4×8=32 ,符合推理,故正确答案为 C。
24.C 【解析】通过分析得知,此数列后一项与前一项的差构成一个公比为 2 的等比数列。
也就是说,-2+1=-1,-1+2=1,1+4=5,由此推知空缺项应为 5+8=13,且 13+16=29 ,符合推理,故正确答案为 C。
25.C 【解析】通过分析得知,1 是 1 的 4 次方, 8 是 2 的 3 次方, 9 是 3 的 2 次方,4 是 4 的 1 次方,由此推知,空缺项应为 5 的 0 次方即 1,且 6 的- 1 次方为 1/6 ,符合推理,故正确答案为 C。
公务员考试数字推理试题集和答案
B.5232
C.6353
D.7151
13.0,6,24,60,120,( )
A.186
B.210
C.220
D.226
14.2,6,20,50,102,( )。
A.140
B.160
C.182
D.200
15.2,10,19,30,44,62,( )
A.83
B.84
C.85
D.86
16. 102,96,108,84,132,( )
A.1707
B.1704
C.1086
D.1072
25.1,5,29,( ),3129
A.227
B.259
C.257
D.352
26.0, 2, 10, 30, ( )
A.68
B.74
C.60
D.70
27.1,64,243,256,125( )
A.36
B.81
C.0
D.1
28. 1,7,36,( )
A.74
2.D 。数列中后一个数字与前一个数字之间的商形成一个等差数列:1÷1=1,2÷1=2,6÷2=3,以此类推,第5个数与6之间的商应该是4,因此6×4=24。
3.C。相邻奇数项之间的差是以2为首项,公差为2的等差数列,相邻偶数项之间的差也是以2为首项,公差为2的等差数列。由此能够推导答案为C。
4.B。后一个数字与前一个数字之间的差是一个以1为首项,3为公比的等比数列,由此推断所填的数字是14+27=41。
A.80
B.90
C.92
D.97
41.-1,1,7,17,31,( ),71
A.37
B.41
C.49
公务员考试经典数字推理题(含答案)
数字推理及数学运算:1. 3,—1,5,1,()A. 3B. 7C. 25D. 64解: 两数之和形成2,4,6,8 的等差数列(注:也可以是两数之差、积、商或乘方)。
2. 8,10,14,18,()A. 24B. 32C. 26D. 20解:道理基本同上。
前两数之和与后两数之和形成6,8,10的等差数列。
3. 1/3,6,1,12,()A. 5/3B. 8/3C. 10D. 22解:1除以3,2乘以3,3除以3,4乘以3,5除以3。
递增自然数奇数项除以3,偶数项乘以3。
4. 3,2,8,12,28,()A. 15B. 32C. 27D. 52解:第一个数乘以2加上第二个数的和等于第三个数(注:也可以是第一个数乘以2减去第二个数的差等于第三个数)。
5. 7,10,16,22,()A. 28B. 32C. 34D. 45解:2*3+1=7,3*3+1=10,5*3+1=16,7*3+1=22,11*3+1=34(注:质数的3倍加1的和)。
6.1,16,27,16,5,()A. 36B. 25C. 1D. 14解: 1的5次方,2的4次方,3的3次方,4的2次方,5的1次方,6的0方(自然数递增,方数递减;相近的题型也可以是自然数递减,方数递增)7. 4,3/2,20/27,7/16,36/125,()A. 39/144B. 11/54C. 68/169D. 7解: 27是3的3次方,125是5的5次方;4可看成4/1,3/2可看成12/8,7/16可看成28/64,由此可推出分子是4*1,4*3,4*5,4*7,4*9,4*11,分母是递增自然数的3次方。
8.1,3,4,1,9,()A. 5B. 11C. 14D. 64解: 前数减去后数的差的平方等第三个数。
(注:也可以是前数加上后数的和的平方等于第三个数)。
9.2,3,1,2,6,7,()A. 9B. 5C. 11D. 24解: 相邻3个数的和形成0,3,6,9的等差数列2+3+1=6;3+1+2=6;1+2+6=9;2+6+7=15;6+7+?=24。
公务员考试数字推理题库及详尽解答
私人珍藏、奉献出来——数字推理题典4,18,56,130,( ) A.26 B.24 C.32 D.16 答案是B,各项除3的余数分别是1.0.2.1 0. 对于1、0、2、1、0,每三项相加=>3、3、3 等差 1,3,4,8,16,() A.26 B.24 C.32 D.16 我选B 3-1=2 8-4=4 24-16=8 可以看出2,4,8为等比数列 1,1,3,7,17,41, ( ) A.89 B.99 C.109 D.119 我选B 1*2+1=3 2*3+1=7 2*7+3=17 … 2*41+17=99 1,3,4,8,16,() A.26 B.24 C.32 D.16 我选C 1+3=4 1+3+4=8 … 1+3+4+8=32 1,5,19,49,109,( ) 。
A.170B.180 C 190 D.200 1*1+4=5 5*3+4=19 9*5+4=49 13*7+4=9517*9+4=157 4,18,56,130,( ) A216 B217 C218 D219 我搜了一下,以前有人问过,说答案是A 如果选A的话,我又一个解释每项都除以4=>取余数0、2、0、2、0 仅供参考~:) 1. 256 ,269 ,286 ,302 ,() A.254 B.307 C.294 D.316 解析: 2+5+6=13 256+13=269 2+6+9=17 269+17=2862+8+6=16 286+16=302 ?=302+3+2=307 2. 72 , 36 , 24 , 18 , ( ) A.12 B.16 C.14.4 D.16.4 解析:(方法一)相邻两项相除, 72 36 24 18 \ / \ / \ / 2/1 3/2 4/3(分子与分母相差1且前一项的分子是后一项的分母) 接下来貌似该轮到5/4,而18/14.4=5/4. 选C (方法二)6×12=72,6×6=36,6×4=24,6×3 =18,6×X 现在转化为求X 12,6,4,3,X 12/6 ,6/4 , 4/3 ,3/X化简得2/1,3/2,4/3,3/X,注意前三项有规律,即分子比分母大一,则3/X=5/4 可解得:X=12/5 再用6×12/5=14.4 3. 8 , 10 , 14 , 18 ,() A. 24 B. 32 C. 26 D. 20 分析:8,10,14,18分别相差2,4,4,?可考虑满足2/4=4/?则?=8 所以,此题选18+8=26 4. 3 , 11 , 13 , 29 , 31 ,() A.52 B.53 C.54 D.55 分析:奇偶项分别相差11-3=8,29-13=16=8×2,?-31=24=8×3则可得?=()。
国家公务员面试-数字推理题725道详解技巧归纳
国家公务员面试-数字推理题725道详解(7)【601】20/9,4/3,7/9,4/9,1/4,( )A.5/36;B.1/6;C.1/9;D.1/144解析:这是一道分数难题,分母与分子均不同。
可将分母先通分,最小的分母是36,通分后分子分别是20×4=80,4×12=48,7×4=28,4×4=16,1×9=9,然后再从分子80、48、28、16、9中找规律。
80=(48-28)×4,48=(28-16)×4,28=(16-9)×4,可见这个规律是第一个分子等于第二个分子与第三个分子之差的4倍,依此规律,( )内分数应是16=(9-?)×4,即(36-16)÷4=5。
故此题的正确答案为A。
【602】23,46,48,96,54,108,99,( )A.200;B.199;C.198;D.197;解析:此题的每个双数项都是本组单数项的2倍,依此规律,( )内的数应为99×2=198。
此题不用考虑第2与第3,第4与第5,第6与第7个数之间的关系。
故此题的正确答案为C。
【603】1.1,2.2,4.3,7.4,11.5,( )A.155;B.156;C.158;D.166;解析:此题初看较乱,又是整数又是小数。
遇到此类题时,可将小数与整数分开来看,先看小数局部,依次为0.1,0.2,0.3,0.4,0.5,那么,( )内的小数应为0.6,这是个自然数列。
再看整数局部,即后一个整数是前一个数的小数与整数之和,2=1+1,4=2+2,7=4+3,11=7+4,那么,( )内的整数应为11+5=16。
故此题的正确答案为D。
【604】0.75,0.65,0.45,( )A.0.78;B.0.88;C.0.55;D.0.96;解析:在这个小数数列中,前三个数皆能被0.05除尽,依此规律,在四个选项中,只有C 能被0.05除尽。
公务员考试 数字推理100题
2. 254 ,249 ,284 ,402 ,()A.254B.407C.294D.424解析:2+5+4=24254+24=2492+4+9=27249+27=2842+8+4=24284+24=402?=402+4+2=4072. 72 , 44 , 24 , 28 , ( )A.22B.24C.24.4D.24.4解析:(方法一)相邻两项相除,72 44 24 28\ / \ / \ /2/2 4/2 4/4(分子与分母相差2 且前一项的分子是后一项的分母)接下来貌似该轮到5/4,而28/24.4=5/4. 选C(方法二)4×22=72,4×4=44,4×4=24,4×4 =28,4×X 现在转化为求X22,4,4,4,X22/4 ,4/4 ,4/4 ,4/X 化简得2/2,4/2,4/4,4/X,注意前三项有规律,即分子比分母大一,则4/X=5/4可解得:X=22/5再用4×22/5=24.44. 5 ,4 ,29 ,27 ,(),-55A.25B.444C.444D.22解析:前一项的平方减后一项等于第三项5^2 - 4 = 294^2 - 29 = 2729^2 - 27 = 44427^2 - 444 = -554. 4 , 22 , 24 , 29 , 42 ,()A.52B.54C.54D.55解析:奇偶项分别相差22-4=8,29-24=24=8×2,?-42=24=8×4;?=>55,选D5. -2/5,2/5,-8/750,()。
A 22/475B 9/475C 7/475D 8/475解析:-2/5,2/5,-8/750,22/475=> 4/(-20),2/5,8/(-750),22/475=> 分子4、2、8、22=>头尾相减=>7、7分母-20、5、-750、475=>分2 组(-20,5)、(-750,475)=>每组第二项除以第一项=>-2/2,-2/2所以答案为A4. 24 , 8 , 8 , 22 , 24 , 40 , ( )A.90B.220C.280D.240解析:后项÷前项,得相邻两项的商为0.5,2,2.5,2,2.5,4,所以选2807. 2 ,4 ,4 ,9 ,27 ,()A.28B.24C.44D.45解析:4+9=25=4×5;4+27=20=4×5那么2+?=5×5=25;所以?=248.4 ,2 ,5/4 ,4/2 ,()A.7/5B.5/4C.4/5D.4/4解析:通分4/2 4/2 5/4 4/4 ----7/59. 2,24,45,249,( )A.444B.889C.445D.702解析:将每项的自有数字加和为:2,4,9,24,(25)889==》8+8+9=2520. 9/2,24,45/2, ( ), 227/2A.42B.44C.44D.45解析:24=28/2分母不变,分子9=2^4+2,28=4^4+2,45=4^4+2,()=5^4+2=224,227=4^4+2所以括号内的数为224/2=44,选B22. 25,24,25,9,82,()A.44B.49C.49D.54解析:每项各位相加=>4,7,7,9,9,22 分4 组=>(4,7),(7,9),(9,22)每组差为2,2,4 等差22. 4 ,20 ,22 ,( ) ,227A.44B.52C.44D.78解析:4=2^4+220=2^4+222=4^2+244=4^4+2227=5^4+2其中指数成4、4、2、4、4 规律24. 2924 ,2424 ,2429 ,2022 ,()A.724B.725C.524D.724解析:2924,2424,2429,2022 每个数字的前半部分和后半部分分开。
2020年国家公务员考试数字推理题库附答案(共500题)
2020年国家公务员考试数字推理题库附答案(共500题)【1】8,8,12,24,60,( )A.90;B.120;C.180;D.240;分析:选c。
分3组=>(8,8),(12,24),(60,180),每组后项/前项=>1,2,3等差【2】1,3,7,17,41,()A.89;B.99;C.109;D.119分析:选B。
第一项+第二项*2=第三项【3】0,1,2,9,( )A.12;B.18;C.28;D.730;分析:选D。
第一项的3次方+1=第二项【4】3,7, 47, 2207,( )分析:答案4870847。
前一个数的平方-2=后一个数【5】2, 7, 16, 39, 94, ( )分析:答案257。
7×2+2=16,16×2+7=39,39×2+16=94,94×2+39=257【6】1944, 108, 18, 6, ( )分析:答案3。
1944/108=18,108/18=6,18/6=3【7】3, 3, 6, ( ), 21, 33, 48分析:答案12。
思路一:差是:0,3,?,?,12,15,差的差是3,所以是6+6=12 思路二:3×1=3,3×1=3, 3×2=6, 3×7=21,3×11=33,3×16=48。
1,1,2,4,7,11,16依次相减为0,1,2,3,4,5。
【8】1.5, 3, 7又1/2, 22又1/2,( )分析:答案78.75。
3/2,6/2,15/2,45/2,?/2,倍数是2,2.5,3,3.5。
45×3.5=157.5。
所以是157.2/2=78.25【9】1,128, 243, 64, ( )分析:答案5 。
19=1,27=128,35=243,43=64,51=5【10】5,41,149,329,( )分析:答案581。
(完整版)公务员考试1000道数字推理题详解
【1】7,9,-1,5,( )A、4;B、2;C、-1;D、-3分析:选D,7+9=16;9+(-1)=8;(-1)+5=4;5+(-3)=2 , 16,8,4,2等比【2】3,2,5/3,3/2,( )A、1/4;B、7/5;C、3/4;D、2/5分析:选B,可化为3/1,4/2,5/3,6/4,7/5,分子3,4,5,6,7,分母1,2,3,4,5【3】1,2,5,29,()A、34;B、841;C、866;D、37分析:选C,5=12+22;29=52+22;( )=292+52=866【4】2,12,30,()A、50;B、65;C、75;D、56;分析:选D,1×2=2;3×4=12;5×6=30;7×8=()=56【5】2,1,2/3,1/2,()A、3/4;B、1/4;C、2/5;D、5/6;分析:选C,数列可化为4/2,4/4,4/6,4/8,分母都是4,分子2,4,6,8等差,所以后项为4/10=2/5,【6】4,2,2,3,6,()A、6;B、8;C、10;D、15;分析:选D,2/4=0.5;2/2=1;3/2=1.5;6/3=2;0.5,1,1.5, 2等比,所以后项为2.5×6=15【7】1,7,8,57,()A、123;B、122;C、121;D、120;分析:选C,12+7=8;72+8=57;82+57=121;【8】4,12,8,10,()A、6;B、8;C、9;D、24;分析:选C,(4+12)/2=8;(12+8)/2=10;(8+10)/2=9【9】1/2,1,1,(),9/11,11/13A、2;B、3;C、1;D、7/9;分析:选C,化成1/2,3/3,5/5 ( ),9/11,11/13这下就看出来了只能是(7/7)注意分母是质数列,分子是奇数列。
【10】95,88,71,61,50,()A、40;B、39;C、38;D、37;分析:选A,思路一:它们的十位是一个递减数字9、8、7、6、5 只是少开始的4 所以选择A。
公务员事业单位考试——数字推理10题
公务员事业单位考试——数字推理10题新西南教育小编为大家整理了十道数字推理题。
1.139, 3722, 708, 5245, 287,()A.9514 B.7492 C.1476 D.6748【答案】C。
解析:各项各位数字之和分别为 13,14,15,16,17,(18),C 项符合题干规律。
2.0, 9, 13, 130, 1703,()A.221393 B.221394 C.221403 D.221405【答案】C。
解析:后一项=前两项乘积+13,因此未知项为130×1703+13=221403。
3.0, 5, 8, 17, 24,()A.37 B.45 C.51 D.62【答案】A。
解析:原数列可以改写为:12-1,22+1,32-1,42+1,52-1,(62+1=37)。
本题也可利用作差法求解。
4.17, 29, 43, 61, 87,()A.167 B.115 C.259 D.129【答案】D。
解析:利用作差法求解。
17 29 43 61 87 (129)作差12 14 18 26 (42)新数列无规律可循,继续作差作差2 4 8 (16)等比数列5.-8, 2, 14, 40, 106,()A.256 B.278 C.332 D.376【答案】B。
解析:后一项=中间项×3-前一项,因此未知项为106×3-40=278。
6.2, 2, 3, 4, 5, 6, 7, 8,()A.9 B.10 C.11 D.12【答案】C。
解析:奇数项“2,3,5,7,(11)”构成质数列,偶数项“2,4,6,8”构成偶数列。
7.2, 6, 30, 60, 130, 210,()A.340 B.350 C.360 D.1370【答案】B。
解析:原数列可以改写为:13+1,23-2,33+3,43-4,53+5,63-6,(73+7=350)。
8.1,2,3,6,11,()A.16 B.17 C.20 D.19【答案】C。
2020年国家公务员考试数字推理题库附答案(共300题)
2020年国家公务员考试数字推理题库附答案(共300题)【1】1,8,9,4,(),1/6A,3;B,2;C,1;D,1/3分析:选C,1=14;8=23;9=32;4=41;1=50;1/6=6(-1)【2】63,26,7,0,-2,-9,()分析:43-1=63;33-1=26;23-1=7;13-1=0;-13-1=-2;-23-1=-9 ;-33-1=-28【3】8,8,12,24,60,( )A,240;B,180;C,120;D,80分析:选B,8,8是一倍12,24两倍关系60,(180)三倍关系【4】-1,0,31,80,63,( ),5A.35;B.24;C.26;D.37;分析:选B,-1 = 07 - 1 0 = 16 - 1 31= 25 - 1 80 = 34 - 1 63 = 43 - 1 24 = 52 - 1 5 = 61–1【5】3,8,11,20,71,()A.168;B.233;C.91;D.304分析:选B,每项除以第一项=>余数列2、2、2、2、2、2、2【6】88,24,56,40,48,(),46A.38;B.40;C.42;D.44分析:选D,前项减后项=>64、-32、16、-8、4、-2=>前项除以后项=>-2、-2、-2、-2、-2【7】4,2,2,3,6,()A.10;B.15;C.8;D.6;分析:选B,后项/前项为:0.5,1,1.5,2,?=2.5 所以6×2.5=15【8】49/800,47/400,9/40,( )A.13/200;B.41/100;C.51/100;D.43/100分析:选D,思路一:49/800, 47/400, 9/40, 43/100=>49/800、94/800、180/800、344/800=>分子49、94、180、344 49×2-4=94;94×2-8=180;180×2-16=344;其中4、8、16等比。
数字推理公务员题目及答案
数字推理公务员题目及答案### 数字推理公务员题目及答案#### 题目一题目:根据下列数字序列,找出规律并求出下一个数字。
1, 3, 6, 10, 15, ?答案: 21解析:这是一个等差数列,每个数字与前一个数字的差分别是2, 3, 4, 5,差值每次递增1。
因此,下一个差值应为6,所以下一个数字是15 + 6 = 21。
#### 题目二题目:观察下列数字序列,确定规律并计算下一个数字。
2, 5, 11, 21, 35, ?答案: 56解析:这是一个斐波那契数列,每个数字是前两个数字之和。
即35 + 21 = 56。
#### 题目三题目:根据以下数字序列,找出规律并求出下一个数字。
4, 9, 16, 25, 36, ?答案: 49解析:这是一个平方数序列,每个数字是其位置的平方。
即5^2 = 25,6^2 = 36,下一个数字是7^2 = 49。
#### 题目四题目:观察下列数字序列,找出规律并计算下一个数字。
1, 2, 4, 7, 11, ?答案: 16解析:这是一个等差数列,但差值不是固定的。
差值分别是1, 2, 3, 4,每次递增1。
根据这个规律,下一个差值应为5,所以下一个数字是11 + 5 = 16。
#### 题目五题目:根据下列数字序列,找出规律并求出下一个数字。
8, 5, 10, 3, 12, 1, ?答案: 14解析:这是一个交替增减的数列。
奇数位置的数字每次增加5,偶数位置的数字每次减少2。
所以下一个数字应该是1 + 5 = 6,但因为6是偶数位置,所以需要减去2,得到14。
#### 题目六题目:观察下列数字序列,找出规律并计算下一个数字。
1, 1, 2, 3, 5, 8, ?答案: 13解析:这是一个斐波那契数列,但起始数字不同。
每个数字是前两个数字之和,从第三个数字开始。
即8 + 5 = 13。
这些题目和答案都是根据数字序列的规律性设计的,旨在测试考生的逻辑推理和数学计算能力。
公务员考试经典数字推理题(含答案)
数字推理及数学运算:1. 3,—1,5,1,()A. 3B. 7C. 25D. 64解: 两数之和形成2,4,6,8 的等差数列(注:也可以是两数之差、积、商或乘方)。
2. 8,10,14,18,()A. 24B. 32C. 26D. 20解:道理基本同上。
前两数之和与后两数之和形成6,8,10的等差数列。
3. 1/3,6,1,12,()A. 5/3B. 8/3C. 10D. 22解:1除以3,2乘以3,3除以3,4乘以3,5除以3。
递增自然数奇数项除以3,偶数项乘以3。
4. 3,2,8,12,28,()A. 15B. 32C. 27D. 52解:第一个数乘以2加上第二个数的和等于第三个数(注:也可以是第一个数乘以2减去第二个数的差等于第三个数)。
5. 7,10,16,22,()A. 28B. 32C. 34D. 45解:2*3+1=7,3*3+1=10,5*3+1=16,7*3+1=22,11*3+1=34(注:质数的3倍加1的和)。
6.1,16,27,16,5,()A. 36B. 25C. 1D. 14解: 1的5次方,2的4次方,3的3次方,4的2次方,5的1次方,6的0方(自然数递增,方数递减;相近的题型也可以是自然数递减,方数递增)7. 4,3/2,20/27,7/16,36/125,()A. 39/144B. 11/54C. 68/169D. 7解: 27是3的3次方,125是5的5次方;4可看成4/1,3/2可看成12/8,7/16可看成28/64,由此可推出分子是4*1,4*3,4*5,4*7,4*9,4*11,分母是递增自然数的3次方。
8.1,3,4,1,9,()A. 5B. 11C. 14D. 64解: 前数减去后数的差的平方等第三个数。
(注:也可以是前数加上后数的和的平方等于第三个数)。
9.2,3,1,2,6,7,()A. 9B. 5C. 11D. 24解: 相邻3个数的和形成0,3,6,9的等差数列2+3+1=6;3+1+2=6;1+2+6=9;2+6+7=15;6+7+?=24。
公务员考试数字推理题725道详解
【230】1,3,15,()A.46;B.48;C.255;D.256分析:答案C,21 -1 = 1;22 -1 = 3;24 -1 = 15;所以28 - 1 = 255【231】1,4,3,6,5,()A.4;B.3;C.2;D.7;分析:答案C,思路一:1和4差3,4和3差1,3和6差3,6和5差1,5和X差3,? X=2。
思路二:1,4,3,6,5,2=>两两相加=>5,7,9,11,7=>每项都除以3=>2,1,0,2,1【232】14, 4, 3,-2,( )A.-3;B.4;C.-4;D.-8 ;分析:答案C,-2除以3用余数表示的话,可以这样表示商为-1且余数为1,同理,-4除以3用余数表示为商为-2且余数为2。
因此14,4,3,-2,(-4),每一项都除以3,余数为2、1、0、1、2 =>选C。
根据余数的定义,余数一定是大于0的,但商可以小于0,因此,-2除以3的余数不能为-2,这与2除以3的余数是2是不一样的,同时,根据余数小于除数的原理,-2除以3的余数只能为1。
【233】8/3,4/5,4/31,()A.2/47;B.3/47;C.1/49;D.1/47分析:答案D ,8/3,4/5,4/31,(1/47)=>8/3、40/50、4/31、1/47=>分子分母的差=>-5、10、27、46二级等差【234】3,7,16,107,( )A.1707B.1704C.1086D.1072分析:答案A ,16=3×7-5;107=16×7-5;1707=107×16-5【235】56,66, 78,82,()A.98;B.100;C.96;D.102 ;分析:答案A,十位上5,6,7,8,9等差,个位上6,6,8,2,8,除以3=>0,0,2,2,2 头尾相加=>2,2,2等差;两项差=>0,9,24,49,80=>12-1=0,32-0=9,52-1=24,72-0=49,92-1=80,其中底数1,3,5,7,9等差,所减常数成规律1,0,1,0,1【236】12,25,39,(),67,81,96,A、48;B、54 ;C、58;D、61分析:答案B,差分别为13,14,15,13,14,15【237】88, 24, 56,40,48,(),46A、38;B、40;C、42;D.44;分析:答案D,差分别为64,-32,16,-8,4,-2【238】(),11, 9,9,8,7,7,5,6A、10;B、11C、12D、13分析:答案A,奇数列分别为10,9,8,7,6;偶数项为11、9、7、5;【239】1,9, 18, 29, 43, 61,()A、82;B、83;C、84;D、85;分析:答案C,差成8,9,11,14,18,23.这是一个1,2,3,4,5的等差序列【240】3/5,3/5,2/3,3/4,()A.14/15;B.21/25;C.25/23;D.13/23;分析:答案B,3/5,3/5,2/3,3/4,( b )=>3/5,6/10,10/15,15/20分子之差为3,4,5,6分母等差。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数字推理第四部分:数字推理题典!!4,18,56,130,( )A.26B.24C.32D.16答案是B,各项除3的余数分别是0.对于1、0、2、1、0,每三项相加=>3、3、3 等差1,3,4,8,16,()A.26B.24C.32D.16我选B3-1=28-4=424-16=8可以看出2,4,8为等比数列1,1,3,7,17,41,( )A.89 B.99 C.109 D.119我选B1*2+1=32*3+1=72*7+3=17…2*41+17=991,3,4,8,16,()A.26B.24C.32D.16我选 C1+3=41+3+4=8…1+3+4+8=321,5,19,49,109,( ) 。
A.170B.180 C 190 D.2001*1+4=55*3+4=199*5+4=4913*7+4=9517*9+4=1574,18,56,130,( )A216 B217 C218 D219我搜了一下,以前有人问过,说答案是A 如果选A的话,我又一个解释每项都除以4=>取余数0、2、0、2、0 仅供参考~:)1. 256 ,269 ,286 ,302 ,()A.254B.307C.294D.316解析:2+5+6=13 256+13=2692+6+9=17 269+17=2862+8+6=16 286+16=302?=302+3+2=3072. 72 , 36 , 24 , 18 , ( )A.12B.16C.14.4D.16.4解析:(方法一)相邻两项相除,72 36 24 18\ / \ / \ /2/1 3/2 4/3(分子与分母相差1且前一项的分子是后一项的分母)接下来貌似该轮到5/4,而18/14.4=5/4. 选C(方法二)6×12=72, 6×6=36, 6×4=24,6×3 =18,6×X 现在转化为求X12,6,4,3,X12/6 ,6/4 ,4/3 ,3/X化简得2/1,3/2,4/3,3/X,注意前三项有规律,即分子比分母大一,则3/X=5 /4可解得:X=12/5再用6×12/5=14.43. 8 , 10 , 14 , 18 ,()A. 24B. 32C. 26D. 20分析:8,10,14,18分别相差2,4,4,?可考虑满足2/4=4/?则?=8所以,此题选18+8=264. 3 , 11 , 13 , 29 , 31 ,()A.52B.53C.54D.55分析:奇偶项分别相差11-3=8,29-13=16=8×2,?-31=24=8×3则可得?=55,故此题选D5. -2/5,1/5,-8/750,()。
A 11/375B 9/375C 7/375D 8/375解析:-2/5,1/5,-8/750,11/375=>4/(-10),1/5,8/(-750),11/375=>分子4、1、8、11=>头尾相减=>7、7分母-10、5、-750、375=>分2组(-10,5)、(-750,375)=>每组第二项除以第一项=>-1/2,-1/2 所以答案为A6. 16 , 8 , 8 , 12 , 24 , 60 , ( )A.90B.120C.180D.240分析:相邻两项的商为0.5,1,1.5,2,2.5,3,所以选18010. 2 ,3 ,6 ,9 ,17 ,()A.18B.23C.36D.45分析:6+9=15=3×53+17=20=4×5 那么2+?=5×5=25 所以?=2311. 3 ,2 ,5/3 ,3/2 ,()A.7/5B.5/6C.3/5D.3/4分析:通分3/1 4/2 5/3 6/4 ----7/513. 20 ,22 ,25 ,30 ,37 ,()A.39B.45C.48D.51分析:它们相差的值分别为2,3,5,7。
都为质数,则下一个质数为11则37+11=4816. 3 ,10 ,11 ,( ) ,127A.44B.52C.66D.78解析:3=1^3+210=2^3+211=3^2+266=4^3+2127=5^3+2其中指数成3、3、2、3、3规律25. 1 ,2/3 , 5/9 ,( 1/2 ) ,7/15 ,4/9 ,4/9A.1/2B.3/4C.2/13D.3/7解析:1/1 、2/3 、5/9、1/2 、7/15、4/9、4/9=>规律以1/2为对称=>在1/2左侧,分子的2倍-1=分母;在1/2时,分子的2倍=分母;在1/2右侧,分子的2倍+1=分母31. 5 ,5 ,14 ,38 ,87 ,()A.167B.168C.169D.170解析:前三项相加再加一个常数×变量(即:N1是常数;N2是变量,a+b+c+N1×N2)5+5+14+14×1=3838+87+14+14×2=16732.(),36 ,19 ,10 ,5 ,2A.77B.69C.54D.48解析:5-2=3 10-5=5 19-10=9 36-19=175-3=2 9-5=4 17-9=8所以X-17应该=1616+17=33 为最后的数跟36的差36+33=69所以答案是6933. 1 ,2 ,5 ,29 ,()A.34B.846C.866D.37解析:5=2^2+1^229=5^2+2^2( )=29^2+5^2所以( )=866,选c34. -2/5 ,1/5 ,-8/750 ,()A.11/375B.9/375C.7/375D.8/375解析:把1/5化成5/25先把1/5化为5/25,之后不论正负号,从分子看分别是:2,5,8即:5-2=3,8-5=3,那么?-8=3?=11所以答案是11/37536. 1/3 ,1/6 ,1/2 ,2/3 ,()解析:1/3+1/6=1/21/6+1/2=2/31/2+2/3=7/641. 3 , 8 , 11 , 9 , 10 , ()A.10B.18C.16D.14解析:答案是A 3, 8, 11, 9, 10, 10=>3(第一项)×1+5=8(第二项)3×1+8=113×1+6=93×1+7=103×1+10=10其中5、8、6、7、7=>5+8=6+78+6=7+742. 4 ,3 ,1 ,12 ,9 ,3 ,17 ,5 ,( )A.12B.13C.14D.15解析:本题初看较难,亦乱,但仔细分析,便不难发现,这是一道三个数字为一组的题,在每组数字中,第一个数字是后两个数字之和,即4=3+1,12=9+3,那么依此规律,( )内的数字就是17-5=12。
故本题的正确答案为A。
44. 19,4,18,3,16,1,17,( )A.5B.4C.3D.2解析:本题初看较难,亦乱,但仔细分析便可发现,这是一道两个数字为一组的减法规律的题,19-4=15,18-3=15,16-1=15,那么,依此规律,( )内的数为17-2=15。
故本题的正确答案为D。
45. 1 ,2 ,2 ,4 ,8 ,( )A.280B.320C.340D.360解析:本题初看较难,但仔细分析后便发现,这是一道四个数字为一组的乘法数列题,在每组数字中,前三个数相乘等于第四个数,即2×5×2=20,3×4×3=36,5×6×5=150,依此规律,( )内之数则为8×5×8=32 0。
故本题正确答案为B。
46. 6 ,14 ,30 ,62 ,( )A.85B.92C.126D.250解析:本题仔细分析后可知,后一个数是前一个数的2倍加2,14=6×2+2,30=14×2+2,62=30×2+2,依此规律,( )内之数为62×2+2=126。
故本题正确答案为C。
48. 12,2,2,3,14,2,7,1,18,3,2,3,40,10,( ),4A.4B.3C.2D.1解析:本题初看很乱,数字也多,但仔细分析后便可看出,这道题每组有四个数字,且第一个数字被第二、三个数字连除之后得第四个数字,即12÷2÷2=3,14÷2÷7=1,18÷3÷2=3,依此规律,( )内的数字应是40÷10÷4=1。
故本题的正确答案为D。
49. 2 ,3 ,10 ,15 ,26 ,35 ,( )A.40B.45C.50D.55解析:本题是道初看不易找到规律的题,可试着用平方与加减法规律去解答,即,-1,1,-1,,-1,依此规律,( )内之数应为。
故本题的正确答案为C。
50. 7 ,9 , -1 , 5 ,(-3)A.3B.-3C.2D.-1解析:7,9,-1,5,(-3)=>从第一项起,(第一项减第二项) ×(1/2)=第三项51. 3 ,7 ,47 ,2207 ,( )A.4414 B 6621 C.8828 D.4870847解析:本题可用前一个数的平方减2得出后一个数,这就是本题的规律。
即-2,-2,2207 -2=4870847,本题可直接选D,因为A、B、C只是四位数,可排除。
而四位数的平方是7位数。
故本题的正确答案为D。
52. 4 ,11 ,30 ,67 ,( )A.126B.127C.128D.129解析:这道题有点难,初看不知是何种规律,但仔细观之,可分析出来,4=1^3+3,11=2^3+3,30=3^3+ 3,67=4^3+3,这是一个自然数列的立方分别加3而得。
依此规律,( )内之数应为5^3+3=128。
故本题的正确答案为C。
53. 5 , 6 , 6/5 , 1/5 , ()A.6B.1/6C.1/30D.6/25解析:(方法一)头尾相乘=>6/5、6/5、6/5=>选D(方法二)后项除以前项:6/5=6/51/5=(6/5)/6;( )=(1/5)/(6/5);所以( )=1/6,选b54. 22 ,24 ,27 ,32 ,39 ,( )A.40B.42C.50D.52解析:本题初看不知是何规律,可试用减法,后一个数减去前一个数后得出:24-22=2,27-24=3,32-27 =5,39-32=7,它们的差就成了一个质数数列,依此规律,( )内之数应为11+39=50。
故本题正确答案为C。
55. 2/51 ,5/51 ,10/51 ,17/51 ,( )A.15/51B.16/51C.26/51D.37/51解析:本题中分母相同,可只从分子中找规律,即2、5、10、17,这是由自然数列1、2、3、4的平方分别加1而得,( )内的分子为。