指数函数的教案

合集下载

高中数学教材:指数函数教案

高中数学教材:指数函数教案

高中数学教材:指数函数教案1. 教学目标1.1 知识与技能1. 理解指数函数的定义和性质;2. 能够熟练运用指数函数模型解决实际问题;3. 掌握指数函数的图像和特征。

1.2 过程与方法1. 通过探究活动,培养学生的观察、分析和解决问题的能力;2. 利用信息技术,提高学生对指数函数图像的理解和应用能力。

1.3 情感态度与价值观1. 培养学生的团队合作精神,激发学生对数学的兴趣;2. 引导学生认识数学在实际生活中的重要性,培养学生的数学应用意识。

2. 教学内容2.1 指数函数的定义与性质2.1.1 定义指数函数是一种形式的函数,可以表示为 `f(x) = a^x`,其中`a` 是一个正实数,`x` 是自变量。

2.1.2 性质1. 当 `a > 1` 时,函数随着 `x` 的增加而增加;2. 当 `0 < a < 1` 时,函数随着 `x` 的增加而减少;3. 当 `x` 趋向于负无穷时,函数趋向于 `0`;4. 当 `x` 趋向于正无穷时,函数趋向于`+∞`;5. 指数函数的图像是一条经过原点的曲线,且在 `x` 轴的正半轴和负半轴上分别单调递增和递减。

2.2 指数函数的应用1. 模型构建:利用指数函数模型解决实际问题,如人口增长、放射性衰变等;2. 函数图像:通过绘制指数函数的图像,分析函数的性质和特点;3. 实际应用:指数函数在金融、物理、生物学等领域的应用。

3. 教学过程3.1 导入通过一个实际问题引入指数函数的概念,如“某城市的人口每年以 5% 的增长率增长,问 10 年后该城市的人口数量”。

3.2 探究活动1. 分组讨论:让学生分组探讨指数函数的性质,如单调性、极限等;2. 成果展示:每组汇报探究成果,其他组进行评价和补充;3. 总结:教师引导学生总结指数函数的性质。

3.3 应用实践1. 案例分析:分析实际问题,构建指数函数模型;2. 图像绘制:利用信息技术,绘制指数函数的图像;3. 问题解决:让学生尝试解决实际问题,如“投资理财、放射性物质衰变等”。

精讲高中数学:指数函数教案

精讲高中数学:指数函数教案

精讲高中数学:指数函数教案一、教学目标1. 了解指数函数的定义和性质;2. 掌握指数函数的基本运算法则;3. 能够解决涉及指数函数的简单问题;4. 培养学生的逻辑思维和推理能力。

二、教学内容1. 指数函数的定义:介绍指数函数的基本概念和符号表示;2. 指数函数的性质:讲解指数函数的增减性、奇偶性和周期性;3. 指数函数的图像:通过绘制指数函数的图像来观察其特点;4. 指数函数的运算法则:介绍指数函数的乘法法则、除法法则和幂法则;5. 指数函数的应用:通过实际问题来应用指数函数的知识。

三、教学过程1. 导入新课:通过引入一个实际问题,让学生体会指数函数的重要性和应用价值;2. 指数函数的定义和性质:讲解指数函数的定义和基本性质,引导学生进行思考和讨论;3. 指数函数的图像:通过绘制指数函数的图像,让学生观察其特点,加深对指数函数的理解;4. 指数函数的运算法则:介绍指数函数的运算法则并通过练题进行巩固;5. 指数函数的应用:通过解决实际问题,让学生应用指数函数的知识,并培养他们的解决问题的能力;6. 总结与拓展:对本节课的内容进行总结,并提供一些拓展练题供有兴趣的学生进一步。

四、教学资源1. 教科书:提供相关的知识点和例题;2. 幻灯片:用于展示图像和重点知识点;3. 黑板和白板:用于讲解和解题过程;4. 计算器:辅助计算指数函数的值。

五、教学评估1. 课堂练:通过课堂练题,检查学生对指数函数的理解程度;2. 个人作业:布置一些个人作业,让学生巩固和拓展所学内容;3. 小组讨论:组织小组讨论,让学生互相交流和分享解题方法。

六、教学反思本节课通过引入实际问题和图像展示的方式,激发了学生的兴趣,同时通过练题和应用问题的解决,培养了学生的解决问题的能力。

但在教学过程中,发现部分学生对指数函数的概念理解还不够深入,需要更多的实例和练来帮助他们巩固。

因此,在今后的教学中,会增加更多的练和实例,以提高学生的效果。

高中数学指数函数教案

高中数学指数函数教案

高中数学指数函数教案教学目标:1. 了解指数函数的定义及性质;2. 掌握指数函数的基本运算规则;3. 能够解决一些简单的指数函数相关问题。

教学重点:1. 指数函数的定义和性质;2. 指数函数的基本运算规则。

教学难点:1. 指数函数的应用问题解决。

教学准备:1. 黑板、彩色粉笔、擦拭布;2. 讲义、习题册。

教学过程:一、导入(5分钟)引导学生回顾乘方的概念,并提出乘方中底数为正数而指数为正整数时的运算规则。

二、学习指数函数(25分钟)1. 提出指数函数的定义,并解释指数函数的性质。

2. 讲解指数函数的图像、定义域和值域。

3. 引导学生观察指数函数的性质,讨论指数函数的增减性和奇偶性。

三、探索指数函数的基本运算规则(20分钟)1. 讲解指数幂的乘法和除法规则。

2. 给学生一些练习题,让他们熟练掌握指数函数的基本运算规则。

四、应用(15分钟)1. 联系实际问题,让学生解决一些与指数函数相关的应用问题。

2. 带领学生一起讨论解题思路和方法。

五、总结(5分钟)1. 总结本节课学习的内容:指数函数的基本性质和运算规则。

2. 帮助学生巩固所学,并提出下节课的预习内容。

教学延伸:1. 引导学生自主探索更复杂的指数函数问题,并尝试解决。

2. 鼓励学生进行更多的练习,加深对指数函数的理解和掌握。

教学反思:1. 对课堂教学过程中学生的学习情况和思维习惯进行及时的观察和分析,及时调整教学方法和策略。

2. 鼓励学生发表自己的观点,促进课堂气氛的活跃和互动。

指数函数图像与性质教学设计精选10篇

指数函数图像与性质教学设计精选10篇

指数函数图像与性质教学设计精选10篇指数函数及其性质教学设计解读篇一《2.1.2 指数函数及其性质(2 》教学设计【学习目标】1.知识与技能①.熟练掌握指数函数概念、图象、性质。

②.掌握指数函数的性质及应用。

③.理解指数函数的简单应用模型, 认识数学与现实生活及其他学科的联系。

2.情感、态度、价值观①让学生了解数学来自生活,数学又服务于生活的哲理。

②培养学生观察问题,分析问题的能力。

③体会具体到一般数学讨论方式及数形结合的思想;3.过程与方法让学生通过观察函数图象,进而研究指数型函数的性质, 主要通过小组讨论、小组展示、及时评价完成整个导学过程【学习重点】熟练掌握指数函数的的概念,图象和性质及指数型增长模型。

【学习难点】用数形结合的方法从具体到一般地探索、指数型函数的图象,性质。

【导学过程】教学内容师生互动设计意图互查每组两名同学互查识记内容教师提问记忆方法,学生回答,其他同学可以相互借鉴。

复习指数函数的图象及性质,为本节课中的内容储备知识基础。

展系吗?→请用一句话概括下图是指数函数2x y =, 3xy =, 0.3x y =, 0.5x y =的图象,请指出它们各自对应的图象。

教师随时点评,引导,欣赏,鼓励。

每组选派一名代表课堂上展示交流成果,组内同学补充。

其他同学可让学生从图象直观的理解指数函数,从变化中找到不变的规律,提高学生的总结归纳能示交流结论:针对展示交流成果提出问题,进一步加深理解。

力教学内容师生互动设计意图展示交流探究二:指数形式的函数定义域、值域:求下列函数的定义域、值域:(121 x y =+,(2y =,(3 1 4 2x y-=.首先提问给出的三个函数是否是指数函数,加深学生对指数函数概念的理解。

学生小组讨论,交流。

每组选派一名代表课堂上展示交流成果,组内同学补充。

其他同学可针对展示交流成果提出问题,进一步加深理解。

所给函数虽然不是指数函数,但是由指数函数得到的复合函数,其性质与指数函数密切相关,通过训练能够培养学生的创造性思维能力。

《指数函数》教案及说明

《指数函数》教案及说明

《指数函数》教案及说明教学目标:1.了解指数函数的概念及特点。

2.掌握指数函数的基本性质和运算法则。

3.能够应用指数函数解决实际问题。

教学准备:1.教材:《数学》教科书指数函数相关知识。

2.教具:黑板、彩色粉笔、教案、课件。

3.学具:纸、笔、计算器。

教学内容:一、指数函数的概念1.引入-贴近生活:指数函数在生活中的应用,如化学反应速率、人口增长、传染病传播等。

2.定义-初步认识:引导学生理解指数函数的定义,即$f(x)=a^x$,其中$a$为底数,$x$为指数。

3.图像-形象认识:通过绘制不同底数的指数函数图像,让学生感受指数函数的特点。

二、指数函数的性质1.增减性质-探索规律:让学生探究当底数大于1或小于1时指数函数的增减规律。

2.奇偶性质-分析对称:引导学生分析指数函数的奇偶性质及对称性。

3.单调性-推理结论:通过图像和实例讨论指数函数的单调性。

三、指数函数的运算1.指数运算-灵活应用:介绍指数运算的基本法则,如底数相同指数相加、乘法规则等。

2.对数运算-运用技巧:引导学生掌握对数运算与指数运算的关系,解决相关问题。

四、应用题训练1.实际问题-连接生活:设计一些实际问题让学生应用指数函数解答,如投资增长、疾病传播等。

2.综合题目-巩固训练:布置一些综合性的题目,检验学生对指数函数的理解和运用能力。

教学过程:一、引入1.通过引入生活中的例子,引起学生对指数函数的兴趣。

2.提出问题:你知道指数函数是什么吗?它有什么特点?二、概念讲解1.讲解指数函数的定义及表达形式。

2.通过示例让学生理解指数函数的意义。

三、性质探究1.讨论指数函数的增减性、奇偶性和单调性。

2.通过实例和图像展示不同性质的指数函数。

四、运算规律1.教授指数运算基本规则,让学生掌握指数函数的运算方法。

2.引导学生理解对数运算与指数运算之间的关系。

五、应用题训练1.分组讨论实际问题,并给出解法。

2.布置应用题训练,让学生巩固所学内容。

《指数函数》教案

《指数函数》教案

【课题】4.2指数函数【教学目标】知识目标:⑴理解指数函数的图像及性质;⑵了解指数模型,了解指数函数的应用.能力目标:⑴会画出指数函数的简图;⑵会判断指数函数的单调性;⑶了解指数函数在生活生产中的部分应用,从而培养学生分析与解决问题能力.【教学重点】⑴指数函数的概念、图像和性质;⑵指数函数的应用实例.【教学难点】指数函数的应用实例.【教学设计】⑴以实例引入知识,提升学生的求知欲;⑵“描点法”作图与软件的应用相结合,有助于观察得到指数函数的性质;⑶知识的巩固与练习,培养学生的思维能力;⑷实际问题的解决,培养学生分析与解决问题的能力;⑸以小组的形式进行讨论、探究、交流,培养团队精神.【教学备品】教学课件.【课时安排】2课时.(90分钟)【教学过程】过 程行为 行为 意图 间别用光滑的曲线依次联结各点,得到函数y =2x 和y =1()2x 的图像,如上图所示.归纳观察函数图像发现:1.函数2x y =和y =1()2x 的图像都在x 轴的上方,向上无限伸展,向下无限接近于x 轴;2.函数图像都经过(0,1)点;3.函数y =x2的图像自左至右呈上升趋势;函数y =1()2x 的图像自左至右呈下降趋势. 推广利用软件可以作出a 取不同值时的指数函数的图像. 展示 引导 分析 说明观察 体会 理解计算 部分 可以 由学 生独 立完 成 引导学生仔细观察函数图象的特点数形结合25*动脑思考 明确新知 一般地,指数函数xy a =()01a a >≠且具有下列性质:(1) 函数的定义域是(),-∞+∞.值域为(0,)+∞;(2) 函数图像经过点(0,1),即当0x =时,函数值1y =; (3) 当>1a 时,函数在(),-∞+∞内是增函数;当0<<1a 时,函数在(),-∞+∞内是减函数.归纳强调体会 记忆结合 图形 由学 生自 我归 纳强 调关 键点30*巩固知识 典型例题通过x.10)年该市国内生产总值为(亿元).年该市国民生产总值为(亿元).。

《指数函数的概念》教案

《指数函数的概念》教案

《指数函数的概念》教案一、教学目标:1. 理解指数函数的定义和基本性质。

2. 学会运用指数函数解决实际问题。

3. 培养学生的数学思维能力和解决问题的能力。

二、教学内容:1. 指数函数的定义与表达式2. 指数函数的性质3. 指数函数的应用三、教学重点与难点:1. 重点:指数函数的定义、性质及应用。

2. 难点:指数函数在实际问题中的应用。

四、教学方法:1. 采用问题驱动法,引导学生主动探究指数函数的定义和性质。

2. 用实例讲解指数函数在实际问题中的应用,提高学生的学习兴趣。

3. 利用数形结合法,帮助学生直观地理解指数函数的性质。

五、教学过程:1. 引入:通过生活中的实例,如细胞分裂、放射性衰变等,引导学生思考指数增长的特点。

2. 讲解:介绍指数函数的定义、表达式,并通过PPT展示指数函数的图像,让学生直观地感受指数函数的性质。

3. 实践:让学生分组讨论,每组选取一个实际问题,运用指数函数进行解决,并分享解题过程和答案。

4. 总结:对本节课的内容进行总结,强调指数函数的性质和应用。

5. 作业:布置相关练习题,巩固所学内容。

教案仅供参考,具体实施时可根据实际情况进行调整。

六、教学评价:1. 评价指标:学生对指数函数定义的理解、指数函数性质的掌握以及实际问题中的应用能力。

2. 评价方法:课堂练习、小组讨论、课后作业和考试。

3. 评价内容:a. 指数函数的定义及其表达式;b. 指数函数的单调性、奇偶性、周期性等性质;c. 运用指数函数解决实际问题的能力。

七、教学资源:1. PPT课件:展示指数函数的图像、实例及应用;2. 练习题:涵盖指数函数的定义、性质和应用;3. 实际问题案例:用于引导学生运用指数函数解决实际问题;4. 小组讨论工具:如白板、彩笔等。

八、教学进度安排:1. 课时:2课时(90分钟);2. 教学环节:引入(10分钟)、讲解(40分钟)、实践(25分钟)、总结(10分钟)、作业布置(5分钟)。

指数函数教案(优秀5篇)

指数函数教案(优秀5篇)

指数函数教案(优秀5篇)(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如合同协议、条据文书、策划方案、总结报告、党团资料、读书笔记、读后感、作文大全、教案资料、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as contract agreements, documentary evidence, planning plans, summary reports, party and youth organization materials, reading notes, post reading reflections, essay encyclopedias, lesson plan materials, other sample essays, etc. If you want to learn about different formats and writing methods of sample essays, please stay tuned!指数函数教案(优秀5篇)作为一名优秀的教育工作者,时常要开展教案准备工作,教案有助于顺利而有效地开展教学活动。

指数函数及其性质教案

指数函数及其性质教案

指数函数及其性质教案章节一:指数函数的引入教学目标:1. 理解指数函数的概念。

2. 掌握指数函数的一般形式。

教学内容:1. 引入指数函数的概念,指数函数的一般形式。

2. 举例说明指数函数的图像和性质。

教学步骤:1. 引入指数函数的概念,通过实际例子解释指数函数的定义。

2. 介绍指数函数的一般形式,解释指数函数中的底数和指数的含义。

3. 利用数学软件或图形计算器,绘制几个指数函数的图像,观察其特点。

4. 引导学生总结指数函数的性质,如单调性、奇偶性等。

教学评估:1. 课堂讲解和举例是否清晰明了。

2. 学生是否能正确理解和应用指数函数的概念。

章节二:指数函数的图像和性质教学目标:1. 掌握指数函数的图像特点。

2. 理解指数函数的单调性和奇偶性。

教学内容:1. 分析指数函数的图像特点。

2. 探讨指数函数的单调性和奇偶性。

教学步骤:1. 利用数学软件或图形计算器,绘制几个指数函数的图像,引导学生观察和总结其特点。

2. 引导学生探讨指数函数的单调性,如当底数大于1时,函数是增函数;当底数小于1时,函数是减函数。

3. 引导学生探讨指数函数的奇偶性,如指数函数既不是奇函数也不是偶函数。

教学评估:1. 课堂讲解和举例是否清晰明了。

2. 学生是否能正确理解和应用指数函数的图像和性质。

章节三:指数函数的应用教学目标:1. 掌握指数函数在实际问题中的应用。

2. 学会解决与指数函数相关的问题。

教学内容:1. 介绍指数函数在实际问题中的应用。

2. 学会解决与指数函数相关的问题。

教学步骤:1. 举例说明指数函数在实际问题中的应用,如人口增长、放射性衰变等。

2. 引导学生掌握解决与指数函数相关问题的方法,如建立指数函数模型、求解指数方程等。

教学评估:1. 课堂讲解和举例是否清晰明了。

2. 学生是否能正确理解和应用指数函数在实际问题中的应用。

章节四:指数方程的解法教学目标:1. 掌握指数方程的解法。

2. 学会解决实际问题中的指数方程。

指数函数教案设计指数函数教案

指数函数教案设计指数函数教案

指数函数教案设计一、教学目标知识与技能:1. 理解指数函数的定义和性质。

2. 掌握指数函数的图象和应用。

3. 学会解决与指数函数相关的问题。

过程与方法:1. 通过观察、分析和归纳,探索指数函数的性质。

2. 利用指数函数模型解决实际问题。

情感态度价值观:1. 培养学生的数学思维能力。

2. 激发学生对数学的兴趣和好奇心。

二、教学内容第一节:指数函数的定义与性质1. 引入指数函数的概念。

2. 分析指数函数的性质:单调性、奇偶性、周期性。

第二节:指数函数的图象1. 绘制常见指数函数的图象。

2. 分析指数函数图象的特点。

第三节:指数函数的应用1. 应用指数函数解决实际问题。

2. 利用指数函数模型进行预测和计算。

三、教学方法采用问题驱动法、案例教学法和讨论法。

通过提出问题、分析问题、解决问题的过程,引导学生主动探索指数函数的性质和应用。

利用实际案例,让学生体验数学与生活的紧密联系。

通过小组讨论,培养学生的合作能力和口头表达能力。

四、教学资源1. 教案、PPT课件。

2. 指数函数相关案例资料。

3. 计算器、白板等教学工具。

五、教学评价1. 课堂参与度:观察学生在课堂上的发言和提问情况,评估学生的参与程度。

2. 作业完成情况:检查学生作业的完成质量和速度。

3. 小组讨论:评估学生在讨论中的表现,包括观点阐述、合作能力和解决问题的能力。

4. 课后反馈:收集学生对课堂内容和教学方法的反馈,以便进行教学改进。

六、教学安排第一节:指数函数的定义与性质(45分钟)1. 引入指数函数的概念(10分钟)2. 分析指数函数的性质:单调性、奇偶性、周期性(25分钟)3. 练习与讨论(10分钟)第二节:指数函数的图象(45分钟)1. 绘制常见指数函数的图象(20分钟)2. 分析指数函数图象的特点(20分钟)3. 练习与讨论(5分钟)第三节:指数函数的应用(45分钟)1. 应用指数函数解决实际问题(20分钟)2. 利用指数函数模型进行预测和计算(20分钟)3. 练习与讨论(5分钟)七、教学反思在授课过程中,注意观察学生的反应,根据学生的实际情况调整教学节奏和内容。

指数函数教案(精选多篇)

指数函数教案(精选多篇)

指数函数教案(精选多篇)第一篇:指数函数教案.doc一.思考题1.来回答其变化的过程和答案2.过ppt来讲解思考题二、问题1.接说出指数函数2.学来思考问题23.出指数函数的概念三.例题1.下题目,叫学生思考几秒钟,请学生来回答。

2.学生的回答进行分析四.思考1.第一个思考,引导学生说出图像的做法,2.学生来画出4个图像3.图像进行补充4.函数的三要素来分析图像的性质5.图像上的到恒过的点及单调性6.行底数互为倒数的函数图像的比较、得到对称的性质(换算)7.行底数不同大小的比较,说明其大小的变化五.例题先思考,再请同学来回答,再进行点评六、总结七、布置作业第二篇:《指数函数概念》教案《指数函数概念》教案(一)情景设置,形成概念1、引例1:折纸问题:让学生动手折纸观察:①对折的次数x与所得的层数y之间的关系,得出结论y=2x②对折的次数x与折后面积y之间的关系(记折前纸张面积为1),得出结论y=(1/2)x引例2:《庄子。

天下篇》中写到:“一尺之棰,日取其半,万世不竭”。

请写出取x次后,木棰的剩留量与y与x的函数关系式。

2、形成概念:形如y=ax(a>0且a≠1)的函数称为指数函数,定义域为x∈r。

提出问题:为什么要限制a>0且a≠1?这一点让学生分析,互相补充。

分a﹤=0,a=1讨论。

1)a<0时,y=(-3)x对于x=1/2,1/4,??(-3)x无意义。

2)a=0时,x>0时,ax=0;x≤0时无意义。

3)a=1时,a= 1=1是常量,没有研究的必要。

(二)发现问题、深化概念问题:判断下列函数是否为指数函数。

1)y=-3x2)y=31/x3) y=31+x4) y=(-3)x5) y=3-x=(1/3) x1、1)ax的前面系数为1; 2)自变量x在指数位置; 3)a>0且a≠1。

2、问题中4)y=(-3)x的判定,引出上面讨论的问题:即指数函数的概念中为什么要规定a>0且a≠1。

指数函数的教案详解

指数函数的教案详解

第一章:指数函数的引入1.1 指数函数的概念引导学生回顾有理数的乘方运算,引入指数函数的概念。

通过实际例子,让学生理解指数函数是形如y = a^x 的函数,其中a 是底数,x 是指数。

1.2 指数函数的性质讲解指数函数的单调性,即当a > 1 时,函数随着x 的增加而增加;当0 < a < 1 时,函数随着x 的增加而减少。

讲解指数函数的平移性质,即当x 增加b 个单位时,函数图像向左平移b 个单位;当y 增加c 个单位时,函数图像向上平移c 个单位。

第二章:指数函数的图像与性质2.1 指数函数的图像通过绘制指数函数的图像,让学生直观地理解指数函数的特点。

讲解指数函数图像的渐近线,即当x 趋向于正无穷时,函数值趋向于正无穷;当x 趋向于负无穷时,函数值趋向于0。

2.2 指数函数的性质讲解指数函数的奇偶性,即当a 为正偶数时,函数为偶函数;当a 为正奇数时,函数为奇函数。

讲解指数函数的周期性,即当a 为有理数时,函数具有周期性;当a 为无理数时,函数无周期性。

第三章:指数函数的应用通过实际例子,讲解指数函数在增长率和衰减率中的应用,如人口增长、放射性衰变等。

引导学生运用指数函数解决实际问题,如预测未来的人口数量。

3.2 指数函数的优化讲解指数函数在优化问题中的应用,如最大值和最小值的求解。

引导学生运用指数函数解决实际问题,如最大化投资收益。

第四章:指数函数与其他函数的关系4.1 指数函数与对数函数的关系讲解指数函数与对数函数的互为反函数的关系,即如果y = a^x,则x = log_a(y)。

通过实际例子,让学生理解指数函数和对数函数在实际问题中的应用,如解方程、计算复合利息等。

4.2 指数函数与多项式函数的关系讲解指数函数与多项式函数的合成关系,即如果y = a^x,则y = f(g(x))。

通过实际例子,让学生理解指数函数和多项式函数在实际问题中的应用,如函数图像的合成。

第五章:指数函数的综合应用5.1 指数函数在几何中的应用讲解指数函数在几何中的应用,如计算指数函数的导数、求解极值等。

《指数函数》的优秀教案

《指数函数》的优秀教案

《指数函数》的优秀教案•相关推荐《指数函数》的优秀教案(精选7篇)作为一名人民教师,常常要根据教学需要编写教案,教案是保证教学取得成功、提高教学质量的基本条件。

教案应该怎么写才好呢?下面是小编整理的《指数函数》的优秀教案,欢迎大家分享。

《指数函数》的优秀教案篇1教学目标:1.进一步理解指数函数的性质;2.能较熟练地运用指数函数的性质解决指数函数的平移问题;教学重点:指数函数的性质的应用;教学难点:指数函数图象的平移变换.教学过程:一、情境创设1.复习指数函数的概念、图象和性质练习:函数y=ax(a0且a1)的定义域是_____,值域是______,函数图象所过的定点坐标为.若a1,则当x0时,y1;而当x0时,y1.若00时,y1;而当x0时,y1.2.情境问题:指数函数的性质除了比较大小,还有什么作用呢?我们知道对任意的a0且a1,函数y=ax的图象恒过(0,1),那么对任意的a0且a1,函数y=a2x1的图象恒过哪一个定点呢?二、数学应用与建构例1解不等式:(1);(2);(3);(4).小结:解关于指数的不等式与判断几个指数值的大小一样,是指数性质的运用,关键是底数所在的范围.例2说明下列函数的图象与指数函数y=2x的图象的关系,并画出它们的示意图:(1);(2);(3);(4).小结:指数函数的平移规律:y=f(x)左右平移y=f(x+k)(当k0时,向左平移,反之向右平移),上下平移y=f(x)+h(当h0时,向上平移,反之向下平移).练习:(1)将函数f(x)=3x的图象向右平移3个单位,再向下平移2个单位,可以得到函数的图象.(2)将函数f(x)=3x的图象向右平移2个单位,再向上平移3个单位,可以得到函数的图象.(3)将函数图象先向左平移2个单位,再向下平移1个单位所得函数的解析式是.(4)对任意的a0且a1,函数y=a2x1的图象恒过的定点的坐标是.函数y=a2x—1的图象恒过的定点的坐标是.小结:指数函数的定点往往是解决问题的突破口!定点与单调性相结合,就可以构造出函数的简图,从而许多问题就可以找到解决的突破口.(5)如何利用函数f(x)=2x的图象,作出函数y=2x和y=2|x2|的图象?(6)如何利用函数f(x)=2x的图象,作出函数y=|2x—1|的图象?小结:函数图象的对称变换规律.例3已知函数y=f(x)是定义在R上的奇函数,且x0时,f(x)=1—2x,试画出此函数的图象.例4求函数的最小值以及取得最小值时的x值.小结:复合函数常常需要换元来求解其最值.练习:(1)函数y=ax在[0,1]上的最大值与最小值的和为3,则a等于;(2)函数y=2x的值域为;(3)设a0且a1,如果y=a2x+2ax—1在[—1,1]上的最大值为14,求a的值;(4)当x0时,函数f(x)=(a2—1)x的值总大于1,求实数a的取值范围.三、小结1.指数函数的性质及应用;2.指数型函数的定点问题;3.指数型函数的草图及其变换规律.四、作业:课本P55—6,7.五、课后探究(1)函数f(x)的定义域为(0,1),则函数的定义域为。

指数函数教案:深入剖析指数与底数的关系

指数函数教案:深入剖析指数与底数的关系

教学目标:通过本节课的学习,学生应该能够:1.了解指数函数的基本概念;2.认识指数和底数之间的关系;3.掌握指数函数的图像及其性质;4.学会应用指数函数模型解决实际问题。

教学重点:1.加深对指数和底数的理解;2.掌握指数函数图像及其性质;3.应用指数函数模型解决实际问题。

教学难点:1.理解指数与底数之间的关系;2.掌握指数函数图像及其性质。

教学内容:一、指数函数的概念指数函数是一种形如y=a^x(x∈R,a>0,a≠1)的函数。

其中a叫做底数,x叫做指数或幂,y为函数值。

二、指数和底数之间的关系1.当a>1时,指数函数是增长型函数。

2.当0<a<1时,指数函数是衰减型函数。

特别地,当a=1时,函数为y=1,是一条水平直线。

3.当a=0时,指数函数不存在。

三、指数函数的图像及其性质1.当a>1时,函数图像在x轴正半轴上逐渐上升;2.当0<a<1时,函数图像在x轴正半轴上逐渐下降;3.当a=1时,函数图像是一条水平直线;4.指数函数的图像均过点(0,1);5.指数函数的图像的渐近线为y=0(当a>1)或y=+∞(当0<a<1)。

四、应用指数函数模型解决实际问题1.人口增长问题2.财务管理问题3.物理问题教学方法:1.讲解法;2.对比法;3.演示法。

教学过程:一、导入紧扣人们日常生活中的问题,引发学生对指数函数的认识和学习兴趣。

二、知识讲解对指数函数的基本概念、指数和底数的关系、指数函数的图像及其性质进行讲解。

三、思维拓展运用对学过的知识,结合相关实际问题展开思维拓展,帮助学生完成相关应用题目。

四、归纳总结让学生自己归纳总结,并与他人进行讨论,从中理清思路,加深印象。

五、解答学生问题解答学生提出的问题,协助学生理解、掌握和巩固所学知识,以便学生在回家后巩固所学。

六、任务布置布置适当的任务,帮助学生在自主学习中,巩固所学、拓展思路。

教学反思:指数函数作为高中数学中的重点,涉及性质细致、逻辑复杂,学生对指数函数的运用多所不同,教师应该严谨、耐心,帮助学生深入理解指数与底数关系,具有开朗积极的教育氛围,才能更好地促进学生数学思维能力的提高,并应用知识解决实际问题。

高一数学指数函数教案汇总6篇

高一数学指数函数教案汇总6篇

高一数学指数函数教案汇总6篇高一数学指数函数教案汇总6篇教案对于老师是重要的。

学习可以说很枯燥,记公式做题,做大量的类型题。

这时候,如果教师有一份明确的说课稿,将会大大提升教学效率,下面小编给大家带来关于高一数学指数函数教案,希望会对大家的工作与学习有所帮助。

高一数学指数函数教案篇1教学目标:(1)知识与技能:了解集合的含义,理解并掌握元素与集合的“属于”关系、集合中元素的三个特性,识记数学中一些常用的的数集及其记法,能选择自然语言、列举法和描述法表示集合。

(2)过程与方法:从圆、线段的垂直平分线的定义引出“集合”一词,通过探讨一系列的例子形成集合的概念,举例剖析集合中元素的三个特性,探讨元素与集合的关系,比较用自然语言、列举法和描述法表示集合。

(3)情感态度与价值观:感受集合语言的意义和作用,培养合作交流、勤于思考、积极探讨的精神,发展用严密谨慎的集合语言描述问题的习惯。

教学重难点:(1)重点:了解集合的含义与表示、集合中元素的特性。

(2)难点:区别集合与元素的概念及其相应的符号,理解集合与元素的关系,表示具体的集合时,如何从列举法与描述法中做出选择。

教学过程:【问题1】在初中我们已经学习了圆、线段的垂直平分线,大家回忆一下教材中是如何对它们进行定义的[设计意图]引出“集合”一词。

【问题2】同学们知道什么是集合吗请大家思考讨论课本第2页的思考题。

[设计意图]探讨并形成集合的含义。

【问题3】请同学们举出认为是集合的例子。

[设计意图]点评学生举出的例子,剖析并强调集合中元素的三大特性:确定性、互异性、无序性。

【问题4】同学们知道用什么来表示一个集合,一个元素吗集合与元素之间有怎样的关系[设计意图]区别表示集合与元素的的符号,介绍集合中一些常用的的数集及其记法。

理解集合与元素的关系。

【问题5】“地球上的四大洋”组成的集合可以表示为{太平洋、大西洋、印度洋、北冰洋},“方程(x-1)(x+2)=0的所有实数根”组成的集[设计意图]引出并介绍列举法。

初中指数函数教案

初中指数函数教案

教案:初中指数函数教学目标:1. 了解指数函数的定义和特点。

2. 学会用指数函数表示和解决实际问题。

3. 掌握指数函数的图像和性质。

教学重点:1. 指数函数的定义和特点。

2. 指数函数的图像和性质。

教学难点:1. 理解指数函数的定义和特点。

2. 掌握指数函数的图像和性质。

教学准备:1. PPT课件。

2. 几何画板。

教学过程:一、导入(5分钟)1. 引入指数函数的概念,通过举例说明指数函数的用途和实际意义。

2. 引导学生思考指数函数的定义和特点。

二、探究指数函数的定义和特点(15分钟)1. 学生分组讨论,总结指数函数的定义和特点。

2. 教师引导学生归纳总结,得出指数函数的定义和特点。

三、学习指数函数的图像和性质(15分钟)1. 教师利用PPT课件和几何画板展示指数函数的图像,引导学生观察和分析。

2. 学生分组讨论,总结指数函数的性质。

3. 教师引导学生归纳总结,得出指数函数的性质。

四、应用指数函数解决实际问题(15分钟)1. 教师提出实际问题,引导学生用指数函数表示和解决。

2. 学生分组讨论,提出解决方案。

3. 教师引导学生归纳总结,得出解决实际问题的方法。

五、巩固练习(10分钟)1. 教师提出练习题,学生独立完成。

2. 教师选取部分学生的作业进行讲解和点评。

六、总结和反思(5分钟)1. 教师引导学生总结本节课的学习内容和收获。

2. 学生提出问题和建议。

教学延伸:1. 进一步学习指数函数的应用,如人口增长、放射性物质衰变等。

2. 探索指数函数与其他函数的关系和联系。

教学反思:本节课通过导入、探究、学习、应用、巩固和总结的过程,使学生掌握了指数函数的定义、特点、图像和性质。

在教学过程中,教师引导学生积极参与、分组讨论、独立思考,提高了学生的动手能力和合作意识。

同时,通过实际问题的解决,使学生体会到了数学与生活的紧密联系。

但在教学过程中,也发现部分学生对指数函数的理解和应用仍有困难,需要在今后的教学中加强引导和辅导。

指数函数教案:轻松掌握数学难点

指数函数教案:轻松掌握数学难点

指数函数教案:轻松掌握数学难点教学目标:1. 理解指数函数的定义和性质;2. 学会运用指数函数解决实际问题;3. 提高数学思维能力和解决问题的能力。

教学内容:一、指数函数的定义与性质1. 引入指数函数的概念;2. 讲解指数函数的性质;二、指数函数的图像与性质1. 绘制常见指数函数的图像;2. 分析指数函数图像的性质;3. 引导学生通过图像理解指数函数的单调性、奇偶性等性质。

三、指数函数的实际应用1. 引入实际应用问题;2. 讲解如何运用指数函数解决实际问题;3. 引导学生练习运用指数函数解决实际问题。

四、指数函数的求解与变换1. 讲解指数函数的求解方法;2. 讲解指数函数的变换规律;3. 引导学生运用求解和变换方法解决实际问题。

五、巩固练习与拓展提高1. 设计针对性练习题;2. 引导学生进行小组讨论和合作解答;教学资源:1. 教学PPT;2. 指数函数图像资料;3. 练习题和答案。

教学过程:1. 引入新课:通过生活实例或问题引入指数函数的概念;2. 讲解与演示:讲解指数函数的定义与性质,展示指数函数的图像;3. 练习与讨论:设计练习题,引导学生进行自主学习和小组讨论;5. 拓展提高:引导学生运用指数函数解决实际问题,提高解决问题的能力。

教学评价:1. 课堂表现:观察学生在课堂上的参与程度、提问回答等情况;2. 练习题解答:评估学生练习题的完成情况,检查理解程度;3. 实际问题解决:评估学生在解决实际问题时的运用能力;4. 小组讨论:评估学生在小组讨论中的合作意识和解决问题的能力。

六、指数函数的求解与变换(续)1. 进一步讲解指数函数的求解方法,包括指数方程和指数不等式的求解;2. 引导学生掌握指数函数的变换规律,如复合函数的求解和函数图像的平移;3. 通过例题和练习题,巩固学生对指数函数求解与变换的掌握。

七、指数函数与对数函数的关系1. 介绍指数函数与对数函数的互为反函数的关系;2. 讲解指数函数和对数函数在数学和实际应用中的相互转化;3. 引导学生通过举例理解指数函数和对数函数的联系与区别。

高中数学教案《指数函数》

高中数学教案《指数函数》

教学计划:《指数函数》一、教学目标1.知识与技能:学生能够理解指数函数的概念,掌握指数函数的一般形式及其性质。

学生能够识别并绘制指数函数的图像,理解图像与函数性质之间的关系。

学生能够运用指数函数解决简单的实际问题,如增长率、衰减率等。

2.过程与方法:通过观察、比较、归纳等方法,引导学生发现指数函数的特征和规律。

通过动手实践(如绘制函数图像),加深学生对指数函数性质的理解。

通过案例分析,培养学生将实际问题抽象为数学问题的能力。

3.情感态度与价值观:激发学生对数学学习的兴趣,培养探索数学奥秘的好奇心。

培养学生的逻辑思维能力和严谨的科学态度。

引导学生认识到数学在现实生活中的应用价值,增强应用数学的意识。

二、教学重点和难点重点:指数函数的概念、一般形式、性质及其图像特征。

难点:理解指数函数图像与函数性质之间的关系,以及运用指数函数解决实际问题。

三、教学过程1. 引入新课(5分钟)生活实例引入:通过展示细胞分裂、人口增长、放射性物质衰减等实际问题的例子,引导学生思考这些现象背后的数学规律。

提出问题:引导学生观察这些现象的共同点,即都涉及到了“基数”和“指数”的概念,进而引出指数函数的概念。

明确目标:介绍本节课将要学习的内容——指数函数,并说明学习目标。

2. 讲授新知(15分钟)定义讲解:详细讲解指数函数的概念、一般形式(如,其中且)及其基本性质(如定义域、值域、单调性等)。

图像展示:利用多媒体设备展示不同底数下指数函数的图像,引导学生观察图像特征,如底数大于1时函数图像上升,底数在0和1之间时函数图像下降等。

性质归纳:引导学生根据图像特征归纳出指数函数的性质,如单调性、过定点(如)等。

3. 案例分析(10分钟)例题讲解:选取一两个具有代表性的例题(如计算复利、分析人口增长趋势等),详细讲解如何运用指数函数模型解决问题。

思路展示:通过板书或PPT展示解题思路和步骤,引导学生理解如何将实际问题抽象为数学问题并求解。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

指数函数的教案【篇一:指数函数教案设计】《指数函数》教材解读1、教材的地位和作用指数函数是人教版高中数学第一册上册第二章第六节的内容。

本节课是学生在已掌握了函数的一般性质和简单的指数运算的基础上,进一步研究指数函数以及指数函数的图像与性质。

它既是函数内容的深化,又是今后学习对数函数的基础,同时指数函数图像中无限逼近渗透了极限的思想,为以后学习极限做好铺垫,对知识起到了承上启下的作用。

根据这一节课的内容特点以及学生的实际情况,学生对抽象的指数函数及其图象缺乏感性认识。

为此,在教学过程中让学生自己去感受指数函数的形成过程以及指数函数图象和性质是这一堂课的突破口。

因此,以指数函数的性质、图像作为教学重点,本节课的难点是指数函数图像和性质的发现过程,及指数函数图像与底数的关系2、教材比较与新人教版《高中数学必修1》对比发现,旧教材在各层知识采取很精练的语言进行过渡,而新教材则在各层知识的过渡上,采用了“探究”、“思考”等小栏目进行思维上的向导,指引学生学习。

因此在使用老教材时,教师可根据学生的具体情况,制定适宜的向导性指引,给教师更大的发挥空间。

3、教材的优点与不足(1) 优点:所选教材较为简明,可以给教师较多的潜在发挥空间,逻辑结构较为严谨。

(2) 不足:在各知识过渡上,教材处理得不够好。

比较传统单一,没有设定类似于新教材中的“探究”、“思考”等小栏目,缺乏对学生思维的引导,所以要求教师对教材理解深透。

指数函数的教案设计一、学情分析1、知识起点学生学习了函数的定义、图像及性质,已经掌握了研究函数的一般思路。

2、经验起点学生通过初中学习的函数基本掌握应用数形结合的方法来研究函数,但思维的严谨性和分类讨论、归纳推理等能力仍有待提高。

二、教材分析1、教材背景指数函数是在学习了函数的定义及其图像、性质。

掌握了研究函数的一般思路,并将幂指数从整数扩充到实数范围之后学习的第一个重要的基本函数,是函数这一章的重要内容。

本届内容分三个课时完成,本课时学习指数函数的概念、图像及性质,剩下的两个课时为指数函数性质的应用。

2、教材地位及作用本节内容既是函数内容的深化,又是今后学习对数函数的基础,同时指数函数图像中无限逼近渗透了极限的思想,为以后学习极限做好铺垫,在教材中起到了承上启下的关键作用。

在指数函数的研究过程中蕴含了数形结合、分类讨论、归纳推理、特殊到一般等数学思想方法,通过学习可以帮助学生进一步理解指数函数,掌握这其中的数学思想方法,增强学生学习数学的兴趣。

3、教学重难点及其突破方法重点:理解并掌握指数函数的图像、性质。

突破方法:让学生亲自动手画图、归纳性质的方法来理解指数函数的图像和性质。

难点:指数函数图像和性质的发现过程,及指数函数图像与底数的关系。

突破方法:通过让学生探究、思考、分组讨论等方式。

三、目标分析1、知识与技能理解并掌握指数函数的图象和性质。

2、过程与方法指数函数的图象和性质的教学经历“特殊→一般”的认知过程,通过学生自主探索、合作交流,历经观察、分析、类比、归纳等过程,进一步领悟数形结合、分类讨论、归纳推理等数学思想方法。

3、情感态度与价值观通过“师生互动”、“生生互动”等方法提高学生自主学习、合作交流的情感态度,由数形结合激发学习数学的兴趣。

四、教法和学法分析1、教法分析基于教材分析、学情分析以及目标设计,本节采用教师通过问题驱动教学,引导学生自主学习、合作交流来突破重难点,从而达到本节的教学目标。

2、学法分析学生通过自主学习、动手操作、分组讨论的方式来解决问题。

五、教学过程设计根据新课标的理念,我把整个教学过程分为五个阶段,即:创设情境(5—6分钟)探求新知(15分钟)业(2分钟)。

知识应用(12分钟)小结归纳(5分钟)布置作(一)创设情境设计一个游戏情境,学生通过动手折纸,观察对折的次数与所得的层数之间的关系,xy=2得出对折次数为x与所得层数y的关系式。

在学生动手操作的过程中激发学生学习热情和探索新知的欲望。

y=2(x∈n*)【设计意图】通过问题的提出,激发学生探索新知的欲望。

在动手操作中,让学生熟悉情境、体验情境,在折纸实验中学生在头脑初步形成指数函数的模型;同时让学生感受数学源自生活、高于生活、服务于生活,激发学生学习兴趣。

x(二)探索新知教师给出指数函数的概念,即形如y=ax(a0且a≠1),定义域为r的函数称为指数函数。

教师将引导学生思考为什么概念中规定a0且a≠1呢?对a的范围的具体分析,有利于学生对指数函数概念的掌握,同时为后面研究函数的图象和性质埋下了伏笔。

1、从概念的角度理解提问:在本概念中要注意哪些要点?提问:为什么概念中规定a0且a≠1?提示:因为指数函数的定义域是r,不妨设x=0.5, a0显然不成立,故不能小于0;又因为0为负分数指数幂没有意义,所以a≠0;若a=1,那么y=1,没有研究的意义.。

提问:根据概念,你能判断下列哪些是指数函数吗,为什么?(1)(2)(3)(4)【设计意图】了解学生对指数函数的概念理解情况。

2、从图像的角度理解提问:前面学习了指数函数的概念,那指数函数的图像是怎样的呢? 1动手实践,合作交流:让学生用描点法画y=3x,y=()x的图像,结合课本所给的3指数函数图像,观察这函数图像的特征。

接着让学生选取其他底数,再画出相应图像。

思考:所画的几个指数函数图像有何特征?底数a与图像之间又存在什么联系?分1小组讨论,分享讨论结果。

以下是函数y=3x,y=()x的图象:3【设计意图】:培养学生观察图像,运用已学知识分析、归纳以及提高合作交流的能力。

3、几何画板动态演示,深入理解指数函数图像提问:对于一般的指数函数,它的图像具有什么样的性质?请同学归纳。

(根据学生回答情况,再用几何画板的动态演示,展示一般形式的指数函数图象,感受底数a的取值与函数图象的关系,完成下面表格填写)【设计意图】用几何画板的动态演示,使学生更直观地感受指数函数图像及其性质。

注意引导学生对指数函数的底数分类讨论,并用表格将学习内容系统化和清晰化。

(三)知识应用例:比较下列各题中两值的大小 2.5与173(1)17变式题:(2)0.8-0.1与0.8-0.20.81(3) ??4??1?与 ??2?0.878(4) 与 ??8? ?7?-37-37(先提问学生如何比较大小,有哪些方法?再总结归纳各种方法的优越性与不足。

)【设计意图】例(1)(2)是同底数幂的比较大小,可构造指数函数,利用指数函数单调性来判断;通过变式训练,达到加深学生对知识的内化与延伸的理解,原本不同底,但可化为同底,考察学生的观察能力。

(四)小结归纳在小结归纳中教师将从学生的知识,方法和体验入手,带领学生从以下三个方面进行小结:(1)通过本节课的学习,我们学到了哪些知识?(2)我们是怎样学习指数函数的性质的??【篇二:指数函数公开课教案】指数函数公开课教案.开发区汉阳三中殷立明本节课的内容是高中数学必修一第三章第三节“指数函数”的第一课时——指数函数的定义,图像及性质。

新课标指出,学生是教学的主体,教师的教要应本着从学生的认知规律出发,以学生活动为主线,在原有知识的基础上,建构新的知识体系。

我将以此为基础从下面这几个方面加以说明。

一、教材的地位和作用本节课是学生在已掌握了函数的一般性质和简单的指数运算的基础上,进一步研究指数函数,以及指数函数的图像与性质,它一方面可以进一步深化学生对函数概念的理解与认识,使学生得到较系统的函数知识和研究函数的方法,同时也为今后进一步熟悉函数的性质和作用,研究对数函数以及等比数列的性质打下坚实的基础。

因此,本节课的内容十分重要,它对知识起到了承上启下的作用。

此外,《指数函数》的知识与我们的日常生产、生活和科学研究有着紧密的联系,尤其体现在细胞分裂、贷款利率的计算和考古中的年代测算等方面,因此学习这部分知识还有着广泛的现实意义。

二、教学目标知识目标:①掌握指数函数的概念;②掌握指数函数的图象和性质和简单应用;使学生获得研究函数的规律和方法。

能力目标:①培养学生观察、联想、类比、猜测、归纳等思维能力;②体会数形结合思想、分类讨论思想,增强学生识图用图的能力;情感目标:①让学生自主探究,体验从特殊→一般→特殊的认知过程,了解指数函数的实际背景;②通过学生亲手实践,互动交流,激发学生的学习兴趣,努力培养学生的创新意识,提高学生抽象、概括、分析、综合的能力。

三、教学重难点教学重点:进一步研究指数函数的图象和性质。

指数函数的图像与性质,它一方面可以进一步深化学生对函数概念的理解与认识,使学生得到较系统的函数知识和研究函数的方法,同时也为今后进一步熟悉函数的性质和作用,研究对数函数以及等比数列的性质打下坚实的基础。

因此它对知识起到了承上启下的作用。

教学难点:弄清楚底数a对函数图像的影响。

对于底数a1 和1a0时函数图像的不同特征,学生不容易归纳认识清楚。

突破难点的关键:通过学生间的讨论、交流及多媒体的动态演示等手段,使学生对所学知识,由具体到抽象,从感性认识上升到理性认识,由此来突破难点。

因此,在教学过程中我选择让学生自己去感受指数函数的生成过程以及从这两个特殊的指数函数入手,先描点画图,作为这一堂课的突破口。

四、学情分析及教学内容分析1、学生知识储备通过初中学段的学习和高中对集合、函数等知识的系统学习,学生对函数和图象的关系已经构建了一定的认知结构,主要体现在三个方面:知识方面:对正比例函数、反比例函数、一次函数,二次函数等最简单的函数概念和性质已有了初步认识,能够从初中运动变化的角度认识函数初步转化到从集合与对应的观点来认识函数。

技能方面:学生对采用“描点法”描绘函数图象的方法已基本掌握,能够为研究《指数函数》的性质做好准备。

素质方面:由观察到抽象的数学活动过程已有一定的体会,已初步了解了数形结合的思想。

2、学生的困难本节内容思维量较大,对思维的严谨性和分类讨论、归纳推理等能力有较高要求,但学生在探究问题的能力以及合作交流等方面发展不够均衡,所以学生学习起来有一定难度。

五、教法分析本节课我采用引导发现式的教学方法。

通过教师在教学过程中的点拨,启发学生通过主动观察、主动思考、动手操作、自主探究来达到对知识的发现和接受。

六、教学过程分析根据新课标的理念,我把整个的教学过程分为六个阶段,即:1.情景设置,形成概念深理解性质 2.发现问题,深化概念 5.小结归纳 3.深入探究图像,加6.布置作业 4.强化训练,落实掌握(一)情景设置,形成概念学情分析:1、学生初中就接触过一次函数、二次函数,在第二章再次学习一次函数、二次函数时,学生有一定的知识储备,但对于指数函数而言,学生是完全陌生的函数,无已有经验的参考,在接受上学生有困难。

2、课本给出了两个引例以及在本章章前语也给了一个例子,分别是细胞分裂、放射性物质省留量及“指数爆炸”,这三个例子比较好但离学生的认知仍存在一定距离,于是我在引课这里翻查了一些参考资料,发现这样一个例子,——折纸问题,这个引例对学生而言①便于动手操作与观察②贴近学生的生活实际。

相关文档
最新文档