指数函数及其性质教案
《指数函数及其性质》教案与同步练习
![《指数函数及其性质》教案与同步练习](https://img.taocdn.com/s3/m/bd4fd2730622192e453610661ed9ad51f01d54fd.png)
《指数函数及其性质》教案与同步练习第一章:指数函数的定义与基本性质1.1 指数函数的定义学习指数函数的定义,了解指数函数的表达形式:f(x) = a^x,其中a为底数,x为指数。
理解指数函数与幂函数的关系。
1.2 指数函数的基本性质学习指数函数的单调性,掌握指数函数的增减规律。
学习指数函数的奇偶性,了解指数函数的奇偶性质。
同步练习:1. 判断下列函数是否为指数函数:f(x) = 2x,g(x) = x^2。
2. 分析函数f(x) = 2^x的单调性,画出函数图像。
3. 判断函数f(x) = 2^x的奇偶性。
第二章:指数函数的图像与性质2.1 指数函数的图像学习指数函数的图像特点,掌握指数函数图像的形状。
了解指数函数图像与x轴、y轴的交点。
2.2 指数函数的性质学习指数函数的极限性质,了解指数函数在x趋于正无穷和负无穷时的极限。
学习指数函数的零点性质,了解指数函数的零点情况。
同步练习:1. 画出函数f(x) = 3^x的图像。
2. 求函数f(x) = 2^x在x趋于正无穷和负无穷时的极限。
3. 分析函数f(x) = 4^x的零点情况。
第三章:指数函数的应用3.1 指数函数在实际问题中的应用学习指数函数在人口增长、放射性衰变等实际问题中的应用。
3.2 指数函数在数学问题中的应用学习指数函数在解方程、证明不等式等数学问题中的应用。
同步练习:1. 一个人口模型中,人口P随时间t的增长满足P = 2^t,求t年后的人口数量。
2. 证明不等式:2^x > 1,其中x > 0。
第四章:指数函数的进一步性质4.1 指数函数的导数学习指数函数的导数公式,掌握指数函数的导数计算方法。
4.2 指数函数的极值学习指数函数的极值性质,了解指数函数的极大极小值。
同步练习:1. 求函数f(x) = e^x的导数。
2. 分析函数f(x) = e^x的极值情况。
第五章:指数函数与其他函数的关系5.1 指数函数与对数函数的关系学习指数函数与对数函数的关系,了解指数函数与对数函数的互为反函数。
《指数函数及其性质》优秀教案
![《指数函数及其性质》优秀教案](https://img.taocdn.com/s3/m/1ccf49e1de80d4d8d05a4f86.png)
指数函数及其性质一、教学目标1、知识目标(1)了解指数函数模型的实际背景,从实际问题引出指数函数。
(2)理解指数函数的概念和意义,能画出具体指数函数的图象。
(3)通过指数函数的图象,归纳出指数函数的性质,并掌握其性质。
(4)能在实际环境中,根据不同的需要和条件,选择恰当的方法,运用指数函数的图象与性质解决实际问题。
2、能力目标(1)培养学生数学与实际问题相结合的能力。
(2)通过探究、思考,培养学生理性思维能力,观察能力以及分析问题的能力。
(3)在学习的过程中体会研究具体函数及其性质的过程和方法,如具体到一般的过程、数形结合的方法等。
3、情感目标(1)通过将数学与实际问题结合,提高学生的学习兴趣。
(2)通过老师与学生,学生与学生的相互交流,培养学生由具体到抽象、由特殊到一般地认识事物的意识。
(3)通过现代信息技术的合理应用,转变学生对数学学习的态度,加强学生对数形结合,分类讨论等数学思想的进一步认识。
二、教学重点理解指数函数的定义,图象与性质。
三、教学难点用数形结合的方法从特殊到一般地探索、概括指数函数的性质。
四、教具准备多媒体课件。
五、教学基本流程六、教学过程环节教学内容老师活动学生活动设计意图引入新课1)在本节的问题2中时间和碳14含量的对应关系:和问题1中时间x与GDP值y的对应关系能否构成函数?2)一种放射性物质不断变化成其他物质,每经过一年的残留量是原来的84%,那么以时间x年为自变量,残留量y的函数关系式是什么?1)组织学生思考、分小组讨论所提出的问题,注意引导学生从函数的定义出发来解释两个问题中变量之间的关系。
2)引导学生从函数的定义出发列出函数关系式并提问。
1)学生独立思考、小组讨论,推举代表解释这两个问题中变量间的关系为什么构成函数。
2)代表说出这一函数关系式。
1)用函数的观点分析碳14含量模型和GDP值增长模型中变量之间的对应关系。
2)从实际问题出发,列出函数关系式,增加学生学习兴趣。
《指数函数的定义和性质》教案
![《指数函数的定义和性质》教案](https://img.taocdn.com/s3/m/b0823284ba4cf7ec4afe04a1b0717fd5360cb2a3.png)
《指数函数的定义和性质》教案指数函数的定义和性质教案
介绍
本教案旨在介绍指数函数的定义和基本性质。
一、指数函数的定义
指数函数是一种以底数为常数的幂的形式来表示的函数。
具体来说,指数函数可以写成 f(x) = a^x 的形式,其中 a 是一个正实数且不等于 1。
二、指数函数的特点和性质
1. 当底数 a 大于 1 时,指数函数是递增函数;当 0 < a < 1 时,指数函数是递减函数。
2. 当 x 是正无穷大时,指数函数趋于无穷大;当 x 是负无穷大时,指数函数趋于 0。
3. 指数函数的图像在 x 轴的正半轴上都是正数。
4. 指数函数和对数函数是互为反函数。
三、指数函数的应用
指数函数在数学、物理、经济等领域有广泛的应用。
其中一些应用包括:
1. 复利计算:指数函数可以用来计算复利问题。
2. 人口增长模型:指数函数可以用来描述人口随时间的增长情况。
3. 自然现象建模:指数函数可以用来描述自然现象中的增长或衰减过程。
四、练题
请解答以下问题:
1. 当底数 a 小于 1 时,指数函数的性质是什么?
2. 指数函数在 x 轴的哪个部分为正数?
3. 为什么指数函数和对数函数是互为反函数?
五、参考答案
1. 当底数 a 小于 1 时,指数函数是递减函数。
2. 指数函数在 x 轴的正半轴上为正数。
3. 指数函数和对数函数是互为反函数是因为它们的定义和性质互相对应,对每一个底数 a 来说,a^x 的反函数是以 a 为底的对数函数 log_a(x)。
高中数学2.1.2指数函数及其性质教案新人教A版必修1
![高中数学2.1.2指数函数及其性质教案新人教A版必修1](https://img.taocdn.com/s3/m/71b514510a4e767f5acfa1c7aa00b52acec79c11.png)
指数函数及其性质一、【教学目标】1.知识与技能:理解指数函数的概念,画出具体指数函数图象,能经过观察图象得出两类指数函数图象的地位关系;在理解函数概念的基础上,能运用所学知识解决简单的数学成绩;2.过程与方法:在教学过程中,利用画板作图加深对指数函数的认识,让先生在数学活动中感受数学思想方法之美、领会数学思想方法之重要;3.情感、态度、价值观:经过本节课自主探求研讨式教学,使先生获得研讨函数的规律和方法;培养先生自动学习、合作交流的认识。
二、【学情分析】指数函数式在先生零碎学习了函数概念,基本掌握函数性质的基础上进行研讨的,是先生对函数概念及其性质的第一次运用.教材在之前的学习中给出链各个理论的例子(GDP的增长成绩和碳14的衰减成绩),曾经让先生感遭到了指数函数的理论背景,但这两个例子的背景对于先生来说有些陌生.本节课先设计两个看似简单的成绩,但能经过得到超出想象的结果来激发先生学习新知的兴味和愿望。
三、【教材分析】本节课是《普通高中课程标准实验教科书·数学1》(人教A版)第二章第一节第二课【(2.1.2)《指数函数及其性质》.根据理论情况,将《指数函数及其性质》划分为三节课指数函数及其性质、指数函数及其性质的运用(1)、指数函数及其性质的运用(2)】,这是第一节“指数函数及其性质”.指数函数是重要的基本初等函数之一,作为常见函数,它不仅是今后学习对数函数和幂函数的基础,同时在生活及消费理论中有着广泛的运用,所以指数函数应重点研讨。
四、【教学重难点】1.教学重点:指数函数的概念、底数互为倒数的指数函数的图象关于y轴对称。
2.教学难点:底数a的范围讨论,自变量的取值范围和由函数的图象归纳指数函数的性质。
五、【教学方法】自主预习、合作探求、体验践行。
六、 【教学装备】多媒体装备。
七、 【课时安排】第一课时(新知课)。
八、 【教学过程】(一) 创设情境,引出成绩(约3分钟)师:观察图片,你能说出这是甚么吗?生:国际象棋师:这盘象棋隐含了这么一个故事?生:....师:国王为了奖励发明者达依尔特许愿满足他提的任意一个请求,那么达伊尔提出如下要求在棋盘第一格放2粒大米,第二格放4粒大米,第三格放8粒大米,…按这个规律.最初一格棋盘上的大米数就是我要的.请问:最初一格的大米数是多少呢?生:642师:那么国王能否满足他的要求呢?【学情预设】先生会说能.也有说不能的.教师公布数据领会指数函数的爆炸增长,642粒大米是每年全世界粮食产量的1000多倍,明显国王是满足不了他的请求.师:请写出米粒数与棋盘格数的函数关系式.生:{}2,1,2,,64x y x =∈师: “一尺之棰,日取其半,万世不竭.”这句话来自著名的《庄子·天下篇》,哪位同学能用数学言语来表述它的含义?生:。
指数函数图像与性质教学设计精选10篇
![指数函数图像与性质教学设计精选10篇](https://img.taocdn.com/s3/m/f8f8d6a60875f46527d3240c844769eae009a3e9.png)
指数函数图像与性质教学设计精选10篇指数函数及其性质教学设计解读篇一《2.1.2 指数函数及其性质(2 》教学设计【学习目标】1.知识与技能①.熟练掌握指数函数概念、图象、性质。
②.掌握指数函数的性质及应用。
③.理解指数函数的简单应用模型, 认识数学与现实生活及其他学科的联系。
2.情感、态度、价值观①让学生了解数学来自生活,数学又服务于生活的哲理。
②培养学生观察问题,分析问题的能力。
③体会具体到一般数学讨论方式及数形结合的思想;3.过程与方法让学生通过观察函数图象,进而研究指数型函数的性质, 主要通过小组讨论、小组展示、及时评价完成整个导学过程【学习重点】熟练掌握指数函数的的概念,图象和性质及指数型增长模型。
【学习难点】用数形结合的方法从具体到一般地探索、指数型函数的图象,性质。
【导学过程】教学内容师生互动设计意图互查每组两名同学互查识记内容教师提问记忆方法,学生回答,其他同学可以相互借鉴。
复习指数函数的图象及性质,为本节课中的内容储备知识基础。
展系吗?→请用一句话概括下图是指数函数2x y =, 3xy =, 0.3x y =, 0.5x y =的图象,请指出它们各自对应的图象。
教师随时点评,引导,欣赏,鼓励。
每组选派一名代表课堂上展示交流成果,组内同学补充。
其他同学可让学生从图象直观的理解指数函数,从变化中找到不变的规律,提高学生的总结归纳能示交流结论:针对展示交流成果提出问题,进一步加深理解。
力教学内容师生互动设计意图展示交流探究二:指数形式的函数定义域、值域:求下列函数的定义域、值域:(121 x y =+,(2y =,(3 1 4 2x y-=.首先提问给出的三个函数是否是指数函数,加深学生对指数函数概念的理解。
学生小组讨论,交流。
每组选派一名代表课堂上展示交流成果,组内同学补充。
其他同学可针对展示交流成果提出问题,进一步加深理解。
所给函数虽然不是指数函数,但是由指数函数得到的复合函数,其性质与指数函数密切相关,通过训练能够培养学生的创造性思维能力。
指数函数及其性质 优秀教案
![指数函数及其性质 优秀教案](https://img.taocdn.com/s3/m/285cf307ee06eff9aef807cf.png)
《指数函数的图象及其性质》教学设计一、教学内容分析本节课是《高中数学必修1》(人教A版)第二章第一节第二课(2.1.2)《指数函数及其性质》。
指数函数是重要的基本初等函数之一,作为常见函数,它不仅是今后学习对数函数和幂函数的基础,同时在生活及生产实际中有着广泛的应用,所以指数函数应重点研究。
二、学生学习况情分析指数函数是在学生系统学习了函数概念,基本掌握了函数的性质的基础上进行研究的,是学生对函数概念及性质的第一次应用。
教材在之前的学习中给出了两个实际例子(GDP的增长问题和炭14的衰减问题),已经让学生感受到指数函数的实际背景,但这两个例子背景对于学生来说有些陌生。
本节课先设计一个看似简单的问题,通过超出想象的结果来激发学生学习新知的兴趣和欲望。
三、教学目标(一)知识目标1、理解指数函数的概念,能画出具体指数函数的图象;2、在理解指数函数概念、性质的基础上,能应用所学知识解决简单的数学问题;(二)能力目标1、在教学过程中通过类比,回顾归纳从图象和解析式这两种不同角度研究函数性质的数学方法,加深对指数函数的认识,让学生在数学活动中感受数学思想方法之美、体会数学思想方法之重要;培养学生观察、联想、类比、猜测、归纳等思维能力。
(三)情感目标1、同时通过本节课的学习,使学生获得研究函数的规律和方法;培养学生主动学习、合作交流的意识。
2、让学生自主探究,体验从特殊→一般→特殊的认知过程,培养学生的创新意识四、教学重点与难点教学重点:指数函数的概念、图象和性质。
教学难点:对底数的分类,如何由图象、解析式归纳指数函数的性质。
五、教法学法1、教法分析采用梳理—探究—训练的教学方法,充分利用多媒体辅助教学,通过学生的互动探究,教师点拨,启发学生主动观察、主动思考、动手操作、自主探究来达到对知识的发现和接受2、学法分析学生思维活跃,求知欲强,但在思维习惯上还有待教师引导;从学生原有知识和能力出发,在教师的带领下创设疑问,通过合作交流,共同探索,逐步解决问题。
指数函数及其性质教案 (1)
![指数函数及其性质教案 (1)](https://img.taocdn.com/s3/m/2a63e23ab80d6c85ec3a87c24028915f804d842f.png)
指数函数及其性质教案教学目标知识目标:理解指数函数的定义,掌握指数函数的图象、性质及其简单应用.水平目标:通过自主探索,经历“特殊→一般→特殊”的认知过程,完善认知结构,领会数形结合、分类讨论、归纳推理等数学思想方法,增强识图用图的水平.情感目标:感受数学问题探索的乐趣和成功的喜悦,体会数学的理性、严谨及数与形的和谐统一美,体现数学实用价值及其在社会进步、人类文明发展中的重要作用。
教学重点、难点重点:指数函数的图象、性质及其简单使用.难点:指数函数图象和性质的发现过程,及指数函数图象与底数的关系. 教学方法与手段教学方法:启发式、探究式教学法.教学手段:采用多媒体辅助教学.教学过程1.创设情境,建构概念〖学生活动1〗:将一页白纸连续对折,完成表格并写出:(2)设这页纸的面积单位为1,则对折后每页纸的面积s与对折次数x的关系式:______________________〖问题情境1〗某细胞分裂时,由一个分裂成2个,2个分裂成4个,4个分裂成8个,……如果细胞分裂x次,相对应的细胞个数为y,则细胞个数y 与分裂次数x的表达式:____________________〖问题情境2〗一尺之棰,日取其半,万世不竭.出自《庄子●天下篇》求剩余长度y关于截取次数x的表达式为: ____________________〖问题1〗类似的函数,你能再举出一些例子吗?这些函数有什么共同特点?能否写成一般形式?_____________________________________________________________________〖建构概念〗一般地,形如______________________的函数称为指数函数.它的定义域是R.2.实验探索,汇报交流(1)构建研究方法〖问题2〗我们定义了一个新的函数,你能类比前面讨论函数的思路,提出研究指数函数的方法和内容吗?研究方法:____________________________________研究内容:_____________________________________________〖问题3〗如何来画指数函数的图象呢?_________________________________________________________________ (2)自主探究,汇报交流〖学生活动2〗选择数据,画出图象,观察特点,归纳性质.(在坐标纸上画)x(>0且≠1)具有以下性质:〖学生活动3〗指数函数3.新知使用,巩固深化【例1】比较下列各组数中两个值的大小:①1.52.5,1.53.2;②0.5_1.2,0.5_1.5;③1.50.3,0.81.2.变式探究:①比较a0.3与a3.1的大小(a>0,a≠1)②根据不等式确定x的取值范围.1.5x<1.53.2【例2】①已知3x≥9,求实数x的取值范围;②已知0.2x<25,求实数x的取值范围.4.课堂检测:课本第67页,练习第4题:(2),(4),(6)5.概括知识,总结方法〖问题4〗本节课我们的收获➢1.学习了哪些知识:➢2.实践了一种研究函数的探究模式:➢ 3. 渗透了三种数学思想:5.分层作业,因材施教A组(1)感受理解:课本第70页,习题3.1(2):1,2,3,4;B组(2)思考使用:使用今天的研究方法,你还能得到指数函数的其它性质吗?6、知识扩展〈一〉考古中的指数函数14C是具有放射性的碳同位素,能够自发地实行 衰变,变成氮,半衰期为5730年,活的植物通过光合作用和呼吸作用与环境交换碳元素,体内14C 的比例与大气中的相同。
指数函数及其性质教案
![指数函数及其性质教案](https://img.taocdn.com/s3/m/5ae5c3e5c67da26925c52cc58bd63186bceb922c.png)
指数函数及其性质教案章节一:指数函数的引入教学目标:1. 理解指数函数的概念。
2. 掌握指数函数的一般形式。
教学内容:1. 引入指数函数的概念,指数函数的一般形式。
2. 举例说明指数函数的图像和性质。
教学步骤:1. 引入指数函数的概念,通过实际例子解释指数函数的定义。
2. 介绍指数函数的一般形式,解释指数函数中的底数和指数的含义。
3. 利用数学软件或图形计算器,绘制几个指数函数的图像,观察其特点。
4. 引导学生总结指数函数的性质,如单调性、奇偶性等。
教学评估:1. 课堂讲解和举例是否清晰明了。
2. 学生是否能正确理解和应用指数函数的概念。
章节二:指数函数的图像和性质教学目标:1. 掌握指数函数的图像特点。
2. 理解指数函数的单调性和奇偶性。
教学内容:1. 分析指数函数的图像特点。
2. 探讨指数函数的单调性和奇偶性。
教学步骤:1. 利用数学软件或图形计算器,绘制几个指数函数的图像,引导学生观察和总结其特点。
2. 引导学生探讨指数函数的单调性,如当底数大于1时,函数是增函数;当底数小于1时,函数是减函数。
3. 引导学生探讨指数函数的奇偶性,如指数函数既不是奇函数也不是偶函数。
教学评估:1. 课堂讲解和举例是否清晰明了。
2. 学生是否能正确理解和应用指数函数的图像和性质。
章节三:指数函数的应用教学目标:1. 掌握指数函数在实际问题中的应用。
2. 学会解决与指数函数相关的问题。
教学内容:1. 介绍指数函数在实际问题中的应用。
2. 学会解决与指数函数相关的问题。
教学步骤:1. 举例说明指数函数在实际问题中的应用,如人口增长、放射性衰变等。
2. 引导学生掌握解决与指数函数相关问题的方法,如建立指数函数模型、求解指数方程等。
教学评估:1. 课堂讲解和举例是否清晰明了。
2. 学生是否能正确理解和应用指数函数在实际问题中的应用。
章节四:指数方程的解法教学目标:1. 掌握指数方程的解法。
2. 学会解决实际问题中的指数方程。
2.1.2指数函数及其性质教案doc
![2.1.2指数函数及其性质教案doc](https://img.taocdn.com/s3/m/9384d632376baf1ffc4fad57.png)
2.1.2指数函数及其性质一、教学目标知识与技能:理解指数函数的概念、意义和性质,会画具体指数函数的图象。
过程与方法:利用实际背景,通过自主探索,培养学生观察、分析、归纳等抽象思维能力,通过具体的函数图象归纳出指数函数的性质,体会数形结合和分类讨论思想以及从特殊到一般的抽象概括的方法 。
情感、态度与价值观:通过学习,使学生学会认识事物的特殊性与一般性之间的关系,构建和谐的课堂氛围,充分发挥学生的主观能动性,培养他们勇于提问、善于探索的数学思维品质。
认识到数学来源于生活,并且服务于生活。
二、教学重点和难点重点:指数函数的概念和性质。
难点:用数形结合的方法,从具体到一般的探索、概括指数函数的性质。
三、教学过程(一) 创设情境、导入新课老师:在本章的开始,给出了两个问题:问题一:据国务院发展研究中心2000年发表的《未来20年我国前景分析》判断,未来20年,我国GDP(国内生产总值)年平均增长率可望达到7.3%,那么,在2001--2020年,各年的GDP 可望为2000年的多少倍?问题二:当生物死亡后,它机体内原有的碳14会按确定的规律衰减,大约每经过5730年衰减为原来的一半,这个时间称为“半衰期”。
根据此规律,人们获得了碳14含量P 和死亡年数t 的之间对应关系.关系,为引出指数函数的模型 xa y =(a>0,a ≠1)做准备,以利于学生体会指数函数的概念来自于生活,并且服务于生活。
(二) 师生互动、探究新知1.指数函数的定义老师:提出探究问题1:上述问题中的两个对应关系能否构成函数关系? 提出探究问题2:上述两个函数有什么样的共同特征?学生:通过思考讨论不难得出探究1的结论:能够构成函数关系。
引导学生通过观察得出两个函数的共同特征:(1)幂的形式都一样;(2)幂的底数都是一个正常数; (3)幂的指数都是一个变量。
老师:如果可以用字母a 代替其中的底数,那么上述两式就可以表示成x a y =的形式,自变量在指数位置,我们把具有这种形式的函数叫做指数函数。
《指数函数》的优秀教案
![《指数函数》的优秀教案](https://img.taocdn.com/s3/m/abc874afed3a87c24028915f804d2b160b4e86be.png)
《指数函数》的优秀教案•相关推荐《指数函数》的优秀教案(精选7篇)作为一名人民教师,常常要根据教学需要编写教案,教案是保证教学取得成功、提高教学质量的基本条件。
教案应该怎么写才好呢?下面是小编整理的《指数函数》的优秀教案,欢迎大家分享。
《指数函数》的优秀教案篇1教学目标:1.进一步理解指数函数的性质;2.能较熟练地运用指数函数的性质解决指数函数的平移问题;教学重点:指数函数的性质的应用;教学难点:指数函数图象的平移变换.教学过程:一、情境创设1.复习指数函数的概念、图象和性质练习:函数y=ax(a0且a1)的定义域是_____,值域是______,函数图象所过的定点坐标为.若a1,则当x0时,y1;而当x0时,y1.若00时,y1;而当x0时,y1.2.情境问题:指数函数的性质除了比较大小,还有什么作用呢?我们知道对任意的a0且a1,函数y=ax的图象恒过(0,1),那么对任意的a0且a1,函数y=a2x1的图象恒过哪一个定点呢?二、数学应用与建构例1解不等式:(1);(2);(3);(4).小结:解关于指数的不等式与判断几个指数值的大小一样,是指数性质的运用,关键是底数所在的范围.例2说明下列函数的图象与指数函数y=2x的图象的关系,并画出它们的示意图:(1);(2);(3);(4).小结:指数函数的平移规律:y=f(x)左右平移y=f(x+k)(当k0时,向左平移,反之向右平移),上下平移y=f(x)+h(当h0时,向上平移,反之向下平移).练习:(1)将函数f(x)=3x的图象向右平移3个单位,再向下平移2个单位,可以得到函数的图象.(2)将函数f(x)=3x的图象向右平移2个单位,再向上平移3个单位,可以得到函数的图象.(3)将函数图象先向左平移2个单位,再向下平移1个单位所得函数的解析式是.(4)对任意的a0且a1,函数y=a2x1的图象恒过的定点的坐标是.函数y=a2x—1的图象恒过的定点的坐标是.小结:指数函数的定点往往是解决问题的突破口!定点与单调性相结合,就可以构造出函数的简图,从而许多问题就可以找到解决的突破口.(5)如何利用函数f(x)=2x的图象,作出函数y=2x和y=2|x2|的图象?(6)如何利用函数f(x)=2x的图象,作出函数y=|2x—1|的图象?小结:函数图象的对称变换规律.例3已知函数y=f(x)是定义在R上的奇函数,且x0时,f(x)=1—2x,试画出此函数的图象.例4求函数的最小值以及取得最小值时的x值.小结:复合函数常常需要换元来求解其最值.练习:(1)函数y=ax在[0,1]上的最大值与最小值的和为3,则a等于;(2)函数y=2x的值域为;(3)设a0且a1,如果y=a2x+2ax—1在[—1,1]上的最大值为14,求a的值;(4)当x0时,函数f(x)=(a2—1)x的值总大于1,求实数a的取值范围.三、小结1.指数函数的性质及应用;2.指数型函数的定点问题;3.指数型函数的草图及其变换规律.四、作业:课本P55—6,7.五、课后探究(1)函数f(x)的定义域为(0,1),则函数的定义域为。
指数函数及其性质教学教案
![指数函数及其性质教学教案](https://img.taocdn.com/s3/m/6690604011a6f524ccbff121dd36a32d7375c783.png)
指数函数及其性质教学教案一、教学目标1. 知识与技能:(1)理解指数函数的定义;(2)掌握指数函数的性质;(3)能够运用指数函数解决实际问题。
2. 过程与方法:(1)通过观察、分析、归纳等方法,引导学生发现指数函数的性质;(2)利用信息技术手段,动态展示指数函数的图像,帮助学生直观理解指数函数的性质。
3. 情感态度价值观:培养学生对数学的兴趣,提高学生运用数学知识解决实际问题的能力。
二、教学重点与难点1. 教学重点:(1)指数函数的定义;(2)指数函数的性质;(3)指数函数在实际问题中的应用。
2. 教学难点:(1)指数函数的性质的推导;(2)指数函数在实际问题中的灵活运用。
三、教学准备1. 教师准备:(1)熟悉指数函数的相关知识;(2)准备相关的教学案例和实际问题;(3)准备教学课件和教学素材。
2. 学生准备:(1)掌握函数的基本概念;(2)了解对数函数的相关知识。
四、教学过程1. 导入新课:(1)复习函数的基本概念,引导学生回顾已知函数的性质;(2)提问:同学们,你们听说过指数函数吗?指数函数是什么样的函数呢?2. 探究指数函数的定义:(1)引导学生通过观察、分析,总结指数函数的一般形式;(2)给出指数函数的定义,并解释指数函数的特点。
3. 探究指数函数的性质:(1)引导学生通过观察、分析、归纳等方法,发现指数函数的性质;(2)利用信息技术手段,动态展示指数函数的图像,帮助学生直观理解指数函数的性质。
4. 应用指数函数解决实际问题:(1)给出实际问题,引导学生运用指数函数知识解决问题;(2)引导学生总结指数函数在实际问题中的应用方法。
五、课堂小结本节课我们学习了指数函数的定义和性质,并通过实际问题了解了指数函数的应用。
希望同学们能够掌握指数函数的知识,并在实际问题中灵活运用。
教学反思:在教学过程中,要注意引导学生通过观察、分析、归纳等方法,发现指数函数的性质。
要注重培养学生的实际问题解决能力,提高学生运用数学知识解决实际问题的能力。
指数函数及其性质教学教案
![指数函数及其性质教学教案](https://img.taocdn.com/s3/m/71741c6530126edb6f1aff00bed5b9f3f90f7282.png)
指数函数及其性质教学教案一、教学目标1. 知识与技能:使学生掌握指数函数的定义、表达式及图像特征;理解指数函数的单调性、奇偶性、过定点等性质;能够运用指数函数解决实际问题。
2. 过程与方法:通过观察、分析、归纳等方法,引导学生发现指数函数的性质;运用数形结合的方法,让学生感受指数函数在实际生活中的应用。
3. 情感态度与价值观:培养学生对数学的兴趣,提高学生运用数学知识解决实际问题的能力。
二、教学重点与难点1. 教学重点:指数函数的定义、表达式及图像特征;指数函数的单调性、奇偶性、过定点等性质。
2. 教学难点:指数函数的单调性的证明及应用;指数函数在实际生活中的应用。
三、教学过程1. 导入新课:以日常生活中常见的实例为切入点,如手机信号强度衰减、人口增长等,引出指数函数的概念。
2. 自主学习:让学生通过阅读教材,掌握指数函数的定义、表达式及图像特征。
3. 课堂讲解:讲解指数函数的单调性、奇偶性、过定点等性质,并通过例题演示运用指数函数解决实际问题。
4. 师生互动:引导学生通过观察、分析、归纳等方法,发现指数函数的性质;组织学生进行小组讨论,分享各自的学习心得。
5. 练习巩固:布置适量的课后练习题,让学生巩固所学知识。
四、课后作业1. 完成教材后的课后练习题。
2. 结合生活实际,寻找其他符合条件的指数函数实例,并加以分析。
五、教学反思2. 对教学过程中存在的问题进行反思,如教学方法、教学内容等,并提出改进措施。
3. 针对学生的学习情况,调整课后作业的难度,确保学生能够巩固所学知识。
六、教学评价1. 学生自评:让学生结合自己的学习情况,评价自己在本次课程中对指数函数及其性质的掌握程度。
2. 同伴评价:组织学生进行小组评价,相互交流在学习过程中的心得体会,取长补短。
3. 教师评价:根据学生的课堂表现、课后作业完成情况,以及课堂互动情况,对学生的学习效果进行评价。
七、教学拓展1. 引导学生探讨指数函数在其他领域的应用,如自然科学、社会科学等。
指数函数及其性质教案——方林
![指数函数及其性质教案——方林](https://img.taocdn.com/s3/m/9e62608bec3a87c24028c478.png)
§2.1.2指数函数及其性质一、教学目标知识与技能:通过实际问题了解指数函数的实际背景,理解指数函数的概念和意义过程与方法:根据图象理解和掌握指数函数的性质,体会具体到一般数学讨论方式及数形结合的思想.培养学生观察问题、分析问题的能力,培养学生严谨的思维和科学正确的计算能力. 情感态度与价值观:通过训练点评,让学生更能熟练指数幂运算性质.展示函数图象,让学生通过观察,进而研究指数函数的性质,让学生体验数学的简洁美和统一美. 二、教学重难点教学重点:指数函数的概念和性质及其应用. 教学难点:指数函数性质的归纳、概括及其应用. 三、教具准备 四、教学过程 (一)导入课题1.一种放射性物质不断衰减为其他物质,每经过一年剩留量约是原来的84%,求出这种物质经过x 年后的剩留量y 与x 的关系式是_________.(y=0.84x)2.某种细胞分裂时,由一个分裂成两个,两个分裂成四个,四个分裂成十六个,依次类推,一个这样的细胞分裂x 次后,得到的细胞个数y 与x 的关系式是_________.(y=2x) (二)新知探究 提出问题(1)你能说出函数y=0.84x 与函数y=2x的共同特征吗?(2)你是否能根据上面两个函数关系式给出一个一般性的概念? (3)为什么指数函数的概念中明确规定a>0,a ≠1? (4)为什么指数函数的定义域是实数集?(5)如何根据指数函数的定义判断一个函数是否是一个指数函数?请你说出它的步骤. 活动:先让学生仔细观察,交流讨论,然后回答,教师提示点拨 讨论结果:(1)对于两个解析式我们看到每给自变量x 一个值,y 都有唯一确定的值和它对应,再就是它们的自变量x 都在指数的位置上,它们的底数都大于0,但一个大于1,一个小于1.0.84与2虽然不同,但它们是两个函数关系中的常量,因为变量只有x 和y .(2)对于两个解析式xy 84.0=和xy 2=,我们把两个函数关系中的常量用一个字母a 来表示,这样我们得到指数函数的定义:一、定义:一般地,函数xa y =)1,0(≠>a a 叫做指数函数,其中x 叫自变量,函数的定义域是实数集R .(3)注意:(i )规定1,0≠>a a⎩⎨⎧≤>=没有意义恒等于,00,00x a x a x 0<a 开偶次根号没有意义,如2)2(,21,221-=-==-=x a x a ,显然是没有意义的1=a 是一个常数函数,无研究必要(ii )形式的严格性:1,0≠>a a ,指数是自变量x ,且R x ∈,整个式子的系数是1 (4)因为x a ,0>可以取任意的实数,所以指数函数的定义域是实数集R .(5)判断一个函数是否是一个指数函数,一是看底数是否是一个常数,再就是看自变量是否是一个x 且在指数位置上,满足这两个条件的函数才是指数函数. 例1判断下列函数是否是一个指数函数?(1)x y 4= (2)4x y = (3)x y 4-= (4)x y )4(-= (5)x y -=π(6)xy )1(π= (7)x x y = (8))1,0()12(≠>-=a a a y x (9)x y 32⋅= (10)26+=x y变式训练函数x a a a y )33(2+-=是指数函数,则=a函数x x x x a y a y k a y y 23,,,2--==+==)1,0(≠>a a 中是指数函数的有哪些? 已知)(x f y =是指数函数,且4)2(=f ,求函数)(x f y =的解析式 提出问题(1)前面我们学习函数的时候,根据什么思路研究函数的性质,对指数函数呢? (2)前面我们学习函数的时候,如何作函数的图象?说明它的步骤.(3)利用上面的步骤,作函数xy 2=,xy )21(=的图象.(4)根据上述几个函数图象的特点,你能归纳出指数函数的性质吗?(5)把xy 2=和xy )21(=的图象,放在同一坐标系中,你能发现这两个图象的关系吗?(6)你能证明上述结论吗?(7)能否用xy 2=的图象画xy )21(=的图象?请说明画法的理由.活动:教师引导学生回顾需要研究的函数的那些性质,共同讨论研究指数函数的性质的方法,强调数形结合,强调函数图象在研究函数性质中的作用,注意从具体到一般的思想方法的运用,渗透概括能力的培养 讨论结果:(1)我们研究函数时,根据图象研究函数的性质,由具体到一般,一般要考虑函数的定义域、值域、单调性、奇偶性,有时也通过画函数图象,从图象的变化情况来看函数的性质. (2)列表x … -3 -2 -1 0 1 2 3 … x y 2=…81 41 211248…xy )21(=… 8 4 2 121 41 81…(2)描点作图(4)通过观察图像,可知图象左右延伸,无止境说明定义域是实数.图象自左至右是上升的,说明是增函数,图象位于x 轴上方,说明值域大于0.图象经过点)1,0(。
人教版高中数学必修一2-1-2《指数函数及其性质》公开课教案
![人教版高中数学必修一2-1-2《指数函数及其性质》公开课教案](https://img.taocdn.com/s3/m/a8e9be22f02d2af90242a8956bec0975f465a415.png)
课题:指数函数及其性质2.1.2 指数函数及其性质一、教学目标:1.理解指数函数的概念,掌握指数函数的图象和性质.2.通过教学,掌握研究函数性质的思路方法,如类比、从特殊到一般等,增强学生识图用图的能力.3.在指数函数的学习过程中,培养学生观察、分析、归纳等思维能力,体会分类讨论思想、数形结合等数学思想. 二、教学重点、难点:教学重点:指数函数的定义、图象和性质.教学难点:指数函数定义、图象和性质的发现总结。
三、教学过程:1.创设情境引例1:某种细胞分裂时,由1个分裂成2个,2个分裂成4个,……以此类推,1个这样的细胞分裂 x 次后,得到的细胞个数 y 与 x 的函数关系式是什么?生: y 与 x 之间的关系式,可以表示为y =2x ,*x N .引例2:《庄子·天下篇》中写道:“一尺之棰,日取其半,万世不竭.”则截取x 次后,木棰剩余量y 与x 的函数关系式是什么?生: y 与 x 之间的关系式,可以表示为1()2x y = ,*x N ∈.问题1: 观察函数12()2xxy y ==与的解析式,这两个函数是不是我们以前学习的一次、二次、反比例函数?这两个函数的解析式有何共同特征?生:不是以前学习的一次、二次、反比例函数,他们的共同特征都是xy a =的形式. 问题2: 你能模仿以前学习的一次、二次、反比例函数的定义,给出这一新型函数的定义吗?学生回答xy a =,若回答不出,教师因势利导,然后板书课题:指数函数及其性质. 2. 指数函数的定义一般地,函数(0,1)x y a a a =>≠且叫做指数函数,其中x 是自变量,函数的定义域是R .(归纳指数函数的定义,学生可能归纳不全,如想不到限制条件0a >且1a ≠,师直接说即可.)问题3: 在指数函数的定义中,为什么规定底数0a >且1a ≠呢? 生:(1)若0a =,则当0x >时,0xa =;当0x ≤时,xa 无意义;(2)若a <0,则对x 的某些值,可使xa 无意义,如12,2a x =-=; (3)若1a =,则无论x 取何值,它总是1,没有研究的价值.师:以上同学解释得都有一定道理但不够,底数a 范围的确定,是为了保证a 在这个范围内取值时,这一类函数的定义域永远是相同的.师:请大家来看下面一组练习:判断下列函数是不是指数函数?(学生回答)1(1)3x y += (2)3x y = (3)3x y =- 3(4)y x =(5)x y x =(6)x y π= (7)(3)x y =- ()()821xy a =-1(2a >且1)a ≠ 规律总结:指数函数的特征:(1)幂的系数为1;(2)底数是一个正的不等于1常数;(3)指数为自变量x .3. 指数函数的图象师:问题4:要研究一种新函数,如何研究?生:定义—图象—性质-应用师:问题5:研究一个函数,主要研究它的哪些性质呢? 生:定义域、值域、特殊点、单调性、最值、奇偶性.师:既然我们明晰了研究函数的思路和方法,那请你画指数函数(0,1)xy a a a =>≠且的图象.生:不知道底数a ,画不出来.师:那我们先画哪个指数函数的图象呢? 生:画12()2xxy y ==与的图象.师:请大家画出以下四个指数函数的图象.()()()()112 2()2133 4()3x x x xy y y y ==== 由学生分组上黑板画图,然后师生一起订正。
最新人教版高一数学《指数函数》教案15篇
![最新人教版高一数学《指数函数》教案15篇](https://img.taocdn.com/s3/m/9d6aba13a200a6c30c22590102020740be1ecd43.png)
人教版高一数学《指数函数》教案15篇人教版高一数学《指数函数》教案15篇人教版高一数学《指数函数》教案(1)课题:§2.1.2指数函数及其性质教学任务:(1)使学生了解指数函数模型的实际背景,认识数学与现实生活及其他学科的联系;(2)理解指数函数的的概念和意义,能画出具体指数函数的图象,探索并理解指数函数的单调性和特殊点;(3)在学习的过程中体会研究具体函数及其性质的过程和方法,如具体到一般的过程、数形结合的方法等.教学重点:指数函数的的概念和性质.教学难点:用数形结合的方法从具体到一般地探索、概括指数函数的性质.教学过程:一、引入课题(备选引例)1.(合作讨论)人口问题是全球性问题,由于全球人口迅猛增加,已引起全世界关注.世界人口2000年大约是60亿,而且以每年1.3%的增长率增长,按照这种增长速度,到2050年世界人口将达到100多亿,大有“人口爆炸”的趋势.为此,全球范围内敲起了人口警钟,并把每年的7月11日定为“世界人口日”,呼吁各国要控制人口增长.为了控制人口过快增长,许多国家都实行了计划生育.我国人口问题更为突出,在耕地面积只占世界7%的国土上,却养育着22%的世界人口.因此,中国的人口问题是公认的社会问题.2000年第五次人口普查,中国人口已达到13亿,年增长率约为1%.为了有效地控制人口过快增长,实行计划生育成为我国一项基本国策.按照上述材料中的1%的增长率,从2000年起,x年后我国的人口将达到2000年的多少倍?到2050年我国的人口将达到多少?你认为人口的过快增长会给社会的发展带来什么样的影响?2.上一节中GDP问题中时间x与GDP值y的对应关系y=1.073x(x∈N*,x≤20)能否构成函数?3.一种放射性物质不断变化成其他物质,每经过一年的残留量是原来的84%,那么以时间x年为自变量,残留量y的函数关系式是什么?4.上面的几个函数有什么共同特征?二、新课教学(一)指数函数的概念一般地,函数叫做指数函数(exponential function),其中x是自变量,函数的定义域为R.注意:指数函数的定义是一个形式定义,要引导学生辨析;注意指数函数的底数的取值范围,引导学生分析底数为什么不能是负数、零和1.巩固练习:利用指数函数的定义解决(教材P68例2、3)(二)指数函数的图象和性质问题:你能类比前面讨论函数性质时的思路,提出研究指数函数性质的内容和方法吗?研究方法:画出函数的图象,结合图象研究函数的性质.研究内容:定义域、值域、特殊点、单调性、最大(小)值、奇偶性.探索研究:1.在同一坐标系中画出下列函数的图象:(1)(2)(3)(4)(5)2.从画出的图象中你能发现函数的图象和函数的图象有什么关系?可否利用的图象画出的图象?3.从画出的图象(、和)中,你能发现函数的图象与其底数之间有什么样的规律?4.你能根据指数函数的图象的特征归纳出指数函数的性质吗?5.利用函数的单调性,结合图象还可以看出:(1)在[a,b]上,值域是或;(2)若,则;取遍所有正数当且仅当;(3)对于指数函数,总有;(4)当时,若,则;(三)典型例题例1.(教材P56例6).解:(略)例2.(教材P57例7)解:(略)巩固练习:(教材P59习题A组第7题)三、归纳小结,强化思想本节主要学习了指数函数的图象,及利用图象研究函数性质的方法.四、作业布置1.必做题:教材P59习题2.1(A组)第5、6、8、12题.2.选做题:教材P60习题2.1(B组)第1题.人教版高一数学《指数函数》教案(2)3.1.2指数函数的概念教学设计一、教学目标:知识与技能:理解指数函数的概念,能够判断指数函数。
数学指数函数教学教案(最新5篇)
![数学指数函数教学教案(最新5篇)](https://img.taocdn.com/s3/m/8cd4dc19dc36a32d7375a417866fb84ae45cc3f2.png)
数学指数函数教学教案(最新5篇)高一数学《指数函数》优秀教案篇一一、教学目标:1、知识与技能(1)理解指数函数的概念和意义;(2)与的图象和性质;(3)理解和掌握指数函数的图象和性质;(4)指数函数底数a对图象的影响;(5)底数a对指数函数单调性的影响,并利用它熟练比较几个指数幂的大小(6)体会具体到一般数学讨论方式及数形结合的思想。
2、情感、态度、价值观(1)让学生了解数学来自生活,数学又服务于生活的哲理。
(2)培养学生观察问题,分析问题的能力。
二、重、难点:重点:(1)指数函数的概念和性质及其应用。
(2)指数.函数底数a对图象的影响。
(3)利用指数函数单调性熟练比较几个指数幂的大小。
难点:(1)利用函数单调性比较指数幂的大小。
(2)指数函数性质的归纳,概括及其应用。
三、教法与教具:①学法:观察法、讲授法及讨论法。
②教具:多媒体。
四、教学过程:第一课时讲授新课指数函数的定义一般地,函数(0且≠1)叫做指数函数,其中是自变量,函数的定义域为R。
提问:在下列的关系式中,哪些不是指数函数,为什么?(1)(2)(3)(4)(5)(6)(7)(8)(1,且)小结:根据指数函数的定义来判断说明:因为0,是任意一个实数时,是一个确定的实数,所以函数的定义域为实数集R。
若0,如在实数范围内的函数值不存在。
若=1,是一个常量,没有研究的意义,只有满足的形式才能称为指数函数,不符合我们在学习函数的单调性的时候,主要是根据函数的图象,即用数形结合的方法来研究。
先来研究的情况。
下面我们通过用计算机完成以下表格,并且用计算机画出函数的图象。
再研究,01的情况,用计算机完成以下表格并绘出函数的图象。
从图中我们看出。
通过图象看出实质是上的。
讨论:的图象关于轴对称,所以这两个函数是偶函数,对吗?②利用电脑软件画出的函数图象。
练习p711,2作业p76习题3-3A组2课后反思:高一数学《指数函数》优秀教案篇二教学目标:进一步理解指数函数及其性质,能运用指数函数模型,解决实际问题。
指数函数的图像与性质教案
![指数函数的图像与性质教案](https://img.taocdn.com/s3/m/06f26830571252d380eb6294dd88d0d233d43c27.png)
指数函数的图像与性质教案一、教学目标1. 理解指数函数的定义和基本性质。
2. 能够绘制和分析指数函数的图像。
3. 掌握指数函数在实际问题中的应用。
二、教学内容1. 指数函数的定义与表达式指数函数是一种特殊类型的函数,形式为f(x) = a^x,其中a 是底数,x 是指数。
指数函数的定义域是所有实数,值域是正实数。
2. 指数函数的图像特点(1) 当a > 1 时,指数函数的图像上升。
(2) 当0 < a < 1 时,指数函数的图像下降。
(3) 指数函数的图像经过点(0, 1)。
3. 指数函数的性质(1) 单调性:当a > 1 时,指数函数单调递增;当0 < a < 1 时,指数函数单调递减。
(2) 指数函数的值域为正实数。
(3) 指数函数的图像具有无限多条切线,且切线斜率恒为a。
三、教学方法1. 采用问题驱动的教学方法,引导学生通过观察、分析和解决实际问题,深入理解指数函数的图像与性质。
2. 利用数学软件或图形计算器绘制指数函数的图像,帮助学生直观地感受指数函数的特点。
3. 设计具有挑战性的练习题,激发学生的思考和探索能力,巩固所学知识。
四、教学评估1. 通过课堂讲解、练习题和小组讨论,评估学生对指数函数定义、图像和性质的理解程度。
2. 布置课后作业,要求学生绘制指数函数的图像,并运用指数函数解决实际问题,以评估学生的应用能力。
3. 在课程结束后,进行一次小测验,检验学生对指数函数的整体掌握情况。
五、教学资源1. 教学PPT或教案文档,包含指数函数的定义、图像和性质的相关知识点。
2. 数学软件或图形计算器,用于绘制指数函数的图像。
3. 练习题和案例分析题,供学生巩固所学知识和应用实践。
六、教学步骤1. 引入指数函数的概念,引导学生思考指数函数在实际生活中的应用场景。
2. 讲解指数函数的定义与表达式,引导学生理解指数函数的基本形式。
3. 利用数学软件或图形计算器,绘制不同底数的指数函数图像,引导学生观察和分析指数函数的图像特点。
必修1教案2.1.2指数函数及其性质(一)
![必修1教案2.1.2指数函数及其性质(一)](https://img.taocdn.com/s3/m/53a299d3ce2f0066f53322ae.png)
2.1.2 指数函数及其性质(一)(一)教学目标1.知识与技能了解指数函数模型的实际背景,理解指数函数的概念,掌握指数函数的图象.2.过程与方法能借助计算器或计算机画出具体指数函数的图象,探索指数函数图象特征.3.情感、态度与价值观在解决简单实际问题的过程中,体会指数函数是一类重要的函数模型,激发学生学习数学的兴趣,努力培养学生的创新意识.(二)教学重点、难点1.教学重点:指数函数的概念和图象.2.教学难点:指数函数的概念和图象.(三)教学方法采用观察、分析、归纳、抽象、概括,自主探究,合作交流的教学方法,通过各种教学媒体(如计算机或计算器),调动学生参与课堂教学的主动性和积极性.(四)教学过程教学环节教学内容师生互动设计意图复习引入1. 在本章的开头,问题(1)中时间x与GDP值中的 1.073(20)xy x x=∈≤与问题(2)中时间t和C-14含量P的对应关系]t51301P=[()2,请问这两个函数有什么共同特征.2. 这两个函数有什么共同特征157301][()]2tP=t57301把P=[()变成2,从而得出这学生思考回答函数的特征.由实际问题引入,不仅能激发学生的学习兴趣,而且可以培养学生解决实际问题的能力.两个关系式中的底数是一个正数,自变量为指数,即都可以用xy a =(a >0且a ≠1来表示).形成概念理解概念指数函数的定义一般地,函数xy a =(a >0且a ≠1)叫做指数函数,其中x 是自变量,函数的定义域为R .回答:在下列的关系式中,哪些不是指数函数,为什么?(1)22x y +=(2)(2)xy =- (3)2xy =-(4)xy π=(5)2y x = (6)24y x=(7)xy x =(8)(1)xy a =- (a >1,且2a ≠)小结:根据指数函数的定义来判断说明:因为a >0,x 是任意一个实数时,xa 是一个确定的实数,所以函数的定义域为实数集R .000,0xx a a x a ⎧>⎪=⎨≤⎪⎩x当时,等于若当时,无意义若a <0,如1(2),,8x y x x =-=1先时,对于=等等,6在实数范围内的函数值不存在.若a =1, 11,xy == 是一个常量,没有研究的意义,只有满足学生独立思考,交流讨论,教师巡视,并注意个别指导,学生探讨分析,教师点拨指导.由特殊到一般,培养学生的观察、归纳、概括的能力.使学生进一步理解指数函数的概念.(0,1)x y a a a =>≠且的形式才能称为指数函数,a 为常数,如:,,xy x =1xxy=2-3,y=253,31x x y y +==+等等,不符合(01)x y a a a =>≠且的形式,所以不是指数函数 .深化概念我们在学习函数的单调性的时候,主要是根据函数的图象,即用数形结合的方法来研究. 下面我们通过先来研究xy a =(a >1)的图象, 用计算机完成以下表格,并且用计算机画出函数2xy =的图象x3.00- 2.50- 2.00- 1.50-2x y =18-141.00- 0.00 0.50 1.00 1.502.00 121 2 4再研究先来研究xy a =(0<a <1)的图象,用计算机完成以下表格并绘出函数1()2xy =的图象.x2.50- 2.00- 1.50- 1.00- 0.001()2x y =141211.00 1.502.00 2.50学生列表计算,描点、作图.教师动画演示.学生观察、归纳、总结,教师诱导、点评. 通过列表、计算使学生体会、感受指数函数图象的化趋势,通过描点,作图培养学生的动手实践能力.不同情况进行对照,使学生再次经历从特殊到一般,由具体到抽象的思维过程.培养学生的归纳概括能力.从图中我们看出12()2x x y y ==与的图象有什么关系?通过图象看出12()2x x y y y ==与的图象关于轴对称,实质是2xy =上的x,y 点(-)x y x,y y 1与=()上点(-)关于轴对称.2讨论:12()2xx y y ==与的图象关于y 轴对称,所以这两个函数是偶函数,对吗?②利用电脑软件画出115,3,(),()35x x x x y y y y ====的函数图象.2 4所以0(0)1f π==,133(0)f ππ==,11(3)f ππ--==.归纳 总结1、理解指数函数(0),xy a a =>101a a ><<注意与两种情况2、解题利用指数函数的图象,可有利于清晰地分析题目,培养数型结合与分类讨论的数学思想 .学生先自回顾反思,教师点评完善. 通过师生的合作总结,使学生对本节课所学知识的结构有一个明晰的认识,形成知识体系.课后 作业作业:2.1 第四课时 习案 学生独立完成 巩固新知 提升能力备选例题例1 指出下列函数哪些是指数函数: (1)x y 4=; (2)4x y =; (3)x y 4-=; (4)xy )4(-=; (5)xy π=; (6)24x y =;(7)x x y =; (8),21()12(>-=a a y x且)1≠a . 【分析】 根据指数函数定义进行判断. 【解析】 (1)、(5)、(8)为指数函数; (2)是幂函数(后面2.3节中将会学习); (3)是1-与指数函数x 4的乘积;(4)底数04<-,∴不是指数函数; (6)指数不是自变量x ,而底数是x 的函数; (7)底数x 不是常数. 它们都不符合指数函数的定义.【小结】准确理解指数函数的定义是解好本问题的关键.例 2 用计算机作出的图像,并在同一坐标系下作出下列函数的图象,并指出它们与指数函数y =x 2的图象的关系,⑴y =12+x 与y =22+x . ⑵y =12-x 与y =22-x .解:⑴作出图像,显示出函数数据表比较函数y =12+x 、y =22+x 与y =x2的关系:将指数函数y =x2的图象向左平行移动1个单位长度,就得到函数y =12+x 的图象,将指数函数y =x2的图象向左平行移动2个单位长度,就得到函数y =22+x 的图象⑵作出图像,显示出函数数据表比较函数y =12-x 、y =22-x 与y =x 2的关系:将指数函数y =x 2的图象向右平行移动1个单位长度,就得到函数y =12-x 的图象,将指数函数y =x 2的图象向右平行移动2个单位长度,就得到函数y =22-x 的图象小结:⑴当m >0时,将指数函数y =x 2的图象向右平行移动m 个单位长度,就得到函数y =m x -2的图象;当m >0时,将指数函数y =x 2的图象向左平行移动m 个单位长度,就得到函数y =2x m +的图象。
指数函数教案
![指数函数教案](https://img.taocdn.com/s3/m/7c67fe85ba4cf7ec4afe04a1b0717fd5360cb2c7.png)
指数函数教案指数函数教案指数函数是高中数学中的重要内容之一,它在数学和科学领域中有着广泛的应用。
本教案将介绍指数函数的定义、性质以及一些常见的应用。
一、指数函数的定义指数函数是以常数e为底的幂函数,通常表示为f(x) = a^x,其中a是底数,x是指数。
指数函数的定义域是实数集,值域是正实数集。
二、指数函数的性质1. 指数函数的图像指数函数的图像呈现出特殊的形状,当底数a大于1时,图像呈现上升的趋势;当底数a小于1时,图像呈现下降的趋势。
当底数a等于1时,指数函数的图像为一条直线。
2. 指数函数的增减性当底数a大于1时,指数函数是递增的;当底数a小于1时,指数函数是递减的。
3. 指数函数的性质指数函数具有以下性质:- f(x) = a^x是连续函数;- 指数函数的导数等于它自身的函数值的导数,即f'(x) = a^x * ln(a);- 指数函数的反函数是对数函数。
三、指数函数的应用指数函数在实际问题中有着广泛的应用,下面介绍几个常见的应用场景。
1. 复利计算在金融领域中,指数函数可以用来计算复利。
复利是指在一定时间内,本金按照一定的利率进行投资,每个时间段的利息都会加到本金上,从而产生更多的利息。
指数函数可以用来计算复利的增长情况,帮助人们做出更明智的投资决策。
2. 生物增长模型生物学中的种群增长模型常常使用指数函数来描述。
例如,兔子繁殖模型中,假设兔子的繁殖速度与当前种群数量成正比,那么种群数量的增长可以用指数函数来表示。
这种模型可以帮助科学家研究生物种群的增长规律。
3. 物质衰变在物理学和化学领域中,指数函数可以用来描述物质的衰变过程。
例如,放射性元素的衰变速度与其当前的数量成正比,可以用指数函数来表示。
这种模型可以帮助科学家研究物质的衰变规律。
4. 电子电路在电子电路中,指数函数可以用来描述电容充放电过程。
当电容器充电时,电荷的增长速度与当前电荷量成正比,可以用指数函数来表示。
这种模型可以帮助工程师设计和优化电子电路。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.1.2指数函数及其性质教学设计
一、教学目标:
知识与技能:理解指数函数的概念,掌握指数函数的图象和性质,培养学生实际应用函数的能力。
过程与方法:通过观察图象,分析、归纳、总结、自主建构指数函数的性质。
领会数形结合的数学思想方法,培养学生发现、分析、解决问题的能力。
情感态度与价值观:在指数函数的学习过程中,体验数学的科学价值和应用价值,培养学生善于观察、勇于探索的良好习惯和严谨的科学态度。
二、教学重点、难点:
教学重点:指数函数的概念、图象和性质。
教学难点:对底数的分类,如何由图象、解析式归纳指数函数的性质。
三、教学过程:
(一)创设情景
问题1:某种细胞分裂时,由1个分裂成2个,2个分裂成4个,……一个这样的细胞分裂 x 次后,得到的细胞分裂的个数 y 与 x 之间,构成一个函数关系,能写出 x 与 y 之间的函数关系式吗?
学生回答: y 与 x 之间的关系式,可以表示为y =2x 。
问题2: 一种放射性物质不断衰变为其他物质,每经过一年剩留的质量约是原来的84%.求出这种物质的剩留量随时间(单位:年)变化的函数关系.设最初的质量为1,时间变量用x 表示,剩留量用y 表示。
学生回答: y 与 x 之间的关系式,可以表示为y =0.84x 。
引导学生观察,两个函数中,底数是常数,指数是自变量。
1.指数函数的定义
一般地,函数()10≠>=a a a y x
且叫做指数函数,其中x 是自变量,函数的定义域是R . 问题:指数函数定义中,为什么规定“10≠>a a 且”如果不这样规定会出现什么情况?
(1)若a<0会有什么问题?(如2
1,2=-=x a 则在实数范围内相应的函数值不存在) (2)若a=0会有什么问题?(对于0≤x ,x a 无意义)
(3)若 a=1又会怎么样?(1x 无论x 取何值,它总是1,对它没有研究的必要.)
师:为了避免上述各种情况的发生,所以规定0>a 且 1≠a .
练1:指出下列函数那些是指数函数:
()x
x x x x y y y y x y y ⎪⎭⎫ ⎝⎛==-=-===-ππ1)6()5(4)4(4)3()2(4)1(4 练2:若函数
是指数函数,则a=------
2.指数函数的图像及性质 在同一平面直角坐标系内画出指数函数x y 2=与x y ⎪⎭
⎫ ⎝⎛=21的图象(画图步骤:列表、描点、连线)。
由学生自己画出x y 3=与x
y ⎪⎭⎫ ⎝⎛=31的函数图象 然后,通过两组图象教师组织学生结合图像讨论指数函数的性质。
特别地,函数值的分布情况如下:
(四)巩固与练习
例1:比较下列各题中两值的大小
教师引导学生观察这些指数值的特征,思考比较大小的方法。
(1)(2)两题底相同,指数不同,(3)(4)两题可化为同底的,可以利用函数的单调性比较大小。
(5)题底不同,指数相同,可以利用函数的图像比较大小。
(6)题底不同,指数也不同,可以借助中介值比较大小。
例2:已知下列不等式, 比较m,n的大小:
设计意图:这是指数函数性质的简单应用,使学生在解题过程中加深对指数函数的图像及性质的理解和记忆。
(五)课堂小结
(六)布置作业
板书设计:。