数字信号处理知识点
数字信号处理知识点
答:数字汇聚;远程会议系统;融合网络;数字图书馆;图像与文本合一的信息检索业务;多媒体通信;个 人信息终端 4、 数字信号处理器的实现方法?10’ 答:在通用的微型计算机上用软件实现;单片机实现;利用专门用于信号处理的可编程 DSP 芯片实现;利用 特殊用途的 DSP 芯片实现;用 FPGA 等可编程阵列产品实现;利用通用的计算机系统上加上加速卡来实现 5、数字信号处理器的结构特点? 答:哈佛结构及改进的哈佛结构;乘加流水线为核心的数据通路;片内片外两级存储体系;指令系统的多级 流水线;特殊的 DSP 指令 6、数字信号处理如何实现,或其特点或为什么 DSP 处理器与通用微处理器的相比较指令的执行速度快?6 点 答:系统主时钟频率大大提高;采用 RISC 精简指令系统;采用流水线并行执行指令结构;采用专用的硬件结 构加速指令的执行;采用先进的多总线结构与多种寻址方式;多字节的数据长度 7、设计一个实际应用的 DSP 系统的步骤? 答:首先,由性能一系列技术要求及应用要求选定芯片;其次,芯片选定后,系统硬件与软件的设计与调试 可同时进行;最后,利用硬件、软件的结果可以进行系统的集成,并进行系统的最后的试验与调试 8、哈佛结构与冯诺依曼结构相比有哪些优点? 答:哈佛结构是将数据和程序分别存储在不同相互独立的存储器中,每个存储器单独编址,独立访问;系统 设置了程序和数据总线,因此数据吞吐率提高一倍;而冯诺依曼结构则是指令、数据、地址存储在同一存储 器中,统一编址,因而取指令与取数据都访问同一存储器成为影响速度的瓶颈,使得数据吞吐率低 9、哈佛结构与流水线结构? 答:哈佛结构是并行运算,把程度和数据存储器分开,总线也分开,多组流水线并行工作; 流水线结构是指在流水线结构中,几条指令是并行执行,每条指令处于其执行过程中的不同状态 10、成为数字信号处理器的条件是什么? 答:必须能在一个指令周期内并行完成乘和累加这两个操作; 在进行算术运算的同时,可并行地完成数据的移动存储,并能自动修改地址指针; 具有高效的逻辑运算能力和程序分支跳转指令 11、数字系统中有哪几种因有限字长影响而引起的误差? 答:A/D 变换器将模拟输入信号变成一组离散电平时的量化效应;把系数用有限位二进制数表示时产生的量 化效应;在数字运算过程中,为限制位数而进行尾数处理以及防止溢出而压缩信号电平的有限字长效应,包 括低电平极限环振荡效应以及溢出振荡效应 12、研究有限长效应的目的? 答:如果数字信号处理是在通用计算机上实现时,字长已经固定,做误差分析为了知道结果的可信度,否则 要采取改进措施,但是一般计算机字长较长,可不考虑字长的影响 用专用硬件实现数字信号处理时,一般采用定点实现,涉及到硬件采用的字长问题,因而必须了解为达 到所需精度所必须选用的最小字长,以便在设备价格和达到精度之间作合适的折衷 ?13、用窗函数设计 FIR 滤波器的步骤?课本 P342 答:根据技术要求确定待求滤波器的单位取样响应 根据过渡带及阴带衰减的要求,选择窗函数的形式,并且估计窗口长度 N ,设待求滤波器的过渡带用 示,它近似于窗函数主辨宽度 计算滤波器的单位取样响应 验算技术指标是否满足要求。设计出的滤波器频率响应用下式计算 14、IIR 和 FIR 数字滤波器的比较? 答:1、在相同技术指标下,IIR 滤波器由于存在着输出对输入的反馈,所以可用比 FIR 滤波器较小的阶数满足指
数字信号处理主要知识点整理复习总结
n
(c) y(n) x(k) k
(d) y(n) x(n)
解:(a) 为因果系统,由定义可知。
(b)由于 y(n 1) 领先于 x(n) ,故为非因果系统。
n
(c) y(n) x(k) k 由于 y(n) 由目前和过去的输入所决定,故为
*实际系统一般是因果系统; * y(n)=x(-n)是非因果系统,因n< 0的输出决定 n>0时 的输入;
Stable System (稳定系统) (1) 有界输入导致有界输出
(2)
| h(n) | (线性、时不变系统)
n
(3) H(z)的极点均位于Z平面单位圆内(因果系统)
[例5] 判断下列系统是否为因果系统。
第二部分 离散时间系统
1、线性时不变系统的判定 2、线性卷积 3、系统稳定性与因果性的判定 4、线性时不变离散时间系统的表示方法 5、系统分类及两种分类之间的关系
1、线性系统:对于任何线性组合信号的响应等于 系统对各个分量的响应的线性组合。
线性系统 判别准则
若 y1(n) T x1(n) y2(n) T x2(n) 则 T ax1(n) bx2(n) ay1(n) by2(n)
① y(n)的长度——Lx+Lh-1
② 两个序列中只要有一个是无限长序列,则卷 积之后是无限长序列
③ 卷积是线性运算,长序列可以分成短序列再 进行卷积,但必须看清起点在哪里
4、系统的稳定性与因果性 系统 时域充要条件
Z域充要条件
因果 h(n)≡0 (n<0)
ROC: R1 <┃Z┃≤∞
数字信号处理知识点汇总
第一章知识点考察1、写出()u n 与()n δ的关系 。
2、写出离散信号角频率ω与连续信号角频率Ω的关系 。
3、判断以下信号是否为周期信号,并写出其基本周期为多少? 1)()1cos(0.01)x n n π=; 2)()2cos(30/105)x n n π=3)()3sin(3)x n n =; 4)()5()64j n x n eππ-=4、给定信号 ()210 - 4n -16 0n 40 n x n +≤≤⎧⎪=≤≤⎨⎪⎩其他 1) 计算()()()12e x n x n x n =+-⎡⎤⎣⎦,并画出()e x n 的图形。
2)计算()()()12o x n x n x n =--⎡⎤⎣⎦,并画出()o x n 的图形。
5、给定离散时间信号()x n ,设()x n 的抽样频率为s f ,若()()M x n x Mn −−−−→倍抽取,则抽样频率变为 ;若()()/L x n x n L −−−−→倍抽取,则抽样频率变为 。
6、若某信号是能量信号,则E ,P ;若某信号是功率信号,则E ,P 。
第二章知识点考察1、一线性移不变系统,输入为()n x 时,输出为()n y ;则输入为()3x n -时,输出为 ;输入为()1x n -时,输出为 。
2、已知某线性移不变系统的单位抽样响应()h n ,判断下列系统是否是因果的、稳定的。
(1)()()0.3n h n u n =; (2)()()1h n n δ=+; (3)()()0.3--1n h n u n =; 3、用公式表示自相关函数()xy r m 与()x m 、()y m 的关系 。
4、两个序列()1x n 和()2x n ,设两序列长度分别为1N 和2N ,令()()()12=y n x n x n *,则()y n 的长度为 。
5、假如()x n 的z 变换代数表示式是下式,问()X z 可能有多少不同的收敛域,它们分别对应什么序列?()221211415311448z X z z z z -----=⎛⎫⎛⎫+++ ⎪⎪⎝⎭⎝⎭6、设数字滤波器的系统函数为1110.5()10.25z H z z --+=+,其差分方程为 。
数字信号处理知识点汇总
数字信号处理知识点汇总数字信号处理是一门涉及多个领域的重要学科,在通信、音频处理、图像处理、控制系统等众多领域都有着广泛的应用。
接下来,让我们一同深入了解数字信号处理的主要知识点。
一、数字信号的基本概念数字信号是在时间和幅度上都离散的信号。
与模拟信号相比,数字信号具有更强的抗干扰能力和便于处理、存储等优点。
在数字信号中,我们需要了解采样定理。
采样定理指出,为了能够从采样后的信号中完全恢复原始的连续信号,采样频率必须至少是原始信号最高频率的两倍。
这是保证数字信号处理准确性的关键原则。
二、离散时间信号与系统离散时间信号可以通过序列来表示,常见的有单位脉冲序列、单位阶跃序列等。
离散时间系统则是对输入的离散时间信号进行运算和处理,产生输出信号。
系统的特性可以通过线性、时不变性、因果性和稳定性等方面来描述。
线性系统满足叠加原理,即多个输入的线性组合产生的输出等于各个输入单独作用产生的输出的线性组合。
时不变系统的特性不随时间变化,输入的时移会导致输出的相同时移。
因果系统的输出只取决于当前和过去的输入,而稳定系统对于有界的输入会产生有界的输出。
三、Z 变换Z 变换是分析离散时间系统的重要工具。
它将离散时间信号从时域转换到复频域。
通过 Z 变换,可以方便地求解系统的差分方程,分析系统的频率特性和稳定性。
Z 变换的收敛域决定了其特性和应用范围。
逆 Z 变换则可以将复频域的函数转换回时域信号。
四、离散傅里叶变换(DFT)DFT 是数字信号处理中的核心算法之一。
它将有限长的离散时间信号转换到频域。
DFT 的快速算法——快速傅里叶变换(FFT)大大提高了计算效率,使得在实际应用中能够快速处理大量的数据。
通过 DFT,可以对信号进行频谱分析,了解信号的频率成分和能量分布。
五、数字滤波器数字滤波器用于对数字信号进行滤波处理,分为有限冲激响应(FIR)滤波器和无限冲激响应(IIR)滤波器。
FIR 滤波器具有线性相位特性,稳定性好,但设计相对复杂。
数字信号处理掌握要点
数字信号处理掌握要点:1. 离散系统稳定的充要条件线性连续系统稳定的充分和必要条件是闭环传递函数所有极点均位于s 的左半平面,而线性离散系统稳定的充分和必要条件是闭环脉冲传递函数所有极点均位于z 平面的单位园内2. 连续信号采样不发生混叠的条件从采样定理中,我们可以得出以下结论:a) 如果已知信号的最高频率f H ,采样定理给出了保证完全重建信号的最低采样频率。
这一最低采样频率称为临界频率或奈奎斯特采样率,通常表示为f N 。
b) 相反,如果已知采样频率,采样定理给出了保证完全重建信号所允许的最高信号频率。
c) 以上两种情况都说明,被采样的信号必须是带限的,即信号中高于某一给定值的频率成分必须是零,或至少非常接近于零,这样在重建信号中这些频率成分的影响可忽略不计。
在第一种情况下,被采样信号的频率成分已知,比如声音信号,由人类发出的声音信号中,频率超过5 kHz 的成分通常非常小,因此以10 kHz 的频率来采样这样的音频信号就足够了。
在第二种情况下,我们得假设信号中频率高于采样频率一半的频率成分可忽略不计。
这通常是用一个低通滤波器来实现的。
如果不能满足上述采样条件,采样后信号的频率就会重叠,即高于采样频率一半的频率成分将被重建成低于采样频率一半的信号。
这种频谱的重叠导致的失真称为混叠,而重建出来的信号称为原信号的混叠替身,因为这两个信号有同样的样本值。
∙以下两种措施可避免混叠的发生:1. 提高采样频率,使之达到最高信号频率的两倍以上;2. 引入低通滤波器或提高低通滤波器的参数;该低通滤波器通常称为抗混叠滤波器3. 两段序列进行圈周卷积后的长度与两个序列长度之间的关系两序列的长度分别为N 和M ,则线性卷积后序列的长度为N+M-14. DFT 的旋转因子的对称性knN W 的对称性:*()knnkN NW W -=5. 若序列()n x 的DFT 记为()k X ,()0X 与()n x 之间的关系1100(0)()|()N N nk Nk n n X x n Wx n --=====∑∑6. 若FIR 数字滤波器的单位响应()n h 的长度N 与信号)(n x 通过滤波器后的时延T 之间的关系7. 设序列()n x 和()n h 的长度分别为M 和N ,在何种条件下()n x 和()n h 的卷积等于其圆周卷积? 圆周卷积长度N1≥M+N-1时8. 离散傅里叶氏变换隐含有周期性: X(k)的隐含周期性有X(N)=X(0)9. 离散时间序列()n x 的傅氏变换在频域上表示为()ωj e X 也是离散值,故又称离散傅利叶变换10. 周期分别为1N ,2N 的两离散序列,在进行周期卷积后,其结果也是周期序列 11. 了解IIR 巴特沃斯数字低通滤波器的设计步骤p ω:通带截止频率s ω:阻带截止频率 p δ:通带波动s δ:阻带波动221()1(/)Nc H j ωωω=+N: 滤波器阶数1)|H (j0)|=1,|H (j¥)|=0,-20log10|H ( jwc)|≈3db ,w c: 3db 截频,当w c =1时,称其为 归一化的BWF2)幅度响应单调下降3) |H (j w )|2在w=0点1到2N -1阶导数零。
数字信号处理知识点归纳整理
数字信号处理知识点归纳整理第一章时域离散随机信号的分析1.1. 引言实际信号的四种形式:连续随机信号、时域离散随机信号、幅度离散随机信号和离散随机序列。
本书讨论的是离散随机序列()X n ,即幅度和时域都是离散的情况。
随机信号相比随机变量多了时间因素,时间固定即为随机变量。
随机序列就是随时间n 变化的随机变量序列。
1.2. 时域离散随机信号的统计描述 1.2.1概率描述1. 概率分布函数(离散情况)随机变量n X ,概率分布函数: ()()n X n n n F x ,n P X x =≤(1)2. 概率密度函数(连续情况)若n X 连续,概率密度函数: ()()n n X X n nF x,n p x ,n x ∂=∂ (2)注意,以上两个表达式都是在固定时刻n 讨论,因此对于随机序列而言,其概率分布函数和概率密度函数都是关于n 的函数。
当讨论随机序列时,应当用二维及多维统计特性。
()()()()121212,,,121122,,,12,,,1212,1,,2,,,,,,,1,,2,,,,1,,2,,,NNNx XX N N N N x XX N x XX N NF x x x N P X x X x X x F x x x N p x x x N x x x =≤≤≤∂=∂∂∂1.2.2 数字特征1. 数学期望 ()()()()n xx n n m n E x n x n p x ,n dx ∞-∞==⎡⎤⎣⎦⎰ (3)2. 均方值与方差均方值: ()()22n n x n n E X x n p x ,n dx ∞-∞⎡⎤=⎣⎦⎰ (4)方差: ()()()2222xn x n x n E X m n E X m n σ⎡⎤⎡⎤=-=-⎣⎦⎣⎦(5)3. 相关函数和协方差函数自相关函数:()()nm**n m n m X ,X n m n m r n,m E X X x x p x ,n,x ,m dx dx ∞∞-∞-∞⎡⎤==⎣⎦⎰⎰ (6)自协方差函数:()()()()**cov ,,n m nmn m n X mX xx XXX X E X m Xm r n m m m ⎡⎤=--⎢⎥⎣⎦=- (7)由此可进一步推出互相关函数和互协方差函数。
数字信号处理知识点总结
数字信号处理知识点总结数字信号处理技术为人们提供了处理和分析信号的便利方式,同时也加快了信号的传输速度和提高了传输质量。
数字信号处理技术在多个领域都有着广泛的应用,比如图像处理、音频处理、通信系统、雷达系统、生物医学信号处理等等。
在这些领域中,数字信号处理技术能够对信号进行分析、滤波、编码、解码、压缩等处理,从而提高系统性能和降低成本。
数字信号处理的基础知识点主要包括以下几个方面:1. 信号和系统基础:信号与系统是数字信号处理的基础,需要深入理解信号的特性和系统的行为。
信号与系统的基本概念包括信号的分类、时域和频域分析、连续时间信号和离散时间信号、因果性、稳定性等等。
2. 采样和量化:采样是将连续时间信号转换为离散时间信号的过程,而量化是将模拟信号转换为数字信号的过程。
采样和量化的基本概念包括采样定理、采样率和量化精度。
3. 离散时间信号的表示和运算:离散时间信号可以用离散时间单位冲激函数的线性组合表示,同时可以进行离散时间信号的运算,比如线性和、线性积分、线性差分等。
4. 离散时间系统的性质和分析:离散时间系统的特性包括线性性、时不变性、因果性、稳定性等,同时还需要对离散时间系统进行频域和时域分析。
5. 离散傅里叶变换(DFT):DFT 是将离散时间信号转换到频域的一种方法,它可以帮助分析信号的频率分量和谱特性。
6. Z变换:Z 变换是将离散时间信号转换到 Z 域的一种方法,它可以帮助分析离散时间系统的频域特性。
7. 数字滤波器设计:数字滤波器设计是数字信号处理中非常重要的一部分,它包括有限脉冲响应(FIR)滤波器和无限脉冲响应(IIR)滤波器的设计方法。
8. FFT 算法:快速傅里叶变换(FFT)是一种高效的计算 DFT 的算法,它能够大大提高傅里叶变换的计算速度。
9. 数字信号处理系统的实现:数字信号处理系统的实现可以通过软件方式和硬件方式两种方法进行,比如使用 MATLAB、C 语言等软件实现,或者使用专用的数字信号处理器(DSP)进行硬件实现。
数字信号处理常用知识点
z 实信号具有双边频谱的特性,复信号则具有单边频谱的特性。
z 列出三种关于数字信号处理的实现方法通用计算机软件实现、特殊专用集成电路ASIC实现以及可编程器件如FPGA 硬件实现和通用DSP 器件实现等。
z 设系统用差分方程y(n)=x(n)sin(wn)描述,x(n)与y(n)分别表示系统的输入和输出,则这个系统是线性且时变。
z 由于IIR 数字滤波器的冲激响应无限长,故不能采用时域卷积(或频域卷积)的方法实现,只能通过差分方程的形式来实现。
z 第二类线性相位FIR 数字滤波器的相频特点是具有-90o 初相,因此常被用作移相器等非选频特性之应用。
z FIR 数字滤波器常采用窗函数法、频率采样法和最佳等纹波逼近法等直接数字域设计方法,不能采用模拟滤波器的经典设计理论。
z 实信号具有双边频谱的特性,复信号则具有单边频谱的特性。
z 当采用基于DFT 的方法(可使用FFT 算法)对模拟实信号进行谱分析时,会存在四种主要的、无法避免的、或难以减轻的误差,它们是:时域采样时产生的频谱混叠现象,DFT(频率采样)造成的栅栏效应,信号截断(有限长度)导致的频谱(或频率)泄漏和谱间干扰。
z 设系统用差分方程y(n)=x(n)+2x(n-1)+3x(n-2)描述,x(n)与y(n)分别表示系统的输入和输出,则这个系统是线性且时不变。
(注:从线性和时变性回答)z 数字滤波器均可通过差分方程的形式来实现。
对于FIR 数字滤波器,由于冲激响应有限长,故也可用时域卷积(或频域卷积)的方法实现。
z 第一类线性相位FIR 数字滤波器的相频特点是初相为0。
z IIR 数字滤波器设计常采用模拟滤波器设计的经典理论,从模拟滤波器到数字滤波器的过渡通常采用脉冲响应不变法或双线性变换法。
z 模拟信号和数字信号的描述与分析域分别采用s 域与z 域。
z 如果一个数字因果系统是不稳定的,输出幅度随时间呈发散状,那么它的极点至少有一个在z 平面的单位圆外。
《《数字信号处理》》
《《数字信号处理》》一、数字信号处理的基础知识1. 数字信号处理的概念数字信号由一系列离散的数值组成,数字信号处理就是对这些数值进行采样、量化、编码等操作,使其成为计算机能够处理的数字信号。
具体来说,数字信号处理是对数字信号进行数学分析、滤波、变换和算法处理等操作的一种技术手段。
2. 数字信号处理的方法数字信号处理采用数字技术对信号进行处理,包括采样、量化、编码、滤波、变换和算法等。
数字技术的优势在于其能够快速、精确、稳定地处理信号,并且可在计算机、数字信号处理器等平台上进行。
3. 数字信号处理的流程数字信号处理的流程包括采样、量化、编码、滤波、变换和算法等过程。
其中,采样是将连续的信号转换为离散的信号;量化是将连续的模拟信号转换为离散的数字信号;编码是将数字信号转换为二进制信号;滤波是对数字信号进行低通、高通、带通滤波等处理;变换是对数字信号进行时域变换、频域变换等处理;算法是通过各种算法对数字信号进行加、减、乘、除、求最大值、最小值等计算操作。
二、数字信号处理的应用领域1. 通信领域数字信号处理在通信领域起着重要的作用。
通信领域中的数字信号处理包括数字调制、信道编码、信道估计、信道均衡、信号检测和解调等方面。
数字信号处理技术可以提高通信信号的质量和可靠性,并且可以提高通信系统的效率和容量。
2. 图像处理领域数字信号处理在图像处理领域也有广泛的应用。
图像处理领域中的数字信号处理包括图像压缩、图像增强、图像分割、图像恢复和图像识别等方面。
数字信号处理技术可以提高图像的清晰度、减少噪声干扰,并且可以实现图像的压缩和传输。
3. 音频处理领域数字信号处理在音频处理领域中也有重要的应用。
音频处理领域中的数字信号处理包括音频降噪、音频增强、音频编解码、音频合成和音频识别等方面。
数字信号处理技术可以提高音频的质量和清晰度,并且可以实现音频的压缩和传输。
4. 控制系统领域数字信号处理在控制系统领域中也有广泛的应用。
数字信号处理知识点总结
数字信号处理第0章绪论1.数字信号处理是利用计算机或专用处理设备,以数字形式对信号进行采集、变换、滤波、估值、增强、压缩、识别等处理,以得到符合人们需要的信号形式。
2.DSP系统构成输入抗混叠滤波A/DDSP芯片D/A平滑滤波输出输入信号首先进行带限滤波和抽样,然后进行A/D(Analog to Digital)变换将信号变换成数字比特流。
根据奈奎斯特抽样定理,为保证信息不丢失,抽样频率至少必须是输入带限信号最高频率的2倍。
DSP芯片的输入是A/D变换后得到的以抽样形式表示的数字信号。
3.信号的形式(1)连续信号在连续的时间范围内有定义的信号。
连续--时间连续。
(2)离散信号在一些离散的瞬间才有定义的信号。
离散--时间离散。
4.数字信号处理主要包括如下几个部分(1)离散时间信号与系统的基本理论、信号的频谱分析(2)离散傅立叶变换、快速傅立叶变换(3)数字滤波器的设计第一章离散时间信号一、典型离散信号定义1.离散时间信号与数字信号时间为离散变量的信号称作离散时间信号;而时间和幅值都离散化的信号称作为数字信号。
2.序列离散时间信号-时间上不连续上的一个序列。
通常定义为一个序列值的集合{x(n)},n 为整型数,x(n)表示序列中第n 个样值,{·}表示全部样本值的集合。
离散时间信号可以是通过采样得到的采样序列x(n)=x a (nT),也可以不是采样信号得到。
二.常用离散信号1.单位抽样序列(也称单位冲激序列))(n δ⎩⎨⎧≠==0,00,1)(n n n δδ(n):在n=0时取值为12.单位阶跃序列)(n u ,⎩⎨⎧<≥=0,00,1)(n n n u 3.矩形序列,⎩⎨⎧=-≤≤=其它n N n n R N ,010,1)(4.实指数序列,)()(n u a n x n =,a 为实数5.正弦型序列)sin()(φω+=n A n x 式中,ω为数字域频率,单位为弧度。
15On 1-10()0sin nω()t 0sin Ω16.复指数序列nj e n x )(0)(ωσ+=7.周期序列如果对所有n 存在一个最小的正整数N ,使下面等式成立:)()(N n x n x +=,则称x(n)为周期序列,最小周期为N 。
数字信号处理重要知识点
数字信号处理知识点1、混叠是怎样产生的?答:采样信号的频率太低,低于被检测信号频率的二倍系统就会发生混叠。
2、如何判定线性时不变系统的因果性和稳定性?答:因果性:响应不出现在激励之前稳定性:1)、激励有界,响应有界2)、连续系统,h(t)绝对可积;系统频域函数的收敛域包含虚轴(极点全在左半平面)3)、离散系统,h(n)绝对可和;系统频域函数的收敛域包含单位圆(极点全在单位圆内)3、时域采样在频域产生什么效应?答:1)对连续信号进行等间隔采样形成的采样信号,其频谱是原模拟信号的频谱以采样频率为周期进行周期延拓形成的2)如果连续信号是带限信号,当采样角频率大于最高截止频率,让采样信号通过理想低通滤波器时,可以唯一地恢复出原连续信号。
否则,会造成采样信号中的频谱混叠现象,不能无失真地恢复原连续信号。
4、用离散傅里叶变换进行谱分析时,提高频域分辨率有哪些措施?答:增加采样点数5、何谓全通滤波器?其零极点分布有何特点?答:全通滤波器:幅度特性在整个频带[0,2π]上均为常数的滤波器零点和极点互成倒易关系,均以共轭对形势出现。
6、何谓最小相位系统?如何判断系统是最小相位系统与否?答:最小相位系统:全部零点位于单位圆内的因果稳定系统7、如何将模拟滤波器 H (s)转换为数字滤波器 H(z)脉冲响应不变法或双线性变换法答:优点:数字频率与模拟频率成线性关系 w=nT;缺点:会产生频率混叠现象,只适合低通和带通滤波器的设计。
8、补零和增加信号长度对谱分析有何影响?是否都可以提高频谱分辨率?答:时域补零和增加信号长度,可以使频谱谱线加密,但不能提高频谱分辨率。
9、什么是吉布斯现象?旁瓣峰值衰减和阻带最小衰减各指什么?有什么区别和联系?答:增加窗口长度 N 只能相应地减小过渡带宽度,而不能改变肩峰值。
例如,在矩形窗地情况下,最大肩峰值为 8.95%;当 N 增加时,只能使起伏振荡变密,而最大肩峰值总是 8.95%,这种现象称为吉布斯效应。
数字信号处理知识点
数字信号处理知识点1. 引言数字信号处理(Digital Signal Processing,DSP)是应用数字计算技术来过滤、压缩、存储、生成、识别和其他方式处理信号的科学领域。
本文旨在概述数字信号处理的核心技术和知识点,为学习和应用DSP提供明确的指导。
2. 信号的基本概念2.1 模拟信号与数字信号2.2 信号的时域和频域特性2.3 采样定理(奈奎斯特定理)2.4 量化和编码2.5 信号重构3. 离散时间信号与系统3.1 离散时间信号的定义3.2 线性时不变(LTI)系统3.3 卷积和系统响应3.4 Z变换及其应用3.5 差分方程4. 傅里叶分析4.1 傅里叶级数4.2 傅里叶变换4.3 快速傅里叶变换(FFT)4.4 频谱分析5. 滤波器设计5.1 滤波器的基本概念5.2 理想滤波器5.3 窗函数法5.4 IIR滤波器设计5.5 FIR滤波器设计6. 信号的检测与估计6.1 信号检测理论6.2 最小二乘估计6.3 卡尔曼滤波6.4 信号的自适应滤波7. 语音与图像处理7.1 语音信号的特性7.2 语音编码技术7.3 图像信号的基本概念7.4 图像压缩技术7.5 图像增强技术8. 实时数字信号处理系统8.1 DSP芯片的特性8.2 实时操作系统8.3 硬件与软件协同设计8.4 系统性能评估9. 应用实例9.1 通信系统中的DSP应用9.2 生物医学信号处理9.3 音频和视频处理9.4 雷达和声纳系统10. 结论数字信号处理是一个多学科交叉的领域,涉及信号理论、数学、计算机科学和电子工程。
掌握DSP的基础知识对于理解和设计现代通信系统、音频和视频处理系统以及其他相关应用至关重要。
请注意,本文仅为数字信号处理知识点的概述,每个部分都需要深入学习才能完全理解和应用。
读者应参考相关教材、课程和实践项目,以获得更全面和深入的知识。
数字信号处理知识点归纳整理
数字信号处理知识点归纳整理第一章时域离散随机信号的分析1.1. 引言实际信号的四种形式:连续随机信号、时域离散随机信号、幅度离散随机信号和离散随机序列。
本书讨论的是离散随机序列()X n ,即幅度和时域都是离散的情况。
随机信号相比随机变量多了时间因素,时间固定即为随机变量。
随机序列就是随时间n 变化的随机变量序列。
1.2. 时域离散随机信号的统计描述 1.2.1概率描述1. 概率分布函数(离散情况)随机变量n X ,概率分布函数: ()()n X n n n F x ,n P X x =≤(1)2. 概率密度函数(连续情况)若n X 连续,概率密度函数: ()()n n X X n nF x,n p x ,n x ∂=∂ (2)注意,以上两个表达式都是在固定时刻n 讨论,因此对于随机序列而言,其概率分布函数和概率密度函数都是关于n 的函数。
当讨论随机序列时,应当用二维及多维统计特性。
()()()()121212,,,121122,,,12,,,1212,1,,2,,,,,,,1,,2,,,,1,,2,,,NNNx XX N N N N x XX N x XX N NF x x x N P X x X x X x F x x x N p x x x N x x x =≤≤≤∂=∂∂∂1.2.2 数字特征1. 数学期望 ()()()()n xx n n m n E x n x n p x ,n dx ∞-∞==⎡⎤⎣⎦⎰ (3)2. 均方值与方差均方值: ()()22n n x n n E X x n p x ,n dx ∞-∞⎡⎤=⎣⎦⎰ (4)方差: ()()()2222xn x n x n E X m n E X m n σ⎡⎤⎡⎤=-=-⎣⎦⎣⎦(5)3. 相关函数和协方差函数自相关函数:()()nm**n m n m X ,X n m n m r n,m E X X x x p x ,n,x ,m dx dx ∞∞-∞-∞⎡⎤==⎣⎦⎰⎰ (6)自协方差函数:()()()()**cov ,,n m nmn m n X mX xx XXX X E X m Xm r n m m m ⎡⎤=--⎢⎥⎣⎦=- (7)由此可进一步推出互相关函数和互协方差函数。
数字信号处理知识要点
数字信号处理知识要点一、离散时间信号和系统的时域分析 (一) 离散时间信号 (1)基本概念信号:信号传递信息的函数也是独立变量的函数,这个变量可以是时间、空间位置等。
连续信号:在某个时间区间,除有限间断点外所有瞬时均有确定值。
模拟信号:是连续信号的特例。
时间和幅度均连续。
离散信号:时间上不连续,幅度连续。
常见离散信号——序列。
数字信号:幅度量化,时间和幅度均不连续。
(2)基本序列(课本第7——10页)1)单位脉冲序列 1,0()0,0n n n δ=⎧=⎨≠⎩ 2)单位阶跃序列 1,0()0,0n u n n ≥⎧=⎨≤⎩3)矩形序列 1,01()0,0,N n N R n n n N ≤≤-⎧=⎨<≥⎩ 4)实指数序列 ()n a u n5)正弦序列 0()sin()x n A n ωθ=+ 6)复指数序列 ()j n n x n e e ωσ= (3)周期序列1)定义:对于序列()x n ,若存在正整数N 使()(),x n x n N n =+-∞<<∞ 则称()x n 为周期序列,记为()x n ,N 为其周期。
注意正弦周期序列周期性的判定(课本第10页)2)周期序列的表示方法: a.主值区间表示法 b.模N 表示法 3)周期延拓设()x n 为N 点非周期序列,以周期序列L 对作()x n 无限次移位相加,即可得到周期序列()x n ,即()()i x n x n iL ∞=-∞=-∑当L N ≥时,()()()N x n x n R n = 当L N <时,()()()N x n x n R n ≠(4)序列的分解序列共轭对称分解定理:对于任意给定的整数M ,任何序列()x n 都可以分解成关于/2c M =共轭对称的序列()e x n 和共轭反对称的序列()o x n 之和,即()()(),e o x n x n x n n =+-∞<<∞并且1()[()()]2e x n x n x M n *=+- 1()[()()]2o x n x n x M n *=--(4)序列的运算 1)基本运算2)线性卷积:将序列()x n 以y 轴为中心做翻转,然后做m 点移位,最后与()x n 对应点相乘求和——翻转、移位、相乘、求和定义式: 1212()()()()()m y n x m x n m x n x n ∞=-∞=-=*∑线性卷积的计算:A 、图解 B 、解析法C 、不进位乘法(必须掌握)3)单位复指数序列求和(必须掌握)/2/2/2/2/2/21/2/2/2/2/2/2(1)/21()()/(2)1()()/(2)sin(/2)sin(/2)j N j N j N j N j N j N j N N j nj j j j j j j n j N e e e e e e e j ee e e e e e e j N e ωωωωωωωωωωωωωωωωωω------------=-----===---=∑如果2/k N ωπ=,那么根据洛比达法则有sin(/2)(0)(0)(()())sin(/2)N N k N N k N ωδδω===或可以结合作业题3.22进行练习(5)序列的功率和能量能量:2|()|n E x n ∞=-∞=∑功率:21lim |()|21NN n NP x n N →∞=-=+∑ (6)相关函数——与随机信号的定义运算相同(二) 离散时间系统1.系统性质 (1)线性性质定义:设系统的输入分别为1()x n 和2()x n ,输出分别为1()y n 和2()y n ,即1122()[()],()[()]y n T x n y n T x n ==统的输对于任意给定的常数a 、b ,下式成立1212()[()()]()()y n T ax n bx n a y n by n =+=+则该系统服从线性叠加原理,为线性系统,否则为非线性系统。
数字信号处理知识点
数字信号处理知识点数字信号处理,听起来是不是有点高大上?其实啊,就像咱们平常做菜一样。
你看啊,原始的食材就好比是原始信号,而我们要把这些食材加工成美味的菜肴,就像把原始信号处理成我们想要的信号形式。
咱先说说啥是数字信号。
数字信号啊,就像是用数字代码表示的信息。
这就好比是我们用特定的符号来表示某种东西。
比如说,咱们在玩猜数字的游戏,你心里想一个数字,然后用一些提示来告诉我这个数字是大了还是小了,这个数字就是一种简单的“信号”,只不过数字信号要复杂得多啦。
那数字信号处理呢?这就是对这些数字表示的信号进行各种各样的操作。
这操作啊,就像厨师做菜时的切、炒、炖等工序。
比如说滤波,这就像是把菜里的杂质给挑出去。
你想啊,如果菜里有沙子或者坏叶子,那这道菜肯定不好吃。
同样的道理,在信号里如果有一些干扰或者噪声,就会影响信号的质量,滤波就是把这些“沙子”和“坏叶子”去掉,让信号变得更“纯净”。
再说说采样。
采样就像是我们从一大锅菜里舀出一勺来尝尝味道。
你不可能把整锅菜都吃光了才知道味道对不对吧?采样就是从连续的信号里取出一些离散的点来代表这个信号。
这就要求我们采样得合理啊,要是采样的点太少了,就好比你只尝了一小口菜,可能就尝不出这道菜真正的味道。
要是采样太多呢,又有点浪费资源,就像你为了尝个菜,把整锅菜都快舀光了,多不划算呀!离散傅里叶变换这个概念也挺有趣的。
它就像是把一道菜的各种味道成分给分析出来。
一道菜可能有酸甜苦辣咸各种味道,离散傅里叶变换就能把一个信号分解成不同频率成分,就像把菜的味道分解成各种单一的味道元素。
这样我们就能知道这个信号主要由哪些频率组成,就像知道这道菜主要是哪些味道占主导一样。
在数字信号处理里,还有一个重要的概念是量化。
量化就像是给菜打分。
比如说一道菜满分是10分,你根据菜的色香味等方面给出一个分数。
在信号里呢,就是把信号的取值范围划分成一些区间,然后给每个区间一个确定的值。
这就好像把菜的好坏程度用一个确定的分数表示出来一样。
数字信号处理知识点汇总pdf
数字信号处理知识点汇总pdf1 概述数字信号处理(Digital Signal Processing,简称DSP)是一种用于处理、分析和转换数字信号的技术。
它利用各种算法和数字芯片,同时兼顾数字信号的时间和频率特性,将诸如声音、图像和视频等信号处理成有用的数字形式。
DSP技术被广泛应用在数字音频、自动控制、通信、信号分析、图像处理、视频处理等领域,对信号的采集、处理、变换、转换和分析,都能起到极大的作用。
2 基本概念数字信号处理一般包括一切关于用数字系统模拟或处理音频、图像或视频的研究方法。
DSP的基本概念包括:采样率、量化精度、编解码器、可编程处理器等;其中,采样率是指转换连续信号为数字信号所作记录时间间隔,量化精度是指记录信号时用来表述信号的位数;编解码器则是用来将信号进行编码和解码,使信号能由一种格式转换为另一种格式,而可编程处理器以及算法则是用来实现DSP处理的核心。
3 数字信号处理系统数字信号处理系统大致可以分为四大部分:数据采集、信号预处理、DSP处理和系统控制。
数据采集是指用于采集、存储、传输或必要话在实时和传统数字信号处理设备上经常使用的各种硬件设备。
信号预处理器主要用于对原始信号进行滤波、幅值检测、转换等预处理操作,以提高信号的品质。
DSP处理器一般是涵盖了原始信号的采样、量化、滤波处理等操作,用于获得有效的信号;而系统控制则是将处理后的信号传至后续处理系统,以及控制这些系统的运行状态。
4 应用数字信号处理技术在音频和视频领域的应用最为广泛,它可以实现信号的压缩、去噪、可视化和回放等功能。
在通信领域,它可以实现信号的激励、检测和序列处理。
在机器视觉方面,它可以实现图像处理,从而在机器中获取更多信息。
总之,数字信号处理技术为数字信号正确采集、表示、处理和转换提供了有效的技术手段,在日趋发达的信息社会中,已广泛应用于各行各业。
数字信号处理重点
数字信号处理——重点汇总1.如果信号的幅度和时间都取连续变量,则称这种信号为模拟信号或称为连续信号,例如语言信号、温度信号等;2如果时间取离散值,而幅度取连续值,则称这种信号称为时域离散信号,这种信号通常来源于对模拟信号的采样;3.如果信号的幅度和时间均取离散值,则称为数字信号。
4.数字信号是幅度量化了的时域离散信号。
P45.如果系统n时刻的输出只取决于n时刻以及n时刻以前的输入序列,而和n时刻以后的输入序列无关,则称该系统为因果系统。
6.线性时不变系统具有因果性的充分必要条件是系统的单位脉冲响应满足下式:_h (n)=0,n<0___。
P167.序列x(n)的傅里叶变换X(ejω)的傅里叶反变换为:x(n)=IFT[X(ejω)]=————————8.序列x(n)的傅里叶变换X(ejω)是频率ω的周期函数,周期是2π。
这一特点不同于模拟信号的傅里叶变换。
P349.序列x(n)分成实部与虚部两部分,实部对应的傅里叶变换具有共轭对称性,虚部和j一起对应的傅里叶变换具有共轭反对称性。
P3610.序列x(n)的共轭对称部分xe(n)对应着X(ejω)的实部XR(ejω),而序列x(n)的共轭反对称部分xo(n)对应着X(ejω)的虚部(包括j)。
P3711.时域离散信号的频谱也是模拟信号的频谱周期性延拓,周期为,因此由模拟信号进行采样得到时域离散信号时,同样要满足采样定理,采样频率必须大于等于模拟信号最高频率的2倍以上,否则也会产生频混率叠现象,频率混叠在Ωs/2附近最严重,在数字域则是在π附近最严重。
P4512.因果(可实现)系统其单位脉冲响应h(n)一定是因果序列,那么其系统函数H(z)的收敛域一定包含∞点,即∞点不是极点,极点分布在某个圆内,收敛域在某个圆外。
P6213.系统函数H(z)的极点位置主要影响频响的峰值位置及尖锐程度,零点位置主要影响频响的谷点位置及形状。
P6514 .freqz计算数字滤波器H(z)的频率响应:[H,ω]=freqz(B,A);B和A 为系统函数H(z)=B(z)/A(z)的分子和分母多项式系数向量。
数字信号处理知识点总结
数字信号处理知识点总结
x
《数字信号处理知识点总结》
一、概述
数字信号处理(Digital Signal Processing, DSP)是一门独特的计算机科学,它旨在把频率和时域特征集中处理一组数据,以提高信号处理和分析的效率。
它也是一个数学分析工具,用于从连续的频率,时域,或空间域中提取信号的特征。
它允许处理有限的数据点,来识别,拟合,和处理一系列信号。
二、核心概念
1、频域分析
频域分析是指将信号分析成各个频率成分的过程。
这是通过调用快速傅里叶变换(FFT)的数学函数来完成的,FFT可以将连续信号调制到带宽。
通过FFT变换,我们可以提取各个频带中的信号模式,这是数字信号处理的基本概念。
2、时域分析
时域分析是指将信号从时域上拆分出来,以便更好地理解。
它可以让我们把信号的表示放大,以及提取其中的时间特征。
这可以通过使用数学变换,如傅里叶变换,傅里叶反变换,低通滤波器来完成。
3、空间域分析
空域分析涉及将图像或声音的空间分布从特定的比较模式中提
取出来。
这通常是通过两种方式完成的:频率域分析和纹理分析。
例
如,通过运用彩色空域调整(CSA)和空域合成(DSS),可以把颜色空间和纹理的信息从图像中提取出来。
三、应用
数字信号处理有多种应用,广泛应用于科学,工程和商业领域,如声学,图像处理,信号处理,通信,控制系统,生物医学,信息素养,自动控制,移动和汽车,以及航空航天等。
它是用来分析,处理和控制信号的,例如语音,图像,视频,音乐,信号检测,通信,检测,仪器和探测等。
数字信号处理知识点
第1章 时域离散信号和时域离散系统1.常用典型序列间的关系:(1)单位采样序列)(n δ可用单位阶跃序列)(n u 表示,即)(n δ=)1()(--n u n u 。
(2)单位阶跃序列)(n u 可用单位采样序列)(n δ表示,即)(n u =∑∑-∞=∞==-nm k m k n )()(0δδ。
(3)矩形序列)(n R N 可用单位阶跃序列)(n u 表示,即=)(n R N )()(N n u n u --。
(4)对任意序列)(n x ,可用单位采样序列)(n δ表示,即)(n x =∑∞-∞=-m m n m x )()(δ。
2.正弦序列和复指数序列周期性的判定(1)关于序列)(n x =cos(n 73π-8π)的周期性的判定,以下说法正确的是( C )。
A. )(n x 是周期序列,周期为3 B. )(n x 是周期序列,周期为7 C. )(n x 是周期序列,周期为14D. )(n x 不是周期序列(2) 关于序列)53sin()(ππ-=n n x 的周期性的判定,以下说法正确的是( C )。
A. )(n x 是周期序列,周期为3 B. )(n x 是周期序列,周期为5 C. )(n x 是周期序列,周期为10D. )(n x 不是周期序列(3)关于序列)81()(π-=n j e n x 的周期性的判定,以下说法正确的是( D )A. )(n x 是周期序列,周期为1B. )(n x 是周期序列,周期为8C. )(n x 是周期序列,周期为1/8D. )(n x 不是周期序列3.序列运算给定信号⎪⎩⎪⎨⎧≤≤-≤≤-+=其它 03031332)(n n n n x (1)画出)(n x 及)1(2-n x 的波形图; (2)画出)(n x 及)1(2+n x 的波形图;(3) 画出)(n x 及)1(2n x -的波形图; (4) 画出)(n x 及)2/(2n x 的波形图; (5) 画出)(n x 及)2(2n x 的波形图。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《数字信号处理》辅导一、离散时间信号和系统的时域分析 (一) 离散时间信号(1)基本概念信号:信号传递信息的函数也是独立变量的函数,这个变量可以是时间、空间位置等。
连续信号:在某个时间区间,除有限间断点外所有瞬时均有确定值。
模拟信号:是连续信号的特例。
时间和幅度均连续。
离散信号:时间上不连续,幅度连续。
常见离散信号——序列。
数字信号:幅度量化,时间和幅度均不连续。
(2)基本序列(课本第7——10页)1)单位脉冲序列 1,0()0,0n n n δ=⎧=⎨≠⎩ 2)单位阶跃序列 1,0()0,0n u n n ≥⎧=⎨≤⎩3)矩形序列 1,01()0,0,N n N R n n n N ≤≤-⎧=⎨<≥⎩ 4)实指数序列 ()n a u n5)正弦序列 0()sin()x n A n ωθ=+ 6)复指数序列 ()j n n x n e e ωσ= (3)周期序列1)定义:对于序列()x n ,若存在正整数N 使()(),x n x n N n =+-∞<<∞ 则称()x n 为周期序列,记为()x n ,N 为其周期。
注意正弦周期序列周期性的判定(课本第10页)2)周期序列的表示方法: a.主值区间表示法 b.模N 表示法 3)周期延拓设()x n 为N 点非周期序列,以周期序列L 对作()x n 无限次移位相加,即可得到周期序列()x n ,即()()i x n x n iL ∞=-∞=-∑当L N ≥时,()()()N x n x n R n = 当L N <时,()()()N x n x n R n ≠(4)序列的分解序列共轭对称分解定理:对于任意给定的整数M ,任何序列()x n 都可以分解成关于/2c M =共轭对称的序列()e x n 和共轭反对称的序列()o x n 之和,即()()(),e o x n x n x n n =+-∞<<∞并且1()[()()]2e x n x n x M n *=+- 1()[()()]2o x n x n x M n *=--(4)序列的运算 1)基本运算2)线性卷积:将序列()x n 以y 轴为中心做翻转,然后做m 点移位,最后与()x n 对应点相乘求和——翻转、移位、相乘、求和定义式: 1212()()()()()m y n x m x n m x n x n ∞=-∞=-=*∑线性卷积的计算:A 、图解 B 、解析法C 、不进位乘法(必须掌握)3)单位复指数序列求和(必须掌握)/2/2/2/2/2/21/2/2/2/2/2/2(1)/21()()/(2)1()()/(2)sin(/2)sin(/2)j N j N j N j N j N j N j N N j nj j j j j j j n j N e e e e e e e j ee e e e e e e j N e ωωωωωωωωωωωωωωωωωω------------=-----===---=∑如果2/k N ωπ=,那么根据洛比达法则有sin(/2)(0)(0)(()())sin(/2)N N k N N k N ωδδω===或可以结合作业题3.22进行练习(5)序列的功率和能量能量:2|()|n E x n ∞=-∞=∑功率:21lim |()|21NN n NP x n N →∞=-=+∑ (6)相关函数——与随机信号的定义运算相同(二) 离散时间系统1.系统性质 (1)线性性质定义:设系统的输入分别为1()x n 和2()x n ,输出分别为1()y n 和2()y n ,即1122()[()],()[()]y n T x n y n T x n ==统的输对于任意给定的常数a 、b ,下式成立1212()[()()]()()y n T ax n bx n a y n by n =+=+则该系统服从线性叠加原理,为线性系统,否则为非线性系统。
判定系统的线性性质时,直接用定义 (2)时不变性质统的如果系统对输入信号的运算关系在整个运算过程中不随时间变化,则称该系统是时不变系统。
即对任意给定的整数i ,若下式成立:()[()]y n i T x n i -=-则称该系统为时不变系统,否则为时变系统。
判定系统的时不变性质时,直接用定义 (3)系统的因果性定义:如果系统n 时刻的输出序列只取决于n 时刻及以前的输入序列,而与n 时刻以后的输入序列无关,则称该系统具有因果性质,即系统是因果系统,否则是非因果系统。
离散时间LTI 系统具有因果性的充要条件是:系统的单位脉冲响应()h n 满足()0,0h n n =<(4)系统的稳定性定义:对任意有界的输入,系统的输出都有界,则该系统是稳定的,否则是不稳定的。
离散时间LTI 系统具有因果性的充要条件是:系统的单位脉冲响应()h n 满足绝对可和,即|()|i h i ∞=-∞<∞∑(5)对离散时间LTI 系统的描述 (1)时域:差分方程 (2)Z 域:系统函数()H z 2.信号过系统()()()y n h n x n =*用线性卷积的相关知识计算,信号系统学的基本性质可以套用二、离散时间信号和系统的频域分析 (一) 离散时间信号1.序列傅里叶变换(Sequence Fourier Transform )(即本书中的离散时间信号的傅里叶变换) (1)定义SFT :()[()](),j j nn X e SFT x n x n eωωω∞-=-∞==-∞<<∞∑ISFT :1()[()](),2j j j n x n ISFT X e X ee d n πωωωπωπ-==-∞<<∞⎰说明:1、物理意义:序列傅里叶变换本质上是序列的一种分解,它将一般序列分解为无穷多个数字角频率[,]ππ-中的复指数序列。
称()j X e ω为序列()x n 的频谱,其模|()|j X e ω称为幅频特性,其幅角arg[()]()j X e ωθω=称为相频特性。
2、尽管序列()x n 是离散时间信号,但它的序列傅里叶变换对数字角频率ω而言却是连续函数,因此,序列()x n 的傅里叶变换是连续的。
3、(2)(2)()()()j j nj n X ex n eX e ωπωπω∞+-+=-∞==∑由上式可知,序列傅里叶变换()j X e ω是以2π为周期的周期函数,其原因正是由于j n e ω对ω而言以2π为周期,即数字角频率相差2π的所有单位复指数序列等价。
因此,对ω-∞<<∞的所有单位复指数序列只有一个周期。
对于离散时间信号,由于的周期性,使得02ωπ=或的整数倍都表示信号的直流分量,而π的奇数倍表示信号的最高频率。
(2)性质 0))ωω-),[()]Re[(I SFT jx X =(3)基本序列的傅里叶变换 (1)/2sin(N ω-0()δωω-+00[()()]πδωωδωω--+1)()j ωπδω--+2.Z 变换(不熟悉的复习信号系统相关内容,或本书2.3相关内容) (1)定义ZT :()[()]()||nx x n X z ZT x n x n zR z R ∞--+=-∞===<<∑IZT :11()[()]()||2n x x cx n IZT X z X z z dzR z R j π--+==<<⎰(2)性质——课本49页表2.3.3(3)收敛域与基本序列Z 变换——课本45页表2.3.1、表2.3.2 3. 离散时间信号Z 变换与SFT 的关系Z 变换是由SFT 推广得到的,反过来,如果某序列的Z 变换的收敛域包括j z e ω=,则也可以通过ZT 求得序列的SFT 。
即()|()()j j nj z e n X z x n eX e ωωω∞-==-∞==∑上式表明,SFT 正是序列的ZT 在j z e ω=的值(二) 离散时间系统1.系统函数的收敛域与系统因果性和稳定性当且仅当系统函数H(z)的收敛域为小于单位圆的某个圆的园外时,系统是因果稳定的。
2.系统函数的零极点分布与系统因果性和稳定性若系统是因果稳定的,则H(z)的极点必定在单位圆内。
3.系统函数的零极点分布对系统频率响应特性的影响1、对极点而言:当单位圆上的点转到某个极点附近时,|()|j H e ω在这附近出现峰值。
极点越靠近单位圆,振幅特性的峰值越大,当极点出现在单位圆上时,振幅特性将出现无穷大,系统不稳定。
2、对零点而言:当单位圆上的点转到某个零点附近时,|()|j H e ω在这附近出现谷点。
当零点出现在单位圆上时,振幅特性为零。
零点可以位于单位圆外,不影响稳定性。
两个概念——1、最小相位系统:系统H(z)的全部零极点都在单位圆内,某点在单位圆上逆时针旋转一周时,系统的相位变化最小。
2、最大相位系统:H(z)的全部零点在单位圆外,系统的相位变化最大。
说明:处于坐标原点的零极点不影响系统的幅频响应;利用零极点分析系统的幅频响应,仅对低阶系统有效。
(三) 离散时间信号与模拟(连续)时间信号1.时域关系设连续时间信号()a x t ,离散时间信号()x n ,则()()()|a a t nT x n x nT x t ===2.频域关系1()|[()]j T a s m X e X j m T ωω∞=Ω=-∞=Ω-Ω∑在时域对信号抽样,其频域的特征就是频谱以采样频率s Ω为周期进行周期延拓。
一个域的离散必然导致另一个域的周期延拓 一个域的周期延拓必然导致另一个域的离散对应变量的关系:ω-Ω-单位:rad 单位:HzT ω=Ω由于s Ω≤Ω,所以max 2s T ωπ=Ω=三、离散傅里叶变换(DFT )(一) 离散傅里叶级数变换(DFST )说明:周期序列不满足绝对可和的条件,不适用于序列傅里叶变换的定义式,但是它可以展开成离散傅里叶级数(Discrete Fourier Series ,DFS ),利用离散傅里叶级数可以得到周期序列的离散傅里叶变换表示式。
1.定义DFST :10()(),N nk N n X k x n W k -==-∞<<∞∑IDFST :101()(),N nk Nn x n X k Wn N--==-∞<<∞∑注:1、周期单位复指数序列22,j nk j nk nk nk NNNNWe We ππ--==周期单位复指数序列对n 、k 而言都是以N 为周期的,即(),,n N k nk N N W W n k +=-∞<<∞ (),,n k N nk N N W W n k +=-∞<<∞ (),,nk N nk N N W W n k +=-∞<<∞2、周期为N 的周期序列()x n 可以分解成N 个周期复指数序列的和,这些周期复指数序列的数字角频率为2(0,1,2,,1)kk N Nπ=⋅⋅⋅-周,它们的幅度和相位由离散傅里叶级数()X k N决定。