2012年河南高考(理科数学)
2012河南高考数学答案
2012年全国卷新课标——数学理科答案(1)【解析】选D.法一:按x y -的值为1,2,3,4计数,共432110+++=个;法二:其实就是要在1,2,3,4,5中选出两个,大的是x ,小的是y ,共2510C =种选法.(2)【解析】选A.只需选定安排到甲地的1名教师2名学生即可,共1224C C 种安排方案.(3)【解析】选C.经计算, 221,21 z i z i i ==--=-+.(4)【解析】选C.画图易得,21F PF △是底角为30的等腰三角形可得212PF F F =,即3222a c c ⎛⎫-= ⎪⎝⎭, 所以34c e a ==. (5)【解析】选D.472a a +=,56478a a a a ==-,474,2a a ∴==-或472,4a a =-=,14710,,,a a a a 成等比数列,1107a a ∴+=-.(6)【解析】选C. (7) 【解析】选B.由三视图可知,此几何体是底面为俯视图三角形,高为3的三棱锥,1132323932V =⨯⨯⨯⨯=.(8) 【解析】选C.易知点()4,23-在222x y a -=上,得24a =,24a =. (9)【解析】选A. 由322,22442Z k k k ππππππωπωπ+≤+<+≤+∈得,1542,24Z k k k ω+≤≤+∈, 15024ωω>∴≤≤ .(10) 【解析】选B.易知ln(1)0y x x =+-≤对()1,x ∈-+∞恒成立,当且仅当0x =时,取等号. (11) 【解析】选A.易知点S 到平面ABC 的距离是点O 到平面ABC 的距离的2倍.显然O ABC -是棱长为1的正四面体,其高为63,故136234312O ABC V -=⨯⨯=,226S ABC O ABC V V --== (12) 【解析】选B.12x y e =与ln(2)y x =互为反函数,曲线12x y e =与曲线ln(2)y x =关于直线y x =对称,只需求曲线12x y e =上的点P 到直线y x =距离的最小值的2倍即可.设点1,2x P x e ⎛⎫⎪⎝⎭,点P 到直线y x =距离122xx e d -=. 令()12x f x e x=-,则()112xf x e '=-.由()0f x '>得ln 2x >;由()0f x '<得ln 2x <,故当ln 2x =时,()f x 取最小值1l n 2-.所以122x x e d -=122x e x -=,min 1ln 22d -=. 所以()min min ||221ln 2PQ d ==-.(13) 【 解析】32.由已知得,()22222244||-=-=-a b a b a a b +b 2244cos 45=- a a b +b 242210=-=b +b ,解得=b 32.(14) 【解析】[]3,3-.画出可行域,易知当直线2Z x y =-经过点()1,2时,Z 取最小值3-;当直线2Z x y =-经过点()3,0时,Z 取最大值3.故2Z x y =-的取值范围为[]3,3-.(15) 【解析】38. 由已知可得,三个电子元件使用寿命超过1000小时的概率均为12,所以该部件的使用寿命超过1000小时的概率为211311228⎡⎤⎛⎫--⨯=⎢⎥ ⎪⎝⎭⎢⎥⎣⎦.(16) 【解析】1830.由1(1)21n n n a a n ++-=-得,22143k k a a k --=-……① 21241k k a a k +-=-……②,再由②-①得,21212k k a a +-+=……③由①得, ()()()214365S S a a a a a a -=-+-+-+奇偶…()6059a a +-159=+++…117+()11173017702+⨯==由③得, ()()()3175119S a a a a a a =++++++奇…()5959a a ++21530=⨯=所以, ()217702301830S S S S S S =+=-+=+⨯=60奇奇奇偶偶.(17) 解:(Ⅰ)法一:由cos 3sin 0a C a C b c +--=及正弦定理可得sin cos 3sin sin sin sin 0A C A C B C +--=,()sin cos 3sin sin sin sin 0A C A C A C C +-+-=,3sin sin cos sin sin 0A C A C C --=,sin 0C > ,3sin cos 10A A ∴--=,2sin 106A π⎛⎫∴--= ⎪⎝⎭,1sin 62A π⎛⎫-= ⎪⎝⎭,0A π<< ,5666A πππ∴-<-<,66A ππ∴-=3A π∴=法二:由正弦定理可得sin sin a C c A =,由余弦定理可得 222cos 2a b c C ab +-=.再由cos 3sin 0a C a C b c +--=可得,2223sin 02a b c a c A b c ab+-⋅+--=,即222223sin 220a b c bc A b bc +-+--=,222223sin 220a b c bc A b bc +-+--=2223sin 12b c a A bc +--+=,即3sin cos 1A A -=,2sin 16A π⎛⎫-= ⎪⎝⎭,1sin 62A π⎛⎫-= ⎪⎝⎭, 0A π<< ,5666A πππ∴-<-<, 66A ππ∴-=3A π∴=(Ⅱ)3ABC S = △,13sin 324bc A bc ∴==,4bc ∴=, 2,3a A π==, 222222cos 4a b c bc A b c bc ∴=+-=+-=, 228b c ∴+=.解得2b c ==.(18) 解:(Ⅰ) ()()1080,1580,16 n n y n -≤⎧⎪=⎨≥⎪⎩(n N ∈); (Ⅱ) (ⅰ)若花店一天购进16枝玫瑰花,X 的分布列为X 60 70 80 P0.10.20.7X 的数学期望()E X =60×0.1+70×0.2+80×0.7=76,X 的方差()D X =(60-762)×0.1+(70-762)×0.2+(80-762)×0.7=44.(ⅱ)若花店计划一天购进17枝玫瑰花,X 的分布列为X 55 65 75 85 P0.10.20.160.54X 的数学期望()E X =55×0.1+65×0.2+75×0.16+85×0.54=76.4,因为76.4>76,所以应购进17枝玫瑰花.(19) (Ⅰ) 证明:设112AC BC AA a ===, 直三棱柱111C B A ABC -, 12DC DC a ∴==, 12CC a =,22211DC DC CC ∴+=,1DC DC ∴⊥.又1DC BD ⊥ ,1DC DC D = ,1DC ∴⊥平面BDC .BC ⊂ 平面BDC ,1DC BC ∴⊥.(Ⅱ)由 (Ⅰ)知,12DC a =,15BC a =,又已知BD DC ⊥1,3BD a ∴=. 在Rt ABD △中,3,,90BD a AD a DAB ==∠= , 2AB a ∴=.222AC BC AB ∴+=,AC BC ∴⊥.法一:取11A B 的中点E ,则易证1C E ⊥平面1BDA ,连结DE ,则1C E ⊥BD , 已知BD DC ⊥1,BD ∴⊥平面1DC E ,BD ∴⊥DE ,1C DE ∴∠是二面角11C BD A --平面角.在1Rt C DE △中,111212sin 22aC EC DE C Da ∠===,130C DE ∴∠= .即二面角11C BD A --的大小为30.法二:以点C 为坐标原点,为x 轴,CB 为y 轴,1CC 为z 轴,建立空间直角坐标系C xyz -.则()()()()11,0,2,0,,0,,0,,0,0,2A a a B aD a a C a .()()1,,,,0,DB a a a DC a a =--=- ,设平面1DBC 的法向量为()1111,,n x y z =,则1111110n DB ax ay az n DC ax az ⎧=-+-=⎪⎨=-+=⎪⎩,不妨令11x =,得112,1y z ==,故可取()11,2,1n = . 同理,可求得平面1DBA 的一个法向量()21,1,0n =.设1n 与2n 的夹角为θ,则 121233cos 262n n n n θ⋅===⨯, 30θ∴=. 由图可知, 二面角的大小为锐角,故二面角11C BD A --的大小为30.(20) 解: (Ⅰ)由对称性可知,BFD △为等腰直角三角形,斜边上的高为p ,斜边长2BD p =.点A 到准线l 的距离2d FB FD p ===.由42ABD S =△得,11224222BD d p p ⨯⨯=⨯⨯=, 2p ∴=.圆F 的方程为()2218x y +-=.(Ⅱ)由对称性,不妨设点(),A A A x y 在第一象限,由已知得线段AB 是圆F 的在直径,90o ADB ∠=,2BD p ∴=,32A y p ∴=,代入抛物线:C py x 22=得3A x p =. 直线m 的斜率为333AF p k p ==.直线m 的方程为3302p x y -+=. 由py x 22= 得22x y p=,x y p '=.由33x y p '==得, 33x p =.故直线n 与抛物线C 的切点坐标为3,36p p ⎛⎫ ⎪ ⎪⎝⎭, 直线n 的方程为3306px y --=. 所以坐标原点到m ,n 的距离的比值为343312pp =.(21) 解: (Ⅰ) 1()(1)(0)x f x f e f x -''=-+,令1x =得,(0)1f =,再由121()(1)(0)2x f x f ef x x -'=-+,令0x =得()1f e '=. 所以)(x f 的解析式为21()2xf x e x x =-+.()1x f x e x '=-+,易知()1x f x e x '=-+是R 上的增函数,且(0)0f '=.所以()00,()00,f x x f x x ''>⇔><⇔< 所以函数)(x f 的增区间为()0,+∞,减区间为(),0-∞.(Ⅱ) 若b ax x x f ++≥221)(恒成立, 即()()21()102xh x f x x ax b e a x b =---=-+-≥恒成立,()()1x h x e a '=-+ ,(1)当10a +<时,()0h x '>恒成立, ()h x 为R 上的增函数,且当x →-∞时, ()h x →-∞,不合题意;(2)当10a +=时,()0h x >恒成立, 则0b ≤,(1)0a b +=;(3)当10a +>时, ()()1x h x e a '=-+为增函数,由()0h x '=得()ln 1x a =+, 故()()()0ln 1,()0ln 1,f x x a f x x a ''>⇔>+<⇔<+当()ln 1x a =+时, ()h x 取最小值()()()()ln 111ln 1h a a a a b +=+-++-. 依题意有()()()()ln 111ln 10h a a a a b +=+-++-≥, 即()()11ln 1b a a a ≤+-++,10a +> ,()()()()22111ln 1a b a a a ∴+≤+-++,令()()22ln 0 u x x x x x =->,则()()22ln 12ln u x x x x x x x '=--=-,()00,()0u x x e u x x e ''>⇔<<<⇔>,所以当x e =时, ()u x 取最大值()2e ue =. 故当1,2ea eb +==时, ()1a b +取最大值2e .综上, 若b ax x x f ++≥221)(,则 b a )1(+的最大值为2e . (22) 证明:(Ⅰ) ∵D ,E 分别为ABC △边AB ,AC 的中点, ∴//DE BC .//CF AB ,//DF BC ,CF BD ∴ 且 =CF BD ,又∵D 为AB 的中点,CF AD ∴ 且 =CF AD ,CD AF ∴=.//CF AB ,BC AF ∴=.CD BC ∴=.(Ⅱ)由(Ⅰ)知,BC GF ,GB CF BD ∴==, BGD BDG DBC BDC ∠=∠=∠=∠BCD GBD ∴△∽△.(23) 解:(Ⅰ)依题意,点A ,B ,C ,D 的极坐标分别为.所以点A ,B ,C ,D 的直角坐标分别为(1,3)、(3,1)-、(1,3)--、(3,1)-; (Ⅱ) 设()2cos ,3sin P ϕϕ,则 2222||||||||PD PC PB PA +++()()2212cos 33sin ϕϕ=-+-()()2232cos 13sin ϕϕ+--+-()()2212cos 33sin ϕϕ+--+--()()2232cos 13sin ϕϕ+-+--2216cos 36sin 16ϕϕ=++[]23220sin 32,52ϕ=+∈.所以2222||||||||PD PC PB PA +++的取值范围为[]32,52.(24) 解:(Ⅰ) 当3a =-时,不等式3)(≥x f ⇔ |3||2|3x x -+-≥⇔ ()()2323x x x ≤⎧⎪⎨----≥⎪⎩或()()23323x x x <<⎧⎪⎨-++-≥⎪⎩或()()3323x x x ≥⎧⎪⎨-+-≥⎪⎩ ⇔或4x ≥.所以当3a =-时,不等式3)(≥x f 的解集为{1x x ≤或}4x ≥. (Ⅱ) ()|4|f x x ≤-的解集包含]2,1[,即|||2||4|x a x x ++-≤-对[]1,2x ∈恒成立, 即||2x a +≤对[]1,2x ∈恒成立, 即22a x a --≤≤-对[]1,2x ∈恒成立, 所以2122a a --≤⎧⎨-≥⎩,即30a -≤≤.所以a 的取值范围为[]3,0-.。
2012年高考新课标理科数学试题及答案详解
绝密*启用前2012年普通高等学校招生全国统一考试(新课标)理科数学注息事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答卷前,考生务必将自己的姓名、准考证号填写在本试卷和答题卡相应位置上。
2.问答第Ⅰ卷时。
选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动.用橡皮擦干净后,再选涂其它答案标号。
写在本试卷上无效.3。
回答第Ⅱ卷时。
将答案写在答题卡上。
写在本试卷上无效· 4。
考试结束后。
将本试卷和答且卡一并交回。
第一卷一. 选择题:本大题共12小题,每小题5分,在每小题给同的四个选项中,只有一项是符合题目要求的。
(1)已知集合{1,2,3,4,5}A =,{(,),,}B x y x A y A x y A =∈∈-∈;,则B 中所含元素的个数为( )()A 3 ()B 6 ()C 8 ()D 10【解析】选D5,1,2,3,4x y ==,4,1,2,3x y ==,3,1,2x y ==,2,1x y ==共10个 (2)将2名教师,4名学生分成2个小组,分别安排到甲、乙两地参加社会实践活动,每个小组由1名教师和2名学生组成,不同的安排方案共有( )()A 12种 ()B 10种 ()C 9种 ()D 8种【解析】选A甲地由1名教师和2名学生:122412C C =种(3)下面是关于复数21z i=-+的四个命题:其中的真命题为( ) 1:2p z = 22:2p z i = 3:p z 的共轭复数为1i + 4:p z 的虚部为1-()A 23,p p ()B 12,p p ()C ,p p 24 ()D ,p p 34【解析】选C 22(1)11(1)(1)i z i i i i --===---+-+--1:p z =22:2p z i =,3:p z 的共轭复数为1i -+,4:p z 的虚部为1-(4)设12F F 是椭圆2222:1(0)x y E a b a b +=>>的左、右焦点,P 为直线32ax =上一点,∆21F PF 是底角为30的等腰三角形,则E 的离心率为( )()A 12 ()B 23 ()C 34()D 45【解析】选C∆21F PF 是底角为30的等腰三角形221332()224c PF F F a c c e a ⇒==-=⇔== (5)已知{}n a 为等比数列,472a a +=,568a a =-,则110a a +=( )()A 7 ()B 5 ()C -5 ()D -7【解析】选D472a a +=,56474784,2a a a a a a ==-⇒==-或472,4a a =-= 471101104,28,17a a a a a a ==-⇒=-=⇔+=- 471011102,48,17a a a a a a =-=⇒=-=⇔+=-(6)如果执行右边的程序框图,输入正整数(2)N N ≥和实数12,,...,n a a a ,输出,A B ,则( )()A A B +为12,,...,n a a a 的和 ()B 2A B+为12,,...,n a a a 的算术平均数 ()C A 和B 分别是12,,...,n a a a 中最大的数和最小的数 ()D A 和B 分别是12,,...,n a a a 中最小的数和最大的数【解析】选C(7)如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为( )()A 6 ()B 9 ()C 12 ()D 18【解析】选B该几何体是三棱锥,底面是俯视图,高为3 此几何体的体积为11633932V =⨯⨯⨯⨯=(8)等轴双曲线C 的中心在原点,焦点在x 轴上,C 与抛物线x y 162=的准线交于,A B两点,43AB =;则C 的实轴长为( )()A 2 ()B 22 ()C 4 ()D 8【解析】选C设222:(0)C x y a a -=>交x y 162=的准线:4l x =-于(4,23)A -(4,23)B --得:222(4)(23)4224a a a =--=⇔=⇔=(9)已知0ω>,函数()sin()4f x x πω=+在(,)2ππ上单调递减。
2012年全国高考理科数学试题及答案(全国卷)
2012年普通高等学校招生全国统一考试理科数学(必修+选修Ⅱ)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,第Ⅰ卷第1至2页,第Ⅱ卷第3至第4页。
考试结束,务必将试卷和答题卡一并上交。
第Ⅰ卷注意事项:全卷满分150分,考试时间120分钟。
考生注意事项:1.答题前,考生在答题卡上务必用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,并贴好条形码。
请认真核准该条形码上的准考证号、姓名和科目。
2.没小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。
在试题卷上作答无效.........。
3.第I 卷共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
一、选择题 (1)复数131i i-+=+(A )2i + (B )2i - (C )12i + (D )12i - (2)已知集合{1,A =,{1,}B m =,A B A = ,则m =(A )0(B )0或3 (C )1(D )1或3 (3)椭圆的中心在原点,焦距为4,一条准线为4x =-,则该椭圆的方程为(A )2211612xy+= (B )221128xy+= (C )22184xy+= (D )221124xy+=(4)已知正四棱柱1111ABC D A B C D -中 ,2A B =,1CC =E 为1C C 的中点,则直线1AC 与平面BED 的距离为(A )2 (B) (C(D )1 (5)已知等差数列{}n a 的前n 项和为n S ,55a =,515S =,则数列11{}n n a a +的前100项和为(A )100101(B )99101(C )99100(D )101100(6)A B C ∆中,A B 边的高为C D ,若CB a = ,C A b = ,0a b ⋅= ,||1a = ,||2b = ,则AD =(A )1133a b - (B )2233a b - (C )3355a b - (D )4455a b -(7)已知α为第二象限角,sin cos 3αα+=,则cos 2α=(A )3- (B )9- (C 9(D 3(8)已知1F 、2F 为双曲线22:2C x y -=的左、右焦点,点P 在C 上,12||2||PF PF =,则12cos F PF ∠=(A )14(B )35(C )34(D )45(9)已知ln x π=,5log 2y =,12z e-=,则(A )x y z << (B )z x y << (C )z y x << (D )y z x << (10)已知函数33y x x c =-+的图像与x 恰有两个公共点,则c =(A )2-或2 (B )9-或3 (C )1-或1 (D )3-或1(11)将字母,,,,,a a b b c c 排成三行两列,要求每行的字母互不相同,每列的字母也互不相同,则不同的排列方法共有(A )12种 (B )18种 (C )24种 (D )36种 (12)正方形A B C D 的边长为1,点E 在边A B 上,点F 在边B C 上,37A EB F ==。
2012年高考真题试卷理科数学(新课标卷)答案解析版(1)
2012年普通高等学校招生全国统一考试理科数学注息事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答卷前,考生务必将自己的姓名、准考证号填写在本试卷和答题卡相应位置上。
2.问答第Ⅰ卷时。
选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动.用橡皮擦干净后,再选涂其它答案标号。
写在本试卷上无效.3.回答第Ⅱ卷时。
将答案写在答题卡上.写在本试卷上无效·4.考试结束后.将本试卷和答且卡一并交回。
第一卷一.选择题:本大题共12小题,每小题5分,在每小题给同的四个选项中,只有一项是符合题目要求的。
(1)已知集合{1,2,3,4,5}A =,{(,),,}B x y x A y A x y A =∈∈-∈;,则B 中所含元素的个数为( )()A 3 ()B 6()C 8 ()D 10【解析】选D5,1,2,3,x y ==,4,1,2,3x y ==,3,1,2x y ==,2,1x y ==共10个 (2)将2名教师,4名学生分成2个小组,分别安排到甲、乙两地参加社会实践活动,每个小组由1名教师和2名学生组成,不同的安排方案共有( )()A 12种 ()B 10种()C 9种 ()D 8种【解析】选A甲地由1名教师和2名学生:122412C C =种(3)下面是关于复数21z i=-+的四个命题:其中的真命题为( )1:2p z = 22:2p z i = 3:p z 的共轭复数为1i + 4:p z 的虚部为1-()A 23,p p ()B 12,p p ()C ,p p 24 ()D ,p p 34【解析】选C 22(1)11(1)(1)iz i ii i--===---+-+--1:2p z =,22:2p z i =,3:p z 的共轭复数为1i -+,4:p z 的虚部为1-(4)设12F F 是椭圆2222:1(0)x y E a b ab+=>>的左、右焦点,P 为直线32a x =上一点,∆21F P F 是底角为30 的等腰三角形,则E 的离心率为( )()A 12()B23()C 34()D 45【解析】选C∆21F P F 是底角为30 的等腰三角形221332()224cP F F F a c c e a ⇒==-=⇔==(5)已知{}n a 为等比数列,472a a +=,568a a =-,则110a a +=( )()A 7 ()B 5()C -5 ()D -7【解析】选D472a a +=,56474784,2a a a a a a ==-⇒==-或472,4a a =-=471101104,28,17a a a a a a ==-⇒=-=⇔+=- 471011102,48,17a a a a a a =-=⇒=-=⇔+=-(6)如果执行右边的程序框图,输入正整数(2)N N ≥和实数12,,...,n a a a ,输出,A B ,则( )()A A B +为12,,...,n a a a 的和 ()B 2A B +为12,,...,n a a a 的算术平均数()C A 和B 分别是12,,...,n a a a 中最大的数和最小的数 ()D A 和B 分别是12,,...,n a a a 中最小的数和最大的数【解析】选C(7)如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为( )()A 6 ()B 9 ()C 12 ()D 18【解析】选B该几何体是三棱锥,底面是俯视图,高为3 此几何体的体积为11633932V =⨯⨯⨯⨯=(8)等轴双曲线C 的中心在原点,焦点在x 轴上,C 与抛物线x y 162=的准线交于,A B两点,43AB =;则C 的实轴长为( )()A 2 ()B 22 ()C 4 ()D 8【解析】选C设222:(0)C x y a a -=>交x y 162=的准线:4l x =-于(4,23)A -(4,23)B -- 得:222(4)(23)4224a a a =--=⇔=⇔=(9)已知0ω>,函数()sin()4f x x πω=+在(,)2ππ上单调递减。
2012年高考真题——数学理全国卷解析版
2012年普通高等学校招生全国统一考试理科数学(必修+选修II )本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分,第I 卷第1至2页,第II 卷第3至第4页.考试结束,务必将试卷和答题卡一并上交. 第I 卷注意事项:全卷满分150分,考试时间120分钟. 考生注意事项:1.答题前,考生在答题卡上务必用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,并贴好条形码.请认真核准该条形码上的准考证号、姓名和科目.2.没小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号.在试题卷上作答无效..........3.第I 卷共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 一、选择题1、 复数131ii-++= A 2+I B 2-I C 1+2i D 1- 2i 【解析】i ii i i i i i 21242)1)(1()1)(31(131+=+=-+-+-=++-,选C. 【答案】C2、已知集合A ={1.3.m },B ={1,m} ,AB =A, 则m=A 0或3B 0或3C 1或3D 1或3 【解析】因为A B A = ,所以A B ⊆,所以3=m 或m m =.若3=m ,则}3,1{},3,3,1{==B A ,满足A B A = .若m m =,解得0=m 或1=m .若0=m ,则}0,3,1{},0,3,1{==B A ,满足A B A = .若1=m ,}1,1{},1,3,1{==B A 显然不成立,综上0=m 或3=m ,选B.【答案】B3 椭圆的中心在原点,焦距为4 一条准线为x=-4 ,则该椭圆的方程为A 216x +212y =1B 212x +28y =1C 28x +24y =1D 212x +24y =1 【解析】椭圆的焦距为4,所以2,42==c c 因为准线为4-=x ,所以椭圆的焦点在x 轴上,且42-=-c a ,所以842==c a ,448222=-=-=c a b ,所以椭圆的方程为14822=+y x ,选C.【答案】C4 已知正四棱柱ABCD- A 1B 1C 1D 1中 ,AB=2,CC 1=22 E 为CC 1的中点,则直线AC 1与平面BED 的距离为 A 2 B3 C 2 D 1【解析】连结BD AC ,交于点O ,连结OE ,因为E O ,是中点,所以1//AC OE ,且121AC OE =,所以BDE AC //1,即直线1AC 与平面BED 的距离等于点C 到平面BED 的距离,过C 做OE CF ⊥于F ,则CF 即为所求距离.因为底面边长为2,高为22,所以22=AC ,2,2==CE OC ,2=OE ,所以利用等积法得1=CF ,选 D.【答案】D(5)已知等差数列{a n }的前n 项和为S n ,a 5=5,S 5=15,则数列的前100项和为(A)100101 (B) 99101(C) 99100 (D) 101100 【解析】由15,555==S a ,得1,11==d a ,所以n n a n =-+=)1(1,所以111)1(111+-=+=+n n n n a a n n ,又1011001011110111001312121111110110021=-=-++-+-=+ a a a a ,选A.【答案】A(6)△ABC 中,AB 边的高为CD ,若a ·b=0,|a|=1,|b|=2,则(A) (B ) (C) (D)【解析】在直角三角形中,521===AB CA CB ,,,则52=CD ,所以5454422=-=-=CD CA AD ,所以54=AB AD ,即b a b a AB AD 5454)(5454-=-==,选D. 【答案】D(7)已知α为第二象限角,33cos sin =+αα,则cos2α= (A) 5-3 (B )5-9 (C) 59 (D)53【解析】因为33cos sin =+αα所以两边平方得31cos sin 21=+αα,所以032cos sin 2<-=αα,因为已知α为第二象限角,所以0cos ,0sin <>αα,31535321cos sin 21cos sin ==+=-=-αααα,所以)sin )(cos sin (cos sin cos 2cos 22ααααααα+-=-==3533315-=⨯-,选A. 【答案】A(8)已知F 1、F 2为双曲线C :x ²-y ²=2的左、右焦点,点P 在C 上,|PF 1|=|2PF 2|,则cos ∠F 1PF 2= (A)14 (B )35 (C)34 (D)45【解析】双曲线的方程为12222=-y x ,所以2,2===c b a ,因为|PF 1|=|2PF 2|,所以点P 在双曲线的右支上,则有|PF 1|-|PF 2|=2a=22,所以解得|PF 2|=22,|PF 1|=24,所以根据余弦定理得432422214)24()22(cos 2221=⨯⨯-+=PF F ,选C. 【答案】C(9)已知x=ln π,y=log 52,21-=ez ,则(A)x <y <z (B )z <x <y (C)z <y <x (D)y <z <x【解析】1ln >=πx ,215log 12log 25<==y ,ee z 121==-,1121<<e ,所以x z y <<,选D.【答案】D(10) 已知函数y =x ²-3x+c 的图像与x 恰有两个公共点,则c = (A )-2或2 (B )-9或3 (C )-1或1 (D )-3或1【解析】若函数c x x y +-=33的图象与x 轴恰有两个公共点,则说明函数的两个极值中有一个为0,函数的导数为33'2-=x y ,令033'2=-=x y ,解得1±=x ,可知当极大值为c f +=-2)1(,极小值为2)1(-=c f .由02)1(=+=-c f ,解得2-=c ,由02)1(=-=c f ,解得2=c ,所以2-=c 或2=c ,选A.【答案】A(11)将字母a,a,b,b,c,c,排成三行两列,要求每行的字母互不相同,每列的字母也互不相同,则不同的排列方法共有(A )12种(B )18种(C )24种(D )36种【解析】第一步先排第一列有633=A ,在排第二列,当第一列确定时,第二列有两种方法,如图,所以共有1226=⨯种,选A.【答案】A(12)正方形ABCD 的边长为1,点E 在边AB 上,点F 在边BC 上,AE =BF =73.动点P 从E 出发沿直线喜爱那个F 运动,每当碰到正方形的方向的边时反弹,反弹时反射等于入射角,当点P 第一次碰到E 时,P 与正方形的边碰撞的次数为 (A )16(B )14(C )12(D)10【解析】结合已知中的点E,F 的位置,进行作图,推理可知,在反射的过程中,直线是平行的,那么利用平行关系,作图,可以得到回到EA 点时,需要碰撞14次即可. 【答案】B2012年普通高等学校招生全国统一考试理科数学(必修+选修Ⅱ) 第Ⅱ卷 注意事项:1.答题前,考生先在答题卡上用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,然后贴好条形码.请认真核准条形码上得准考证号、姓名和科目.2.第Ⅱ卷共2页,请用直径0.5毫米黑色墨水签字笔在答题卡上各题的答题区域内作答,在试题卷上作答无效......... 3.第Ⅱ卷共10小题,共90分.二.填空题:本大题共4小题,每小题5分,共20分,把答案填在题中横线上. (注意:在试题卷上作答无效.........) (13)若x ,y 满足约束条件则z=3x-y 的最小值为_________.【解析】做出做出不等式所表示的区域如图,由y x z -=3得z x y -=3,平移直线x y 3=,由图象可知当直线经过点)1,0(C 时,直线z x y -=3的截距最 大,此时z 最小,最小值为1-3=-=y x z . 【答案】1-(14)当函数取得最大值时,x=___________.【解析】函数为)3sin(2cos 3sin π-=-=x x x y ,当π20<≤x 时,3533πππ<-≤-x ,由三角函数图象可知,当23ππ=-x ,即65π=x 时取得最大值,所以65π=x . 【答案】65π=x (15)若的展开式中第3项与第7项的二项式系数相等,则该展开式中的系数为_________.【解析】因为展开式中的第3项和第7项的二项式系数相同,即62n n C C =,所以8=n ,所以展开式的通项为k k k kk k x C xxC T 288881)1(--+==,令228-=-k ,解得5=k ,所以2586)1(x C T =,所以21x的系数为5658=C .【答案】56(16)三菱柱ABC-A 1B 1C 1中,底面边长和侧棱长都相等, BAA 1=CAA 1=60°则异面直线AB 1与BC 1所成角的余弦值为____________.【解析】如图设,,,1c AC b AB a AA ===设棱长为1,则,1b a AB +=b c a BC a BC -1+=+=,因为底面边长和侧棱长都相等,且01160=∠=∠CAA BAA 所以21=•=•=•c b c a b a ,所以3)(21=+=b a AB ,2)-(21=+=b c a BC ,2)-()(11=+•+=•b c a b a BC AB ,设异面直线的夹角为θ,所以36322cos 1111=⨯=•=BC AB BC AB θ. 【答案】36 三.解答题:本大题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤.(17)(本小题满分10分)(注意:在试卷上作答无效...........) △ABC 的内角A 、B 、C 的对边分别为a 、b 、c ,已知cos (A-C )+cosB=1,a=2c ,求c.(18)(本小题满分12分)(注意:在试题卷上作答无效.........)如图,四棱锥P-ABCD中,底面ABCD为菱形,PA⊥底面ABCD,AC=22,PA=2,E是PC上的一点,PE=2EC.(Ⅰ)证明:PC⊥平面BED;(Ⅱ)设二面角A-PB-C为90°,求PD与平面PBC所成角的大小.19. (本小题满分12分)(注意:在试题卷上作答无效.........)乒乓球比赛规则规定:一局比赛,双方比分在10平前,一方连续发球2次后,对方再连续发球2次,依次轮换.每次发球,胜方得1分,负方得0分.设在甲、乙的比赛中,每次发球,发球方得1分的概率为0.6,各次发球的胜负结果相互独立.甲、乙的一局比赛中,甲先发球. (Ⅰ)求开始第4次发球时,甲、乙的比分为1比2的概率;(Ⅱ)表示开始第4次发球时乙的得分,求的期望.(20)(本小题满分12分)(注意:在试题卷上作答无效.........)设函数f(x)=ax+cosx,x∈[0,π].(Ⅰ)讨论f(x)的单调性;(Ⅱ)设f(x)≤1+sinx,求a的取值范围.21.(本小题满分12分)(注意:在试卷上作答无效........)已知抛物线C:y=(x+1)2与圆M:(x-1)2+(12y )2=r2(r>0)有一个公共点,且在A处两曲线的切线为同一直线l.(Ⅰ)求r;(Ⅱ)设m、n是异于l且与C及M都相切的两条直线,m、n的交点为D,求D到l的距离.22(本小题满分12分)(注意:在试卷上作答无效........)函数f(x)=x2-2x-3,定义数列{x n}如下:x1=2,x n+1是过两点P(4,5)、Q n(x n,f(x n))的直线PQ n 与x轴交点的横坐标.(Ⅰ)证明:2 x n<x n+1<3;(Ⅱ)求数列{x n}的通项公式.。
2012年高考理科数学(新课标卷)试题及答案
2012年全国卷新课标——数学理科(适用地区:吉林 黑龙江 山西、河南、新疆、宁夏、河北、云南、内蒙古) 本试卷包括必考题和选考题两部分,第1-21题为必考题,每个考生都必须作答.第22题~第24题,考生根据要求作答.一、选择题:本大题共12小题,在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合}5,4,3,2,1{=A ,},,|),{(A y x A y A x y x B ∈-∈∈=,则B 中所含元素的个数为 A. 3 B. 6 C. 8 D. 10【解析】选D.法一:按x y -的值为1,2,3,4计数,共432110+++=个;法二:其实就是要在1,2,3,4,5中选出两个,大的是x ,小的是y ,共2510C =种选法.2. 将2名教师,4名学生分成两个小组,分别安排到甲、乙两地参加社会实践活动,每个小组由一名教师和2名学生组成,不同的安排方案共有 A. 12种 B. 10种 C. 9种 D. 8种 【解析】选A.只需选定安排到甲地的1名教师2名学生即可,共1224C C 种安排方案.3. 下面是关于复数iz +-=12的四个命题: :1P 2||=z:2P i z 22= :3P z 的共轭复数为i +1:4P z 的虚部为1-其中的真命题为A. 2P ,3PB. 1P ,2PC. 2P ,4PD. 3P ,4P【解析】选C.经计算, 221,21 z i z i i ==--=-+.4. 设21,F F 是椭圆:E 12222=+by a x )0(>>b a 的左右焦点,P 为直线23ax =上的一点,12PF F △是底角为︒30的等腰三角形,则E 的离心率为A.21 B.32 C.43 D.54 【解析】选C.画图易得,21F PF △是底角为30的等腰三角形可得212PF F F =,即3222a c c ⎛⎫-= ⎪⎝⎭, 所以34c e a ==. 5. 已知}{n a 为等比数列,274=+a a ,865-=a a ,则=+101a a A.7B. 5C.5-D. 7-【解析】选D.472a a +=,56478a a a a ==-,474,2a a ∴==-或472,4a a =-=,14710,,,a a a a 成等比数列,1107a a ∴+=-.6. 如果执行右边的程序框图,输入正整数N )2(≥N 和实数N a a a ,,,21 ,输出A ,B ,则A. B A +为N a a a ,,,21 的和B.2BA +为N a a a ,,,21 的算术平均数 C. A 和B 分别是N a a a ,,,21 中最大的数和最小的数D. A 和B 分别是N a a a ,,,21 中最小的数和最大的数 【解析】选C.7. 如图,网格纸上小正方形的边长为1,粗线画出的 是某几何体的三视图,则此几何体的体积为 A. 6 B. 9 C. 12 D. 18 【解析】选B.由三视图可知,此几何体是底面为俯视图三角形,高为3的三棱锥,113932V =⨯⨯=.8. 等轴双曲线C 的中心在原点,焦点在x 轴上,C 与抛物线x y 162=的准线交于A ,B ,两点,34||=AB ,则的实轴长为A.2B. 22C. 4D. 8【解析】选C.易知点(4,-在222x y a -=上,得24a =,24a =. 9. 已知0>ω,函数)4sin()(πω+=x x f 在),2(ππ单调递减,则ω的取值范围是A. ]45,21[B. ]43,21[C. ]21,0(D. ]2,0(【解析】选A. 由322,22442Z k k k ππππππωπωπ+≤+<+≤+∈得,1542,24Z k k k ω+≤≤+∈, 15024ωω>∴≤≤ .10. 已知函数xx x f -+=)1ln(1)(,则)(x f y =的图像大致为【解析】选B.易知ln(1)0y x x =+-≤对()1,x ∈-+∞恒成立,当且仅当0x =时,取等号.11. 已知三棱锥ABC S -的所有顶点都在球O 的球面上,ABC △是边长为1的正三角形,SC 为球O 的直径,且2=SC ,则此棱锥的体积为A.62 B.63 C.32 D.22 【解析】选A.易知点S 到平面ABC 的距离是点O 到平面ABC 的距离的2倍.显然O ABC -是棱长为11312O ABC V -==,26S ABC O ABC V V --== 12. 设点P 在曲线xe y 21=上,点Q 在曲线)2ln(x y =上,则||PQ 的最小值为A. 2ln 1-B.)2ln 1(2- C. 2ln 1+D.)2ln 1(2+【解析】选B.12x y e =与ln(2)y x =互为反函数,曲线12x y e =与曲线ln(2)y x =关于直线y x =对称,只需求曲线12x y e =上的点P 到直线y x =距离的最小值的2倍即可.设点1,2x P x e ⎛⎫⎪⎝⎭,点P 到直线y x =距离d =.令()12x f x e x=-,则()112xf x e '=-.由()0f x '>得ln 2x >;由()0f x '<得ln 2x <,故当ln 2x =时,()f x 取最小值1l n 2-.所以d=1x e x -=,min d =所以)min min ||21ln 2PQ d ==-.二、填空题.本大题共4小题,每小题5分.13.已知向量a ,b 夹角为︒45,且1=||a ,102=-||b a ,则=||b .【解析】由已知得,()22222244||-=-=-a b a b a a b +b 2244cos 45=- a a b +b2410=-=+b,解得=b14. 设yx,满足约束条件⎪⎪⎩⎪⎪⎨⎧≥≥≤+-≥-31yxyxyx则yxZ2-=的取值范围为.【解析】[]3,3-.画出可行域,易知当直线2Z x y=-经过点()1,2时,Z取最小值3-;当直线2Z x y=-经过点()3,0时,Z取最大值3.故2Z x y=-的取值范围为[]3,3-.15. 某一部件由三个电子元件按下图方式连接而成,元件1或元件2正常工作,且元件3正常工作,则部件正常工作.设三个电子元件的使用寿命(单位:小时)服从正态分布)50,1000(2N,且各元件能否正常工作互相独立,那么该部件的使用寿命超过1000小时的概率为.【解析】38.由已知可得,三个电子元件使用寿命超过1000小时的概率均为12,所以该部件的使用寿命超过1000小时的概率为211311228⎡⎤⎛⎫--⨯=⎢⎥⎪⎝⎭⎢⎥⎣⎦.16. 数列}{na满足12)1(1-=-++naannn,则}{na的前60项和为.【解析】1830.由1(1)21nn na a n++-=-得,22143k ka a k--=-……①21241k ka a k+-=-……②,再由②-①得,21212k ka a+-+=……③由①得, ()()()214365S S a a a a a a-=-+-+-+奇偶…()6059a a+-159=+++ (117)+()11173017702+⨯==由③得, ()()()3175119S a a a a a a =++++++奇…()5959a a ++21530=⨯=所以, ()217702301830S S S S S S =+=-+=+⨯=60奇奇奇偶偶.三、解答题:解答题应写出文字说明,证明过程或演算步骤.17. (本小题满分12分) 已知a ,b ,c 分别为ABC △三个内角A ,B ,C 的对边,0s i n 3c o s =--+c b C a C a .(Ⅰ) 求A ;(Ⅱ) 若2=a ,ABC △的面积为3,求b ,c .解:(Ⅰ)法一:由cos sin 0a C C b c --=及正弦定理可得sin cos sin sin sin 0A C A C B C --=,()sin cos sin sin sin 0A C A C A C C +-+-=,sin cos sin sin 0A C A C C --=,sin 0C > ,cos 10A A --=,2sin 106A π⎛⎫∴--= ⎪⎝⎭,1sin 62A π⎛⎫-= ⎪⎝⎭,0A π<< ,5666A πππ∴-<-<,66A ππ∴-=3A π∴=法二:由正弦定理可得sin sin a C c A =,由余弦定理可得 222cos 2a b c C ab +-=.再由cos sin 0a C C b c --=可得,222sin 02a b c a A b c ab+-⋅+--=,即2222sin 220a b c A b bc +-+--=,2222sin 220a b c A b bc +-+--=22212b c a A bc +--+=cos 1A A -=,2sin 16A π⎛⎫-= ⎪⎝⎭,1sin 62A π⎛⎫-= ⎪⎝⎭, 0A π<< ,5666A πππ∴-<-<, 66A ππ∴-=3A π∴=(Ⅱ)ABC S = △,1sin 24bc A ∴==4bc ∴=, 2,3a A π==, 222222cos 4a b c bc A b c bc ∴=+-=+-=, 228b c ∴+=. 解得2b c ==.18. (本小题满分12分) 某花店每天以每枝5元的价格从农场购进若干枝玫瑰花,然后以每枝10元的价格出售.如果当天卖不完,剩下的玫瑰花做垃圾处理. (Ⅰ) 若花店某天购进16枝玫瑰花,求当天的利润y (单位:元)关于当天需求量n (单位:枝,N n ∈)的函数解析式;(ⅰ)若花店一天购进16枝玫瑰花,X 表示当天的利润(单位:元),求X 的分布列、数学期望及方差; (ⅱ)若花店计划一天购进16枝或17枝玫瑰花,你认为应购进16枝还是17枝?请说明理由. 解:(Ⅰ) ()()1080,1580,16 n n y n -≤⎧⎪=⎨≥⎪⎩(n N ∈); (Ⅱ) (ⅰ)若花店一天购进16枝玫瑰花,X 的分布列为X 的数学期望()E X =60×0.1+70×0.2+80×0.7=76,X 的方差()D X =(60-762)×0.1+(70-762)×0.2+(80-762)×0.7=44.XX 的数学期望()E X =55×0.1+65×0.2+75×0.16+85×0.54=76.4,因为76.4>76,所以应购进17枝玫瑰花.19. (本小题满分12分)如图,直三棱柱111C B A ABC -中,121AA BC AC ==,D 是棱1AA 的中点,BD DC ⊥1 (Ⅰ) 证明:BC DC ⊥1(Ⅱ) 求二面角11C BD A --的大小.(Ⅰ) 证明:设112AC BC AA a ===, 直三棱柱111C B A ABC -,1DC DC ∴==, 12CC a =,22211DC DC CC ∴+=,1DC DC ∴⊥.又1DC BD ⊥ ,1DC DC D = ,1DC ∴⊥平面BDC .BC ⊂ 平面BDC ,1DC BC ∴⊥.(Ⅱ)由 (Ⅰ)知,1DC =,1BC ,又已知BD DC ⊥1,BD ∴=. 在Rt ABD △中,,,90BD AD a DAB =∠= ,AB ∴=.222AC BC AB ∴+=,AC BC ∴⊥.法一:取11A B 的中点E ,则易证1C E ⊥平面1BDA ,连结DE ,则1C E ⊥BD , 已知BD DC ⊥1,BD ∴⊥平面1DC E ,BD ∴⊥DE ,1C DE ∴∠是二面角11C BD A --平面角.在1Rt C DE △中,1111sin 2C EC DE C D∠===,130C DE ∴∠= .即二面角11C BD A --的大小为30.法二:以点C 为坐标原点,为x 轴,CB 为y 轴,1CC 为z 轴,建立空间直角坐标系C xyz -.则()()()()11,0,2,0,,0,,0,,0,0,2A a a B aD a a C a .()()1,,,,0,DB a a a DC a a =--=- ,设平面1DBC 的法向量为()1111,,n x y z =,则1111110n DB ax ay az n DC ax az ⎧=-+-=⎪⎨=-+=⎪⎩,不妨令11x =,得112,1y z ==,故可取()11,2,1n = . 同理,可求得平面1DBA 的一个法向量()21,1,0n =.设1n 与2n 的夹角为θ,则1212cos 2n n n n θ⋅===, 30θ∴= . 由图可知, 二面角的大小为锐角,故二面角11C BD A --的大小为30.20. (本小题满分12分)设抛物线:C py x 22=)0(>p 的焦点为F ,准线为l ,A 为C 上一点,已知以F 为圆心,FA 为半径的圆F 交l 于B 、D 两点(Ⅰ) 若90BFD ∠=︒,ABD △面积为24,求p 的值及圆F 的方程;(Ⅱ)若A 、B 、F 三点在同一直线m 上,直线n 与m 平行,且n 与C 只有一个公共点,求坐标原点到m ,n 的距离的比值.解: (Ⅰ)由对称性可知,BFD △为等腰直角三角形,斜边上的高为p ,斜边长2BD p =.点A 到准线l的距离d FB FD ===.由ABD S =△,11222BD d p ⨯⨯=⨯=2p ∴=.圆F 的方程为()2218x y +-=.(Ⅱ)由对称性,不妨设点(),A A A x y 在第一象限,由已知得线段AB 是圆F 的在直径,90o ADB ∠=,2BD p ∴=,32A y p ∴=,代入抛物线:C py x 22=得A x . 直线m的斜率为AF k ==.直线m的方程为02x +=. 由py x 22= 得22x y p=,x y p '=.由x y p '==, x p =.故直线n 与抛物线C的切点坐标为6p ⎫⎪⎪⎝⎭, 直线n的方程为0x =.所以坐标原点到m ,n3=.21. (本小题满分12分) 已知函数121()(1)(0)2x f x f ef x x -'=-+. (Ⅰ) 求)(x f 的解析式及单调区间;(Ⅱ) 若b ax x x f ++≥221)(,求b a )1(+的最大值 解: (Ⅰ) 1()(1)(0)x f x f e f x -''=-+,令1x =得,(0)1f =,再由121()(1)(0)2x f x f ef x x -'=-+,令0x =得()1f e '=. 所以)(x f 的解析式为21()2xf x e x x =-+.()1x f x e x '=-+,易知()1x f x e x '=-+是R 上的增函数,且(0)0f '=.所以()00,()00,f x x f x x ''>⇔><⇔< 所以函数)(x f 的增区间为()0,+∞,减区间为(),0-∞.(Ⅱ) 若b ax x x f ++≥221)(恒成立, 即()()21()102xh x f x x ax b e a x b =---=-+-≥恒成立,()()1x h x e a '=-+ ,(1)当10a +<时,()0h x '>恒成立, ()h x 为R 上的增函数,且当x →-∞时, ()h x →-∞,不合题意;(2)当10a +=时,()0h x >恒成立, 则0b ≤,(1)0a b +=;(3)当10a +>时, ()()1xh x e a '=-+为增函数,由()0h x '=得()ln 1x a =+,故()()()0ln 1,()0ln 1,f x x a f x x a ''>⇔>+<⇔<+当()ln 1x a =+时, ()h x 取最小值()()()()ln 111ln 1h a a a a b +=+-++-. 依题意有()()()()ln 111ln 10h a a a a b +=+-++-≥,即()()11ln 1b a a a ≤+-++,10a +> ,()()()()22111ln 1a b a a a ∴+≤+-++,令()()22ln 0 u x x x x x =->,则()()22ln 12ln u x x x x x x x '=--=-,()00()0u x x u x x ''>⇔<<⇔,所以当x =, ()u x 取最大值2e u =.故当12a b +==时, ()1a b +取最大值2e . 综上, 若b ax x x f ++≥221)(,则 b a )1(+的最大值为2e .请考生在第22、23、24题中任选一题作答,如果多做,则按所做第一题记分,作答时请写清题号.22. (本小题满分10分)选修4—1:几何证明选讲如图,D ,E 分别为ABC △边AB ,AC 的中点,直线DE 交ABC △的 外接圆于F ,G 两点.若AB CF //,证明:(Ⅰ) BC CD =;(Ⅱ) GBD BCD ∽△△.证明:(Ⅰ) ∵D ,E 分别为ABC △边AB ,AC 的中点,∴//DE BC .//CF AB ,//DF BC ,CF BD ∴ 且 =CF BD ,又∵D 为AB 的中点,CF AD ∴ 且 =CF AD ,CD AF ∴=.//CF AB ,BC AF ∴=.CD BC ∴=.(Ⅱ)由(Ⅰ)知,BC GF ,GB CF BD ∴==, BGD BDG DBC BDC ∠=∠=∠=∠ BCD GBD ∴△∽△.23. (本小题满分10分)选修4—4:坐标系与参数方程已知曲线1C 的参数方程是2cos 3sin x y ϕϕ=⎧⎨=⎩(ϕ为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线2C 的极坐标方程是2=ρ.正方形ABCD 的顶点都在2C 上,且A ,B ,C ,D 依逆时针次序排列,点A 的极坐标为)3,2(π.(Ⅰ)点A ,B ,C ,D 的直角坐标;(Ⅱ) 设P 为1C 上任意一点,求2222||||||||PD PC PB PA +++的取值范围. 解:(Ⅰ)依题意,点A ,B ,C ,D 的极坐标分别为.所以点A ,B ,C ,D 的直角坐标分别为、(、(1,-、1)-; (Ⅱ) 设()2cos ,3sin P ϕϕ,则 2222||||||||PD PC PB PA +++())2212cos 3sin ϕϕ=-+()()222cos 13sin ϕϕ++- ()()2212cos 3sin ϕϕ+--+)()222cos 13sin ϕϕ++-- 2216cos 36sin 16ϕϕ=++[]23220sin 32,52ϕ=+∈.所以2222||||||||PD PC PB PA +++的取值范围为[]32,52.24. (本小题满分10分)选修4—5:不等式选讲已知函数|2|||)(-++=x a x x f .(Ⅰ) 当3a =-时,求不等式3)(≥x f 的解集; (Ⅱ) |4|)(-≤x x f 的解集包含]2,1[,求a 的取值范围.解:(Ⅰ) 当3a =-时,不等式3)(≥x f ⇔ |3||2|3x x -+-≥⇔ ()()2323x x x ≤⎧⎪⎨----≥⎪⎩或()()23323x x x <<⎧⎪⎨-++-≥⎪⎩或()()3323x x x ≥⎧⎪⎨-+-≥⎪⎩⇔或4x ≥.所以当3a =-时,不等式3)(≥x f 的解集为{1x x ≤或}4x ≥.(Ⅱ) ()|4|f x x ≤-的解集包含]2,1[,即|||2||4|x a x x ++-≤-对[]1,2x ∈恒成立,即||2x a +≤对[]1,2x ∈恒成立,即22a x a --≤≤-对[]1,2x ∈恒成立, 所以2122a a --≤⎧⎨-≥⎩,即30a -≤≤. 所以a 的取值范围为[]3,0-.。
2012年高考河南卷理科试题及答案
绝密★启用前2012年普通高等学校招生全国统一考试(河南卷)数 学(文史类)本试题卷分第一部分(选择题)和第二部分(非选择题)两部分.第1部分1至2页,第二部分3至4页,共4页.考生作答时,须将答案打在答题卡上,在本试题卷、草稿纸上答题无效,满分150分,考试时间120分钟.考试结束后,将本试题卷和答题卡一并交回.参考公式:如果事件A 、B 互斥,那么 球是表面积公式()()()P A B P A P B +=+ 24S R π=如果事件A 、B 相互独立,那么 其中R 表示球的半径()()()P A B P A P B ⋅=⋅ 球的体积公式如果事件A 在一次试验中发生的概率是P ,那么 343V R π=n 次独立重复试验中恰好发生k 次的概率 其中R 表示球的半径()(1)k kn k n n P k C P P -=-第一部分(选择题 共60分)1.选择题必须使用2B 铅笔将答案标号填涂在答题卡上对应题目标号的位置上. 2.本大题共12小题,每小题5分,共60分.一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目的要求的.1.若全集{1,2,3,4,5}M =,{2,4}N =,则M N =ð(A )∅ (B ){1,3,5} (C ){2,4}(D ){1,2,3,4,5}答案:B解析:∵{1,2,3,4,5}M =,则M N =ð{1,3,5},选B .2.有一个容量为66的样本,数据的分组及各组的频数如下:[11.5,15.5) 2 [15.5,19.5) 4 [19.5,23.5) 9 [23.5,27.5) 18 [27.5,31.5) 1l [31.5,35.5) 12 [35.5,39.5) 7 [39.5,43.5) 3 根据样本的频率分布估计,大于或等于31.5的数据约占(A )211 (B ) 13(C )12 (D )23答案:B解析:大于或等于31.5的数据共有12+7+3=22个,约占221663=,选B . 3.圆22460x y x y +-+=的圆心坐标是(A )(2,3) (B )(-2,3) (C )(-2,-3)(D )(2,-3)答案:D解析:圆方程化为22(2)(3)13x y -++=,圆心(2,-3),选D . 4.函数1()12x y =+的图象关于直线y =x 对称的图象像大致是答案:A解析:1()12x y =+图象过点(0,2),且单调递减,故它关于直线y =x 对称的图象过点(2,0)且单调递减,选A . 5.“x =3”是“x 2=9”的(A )充分而不必要的条件 (B )必要而不充分的条件 (C )充要条件(D )既不充分也不必要的条件答案:A解析:若x =3,则x 2=9,反之,若x 2=9,则3x =±,选A . 6.1l ,2l ,3l 是空间三条不同的直线,则下列命题正确的是(A )12l l ⊥,23l l ⊥13//l l ⇒(B )12l l ⊥,23//l l ⇒13l l ⊥(C )233////l l l ⇒1l ,2l ,3l 共面(D )1l ,2l ,3l 共点⇒1l ,2l ,3l 共面答案:B解析:由12l l ⊥,23//l l ,根据异面直线所成角知1l 与3l 所成角为90°,选B .7.如图,正六边形ABCDEF 中,BA CD EF ++=(A )0 (B )BE(C )AD(D )CF答案:D解析:BA CD EF CD DE EF CF ++=++=,选D .8.在△ABC 中,222sin sin sin sin sin A B C B C ≤+-,则A 的取值范围是(A )(0,]6π(B )[,)6ππ(C )(0,]3π(D )[,)3ππ答案:C解析:由222sin sin sin sin sin A B C B C ≤+-得222a b c bc ≤+-,即222122b c a bc +-≥,∴1cos 2A ≥,∵0A π<<,故03A π<≤,选C .9.数列{a n }的前n 项和为S n ,若a 1=1,a n +1 =3S n (n ≥1),则a 6=(A )3 × 44(B )3 × 44+1(C )44(D )44+1答案:A解析:由a n +1 =3S n ,得a n =3S n -1(n ≥ 2),相减得a n +1-a n =3(S n -S n -1)= 3a n ,则a n +1=4a n (n ≥ 2),a 1=1,a 2=3,则a 6= a 2·44=3×44,选A .10.某运输公司有12名驾驶员和19名工人,有8辆载重量为10吨的甲型卡车和7辆载重量为6吨的乙型卡车.某天需运往A 地至少72吨的货物,派用的每辆车需满载且只运送一次.派用的每辆甲型卡车需配2名工人,运送一次可得利润450元;派用的每辆乙型卡车需配1名工人,运送一次可得利润350元,该公司合理计划当天派用两类卡车的车辆数,可得最大利润为 (A )4650元 (B )4700元 (C )4900元 (D )5000元 答案:C解析:设派用甲型卡车x (辆),乙型卡车y (辆),获得的利润为u (元),450350u x y =+,由题意,x 、y 满足关系式12,219,10672,08,07,x y x y x y x y +≤⎧⎪+≤⎪⎪+≥⎨⎪≤≤⎪≤≤⎪⎩作出相应的平面区域,45035050(97)u x y x y =+=+在由12,219x y x y +≤⎧⎨+≤⎩确定的交点(7,5)处取得最大值4900元,选C .11.在抛物线25(0)y x ax a =+-≠上取横坐标为14x =-,22x =的两点,过这两点引一条割线,有平行于该割线的一条直线同时与抛物线和圆225536x y +=相切,则抛物线顶点的坐标为 (A )(2,9)-- (B )(0,5)- (C )(2,9)- (D )(1,6)- 答案:A解析:令抛物线上横坐标为14x =-、22x =的点为(4,114)A a --、(2,21)B a -,则2AB k a =-,由22y x a a '=+=-,故切点为(1,4)a ---,切线方程为(2)60a x y ---=,该直线又和圆相切,则d =,解得4a =或0a =(舍去),则抛物线为2245(2)9y x x x =+-=+-,定点坐标为(2,9)--,选A .12.在集合{1,2,3,4,5}中任取一个偶数a 和一个奇数b 构成以原点为起点的向量(,)a b =α,从所有得到的以原点为起点的向量中任取两个向量为邻边作平行四边形,记所有作成的平行四边形的个数为n ,其中面积等于2的平行四边形的个数为m ,则mn=(A )215 (B )15 (C )415 (D )13答案:B解析:∵以原点为起点的向量(,)a b =α有(2,1)、(2,3)、(2,5)、(4,1)、(4,3)、(4,5)共6个,可作平行四边形的个数2615n C ==个,结合图形进行计算,其中由(2,1)(4,1)、(2,1)(4,3)、(2,3)(4,5)确定的平行四边形面积为2,共有3个,则31155m n ==,选B .第二部分(非选择题 共90分)注意事项:1.必须使用0.5毫米黑色墨迹签字笔在答题卡上题目所指示的答题区域内作答,作图题可先用铅笔绘出,确认后再用0.5毫米黑色墨迹签字笔描清楚,答在试题卷上无效.2.本部分共10小题,共90分.二、填空题:本大题共4小题,每小题4分,共16分.13.9(1)x +的展开式中3x 的系数是_________.(用数字作答)答案:84解析:∵9(1)x +的展开式中3x 的系数是639984C C ==. 14.双曲线2216436x y -=上一点P 到双曲线右焦点的距离是4,那么P 到左准线的距离是____.答案:16 答案:16解析:离心率54e =,设P 到右准线的距离是d ,则454d =,则165d =,则P 到左准线的距离等于2641616105⨯+=.15.如图,半径为4的球O 中有一内接圆柱.当圆柱的侧面积最大时,球的表面积与该圆柱的侧面积之差是_________. 答案:32π解析:如图,设球一条半径与圆柱相应的母线夹角为α,圆柱侧面积24s i n 24c o S παα=⨯⨯⨯=32sin 2πα,当4πα=时,S 取最大值32π,此时球的表面积与该圆柱的侧面积之差为32π. 16.函数()f x 的定义域为A ,若12,x x A ∈且12()()f x f x =时总有12x x =,则称()f x 为单函数.例如,函数()f x =2x +1(x ∈R )是单函数.下列命题:①函数2()f x x =(x ∈R )是单函数;②指数函数()2x f x =(x ∈R )是单函数;③若()f x 为单函数,12,x x A ∈且12x x ≠,则12()()f x f x ≠; ④在定义域上具有单调性的函数一定是单函数. 其中的真命题是_________.(写出所有真命题的编号) 答案:②③④解析:对于①,若12()()f x f x =,则12x x =±,不满足;②是单函数;命题③实际上是单函数命题的逆否命题,故为真命题;根据定义,命题④满足条件.三、解答题:本大题共6小题,共74分,解答应写出文字说明、证明过程或演算步骤.17.(本小题共l2分)本着健康、低碳的生活理念,租自行车骑游的人越来越多.某自行车租车点的收费标准是每车每次租车不超过两小时免费,超过两小时的部分每小时收费标准为2元(不足1小时的部分按1小时计算).有甲、乙人互相独立来该租车点租车骑游(各租一车一次).设甲、乙不超过两小时还车的概率分别为14、12;两小时以上且不超过三小时还车的概率分别为12、14;两人租车时间都不会超过四小时. (Ⅰ)分别求出甲、乙在三小时以上且不超过四小时还车的概率; (Ⅱ)求甲、乙两人所付的租车费用之和小于6元的概率.本小题主要考查相互独立事件、互斥事件等概念及相关概率计算,考查运用所学知识和方法解决实际问题的能力. 解:(Ⅰ)分别记甲、乙在三小时以上且不超过四小时还车为事件A 、B ,则111()1424P A =--=,111()1244P A =--=.答:甲、乙在三小时以上且不超过四小时还车的概率分别为14、14.(Ⅱ)记甲、乙两人所付的租车费用之和小于6元为事件C ,则1111111111113()()()()4244222442444P C =⨯+⨯+⨯+⨯+⨯+⨯=.答:甲、乙两人所付的租车费用之和小于6元的概率为3418.(本小题共l2分)已知函数73()sin()cos()44f x x x ππ=++-,x ∈R .(Ⅰ)求()f x 的最小正周期和最小值;(Ⅱ)已知4cos()5βα-=,4cos()5βα+=-,02παβ<<≤.求证:2[()]20f β-=.本小题考查三角函数的性质,同角三角函数的关系,两角和的正、余弦公式、诱导公式等基础知识和基本运算能力,函数与方程、化归与转化等数学思想.(Ⅰ)解析:7733()sin cos cos sin cos cos sin sin4444f x x x x x ππππ=+++x x 2sin()4x π=-,∴()f x 的最小正周期2T π=,最小值min ()2f x =-. (Ⅱ)证明:由已知得4cos cos sin sin 5αβαβ+=,4cos cos sin sin 5αβαβ-=-两式相加得2cos cos 0αβ=,∵02παβ<<≤,∴cos 0β=,则2πβ=.∴22[()]24sin 204f πβ-=-=.19.(本小题共l2分)如图,在直三棱柱ABC -A 1B 1C 1中,∠BAC =90°,AB =AC =AA 1=1,延长A 1C 1至点P ,使C 1P =A 1C 1,连接AP 交棱CC 1于D .(Ⅰ)求证:PB 1∥平面BDA 1;(Ⅱ)求二面角A -A 1D -B 的平面角的余弦值;本小题主要考查直三棱柱的性质、线面关系、二面角等基本知识,并考查空间想象能力和逻辑推理能力,考查应用向量知识解决问题的能力. 解法一:(Ⅰ)连结AB 1与BA 1交于点O ,连结OD ,∵C 1D ∥平面AA 1,A 1C 1∥AP ,∴AD =PD ,又AO =B 1O , ∴OD ∥PB 1,又OD ⊂面BDA 1,PB 1⊄面BDA 1, ∴PB 1∥平面BDA 1.(Ⅱ)过A 作AE ⊥DA 1于点E ,连结BE .∵BA ⊥CA ,BA ⊥AA 1,且AA 1∩AC =A , ∴BA ⊥平面AA 1C 1C .由三垂线定理可知BE ⊥DA 1. ∴∠BEA 为二面角A -A 1D -B 的平面角. 在Rt △A 1C 1D中,1A D ,又1111122AA D S AE ∆=⨯⨯=,∴AE =. 在Rt △BAE中,BE ==,∴2cos 3AH AHB BH ∠==.故二面角A -A 1D -B 的平面角的余弦值为23. 解法二:如图,以A 1为原点,A 1B 1,A 1C 1,A 1A 所在直线分别为x 轴,y 轴,z 轴建立空间直角坐标系A 1-B 1C 1A ,则1(0,0,0)A ,1(1,0,0)B ,1(0,1,0)C ,(1,0,1)B ,(0,2,0)P .(Ⅰ)在△P AA 1中有1112C D AA =,即1(0,1,)2D .∴1(1,0,1)A B = ,1(0,1,)A D x =,1(1,2,0)B P =- . 设平面BA 1D 的一个法向量为1(,,)a b c =n ,则11110,10.2A B a c A D b c ⎧⋅=+=⎪⎨⋅=+=⎪⎩n n 令1c =-,则11(1,,1)2=-n . ∵1111(1)2(1)002B P ⋅=⨯-+⨯+-⨯= n ,∴PB 1∥平面BA 1D ,(Ⅱ)由(Ⅰ)知,平面BA 1D 的一个法向量11(1,,1)2=-n .又2(1,0,0)=n 为平面AA 1D 的一个法向量.∴12121212cos ,3||||312⋅<>===⋅⨯n n n n n n . 故二面角A -A 1D -B 的平面角的余弦值为23.20.(本小题共12分)已知{}n a 是以a 为首项,q 为公比的等比数列,n S 为它的前n 项和.(Ⅰ)当1S 、3S 、4S 成等差数列时,求q 的值;(Ⅱ)当m S 、n S 、l S 成等差数列时,求证:对任意自然数k ,m k a +、n k a +、l k a +也成等差数列.本小题考查等比数列和等差数列的基础知识以及基本运算能力和分析问题、解决问题的能力.解:(Ⅰ)由已知,1n n a aq -=,因此1S a =,23(1)S a q q =++,234(1)S a q q q =+++.当1S 、3S 、4S 成等差数列时,1432S S S +=,可得32aq aq aq =+.化简得210q q --=.解得q =. (Ⅱ)若1q =,则{}n a 的每项n a a =,此时m k a +、n k a +、l k a +显然成等差数列.若1q ≠,由m S 、n S 、l S 成等差数列可得2m l n S S S +=,即(1)(1)2(1)111m l n a q a q a q q q q ---+=---.整理得2m l n q q q +=.因此,11()22k m l n k m k l k n k a a aq q q aq a -+-++++=+==. 所以,m k a +、n k a +、l k a +也成等差数列. 21.(本小题共l2分)过点C (0,1)的椭圆22221(0)x y a b a b+=>>,椭圆与x 轴交于两点(,0)A a 、(,0)A a -,过点C 的直线l 与椭圆交于另一点D ,并与x 轴交于点P ,直线AC 与直线BD 交于点Q .(I )当直线l 过椭圆右焦点时,求线段CD 的长;(Ⅱ)当点P 异于点B 时,求证:OP OQ ⋅为定值.本小题主要考查直线、椭圆的标准方程及基本性质等基本知识,考查平面解析几何的思想方法及推理运算能力.解:(Ⅰ)由已知得1,c b a ==2a =,所以椭圆方程为2214x y +=.椭圆的右焦点为,此时直线l 的方程为1y =+,代入椭圆方程得270x -=,解得120,x x ==,代入直线l 的方程得 1211,7y y ==-,所以1)7D -,故16||7CD =. (Ⅱ)当直线l 与x 轴垂直时与题意不符.设直线l 的方程为11(0)2y kx k k =+≠≠且.代入椭圆方程得22(41)80k x kx ++=.解得12280,41kx x k -==+,代入直线l 的方程得2122141,41k y y k -==+,所以D 点的坐标为222814(,)4141k k k k --++.又直线AC 的方程为12x y +=,又直线BD 的方程为12(2)24ky x k +=+-,联立得4,2 1.x k y k =-⎧⎨=+⎩因此(4,21)Q k k -+,又1(,0)P k-.所以1(,0)(4,21)4OP OQ k k k⋅=--+= .故OP OQ ⋅为定值. 22.(本小题共l4分)已知函数21()32f x x =+,()h x =(Ⅰ)设函数F (x )=18f (x )-x 2[h (x )]2,求F (x )的单调区间与极值;(Ⅱ)设a ∈R ,解关于x 的方程33lg[(1)]2lg ()2lg (4)24f x h a x h x --=---;(Ⅲ)设*n ∈N ,证明:1()()[(1)(2)()]6f n h n h h h n -+++≥ .本小题主要考查函数导数的应用、不等式的证明、解方程等基础知识,考查数形结合、函数与方程、分类与整合等数学思想方法及推理运算、分析问题、解决问题的能力.解:(Ⅰ)223()18()[()]129(0)F x f x x h x x x x =-=-++≥,2()312F x x '∴=-+.令()0F x '∴=,得2x =(2x =-舍去).当(0,2)x ∈时.()0F x '>;当(2,)x ∈+∞时,()0F x '<,故当[0,2)x ∈时,()F x 为增函数;当[2,)x ∈+∞时,()F x 为减函数. 2x =为()F x 的极大值点,且(2)824925F =-++=.(Ⅱ)方法一:原方程可化为42233log [(1)]log ()log (4)2f x h a x h x --=---,即为4222log (1)log log log x -=,14,x a x <⎧⎨<<⎩①当14a <≤时,1x a <<,则14a xx--=,即2640x x a -++=,364(4)2040a a ∆=-+=->,此时3x ==1x a <<, 此时方程仅有一解3x =②当4a >时,14x <<,由14a xx x--=-,得2640x x a -++=,364(4)204a a ∆=-+=-,若45a <<,则0∆>,方程有两解3x = 若5a =时,则0∆=,方程有一解3x =; 若1a ≤或5a >,原方程无解.方法二:原方程可化为422log (1)log (4)log ()x h x h a x -+-=-, 即221log (1)log log 2x -+10,40,0,(1)(4).x x a x x x a x ->⎧⎪->⎪⇔⎨->⎪⎪--=-⎩214,(3) 5.x x a a x ⎧<<⎪⇔<⎨⎪=--+⎩ ①当14a <≤时,原方程有一解3x = ②当45a <<时,原方程有二解3x= ③当5a =时,原方程有一解3x =;④当1a ≤或5a >时,原方程无解.(Ⅲ)由已知得(1)(2)()]h h h n +++ ,11()()66f n h n -.设数列{}n a 的前n 项和为n S ,且1()()6nS f n h n =-(*n ∈N )从而有111a S ==,当2100k ≤≤时,1k k k a S S -=-=又1[(4(46k a k k +-2216=106=>.即对任意2k≥时,有k a >,又因为11a =,所以12n a a a +++ . 则(1)(2)()n S h h h n ≥+++ ,故原不等式成立.。
2012高考理科数学(全国卷)及答案(高清版)
2012年普通高等学校夏季招生全国统一考试数学理工农医类(全国卷)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷第Ⅰ卷共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.一、选择题1.复数13i 1i-+=+( )A .2+iB .2-iC .1+2iD .1-2i2.已知集合A ={1,3},B ={1,m },A ∪B =A ,则m =( )A .0或 B .0或3 C .1D .1或33.椭圆的中心在原点,焦距为4,一条准线为x =-4,则该椭圆的方程为( ) A .2211612x y += B .221128x y += C .22184xy+= D .221124xy+=4.已知正四棱柱ABCD -A 1B 1C 1D 1中,AB =2,1CC =E 为CC 1的中点,则直线AC 1与平面BED 的距离为( )A .2 BCD .15.已知等差数列{a n }的前n 项和为S n ,a 5=5,S 5=15,则数列{11n n a a +}的前100项和为( )A .100101 B .99101 C .99100 D .1011006.△ABC 中,AB 边的高为CD .若C B =a ,C A =b ,a ·b =0,|a |=1,|b |=2,则AD=( )A .1133-a bB .2233-a bC .3355-a b D .4455-a b7.已知α为第二象限角,sin α+cos α3,则cos2α=( )A.3-B.9-C9D38.已知F 1,F 2为双曲线C :x 2-y 2=2的左、右焦点,点P 在C 上,|PF 1|=2|PF 2|,则cos ∠F 1PF 2=( )A .14B .35C .34D .459.已知x =ln π,y =log 52,12=e z -,则( )A .x <y <zB .z <x <yC .z <y <xD .y <z <x10.已知函数y=x3-3x+c的图象与x轴恰有两个公共点,则c=()A.-2或2 B.-9或3 C.-1或1 D.-3或111.将字母a,a,b,b,c,c排成三行两列,要求每行的字母互不相同,每列的字母也互不相同,则不同的排列方法共有()A.12种B.18种C.24种D.36种12.正方形ABCD的边长为1,点E在边AB上,点F在边BC上,AE=BF=37.动点P从E出发沿直线向F运动,每当碰到正方形的边时反弹,反弹时反射角等于入射角.当点P第一次碰到E时,P与正方形的边碰撞的次数为()A.16 B.14 C.12 D.10第Ⅱ卷第Ⅱ卷共10小题,共90分.二、填空题:本大题共4小题,每小题5分,共20分.把答案填在题中横线上.13.若x,y满足约束条件10,30,330,x yx yx y-+≥⎧⎪+-≤⎨⎪+-≥⎩则z=3x-y的最小值为__________.14.)当函数y=sin xx(0≤x<2π)取得最大值时,x=__________.15.若(x+1x)n的展开式中第3项与第7项的二项式系数相等,则该展开式中21x的系数为__________.16.三棱柱ABC-A1B1C1中,底面边长和侧棱长都相等,∠BAA1=∠CAA1=60°,则异面直线AB1与BC1所成角的余弦值为__________.三、解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤.17.△ABC的内角A,B,C的对边分别为a,b,c,已知cos(A-C)+cos B=1,a=2c,求C.18.如图,四棱锥P-ABCD中,底面ABCD为菱形,P A⊥底面ABCD,AC=,PA=2,E是PC上的一点,PE=2EC.(1)证明:PC⊥平面BED;(2)设二面角A-PB-C为90°,求PD与平面PBC所成角的大小.19.乒乓球比赛规则规定:一局比赛,双方比分在10平前,一方连续发球2次后,对方再连续发球2次,依次轮换.每次发球,胜方得1分,负方得0分.设在甲、乙的比赛中,每次发球,发球方得1分的概率为0.6,各次发球的胜负结果相互独立.甲、乙的一局比赛中,甲先发球.(1)求开始第4次发球时,甲、乙的比分为1比2的概率;(2)ξ表示开始第4次发球时乙的得分,求ξ的期望.20.设函数f(x)=ax+cos x,x∈[0,π].(1)讨论f(x)的单调性;(2)设f(x)≤1+sin x,求a的取值范围.21.已知抛物线C:y=(x+1)2与圆M:(x-1)2+(y-12)2=r2(r>0)有一个公共点A,且在A处两曲线的切线为同一直线l.(1)求r;(2)设m ,n 是异于l 且与C 及M 都相切的两条直线,m ,n 的交点为D ,求D 到l 的距离.22.函数f (x )=x 2-2x -3,定义数列{x n }如下:x 1=2,x n +1是过两点P (4,5),Q n (x n ,f (x n ))的直线PQ n 与x 轴交点的横坐标.(1)证明:2≤x n <x n +1<3; (2)求数列{x n }的通项公式.1. C213i (13i)(1i)1+i+3i 3i24i 12i 1i(1i)(1i)22-+-+---+====+++-.2. B ∵A ={1,3},B ={1,m },A ∪B =A , ∴m =3或m =∴m =3或m =0或m =1.当m =1时,与集合中元素的互异性不符,故选B 项. 3. C ∵焦距为4,即2c =4,∴c =2. 又∵准线x =-4,∴24ac-=-.∴a 2=8.∴b 2=a 2-c 2=8-4=4.∴椭圆的方程为22184xy+=,故选C 项. 4. D 连结AC 交BD 于点O ,连结OE ,∵AB =2,∴AC =.又1CC =AC =CC 1.作CH ⊥AC 1于点H ,交OE 于点M . 由OE 为△ACC 1的中位线知, CM ⊥OE ,M 为C H 的中点.由BD ⊥AC ,EC ⊥BD 知,BD ⊥面EOC , ∴CM ⊥BD .∴CM ⊥面BDE .∴HM 为直线AC 1到平面BDE 的距离.又△AC C 1为等腰直角三角形,∴CH =2.∴HM =1. 5. A 15155()5(5)1522a a a S ++===,∴a 1=1.∴515115151a a d --===--.∴a n =1+(n -1)×1=n .∴111(1)n n a a n n +=+.设11n n a a +⎧⎫⎨⎬⎩⎭的前n 项和为T n ,则100111 1223100101T=+++⨯⨯⨯…=11111 1223100101 -+-++-…=1100 1101101 -=.6.D∵a·b=0,∴a⊥b. 又∵|a|=1,|b|=2,∴||AB=∴12||5C D⨯==.∴||5AD==.∴4444()5555AD AB AB===-=-a b a b.7.A∵sinα+cosα=3,且α为第二象限角,∴α∈(2kπ+π2,2kπ+3π4)(k∈Z).∴2α∈(4kπ+π,4kπ+3π2)(k∈Z).由(sinα+cosα)2=1+sin2α=13,∴2sin23α-=.∴cos23α==-.9.D∵x=ln π>1,y=log52>51log2=,121e2z-==>=,且12e-<e0=1,∴y<z<x.10.A y′=3x-3=3(x+1)(x-1).当y′>0时,x<-1或x>1;当y′<0时,-1<x<1.∴函数的递增区间为(-∞,-1)和(1,+∞),递减区间为(-1,1).∴x=-1时,取得极大值;x=1时,取得极小值.要使函数图象与x轴恰有两个公共点,只需:f(-1)=0或f(1)=0,即(-1)3-3×(-1)+c=0或13-3×1+c=0,∴c=-2或c=2.11. A如图,由于每行、每列的字母都互不相同,故只须排好1,2,3号格即可,显然1号格有3种选择,2,3号格均有两种选择,所以不同的排法共有3×2×2=12种.12. B 结合已知中的点E ,F 的位置,由反射与对称的关系,可将点P 的运动路线展开成直线,如图.当点P 碰到E 时,m 为偶数,且333477m n =+-,即4m =3n .故m 的最小值为6,n =8,线段PE 与网格线交点的个数为(除E 点外)6+8=14个. (PE 的方程为39428y x =-,即4y =3x -97,x ,y 不能同时为整数,所以PE 不过网格交点)13.答案:-1解析:由题意画出可行域,由z =3x -y 得y =3x -z ,要使z 取最小值,只需截距最大即可,故直线过A (0,1)时,z 最大.∴z max =3×0-1=-1. 14.答案:5π6解析:y =sin xcos x=1π2(sin )2sin()223x x x -=-.当y 取最大值时,ππ2π32x k -=+,∴x =2k π+5π6.又∵0≤x <2π,∴5π6x =.15.答案:56解析:∵26C C n n =,∴n =8.T r +1=8C rx 8-r (1x)r =8C rx 8-2r ,令8-2r =-2,解得r =5.∴系数为58C 56=.16.答案:6解析:取BC 的中点O ,连结AO ,A 1O ,BA 1,CA 1,易证BC ⊥AO ,BC ⊥A 1O ,从而BC ⊥AA 1,又BB 1∥AA 1,BB 1⊥BC .延长CB 至D ,使BD =BC ,连结B 1D ,则B 1D ∥BC 1,设BC =1,则1B D =,1AB AD ===.6=17.解:由B =π-(A +C ),得cos B =-cos(A +C ).于是cos(A -C )+cos B =cos(A -C )-cos(A +C )=2sin A sin C ,由已知得sin A sin C =12.①由a =2c 及正弦定理得sin A =2sin C .② 由①②得21sin 4C =,于是1sin 2C -=(舍去)或1sin 2C =.又a =2c ,所以π6C =.18.解法一:(1)证明:因为底面ABCD 为菱形,所以BD ⊥AC .又PA ⊥底面ABCD , 所以PC ⊥BD .设AC ∩BD =F ,连结EF .因为AC =PA =2,PE =2EC ,故PC =3EC =,FC =从而P C F C =A C E C=因为P C A C F CE C=,∠FCE =∠PCA ,所以△FCE ∽△PCA ,∠FEC =∠PAC =90°, 由此知PC ⊥EF .PC 与平面BED 内两条相交直线BD ,EF 都垂直,所以PC ⊥平面BED . (2)在平面P AB 内过点A 作AG ⊥PB ,G 为垂足. 因为二面角A -PB -C 为90°,所以平面PAB ⊥平面PBC . 又平面PAB ∩平面PBC =PB ,故AG ⊥平面PBC ,AG ⊥BC . BC 与平面P AB 内两条相交直线P A ,AG 都垂直, 故BC ⊥平面P AB ,于是BC ⊥AB ,所以底面ABCD 为正方形,AD =2,P D ==. 设D 到平面PBC 的距离为d .因为AD ∥BC ,且AD 平面PBC ,BC 平面PBC ,故AD ∥平面PBC ,A ,D 两点到平面PBC 的距离相等,即d =AG 设PD 与平面PBC 所成的角为α,则1sin 2d P Dα==.所以PD 与平面PBC 所成的角为30°.解法二:(1)证明:以A 为坐标原点,射线AC 为x 轴的正半轴,建立如图所示的空间直角坐标系A -xyz .设C (0,0),D ,b,0),其中b >0,则P (0,0,2),E (3,0,23),B b,0).于是PC =(,0,-2),BE =(3,b ,23),D E =(3,-b ,23),从而0PC BE ⋅= ,0PC DE ⋅=,故PC ⊥BE ,PC ⊥DE .又BE ∩DE =E ,所以PC ⊥平面BDE .(2)AP =(0,0,2),AB=b,0). 设m =(x ,y ,z )为平面P AB 的法向量,则m ·AP =0,m ·AB =0,即2z =0-by =0,令x =b ,则m =(b 0).设n =(p ,q ,r )为平面PBC 的法向量,则n ·PC =0,n ·BE =0,即20r -=且2033bq r ++=,令p =1,则r =q b=-,n =(1,b-).因为面PAB ⊥面PBC ,故m·n =0,即20b b-=,故b =,于是n =(1,-1,DP=(2),1cos ,2||||D P D P D P ⋅== n n n ,〈n ,DP 〉=60°. 因为PD 与平面PBC 所成角和〈n ,DP〉互余,故PD 与平面PBC 所成的角为30°.19.解:记A i 表示事件:第1次和第2次这两次发球,甲共得i 分,i =0,1,2; B i 表示事件:第3次和第4次这两次发球,甲共得i 分,i =0,1,2; A 表示事件:第3次发球,甲得1分;B 表示事件:开始第4次发球时,甲、乙的比分为1比2;C 表示事件:开始第5次发球时,甲得分领先.(1)B =A 0·A +A 1·A ,P (A )=0.4,P (A 0)=0.42=0.16,P (A 1)=2×0.6×0.4=0.48, P (B )=P (A 0·A +A 1·A ) =P (A 0·A )+P (A 1·A )=P (A 0)P (A )+P (A 1)P (A )=0.16×0.4+0.48×(1-0.4)=0.352. (2)(理)P (A 2)=0.62=0.36. ξ的可能取值为0,1,2,3. P (ξ=0)=P (A 2·A )=P (A 2)P (A )=0.36×0.4=0.144, P (ξ=2)=P (B )=0.352,P (ξ=3)=P (A 0·A )=P (A 0)P (A )=0.16×0.6=0.096, P (ξ=1)=1-P (ξ=0)-P (ξ=2)-P (ξ=3) =1-0.144-0.352-0.096=0.408.Eξ=0×P (ξ=0)+1×P (ξ=1)+2×P (ξ=2)+3×P (ξ=3)=0.408+2×0.352+3×0.096=1.400.20.解:(1)f ′(x )=a -sin x .①当a ≥1时,f ′(x )≥0,且仅当a =1,π2x =时,f ′(x )=0,所以f (x )在[0,π]是增函数;②当a ≤0时,f ′(x )≤0,且仅当a =0,x =0或x =π时,f ′(x )=0,所以f (x )在[0,π]是减函数;③当0<a <1时,由f ′(x )=0,解得x 1=arcsin a ,x 2=π-arcsin a . 当x ∈[0,x 1)时,sin x <a ,f ′(x )>0,f (x )是增函数; 当x ∈(x 1,x 2)时,sin x >a ,f ′(x )<0,f (x )是减函数; 当x ∈(x 2,π]时,sin x <a ,f ′(x )>0,f (x )是增函数. (2)由f (x )≤1+sin x ,得f (π)≤1,a π-1≤1, 所以2πa ≤.令g (x )=sin x -2πx (0≤x ≤π2),则g ′(x )=cos x -2π.当x ∈(0,arccos 2π)时,g ′(x )>0, 当x ∈(arccos 2π,π2)时,g ′(x )<0.又g (0)=g (π2)=0,所以g (x )≥0,即2πx ≤sin x (0≤x ≤π2).当a ≤2π时,有f (x )≤2πx +cos x .①当0≤x ≤π2时,2πx ≤sin x ,cos x ≤1,所以f (x )≤1+sin x ; ②当π2≤x ≤π时,f (x )≤2πx +cos x =1+2π(x -π2)-sin(x -π2)≤1+sin x .综上,a 的取值范围是(-∞,2π].21.解:(1)设A (x 0,(x 0+1)2),对y =(x +1)2求导得y ′=2(x +1), 故l 的斜率k =2(x 0+1).当x 0=1时,不合题意,所以x 0≠1. 圆心为M (1,12),MA 的斜率2001(1)21x k'x +-=-.由l ⊥MA 知k ·k ′=-1,即2(x 0+1)·2001(1)21x x +--=-1,解得x 0=0,故A (0,1), r =|MA |2=,即2r =.(2)设(t ,(t +1))为C 上一点,则在该点处的切线方程为y -(t +1)2=2(t +1)(x -t ),即y =2(t +1)x -t 2+1.若该直线与圆M 相切,则圆心M2,2=,化简得t (t -4t -6)=0,解得t 0=0,12t =+,22t =-抛物线C 在点(t i ,(t i +1)2)(i =0,1,2)处的切线分别为l ,m ,n ,其方程分别为y =2x +1,①y =2(t 1+1)x -t 12+1,② y =2(t 2+1)x -t 22+1,③ ②-③得1222t t x +==.将x =2代入②得y =-1,故D (2,-1). 所以D 到l的距离5d ==.22.解:(1)用数学归纳法证明:2≤x n <x n +1<3. ①当n =1时,x 1=2,直线PQ 1的方程为(2)55(4)24f y x --=--, 令y =0,解得2114x =,所以2≤x 1<x 2<3.②假设当n =k 时,结论成立,即2≤x k <x k +1<3. 直线PQ k +1的方程为11()55(4)4k k f x y x x ++--=--,令y =0,解得121342k k k x x x ++++=+,由归纳假设知121134554432223k k k k x x x x +++++==-<-=+++;x k +2-x k +1=111(3)(1)02k k k x x x +++-+>+,即x k +1<x k +2.所以2≤x k +1<x k +2<3,即当n =k +1时,结论成立. 由①②知对任意的正整数n,2≤x n <x n +1<3. (2)由(1)及题意得1342n n n x x x ++=+.设b n =x n -3,则1151n nb b +=+,111115()44n nb b ++=+,数列{114nb +}是首项为34-,公比为5的等比数列.因此1113544n nb -+=-⋅,即14351n n b -=-⋅+, 所以数列{x n }的通项公式为143351n n x --⋅+=.。
2012年高考理科数学(全国卷)含答案
2012年普通高等学校招生全国统一考试理科数学(必修+选修Ⅱ)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,第Ⅰ卷第1至2页,第Ⅱ卷第3至第4页。
考试结束,务必将试卷和答题卡一并上交。
第Ⅰ卷一、选择题 (1)复数131ii-+=+ (A )2i + (B )2i - (C )12i + (D )12i - (2)已知集合{1,3,}A m =,{1,}B m =,A B A = ,则m =(A )0或3 (B )0或3 (C )1或3 (D )1或3 (3)椭圆的中心在原点,焦距为4,一条准线为4x =-,则该椭圆的方程为(A )2211612x y += (B )221128x y += (C )22184x y += (D )221124x y += (4)已知正四棱柱1111ABCD A BC D -中 ,2AB =,122CC =,E 为1CC 的中点,则直线1AC 与平面BED 的距离为(A )2 (B )3 (C )2 (D )1 (5)已知等差数列{}n a 的前n 项和为n S ,55a =,515S =,则数列11{}n n a a +的前100项和为 (A )100101 (B )99101(C )99100 (D )101100(6)ABC ∆中,AB 边的高为CD ,若C B a = ,CA b = ,0a b ⋅= ,||1a = ,||2b =,则AD = (A )1133a b - (B )2233a b - (C )3355a b - (D )4455a b -(7)已知α为第二象限角,3sin cos 3αα+=,则cos 2α= (A )53-(B )59- (C )59 (D )53(8)已知1F 、2F 为双曲线22:2C x y -=的左、右焦点,点P 在C 上,12||2||PF PF =,则12cos F PF ∠= (A )14 (B )35 (C )34 (D )45(9)已知ln x π=,5log 2y =,12z e-=,则(A )x y z << (B )z x y << (C )z y x << (D )y z x << (10)已知函数33y x x c =-+的图像与x 恰有两个公共点,则c =(A )2-或2 (B )9-或3 (C )1-或1 (D )3-或1(11)将字母,,,,,a a b b c c 排成三行两列,要求每行的字母互不相同,每列的字母也互不相同,则不同的排列方法共有(A )12种 (B )18种 (C )24种 (D )36种 (12)正方形ABCD 的边长为1,点E 在边AB 上,点F 在边BC 上,37AE BF ==。
2012年高考试题(全国新课标)数学(理科)试卷及答案
2012年普通高等学校招生全国统一考试(新课标全国卷)理科数学第I 卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一个是符合题目要求的。
1、已知集合A={1,2,3,4,5},B={(x ,y )|x ∈A ,y ∈A ,x-y ∈A},则B 中所含元素的个数为(A )3 (B )6 (C )8 (D )102、将2名教师,4名学生分成2个小组,分别安排到甲、乙两地参加社会实践活动,每个小组有1名教师和2名学生组成,不同的安排方案共有(A )12种 (B )10种 (C )9种 (D )8种 3、下面是关于复数z=21i-+的四个命题 P1:z =2 P2: 2z =2i P3:z 的共轭复数为1+i P4 :z 的虚部为-1 其中真命题为(A ). P2 ,P3 (B ) P1 ,P2 (C )P2,P4 (D )P3,P44、设F1,F2是椭圆E:22x a +22yb=1 (a >b >0)的左、右焦点 ,P 为直线32a x =上的一点,12PF F △是底角为30°的等腰三角形,则E 的离心率为 (A )12 (B )23 (C ) 34 (D )455、已知{n a }为等比数列,214=+a a ,865-=⋅a a ,则=+101a a(A )7 (B )5 (C )-5 (D )-76、如果执行右边的程序图,输入正整数)2(≥N N 和实数n a a a ⋯,,21,输入A ,B ,则(A )A+B 为的n a a a ⋯,,21和 (B )2A B+为n a a a ⋯,,21的算式平均数 (C )A 和B 分别是n a a a ⋯,,21中最大的数和最小的数 (D )A 和B 分别是n a a a ⋯,,21中最小的数和最大的数7、如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为(A )6(B )9 (C )12 (D )188、等轴双曲线C 的中心在原点,焦点在x 轴上,C 与抛物线x y 162=的准线交于A ,B 两点,34=AB ,则C 的实轴长为(A )2 (B ) 22 (C ) 4 (D )89、已知w >0,函数)4sin()(πω+=x x f 在),2(ππ单调递减,则ω的取值范围是(A )]45,21[ (B )]43,21[ (C )]21,0( (D )(0,2]10、已知函数xx x f -+=)1ln(1)(,则)(x f y =的图像大致为O O O O 11111111xyxy xy xy)(A )(B11、已知三棱锥S-ABC 的所有顶点都在球O 的球面上,△ABC 是边长为1的正三角形,SC 为O 的直径,且SC=2,则此棱锥的体积为(A )26 (B )36 (C )23 (D )2212、设点P 在曲线xe y 21=上,点Q 在曲线)2ln(x y =上,则|PQ|的最小值为 (A )2ln 1- (B ))2ln 1(2- (C )2ln 1+ (D ))2ln 1(2+第Ⅱ卷本卷包括必考题和选考题两部分。
2012年高考数学(理科)试题(全国2卷word文档含答案)
2012高考理科数学全国2卷试题本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,第Ⅰ卷第1至2页,第Ⅱ卷第3至第4页。
考试结束,务必将试卷和答题卡一并上交。
第Ⅰ卷一、选择题(1)复数131i i-+=+ (A )2i + (B )2i - (C )12i + (D )12i -(2)已知集合{A =,{1,}B m =,A B A =U ,则m =(A )0(B )0或3 (C )1(D )1或3(3)椭圆的中心在原点,焦距为4,一条准线为4x =-,则该椭圆的方程为(A )2211612x y += (B )221128x y += (C )22184x y += (D )221124x y += (4)已知正四棱柱1111ABCD A B C D -中 ,2AB =,1CC =E 为1CC 的中点,则直线1AC 与平面BED 的距离为(A )2 (B(C(D )1(5)已知等差数列{}n a 的前n 项和为n S ,55a =,515S =,则数列11{}n n a a +的前100项和为(A )100101 (B )99101(C )99100 (D )101100(6)ABC ∆中,AB 边的高为CD ,若CB a =u u u r r ,CA b =u u u r r ,0a b ⋅=r r ,||1a =r ,||2b =r ,则AD =u u u r(A )1133a b -r r (B )2233a b -r r (C )3355a b -r r (D )4455a b -r r (7)已知α为第二象限角,sin cos αα+=,则cos2α=(A )3- (B )9- (C )9 (D )3(8)已知1F 、2F 为双曲线22:2C x y -=的左、右焦点,点P 在C 上,12||2||PF PF =,则12cos F PF ∠=(A )14 (B )35 (C )34 (D )45(9)已知ln x π=,5log 2y =,12z e -=,则(A )x y z << (B )z x y << (C )z y x << (D )y z x <<(10)已知函数33y x x c =-+的图像与x 恰有两个公共点,则c =(A )2-或2 (B )9-或3 (C )1-或1 (D )3-或1(11)将字母,,,,,a a b b c c 排成三行两列,要求每行的字母互不相同,每列的字母也互不相同,则不同的排列方法共有(A )12种 (B )18种 (C )24种 (D )36种(12)正方形ABCD 的边长为1,点E 在边AB 上,点F 在边BC 上,37AE BF ==。
2012年河南省高考数学(理科)试卷
绝密★启用前2012年河南省高考数学(理科)试卷本试卷共5页,共22题,其中第15、16题为选考题。
满分150分。
考试用时120分钟。
★祝考试顺利★注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
用2B 铅笔将答题卡上试卷类型A 后的方框涂黑。
后的方框涂黑。
2.选择题的作答:每小题选出答案后,用统一提供的2B 铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案标号。
答在试题卷、草稿纸上无效。
上无效。
3.填空题和解答题的作答:用统一提供的签字笔直接答在答题卡上对应的答题区域内。
答在试题卷、草稿纸上无效。
答在试题卷、草稿纸上无效。
4.选考题的作答:先把所选题目的题号在答题卡上指定的位置用统一提供的2B 铅笔涂黑。
考生应根据自己选做的题目准确填涂题号,不得多选。
答题答在答题卡上对应的答题区域内,答在试题卷、草稿纸上无效。
题区域内,答在试题卷、草稿纸上无效。
5.考生必须保持答题卡的整洁。
考试结束后,请将本试题卷和答题卡一并上交。
.考生必须保持答题卡的整洁。
考试结束后,请将本试题卷和答题卡一并上交。
一、选择题:本大题共10小题,每小题5分,共50分. 在每小题给出的四个选项中,只有一项是符合题目要求的. 1.设集合}1,0,1{-=M ,},{2a a N =则使M ∩N =N 成立的a 的值是(的值是( ))A .1B .0 C .-1 D .1或-1 2.若(2)a i i b i -=-,其中,a b R Î,i 是虚数单位,复数a bi +=( ))A .12i +B .12i -+C .12i --D .12i -3.如果随机变量ξ~N (μ,σ2),且E ξ=3=3,,D ξ=1=1,则,则P (-(-11<ξ≤1)=( )) A .2Φ(1)-)-1 B 1 B 1 B..Φ(-(-44)-Φ(-(-22)C .Φ(2)-Φ(4)D D..Φ(4)-Φ(2) 4.设k R Î,下列向量中,与向量Q=Q=((1,-1-1)一定不平行的向量是()一定不平行的向量是()一定不平行的向量是( )) A .b=b=((k ,k ) B .c=c=((-k -k,,-k -k))C .d=d=((k 2 +1,k 2 +1 +1))D .e=e=((k 2一l,k 2—1)5.一个棱锥的三视图如图(尺寸的长度单位为m ),则该棱锥的全面积是(),则该棱锥的全面积是( ))m 2.正视图正视图正视图 侧视图侧视图侧视图 俯视图俯视图俯视图A .624+B .64+C .224+D .24+6.6.设函数设函数)22,0)(sin(3)(p f pw f w <<->+=x x f 的图像关于直线32p=x 对称对称,,它的周期是p ,则(则( )) A.)(x f 的图象过点)21,0(B.)(x f 在]32,12[p p 上是减函数上是减函数C.)(x f 的一个对称中心是)0,125(pD.将)(x f 的图象向右平移||f 个单位得到函数x y w sin 3=的图象的图象. .7.执行如图所示的程序框图,则输出的S=S=(( ))A .258B .642C .780D .15388.双曲线22221(1,1)y x a b a b -=³>的离心率为2,则213b a +的最小值为(的最小值为( )).A A..334 B .333+ C .2 D 2 D..231+ 9.若a 满足4lg =+x x ,b 满足410=+xx ,函数ïîïíì>£+++=0,20,2)()(2x x x b a x x f ,则关于x 的方程x x f =)(的解的个数是的解的个数是( ) ( ) A .4B .3C .2D. 11010.设.设O 是正三棱锥ABC P -的底面⊿ABC 的中心,过O 的动平面与PC 交于S ,与PA 、PB 的延长线分别交于Q 、R ,则PSPR PQ 111++( ) A 、有最大值而无最小值、有最大值而无最小值 B 、有最小值而无最大值、有最小值而无最大值 C 、无最大值也无最小值、无最大值也无最小值 D 、是与平面QRS 无关的常数无关的常数二、填空题:本大题共6小题,考生共需作答5小题,每小题5分,共25分. 请将答案填在答题卡对应题号.......的位置上. 答错位置,书写不清,模棱两可均不得分. (一)必考题((一)必考题(111111——14题)11.对任意的实数x ,有3230123(2)(2)(2)x a a x a x a x =+-+-+-,则a 2的值是的值是 。
2012年全国统一高考数学试卷(理科)(大纲版)(含解析版)(附详细答案)
19.( 12 分)乒乓球比赛规则规定:一局比赛,双方比分在 10 平前,一方连续 发球 2 次后,对方再连续发球 2 次,依次轮换.每次发球,胜方得 1 分,负 方得 0 分.设在甲、乙的比赛中,每次发球,发球方得 1 分的概率为 0.6,各 次发球的胜负结果相互独立.甲、乙的一局比赛中,甲先发球.
.
15.( 5 分)若
的展开式中第 3 项与第 7 项的二项式系数相等,则该展
开式中 的系数为
.
16.( 5 分)三棱柱 ABC﹣ A1B1C1 中,底面边长和侧棱长都相等,∠
CAA1=60°,则异面直线 AB1 与 BC1 所成角的余弦值为
.
BAA1=∠
三 .解答题:本大题共 6 小题,共 70 分,解答应写出文字说明,证明过程或演 算步骤.
每列的字母也互不相同,则不同的排列方法共有(
)
A.12 种
B.18 种
C.24 种
D.36 种
12.(5 分)正方形 ABCD的边长为 1,点 E 在边 AB 上,点 F 在边 BC上,
,
动点 P 从 E 出发沿直线向 F 运动,每当碰到正方形的边时反弹,反弹时反射
角等于入射角,当点
(
)
P 第一次碰到 E 时, P 与正方形的边碰撞的次数为
2012 年全国统一高考数学试卷(理科) (大纲版)
一、选择题(共 12 小题,每小题 5 分,共 60 分.在每小题给出的四个选项中,
只有一项是符合题目要求的. )
1.( 5 分)已知集合 A={ 1,3, } ,B={ 1,m} ,A∪B=A,则 m 的值为(
2012年高考理科数学(全国卷)含答案详细解析
2012年普通高等学校招生全国统一考试理科数学(必修+选修Ⅱ)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,第Ⅰ卷第1至2页,第Ⅱ卷第3至第4页。
考试结束,务必将试卷和答题卡一并上交。
第Ⅰ卷一、选择题(1)复数131i i-+=+ (A )2i + (B )2i - (C )12i + (D )12i -(2)已知集合{1,3,}A m =,{1,}B m =,A B A =,则m =(A )0或3 (B )0或3 (C )1或3 (D )1或3(3)椭圆的中心在原点,焦距为4,一条准线为4x =-,则该椭圆的方程为(A )2211612x y += (B )221128x y += (C )22184x y += (D )221124x y += (4)已知正四棱柱1111ABCD A B C D -中 ,2AB =,122CC =,E 为1CC 的中点,则直线1AC 与平面BED 的距离为(A )2 (B )3 (C )2 (D )1(5)已知等差数列{}n a 的前n 项和为n S ,55a =,515S =,则数列11{}n n a a +的前100项和为(A )100101 (B )99101(C )99100 (D )101100(6)ABC ∆中,AB 边的高为CD ,若C B a =,CA b =,0a b ⋅=,||1a =,||2b =,则AD =(A )1133a b - (B )2233a b - (C )3355a b - (D )4455a b - (7)已知α为第二象限角,3sin cos 3αα+=,则cos2α=(A )53- (B )59- (C )59 (D )53(8)已知1F 、2F 为双曲线22:2C x y -=的左、右焦点,点P 在C 上,12||2||PF PF =,则12cos F PF ∠=(A )14 (B )35 (C )34 (D )45(9)已知ln x π=,5log 2y =,12z e -=,则(A )x y z << (B )z x y << (C )z y x << (D )y z x <<(10)已知函数33y x x c =-+的图像与x 恰有两个公共点,则c =(A )2-或2 (B )9-或3 (C )1-或1 (D )3-或1(11)将字母,,,,,a a b b c c 排成三行两列,要求每行的字母互不相同,每列的字母也互不相同,则不同的排列方法共有(A )12种 (B )18种 (C )24种 (D )36种(12)正方形ABCD 的边长为1,点E 在边AB 上,点F 在边BC 上,37AE BF ==。
2012高考全国卷理科数学(附答案)
2012高考全国卷理科数学(附答案)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,第Ⅰ卷第1至2页,第Ⅱ卷第3至第4页。
考试结束,务必将试卷和答题卡一并上交。
第Ⅰ卷注意事项:全卷满分150分,考试时间120分钟。
考生注意事项:1.答题前,考生在答题卡上务必用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,并贴好条形码。
请认真核准该条形码上的准考证号、姓名和科目。
2.没小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。
在试..题卷上作答无效.......。
3.第I 卷共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
一、选择题(1)复数131i i-+=+ (A )2i + (B )2i - (C )12i + (D )12i -(2)已知集合{1A =,{1,}B m =,A B A = ,则m =(A )0(B )0或3 (C )1(D )1或3(3)椭圆的中心在原点,焦距为4,一条准线为4x =-,则该椭圆的方程为(A )2211612x y += (B )221128x y += (C )22184x y += (D )221124x y += (4)已知正四棱柱1111ABCD A BC D -中 ,2AB =,1CC =E 为1CC 的中点,则直线1AC 与平面BED 的距离为(A )2 (B(C(D )1(5)已知等差数列{}n a 的前n 项和为n S ,55a =,515S =,则数列11{}n n a a +的前100项和为(A )100101 (B )99101(C )99100 (D )101100(6)ABC ∆中,AB 边的高为CD ,若C B a = ,CA b = ,0a b ⋅= ,||1a = ,||2b = ,则AD =(A )1133a b - (B )2233a b - (C )3355a b - (D )4455a b -(7)已知α为第二象限角,sin cos αα+=,则cos 2α=(A )3- (B )9- (C )9 (D )3(8)已知1F 、2F 为双曲线22:2C x y -=的左、右焦点,点P 在C 上,12||2||PF PF =,则12cos F PF ∠=(A )14 (B )35 (C )34 (D )45(9)已知ln x π=,5log 2y =,12z e -=,则(A )x y z << (B )z x y << (C )z y x << (D )y z x <<(10)已知函数33y x x c =-+的图像与x 恰有两个公共点,则c =(A )2-或2 (B )9-或3 (C )1-或1 (D )3-或1(11)将字母,,,,,a a b b c c 排成三行两列,要求每行的字母互不相同,每列的字母也互不相同,则不同的排列方法共有(A )12种 (B )18种 (C )24种 (D )36种(12)正方形ABCD 的边长为1,点E 在边AB 上,点F 在边BC 上,37AE BF ==。
2012年河南高考数学真题试卷版
绝密★启用前2012年普通高等学校招生全国统一考试理科数学注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答卷前,考生务必将自己的姓名、准考证号填写在本试卷和答题卡相应位置上。
2.回答第Ⅰ卷时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。
写在本试卷上无效。
3.回答第Ⅱ卷时,将答案写在答题卡上,写在本试卷上无效。
4.考试结束后,将本试卷和答且卡一并交回。
第Ⅰ卷一.选择题:本大题共12小题,每小题5分,在每小题给同的四个选项中,只有一项是符合题目要求的。
(1)已知集合{}(){} ,,,,,5,4,3,2,1A y x A y A x y x B A ∈-∈∈==则B 中所含元素的个数为 (A )3 (B )6 (C ) 8 (D )10(2)将2名教师,4名学生分成2个小组,分别安排到甲、乙两地参加社会实践活动,每个小组由1名教师和2名学生组成,不同的安排方案共有(A )12种 (B )10种 (C )9种 (D )8种 (3)下面是关于复数iz +-=12的四个命题: 2:1=z p , i z p 2:22=, z p :3的共轭复数为i +1, z p :4的虚部为-1,其中的真命题为(A )32,p p (B ) 21,p p (C ) 42,p p (D )43,p p(4)设12F F ,是椭圆E :2222(0)x y a b a b +=>>的左、右焦点,P 为直线32ax =上一点,△21F PF 是底角为30的等腰三角形,则E 的离心率为 (A )12 (B )23 (C )34 (D )45(5)已知{}n a 为等比数列,432a a +=,568a a =-,则110a a +=(A )7 (B )5 (C )-5 (D )-7 (7)如上图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为2012年普通高考理科数学 第1页 (共6页)(A )6 (B )9 (C )12 (D )18(8)等轴双曲线C 的中心在原点,焦点在x 轴上,C 与抛物线216y x =的准线交于A ,B 两点,43AB =,则C 的实轴长为(A )2 (B )22 (C )4 (D )8 (9)已知0ω>,函数()sin()42f x x ππωπ=+在(,)单调递减,则ω的取值范围是(A )1524⎡⎤⎢⎥⎣⎦, (B )1324⎡⎤⎢⎥⎣⎦, (C )102⎛⎤⎥⎝⎦, (D )(]02,(10) 已知函数1(=,()ln(1)f x y f x x x=+-)则的图像大致为(11)已知三棱锥S ABC -的所有顶点都在球O 的球面上,△ABC 是边长为1的正三角形,SC为球O 的直径,且SC=2,则此棱锥的体积为 (A )26 (B )36 (C )23 (D )222012年普通高考理科数学 第2页 (共6页)(12)设点P 在曲线12x y e =上,点 Q 在曲线ln(2y x =)上,则PQ 的最小值为(A )1ln2- (Bln 2)- (C )1ln2+ (Dln 2)+第Ⅱ卷本卷包括必考题和选考题两部分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
绝密*启用前2012年普通高等学校招生全国统一考试理科数学注息事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答卷前,考生务必将自己的姓名、准考证号填写在本试卷和答题卡相应位置上。
2.问答第Ⅰ卷时。
选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动.用橡皮擦干净后,再选涂其它答案标号。
写在本试卷上无效.3.回答第Ⅱ卷时。
将答案写在答题卡上.写在本试卷上无效·4.考试结束后.将本试卷和答且卡一并交回。
第一卷一. 选择题:本大题共12小题,每小题5分,在每小题给同的四个选项中,只有一项是符合题目要求的。
(1)已知集合{1,2,3,4,5}A =,{(,),,}B x y x A y A x y A =∈∈-∈;,则B 中所含元素的个数为( )()A 3 ()B 6 ()C 8 ()D 10【解析】选D5,1,2,3,4x y ==,4,1,2,3x y ==,3,1,2x y ==,2,1x y ==共10个 (2)将2名教师,4名学生分成2个小组,分别安排到甲、乙两地参加社会实践活动,每个小组由1名教师和2名学生组成,不同的安排方案共有( )()A 12种 ()B 10种 ()C 9种 ()D 8种【解析】选A甲地由1名教师和2名学生:122412C C =种(3)下面是关于复数21z i=-+的四个命题:其中的真命题为( ) 1:2p z = 22:2p z i = 3:p z 的共轭复数为1i + 4:p z 的虚部为1-()A 23,p p ()B 12,p p ()C ,p p 24 ()D ,p p 34【解析】选C 22(1)11(1)(1)i z i i i i --===---+-+--22:2p z i =,3:p z 的共轭复数为1i -+,4:p z 的虚部为1-(4)设12F F 是椭圆2222:1(0)x y E a b a b +=>>的左、右焦点,P 为直线32ax =上一点,∆21F PF 是底角为30 的等腰三角形,则E 的离心率为( )()A 12 ()B 23 ()C 34()D 45【解析】选C∆21F PF 是底角为30 的等腰三角形221332()224c PF F F a c c e a ⇒==-=⇔== (5)已知{}n a 为等比数列,472a a +=,568a a =-,则110a a +=( )()A 7 ()B 5 ()C -5()D -7【解析】选D472a a +=,56474784,2a a a a a a ==-⇒==-或472,4a a =-= 471101104,28,17a a a a a a ==-⇒=-=⇔+=- 471011102,48,17a a a a a a =-=⇒=-=⇔+=-(6)如果执行右边的程序框图,输入正整数(2)N N ≥和实数12,,...,n a a a ,输出,A B ,则( )()A A B +为12,,...,n a a a 的和 ()B 2A B+为12,,...,n a a a 的算术平均数 ()C A 和B 分别是12,,...,n a a a 中最大的数和最小的数 ()D A 和B 分别是12,,...,n a a a 中最小的数和最大的数【解析】选C(7)如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为( )()A 6 ()B 9 ()C 12 ()D 18【解析】选B该几何体是三棱锥,底面是俯视图,高为3 此几何体的体积为11633932V =⨯⨯⨯⨯=(8)等轴双曲线C 的中心在原点,焦点在x 轴上,C 与抛物线x y 162=的准线交于,A B两点,AB =;则C 的实轴长为( )()A ()B ()C 4 ()D 8【解析】选C设222:(0)C x y a a -=>交x y 162=的准线:4l x =-于(4,A -(4,B --得:222(4)4224a a a =--=⇔=⇔=(9)已知0ω>,函数()sin()4f x x πω=+在(,)2ππ上单调递减。
则ω的取值范围是( ) ()A 15[,]24 ()B 13[,]24 ()C 1(0,]2()D (0,2]【解析】选A592()[,]444x πππωω=⇒+∈ 不合题意 排除()D351()[,]444x πππωω=⇒+∈ 合题意 排除()()B C另:()22πωππω-≤⇔≤,3()[,][,]424422x ππππππωωπω+∈++⊂得:315,2424224πππππωπωω+≥+≤⇔≤≤(10) 已知函数1()ln(1)f x x x=+-;则()y f x =的图像大致为( )【解析】选B()ln(1)()1()010,()00()(0)0xg x x x g x xg x x g x x g x g '=+-⇒=-+''⇒>⇔-<<<⇔>⇒<= 得:0x >或10x -<<均有()0f x < 排除,,A C D(11)已知三棱锥S ABC -的所有顶点都在球O 的求面上,ABC ∆是边长为1的正三角形,SC 为球O 的直径,且2SC =;则此棱锥的体积为( )()A ()B()C()D 【解析】选AABC ∆的外接圆的半径r =O 到面ABC的距离d == SC 为球O 的直径⇒点S 到面ABC的距离为2d =此棱锥的体积为11233ABC V S d ∆=⨯==另:123ABC V S R ∆<⨯=排除,,B C D (12)设点P 在曲线12xy e =上,点Q 在曲线ln(2)y x =上,则PQ 最小值为( )()A 1ln 2- ()Bln 2)- ()C 1ln 2+ ()D ln 2)+【解析】选A 函数12xy e =与函数ln(2)y x =互为反函数,图象关于y x =对称 函数12x y e =上的点1(,)2x P x e 到直线y x =的距离为d设函数min min 11()()1()1ln 222x x g x e x g x e g x d '=-⇒=-⇒=-⇒=由图象关于y x =对称得:PQ最小值为min 2ln 2)d =-第Ⅱ卷本卷包括必考题和选考题两部分。
第13题~第21题为必考题,每个试题考生都必须作答,第22-第24题为选考题,考生根据要求做答。
二.填空题:本大题共4小题,每小题5分。
(13)已知向量,a b 夹角为45︒,且1,2a a = ;则_____b = 【解析】_____b =222(2)1044cos 4510a a b b b b ︒⇔-=⇔+-=⇔= (14) 设,x y 满足约束条件:,013x y x y x y ≥⎧⎪-≥-⎨⎪+≤⎩;则2z x y =-的取值范围为【解析】2z x y =-的取值范围为 [3,3]-约束条件对应四边形OABC 边际及内的区域:(0,0),(0,1),(1,2),(3,0)O A B C则2[3,3]z x y =-∈-(15)某个部件由三个元件按下图方式连接而成,元件1或元件2正常工作,且元件3正常工作,则部件正常工作,设三个电子元件的使用寿命(单位:小时)均服从正态分布2(1000,50)N ,且各个元件能否正常相互独立,那么该部件的使用寿命 超过1000小时的概率为【解析】使用寿命超过1000小时的概率为8三个电子元件的使用寿命均服从正态分布2(1000,50)N 得:三个电子元件的使用寿命超过1000小时的概率为12p =超过1000小时时元件1或元件2正常工作的概率2131(1)4P p =--=那么该部件的使用寿命超过1000小时的概率为2138p p p =⨯=(16)数列{}n a 满足1(1)21n n n a a n ++-=-,则{}n a 的前60项和为 【解析】{}n a 的前60项和为 1830可证明:14142434443424241616n n n n n n n n n n b a a a a a a a a b +++++---=+++=++++=+ 112341515141010151618302b a a a a S ⨯=+++=⇒=⨯+⨯= 三、解答题:解答应写出文字说明,证明过程或演算步骤。
(17)(本小题满分12分)已知,,a b c 分别为ABC ∆三个内角,,A B C 的对边,cos sin 0a C C b c --=【解析】(1)由正弦定理得:cos sin 0sin cos sin sin sin a C C b c A C A C B C +--=⇔=+sin cos sin sin()sin 1cos 1sin(30)2303060A C A C a C CA A A A A ︒︒︒︒⇔=++⇔-=⇔-=⇔-=⇔=(2)1sin 42S bc A bc ==⇔= 2222cos 4a b c bc A b c =+-⇔+=解得:2b c ==(l fx lby )18.(本小题满分12分)某花店每天以每枝5元的价格从农场购进若干枝玫瑰花,然后以每枝10元的价格出售, 如果当天卖不完,剩下的玫瑰花作垃圾处理。
(1)若花店一天购进16枝玫瑰花,求当天的利润y (单位:元)关于当天需求量n (单位:枝,n N ∈)的函数解析式。
(2)花店记录了100天玫瑰花的日需求量(单位:枝),整理得下表:以100天记录的各需求量的频率作为各需求量发生的概率。
(i )若花店一天购进16枝玫瑰花,X 表示当天的利润(单位:元),求X 的分布列,数学期望及方差;(ii )若花店计划一天购进16枝或17枝玫瑰花,你认为应购进16枝还是17枝?请说明理由。
【解析】(1)当16n ≥时,16(105)80y =⨯-= 当15n ≤时,55(16)1080y n n n =--=-得:1080(15)()80(16)n n y n N n -≤⎧=∈⎨≥⎩(2)(i )X 可取60,70,80(60)0.1,(70)0.2,(80)0.7P X P X P X ====== X 的分布列为222160.160.240.744DX =⨯+⨯+⨯= (ii )购进17枝时,当天的利润为(14535)0.1(15525)0.2(16515)0.161750.5476.4y =⨯-⨯⨯+⨯-⨯⨯+⨯-⨯⨯+⨯⨯=76.476> 得:应购进17枝(19)(本小题满分12分) 如图,直三棱柱111ABC A B C -中,112AC BC AA ==, D 是棱1AA 的中点,BD DC ⊥1(1)证明:BC DC ⊥1(2)求二面角11C BD A --的大小。