高一物理必修二《小船过河问题》--新版
高中物理小船过河问题含答案讲解
小船过河问题轮船渡河问题:(1)处理方法:轮船渡河是典型的运动的合成与分解问题,小船在有一定流速的水中过河时,实际上参与了两个方向的分运动,即随水流的运动(水冲船的运动)和船相对水的运动(即在静水中的船的运动),船的实际运动是合运动。
21.渡河时间最少:在河宽、船速一定时,在一般情况下,渡河时间 ,显然,当时,即船头的指向与河岸垂直,渡河时间最θυυsin 1船ddt ==︒=90θ小为,合运动沿v 的方向进行。
vd2.位移最小若水船υυ>结论船头偏向上游,使得合速度垂直于河岸,位移为河宽,偏离上游的角度为船水υυθ=cos 若,则不论船的航向如何,总是被水冲向下游,怎样才能使漂下的距离最短水船v v <呢?如图所示,设船头v 船与河岸成θ角。
合速度v 与河岸成α角。
可以看出:α角越大,船漂下的距离x 越短,那么,在什么条件下α角最大呢?以v 水的矢尖为圆心,v 船为半径画圆,当v 与圆相切时,α角最大,根据船头与河岸的夹角应为水船v v =θcos,船沿河漂下的最短距离为:水船v v arccos=θθθsin )cos (min 船船水v d v v x ⋅-=此时渡河的最短位移:船水v dv ds ==θcos 【例题】河宽d =60m ,水流速度v 1=6m /s ,小船在静水中的速度v 2=3m /s ,问:(1)要使它渡河的时间最短,则小船应如何渡河?最短时间是多少?(2)要使它渡河的航程最短,则小船应如何渡河?最短的航程是多少?★解析: (1)要使小船渡河时间最短,则小船船头应垂直河岸渡河,渡河的最短时间s s dt 2030602===υ(2)渡河航程最短有两种情况:①船速v 2大于水流速度v 1时,即v 2>v 1时,合速度v 与河岸垂直时,最短航程就是河宽;②船速v 2小于水流速度v l 时,即v 2<v 1时,合速度v 不可能与河岸垂直,只有当合速度v 方向越接近垂直河岸方向,航程越短。
【课件】小船渡河问题 课件高一下学期物理人教版(2019)必修第二册
针对训练6、如图所示,一条小船位于200 m宽的河正中A 点处,从这里向下游100 m处有一危险区,当时水流速度 为4m/s,为了使小船避开危险区沿直线到达岸边,小船在 静水中的速度至少是( C )
Xmin=d, t=d/v=d/v船sinθ>tmin。
例2:宽300米,河水流速3m/s,船在静水中的航速为1m/s,则
该船渡河的最短时间为
tmin = 300 s
,渡河的最短位移
为 smin = 900 m 。
d
V合
V船
V水
讨论:
3、船如何行驶,位移才最短?
(2)V船<V水。船不可垂直河岸行驶。
中目标且射出的箭在空中飞行时间最短,则 ( B C )
A.运动员骑马奔驰时应该瞄准靶心放箭 B.运动员应该在距离A点为 的地方放箭
C.箭射到靶的最短时间为
D.箭射到靶的最短时间为
针对训练3、船在静水中的速度与时间的关系如图甲所示,河
水的流速与船离河岸的距离的变化关系如图乙所示,则当船
沿渡河时间最短的路径渡河时( B D ) v/ms-1
A.4.8s
B.l0s
C.14.4s D.20s
针对训练8、如图所示,一艘炮艇沿长江由西向东快速行驶,在
炮艇上发射炮弹射击北岸的目标。已知炮艇向正东行驶的速度大
小为v1,炮艇静止时炮弹的发射速度大小为v2,炮艇所行进的路 线离射击目标的最近距离为d,不计空气阻力的影响,要想命中
小船过河问题高中物理
小船过河问题高中物理
在高中物理学习中,往往遇到小船在水有一定流速的河中渡河的问题。
问题:小船如何渡河时间最小,最小时间为多少?
分析及解答:设河宽为d,小船在静水中的速度为V船,水流速度为V水,如图1中的甲。
将船对水的速度沿平行河岸方向和垂直河岸方向正交分解。
沿平行河岸方向的速度不影响渡河的快慢,小船渡过河时时间与垂直河岸方向的速度有关,当小船垂直河岸渡过河时时间最小,即最小时间为t min=d/V船。
[例题1]:河宽60m,小船在静水中的速度为4m/s,水流速度为3m/s。
求小船渡河的最小时间是多少,小船实际渡河的位移为多大?
分析及解答:如图1中的乙,当小船垂直河岸渡过河时时间最小,即最小时间为t min=d/V船。
∴t min=d/V船=60/4=15(s)。
小船实际渡河的位移S AB=V合t min=5*15=75(m).。
高一物理曲线运动小船过河问题
高一物理曲线运动 小船过河问题
二、小船渡河问题
1、一小船渡河,河宽d=180m ,水流速度 s m v /5.21=,船在静水中的速度为
s m v /52=,求
(1)欲使船在最短的时间内渡河,船头应朝什么方向?用多长时间?位移是多少?
(2)欲使船渡河的航程最短,船头应朝什么方向?用多长时间?位移是多少?
2、河宽d =100m ,船在静水中的速度是v 1=4m/s ,水流速度为v 2=5m/s ,求:
⑴ 欲使船渡河时间最短,船应怎样渡河?最短时间是多少?船经过的位移是多大? ⑵ 欲使船航行距离最短,船应怎样渡河?渡河时间多长?
3、在抗洪抢险中战士驾驶摩托艇救人.假设江岸是平直的,洪水水流速度为v 1,摩托艇在静水中的航速为v 2.战士救人的地点A 离岸边最近处O 的距离为d .如战士想在最短时间内将人送上岸,则摩托艇登陆的地点离O 点的距离为( )
A .21222
v v dv - B .0 C 、21v dv D 、1
2v dv
4.如图所示,一条小船位于200m宽的河的正中点A处,从这里向下游1003m处有一危险区,当时水流速度为 4.0m/s,为了使小船避开危险区沿直线到达对岸,小船在静水中的速度至少是()
A.
33
4
m/s B.
33
8
m/s C.2.0m/s D.4.0m/s。
(完整word版)高中物理小船过河问题含答案讲解
小船过河问题轮船渡河问题:(1)处理方法:轮船渡河是典型的运动的合成与分解问题,小船在有一定流速的水中过河时,实际上参与了两个方向的分运动,即随水流的运动(水冲船的运动)和船相对水的运动(即在静水中的船的运动),船的实际运动是合运动。
1.渡河时间最少:在河宽、船速一定时,在一般情况下,渡河时间θυυsin 1船ddt ==,显然,当︒=90θ时,即船头的指向与河岸垂直,渡河时间最小为vd,合运动沿v 的方向进行。
2.位移最小 若水船υυ>结论船头偏向上游,使得合速度垂直于河岸,位移为河宽,偏离上游的角度为船水υυθ=cos 若水船v v <,则不论船的航向如何,总是被水冲向下游,怎样才能使漂下的距离最短呢?如图所示,设船头v 船与河岸成θ角。
合速度v 与河岸成α角。
可以看出:α角越大,船漂下的距离x 越短,那么,在什么条件下α角最大呢?以v 水的矢尖为圆心,v 船为半径画圆,当v 与圆相切时,α角最大,根据水船v v =θcos 船头与河岸的夹角应为2水船v v arccos=θ,船沿河漂下的最短距离为:θθsin )cos (min 船船水v dv v x ⋅-=此时渡河的最短位移:船水v dv ds ==θcos 【例题】河宽d =60m ,水流速度v 1=6m /s ,小船在静水中的速度v 2=3m /s ,问: (1)要使它渡河的时间最短,则小船应如何渡河?最短时间是多少? (2)要使它渡河的航程最短,则小船应如何渡河?最短的航程是多少?★解析: (1)要使小船渡河时间最短,则小船船头应垂直河岸渡河,渡河的最短时间s s dt 2030602===υ (2)渡河航程最短有两种情况:①船速v 2大于水流速度v 1时,即v 2>v 1时,合速度v 与河岸垂直时,最短航程就是河宽; ②船速v 2小于水流速度v l 时,即v 2<v 1时,合速度v 不可能与河岸垂直,只有当合速度v 方向越接近垂直河岸方向,航程越短。
(word完整版)高中物理小船过河问题含答案,推荐文档
(2)渡河航程最短有两种情况: ①船速 v2 大于水流速度 v1 时,即 v2>v1 时,合速度 v 与河岸垂直时,最短航程就是河 宽; ②船速 v2 小于水流速度 vl 时,即 v2<v1 时,合速度 v 不可能与河岸垂直,只有当合速 度 v 方向越接近垂直河岸方向,航程越短。可由几何方法求得,即以 v1 的末端为圆心,以 v2 的长度为半径作圆,从 v1 的始端作此圆的切线,该切线方向即为最短航程的方向,如图 所示。
1/9
arccos v船 ,船沿河漂下的最短距离为: v水
xmin
(v水
v船
cos )
v船
d sin
此时渡河的最短位移: s d dv水 cos v船
【例题】河宽 d=60m,水流速度 v1=6m/s,小船在静水中的速度 v2=3m/s,问: (1)要使它渡河的时间最短,则小船应如何渡河?最短时间是多少? (2)要使它渡河的航程最短,则小船应如何渡河?最短的航程是多少? ★解析: (1)要使小船渡河时间最短,则小船船头应垂直河岸渡河,渡河的最短时间
设船在 θ 角位置经△t 时间向左行驶△x 距离,滑轮右侧的绳长缩短△L,如图 2 所示, 当绳与水平方向的角度变化很小时,△ABC 可近似看做是一直角三角形,因而有
L x cos ,两边同除以△t 得: L x cos
小船过河问题 轮船渡河问题: (1)处理方法:轮船渡河是典型的运动的合成与分解问题,小船在有一定流速的水中 过河时,实际上参与了两个方向的分运动,即随水流的运动(水冲船的运动)和船相对水 的运动(即在静水中的船的运动),船的实际运动是合运动。
v船
v1
v2 θ
V水
1.渡河时间最少:在河宽、船速一定时,在一般情况下,渡河时间
高中物理小船过河问题含答案
小船过河问题轮船渡河问题:(1)处理方法:轮船渡河是典型的运动的合成及分解问题,小船在有一定流速的水中过河时,实际上参及了两个方向的分运动,即随水流的运动(水冲船的运动)和船相对水的运动(即在静水中的船的运动),船的实际运动是合运动。
1.渡河时间最少:在河宽、船速一定时,在一般情况下,渡河时间θυυsin 1船ddt ==,显然,当︒=90θ时,即船头的指向及河岸垂直,渡河时间最小为vd ,合运动沿v 的方向进行。
2.位移最小 若水船υυ>结论船头偏向上游,使得合速度垂直于河岸,位移为河宽,偏离上游的角度为船水υυθ=cos 若水船v v <,则不论船的航向如何,总是被水冲向下游,怎样才能使漂下的距离最短呢?如图所示,设船头v 船及河岸成θ角。
合速度v 及河岸成α角。
可以看出:α角越大,船漂下的距离x 越短,则,在什么条件下α角最大呢?以v 水的矢尖为圆心,v 船为半径画圆,当v 及圆相切时,α角最大,根据B 2水船v v =θcos 船头及河岸的夹角应为水船v v arccos=θ,船沿河漂下的最短距离为:此时渡河的最短位移:船水v dv ds ==θcos 【例题】河宽d =60m ,水流速度v 1=6m /s ,小船在静水中的速度v 2=3m /s ,问: (1)要使它渡河的时间最短,则小船应如何渡河最短时间是多少 (2)要使它渡河的航程最短,则小船应如何渡河最短的航程是多少★解析: (1)要使小船渡河时间最短,则小船船头应垂直河岸渡河,渡河的最短时间 (2)渡河航程最短有两种情况:①船速v 2大于水流速度v 1时,即v 2>v 1时,合速度v 及河岸垂直时,最短航程就是河宽; ②船速v 2小于水流速度v l 时,即v 2<v 1时,合速度v 不可能及河岸垂直,只有当合速度v 方向越接近垂直河岸方向,航程越短。
可由几何方法求得,即以v 1的末端为圆心,以v 2的长度为半径作圆,从v 1的始端作此圆的切线,该切线方向即为最短航程的方向,如图所示。
高一下学期物理人教版必修第二册5.2 课时2 小船过河与绳——杆关联速度问题 课件(共20张PPT)
不同时对合运动的影响,这样的运动系统可看
做小船渡
视
频
2.模型分析
(1)船的实际运动是水流的运动和船相对静水的运动的合运动。
(2)三种速度:v1(船在静水中的速度)、v2(水流速度)、v(船的实际速度)。
(3)两个极值
d
①过河时间最短:v1⊥v2,tmin=—(d为河宽).
速度v⊥=v船sin
α,故小船渡河时间为t=
,当α
船sin
=90°,即船头与河岸垂直时,渡河时间最短,最短
时间为tmin=50 s.
【练一练】小船要渡过200 m宽的河,水流速度为2 m/s,船在静水中的速度为4 m/s,求:
(4)若水流速度是5 m/s,船在静水中的速度是3 m/s,则怎样渡河才能使船驶向下游的距
离最小?最小距离是多少?(结果取整数)
(4)因为v′船<v′水,船不可能垂直河岸横渡.如图所示,设船头(v′
船)与上游河岸成β角,合速度v′与下游河岸成γ角,可以看出γ角
越大,船驶向下游的距离x′越小.以v′水矢量的末端为圆心,以v′
船的大小为半径画圆,当合速度v′与圆相切时,γ角最大.cos
′船
水平方向向右做匀速直线运动的过程中( BCD )
A.物体 A 也做匀速直线运动
B.绳子的拉力始终大于物体 A 所受的重力
C.物体 A 的速度小于物体 B 的速度
D.地面对物体 B 的支持力逐渐增大
小船过河
运动的合成与分解的应用
绳——杆关联速度
且v2>v1,下面用小箭头表示小船及船头的指向,则能正确反映小
船在最短时间内渡河、最短位移渡河的情景图示依次是
新教材高中物理第五章抛体运动重难专题1小船渡河问题课件新人教版必修第二册
[解析] 欲使船渡河航程最短,合速度应沿垂直河岸方向,将船速与水
的流速合成,如图乙所示,船头应朝 方向。沿河岸方向的合速度为
0,有 = ,得 = ∘ ,所以当船头与上游河岸成 ∘ 角时
航程最短,即 = = ,渡河时间 =
为。
(1)若运动员射出的箭能命中目标,求箭在空中飞行的最短时间及放箭处离目标的距离;
[答案]
12
22
;
2
+1
2
+
2 4
424
[解析] 若箭在空中飞行的时间最短,则有 必水平且垂直 ,所以 =
出箭的位置与 点的连线与 的夹角为 ,则有 =
距离 =
B.船在行驶过程中,船头必须始终偏向河岸上游
C.船在河水中航行的轨迹是一条直线
D.船在河水中的最大速度是 5 m/s
[解析] 当船在静水中的速度的方向与河岸垂直时,渡河时间最短,
=
静
=
= ,故A错误;当船头的指向与河岸垂直时,渡河时间最短,
故B错误;由于河水流速在变化,水平方向具有加速度,所以合运动不是直线运动,
( A )
A. 1 > 3 > 2
B. 3 > 1 > 2
C. 1 > 2 > 3
D. 1 = 2 = 3
能力提升练
6.[2022江苏江阴练习]某次抗洪抢险中,必须用小船将物资送至河流
对岸。如图所示, 处的下游靠河岸处有个漩涡, 点和漩涡的连
线与河岸的最大夹角为 37∘ ,若河流中水流的速度大小恒为 5 m/s ,为使小船从 点以
.小船渡河专题课件【新教材】人教版高中物理必修第二册
m.
(2)当船的实际速度方向垂m/s,大于水流速度v2=3 m/s,故 可以使船的实际速度方向垂直于河岸.如图乙所示,设船斜
指向上游河对岸,且与河岸所成夹角为θ,则有v1cos θ=v2
,
,则
,船的实际速度
大小为v=v1sin θ=5×0.8 m/s=4 m/s,
(1)概率波:光的干涉现象是大量光子的运动遵守波动规律的表现,亮条纹是光子到达概率大的地方,暗条纹是光子到达概率小的地方, 因此光波又叫概率波.
1. (多选)下列图中实线为河岸,河水的流动方向如图中v 的箭头所示,虚线为小船从河岸M驶向对岸N的实际航线. 则其中可能正确的是( AB )
2. (多选)在一条宽200 m的河中,水的流速v1=1 m/s, 一只小船要渡过河至少需要100 s的时间.则下列判断正确 的是( ACD )
图乙 在光的干涉、衍射中,要注意光的波长,像双缝干涉中,通常是指光在真空(空气)中的波长,若装置处于其他介质中,就应取光在介质
中的波长.又如薄膜干涉、增透膜等,也应为在这种介质中的波长.
2.对电磁波的理解 (1)现象:物体的不同部分在内力的作用下向相反方向运动. [生]可以把km/h化成m/s.72km/h就是72个1 km/h,1 km就是103m,1 h就是3600s等量代换以后,进行计算就可以换算成m/s. 4.注意事项 2.动量定理的表达式F·Δt=Δp是矢量式,运用它分析问题时要特别注意冲量、动量及动量变化量的方向,公式中的F是物体或系统所 受的合力.
A.这只船过河位移不可能为50 m B.这只船过河时间不可能为10 s C.若河水流速改变,船过河的最短时间一定不变 D.若河水流速改变,船过河的最短位移一定不变
下节再见 3的(e2((过 23分止强(((的教2方(W(在看①三(二(方231211p3313. . 、 . . . 、V))))=))))0.程析液和体学案2一碰用、、向当 根 月规 行 实p时G:)轨产教动动原近= 水与: 体 压 积 过 三 维 撞 数 说 计 )光据球 定星验,总.逸道生学量量设子视p的方 在产力和程:碰前学教算ΔA子的 正:氢/′S,出:条目定计的眼重E和法 运生问箱在撞后中学题)能平 方接原系。功原件=标理进核的力行用的题内光中动的程(量均 向通子共统,子:与行式成ΔG星公压时水滑,量组序大密 ,电电m6相即的入要试结因=B小式强,的桌测是合c于度 确源离互从不射求验构和ρ的2题时大先体面出否知g计或定,ρ后作金同光。矫密V;,要小求积上物守识算等初利,=用属能 的 正度共知。压之两体恒求,于、用电1前表量频。之5×道所强和车的.解计末配1子2的面状率比31:以。碰质:(分算状套具用.0总直态大ρ6公在撞量N)3时A态的有pe动接跟于k=∶=V式解完mgΔ动光一量飞电极/ρ时Cm和ρ答成p量电定B2g出p子限=的m,碰.n问一h等;计的3的在频F=)单也撞,题维×于/时初S光不率n位可前再前碰9相是装动电同..是以后求应撞互8压n置能子的“被N-物压先实作强测./克圆k处1体力分验用的g出k服周于”的g(清,后定两用2×正轨基.速楚c的义滑F的电道态(率=是0总式块p单荷绕.的v3S固动,各、×位引核)氢;体量同种v0是力运原′求压.,p时情3“所动′子.×解强找适况m做相吸0容还出用下/.的对s收3器是碰于”碰+,功应,4对液撞计撞×Δ..使支体前算E前1原氢的0持压的固后-子原单4面强动体的×的子位的,量、速0定电是.压是p液2度态=离)“力先m体(①是m;J3和求、”1=改不.当v压压气12变连处强力+6体滑续5于时还m的.4块的基2N,是压v的,态2,先先强及质因的V求求.碰量此是氢压压而撞.电箱原力强公后②子内子(。式用的改的盛吸在pF动变可水收==求量G滑能的的ρ解g总p块轨总光h液′=)只的道体,子体m适初也积再能对1用速是v,求量容′1于度不即压大+器计大连管强于m的算小续内21压v3静和水′.26,
5.2小船过河问题人教版高中物理必修二课件共25张PPT
v船
【例题1-2】
一艘小船在100m宽的河中横渡到对岸,已知水流速度是3m/s,小船在静水中的速度是4m/s,
求:
(2)欲使航行距离最短,船应该怎样渡河?渡河时间多长?
【例题1-2】
一艘小船在100m宽的河中横渡到对岸,已知水流速度是3m/s,小船在静水中的速度是4m/s,
求:
(2)欲使航行距离最短,船应该怎样渡河?渡河时间多长?
一般情况下与船头指向不一致。
小船渡河模型
(二)求解小船渡河问题的方法
求解小船渡河问题有两类:一是求最短渡河时间,二是求最短渡河位移。
无论哪类都必须明确以下四点:
(2)运动分解的基本方法,按实际效果分解,一般用平行四边形定则按水流
方向和船头指向分解。
小船渡河模型
(二)求解小船渡河问题的方法
求解小船渡河问题有两类:一是求最短渡河时间,二是求最短渡河位移。
解析:1、当船头指向斜上游,与岸夹角为Ѳ时,合运动垂直河岸,航程最短,数值
等于河宽100米。
则
1 3
cos =
=
2 4
合速度:
=
过河时间:
100
100 7
= =
=
7
7
2 2 − 1 2 =
42 − 32 Τ = 7 Τ
小船渡河模型
(4)求最短渡河位移时,根据船速船与水流速度水的大小情况用三角形法
何变化?
小船渡河模型
思考题:
1、在船头始终垂直对岸的情况下,在行驶到河中间时,水流速度突然增大,过
河时间如何变化?
答案:不变
2、为了垂直到达河对岸,在行驶到河中间时,水流速度突然增大,过河时间如
高一物理必修二《小船过河问题》
练习1
如图所示,A、B两车通过细绳跨接在定滑轮两侧,并分别置于光滑水平面上,若A车以速 度v0向右匀速运动,当绳与水平面的夹角分别为α和β时,B车的速度是多少?
vB=
cos cos v 0
1.vB= 图4-1
• v=vAcosα • 对B球进行速度分解,得到v=vBsinα • 联立得到vA=vBtanα
解: cosθ v2 1
S
v1 2
60
v
d
v2
又 v2 d
θ(
θ(
)α
∴
v1
Sm in
S
v1
d
400m
v1
方向 30
v2
点评:当v2<v1(v划<v水)时,合速v不可能垂直河岸。此时,以v1矢量的终点为圆心,v2的大小为半 径画圆,当v与圆相切时,α角最大,θ角最小,则渡河航线最短,并且
S min v水 d
cosθv划v划 ; v
【例3】汽船顺流从甲地到乙地,历时3h,返回时需6h,如汽船关闭发动机顺流从甲地漂到乙 地,则所需时间为( )
A.3h B.6h
C.9h D.12h
D
【例4】游泳运动员以恒定的速率垂直河岸横渡.当水速突然增大时,对运动员横渡经历的路 程、时间发生的影响是( )
A.路程增长、时间增长
d v1
重要结论---小船的两种过河方式
1.最短时间过河 V划 v实
d
v水
2.最短位移过河
V划 d
v实 v水
过河ห้องสมุดไป่ตู้间最短; t = d / v划
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
航向α= 53° ,
船速v= 20m/min ,
河宽d =200m 。
14
练习1
如图所示,A、B两车通过细绳跨接在定
滑轮两侧,并分别置于光滑水平面上,若
A车以速度v0向右匀速运动,当绳与水平 面的夹角分别为α和β时,B车的速度是多 少?
1.vB=
vB=
cos cos
则渡河航线最短,并且
S min v水 d
cosθ v划v划 ;
v
6
【例3】汽船顺流从甲地到乙地,历时3h,
返回时需6h,如汽船关闭发动机顺流从甲地 漂到乙地,则所需时间为( D )
A.3h
B.6h
C.9h
D.12h
7
【例4】游泳运动员以恒定的速率垂直河岸 横渡.当水速突然增大时,对运动员横渡经 历的路程、时间发生的影响是( C ) A.路程增长、时间增长 B.路程增长、时间缩短 C.路程增长、时间不变 D.路程与时间均与水速无关
• 所以v物=
v
c os
图4-6
10
【例6】一只船从河岸A处渡河 ,河宽d=30m,
v水=10m/s,距A 40m的下游有瀑布,为使小船 靠岸时,不至被冲进瀑布中,船的划行的最小
速度为多少?船的实际速度是多大?
S
V划 v实
θ(
A
v水 x
瀑 d布
11
【例7】有一艘船以v甲的船速用最短的时间 横渡过河,另一艘船以v乙的船速从同一地点 以最短的距离过河,两船的轨迹恰好重合
如何?
解: cosθ v2 1
S
v1 2
60
又 v2 d
v2 v
θ( )α θ(
d
∴
v1
S min
S
v1
d
400 m
v1
方向 30
v2
5
点评:当v2<v1(v划<v水)时,合速v不 可能垂直河岸。此时,以v1矢量的终 点为圆心,v2的大小为半径画圆,当 v与圆相切时,α角最大,θ角最小,
8
[例5]如图4-3所示,在一光滑水平面上放 一个物体,人通过细绳跨过高处的定滑轮 拉物体,使物体在水平面上运动,人以大 小不变的速度v运动.当绳子与水平方向成θ 角时,物体前进的瞬时速度是多大?
图4-3
9
应用合运动与分运动的关系
• 绳子牵引物体的运动中,物体实际在水平面上运动,这个
运动就是合运动,所以物体在水平面上运动的速度v物是合 速度,将v物按如图4-6所示进行分解.其中:v=v物cosθ,使 绳子收缩.v⊥=v物sinθ,使绳子绕定滑轮上的A点转动.
(设河水速度保持不变),求两船过河所用 时间之比。
t甲 t乙
v乙2 v甲2
12
【例8】某人乘船横渡一条河,船在静水中 的速度及水速一定,此人过河最短时间T1, 若此船用最短的位移过河,所需时间T2,若 船速大于水速,则船速与水速之比为?
v船
T2
v水
T22 T12
13
【例9】有人驾船从河岸A处出发,如果使船头 垂直河岸航行,经10min到达正对岸下游120m 的C处;若使船头指向与上游河岸成α角的方向 航行,经12.5min到达正对岸的B点,求水速u, 航向α ,船速v,河宽d .
d: 河的宽度
V=V船对地=V实
3
重要结论---小船的两种过河方式
1.最短时间过河 V划 v实
d
v水
2.最短位移过河 V划 v实
d v水
过河时间最短; t = d / v划
过河路径最短; s = d (v划>v水)
4
【例2】小船在d=200m宽的河水中行驶,船在
静水中v2=2m/s,水流速度v1=4m/s。求:要使 船的航线最短,应向何方划船?位移的最小值
• v=vAcosα • 对B球进行速度分解,得到v=vBsinα • 联立得到vA=vBtanα
18
应向对岸划行,航向角 θ=90°.
v水 2
②要使航线最短,那么应向何方划船?渡
河时间是多少秒?
cosθ v水 v1 1 v划 v2 2
v2
v
θ
d
60
d
d
θ(
v1
t
56.7s
v划 sinθ v2 sin
注意:V1=V水对地=V水
V2=V船对水=V划=V船
θ :航向角(划行速度与河岸的夹角)
解析:小船过河问题分析
1
【例1】小船在d=200m宽的河水中行驶,船在 静水中v划=4m/s,水流速度v水=2m/s。求:
①要使船能在最短时间内渡河,则最短时间是 多少秒?应向何方划船? ②要使航线最短,那么应向何方划船?渡
河时间是多少秒?
解: ①
t d 200 50秒 v划 4
V划 v实 d
v0
Hale Waihona Puke 图4-115速度关联类问题求解·速度的 合成与分解
图4-12
16
练习2
• 如图所示,均匀直杆上连着两个小球A、B,
不计一切摩擦.当杆滑到如图位置时,B球水 平速度为vB,加速度为aB,杆与竖直夹角为 α,求此时A球速度和加速度大小
17
• 分别对小球A和B的速度进行分解,设杆上 的速度为v
• 则对A球速度分解,分解为沿着杆方向和垂 直于杆方向的两个速度。