结构力学知识点梳理及学习方法
结构力学最全知识点梳理及学习方法
结构力学最全知识点梳理及学习方法结构力学是工程领域的基础学科之一,主要研究物体在受力作用下的变形和破坏行为。
下面将对结构力学的知识点进行梳理,并提供一些学习方法。
1.静力学知识点:(1)力的分解与合成(2)平衡条件及对应的力矩平衡条件(3)杆件内力分析(4)支座反力的计算(5)重力中心和重力矩计算方法学习方法:静力学是结构力学的基础,要通过大量的练习加深对概念和公式的理解,并注重实际问题的应用。
2.应力学知识点:(1)应力的定义和类型(正应力、剪应力、主应力等)(2)应力的均衡方程(3)材料的本构关系(线性弹性、非线性弹性、塑性等)(4)薄壁压力容器的应力分析学习方法:应力学是结构力学的核心内容,要掌握应力的计算方法和不同材料的应力应变关系,需要多阅读教材和参考书籍,理解背后的物理原理,并进行大量的练习。
3.变形学知识点:(1)应变的定义和类型(线性应变、剪应变、工程应变等)(2)应变-位移关系(3)杆件弹性变形分析(4)杆件的刚度计算学习方法:变形学是结构力学的重要组成部分,要掌握应变的计算方法和杆件的变形规律,可以通过编程模拟杆件的变形过程或进行实验验证。
4.强度计算知识点:(1)材料的强度和安全系数(2)拉压杆件的强度计算(3)梁的强度计算(4)刚结构的强度计算5.破坏学知识点:(1)破坏形态(拉伸、压缩、剪切、扭转等)(2)材料的断裂特性和疲劳破坏(3)结构的失效分析(4)杆件和梁的屈曲分析学习方法:破坏学是结构力学的进一步深入,要了解不同破坏形态的特点和计算方法,并进行典型案例分析,以提高预测和识别破坏的能力。
学习方法总结:(1)理论学习:多阅读教材和参考书籍,并注重理解概念和原理。
(2)练习和实践:进行大量的计算练习和模拟分析,提高解决实际结构问题的能力。
(3)案例分析:通过分析实际案例,学习不同结构的设计和分析方法。
(4)交流和讨论:与同学和老师进行交流和讨论,共同学习和解决问题。
结构力学学习方法及解题指导pdf
结构力学学习方法及解题指导pdf结构力学学习方法及解题指导pdf篇一:结构力学学习资料第一章绪论一、本章学习目标:1、了解结构力学的任务,及其与其他课程间的关系、常见杆件结构的类型。
2、掌握结构计算简图的概念和确定计算简图的原则。
3、掌握杆件结构的支座分类及结点分类。
掌握杆件结构的支座和结点的受力性能和约束性质。
二、本章重点、要点:1、识记:各种支座能产生的反力,全铰与半铰的区别,计算简图的含义,确定计算简图的原则。
2、领会:铰结点、刚结点和组合结点的受力特征和变形特征。
第二章平面体系的几何组成分析一、本章学习目标:1、理解几何不变体系、几何可变体系、刚片、自由度和计算自由度、约束等概念并理解瞬变体系和常变体系的区别。
2、掌握无多余约束的几何不变体系的几何组成规则,并能运用这些规则分析体系的几何组成。
3、理解体系的几何特性与静力特性。
二、本章重点、要点:1、识记:几何不变体系、几何可变体系、常变体系、瞬变体系的概念;可用作建筑结构的体系;自由度、刚片、约束的概念;把复铰折算成单铰的算式;无多余约束的几何不变体系的组成规则;二元体的概念。
2、领会:点与刚片的自由度;连杆、单铰的约束作用;虚铰的概念及其约束作用。
静定结构的几何特性和静力特性。
3、应用:体系的几何组成分析。
三、本章练习题:1、判断题1.1多余约束是体系中不需要的约束。
()()()()1.2瞬变体系在很小的荷载作用下会产生很大的内力,所以不能作为结构使用。
() 1.3两根链杆的约束作用相当于一个单铰。
1.4每一个无铰封闭框都有三个多余约束。
1.5连接四个刚片的复铰相当于四个约束。
1.6图示体系是由三个刚片用三个共线的铰ABC相连,故为瞬变体系。
()1.7图示体系是由三个刚片用三个共线的铰ABC相连,故为瞬变体系。
()2、单项选择题A 2题1.6图题1.7图2.1将三刚片组成无多余约束的几何不变体系,必要的约束数目是几个B 3C41()()D 62.2三刚片组成无多余约束的几何不变体系,其联结方式是A 以任意的三个铰相联 C 以三对平行链杆相联 A 产生很小的内力 C 产生很大的内力B 以不在一条线上三个铰相联 D 以三个无穷远处的虚铰相联()()B 不产生内力2.3瞬变体系在一般荷载作用下D 不存在静力解答2.4从一个无多(来自: 博文学习网:结构力学学习方法及解题指导pdf)余约束的几何不变体系上去除二元体后得到的新体系是C 几何可变体系D 几何瞬变体系2.5图示体系属于A 静定结构2.6图示体系属于C题2.5图A 无多余约束的几何不变体系B 有多余约束的几何不变体系()B 超静定结构C 常变体系D 瞬变体系B D B D B D ()A 无多余约束的几何不变体系有多余约束的几何可变体系2.7不能作为建筑结构使用的是C 几何不变体系2.8一根链杆CB有多余约束的几何不变体系瞬变体系()有多余约束的几何不变体系几何可变体系有一个自由度()()A 无多余约束的几何不变体系A 可减少两个自由度有两个自由度2.9图示体系是C2.10图示体系是C 题2.9图可减少一个自由度A 瞬变体系有一个自由度和一个多余约束的可变体系无多余约束的几何不变体系题2.10图D()A 瞬变体系B 有一个自由度和一个多余约束的可变体系有两个多余约束的几何不变体系()无多余约束的几何不变体系2.11 下列那个体系中的1点不是二元体3.1对图示体系进行几何组成分析。
结构力学知识点总结
结构力学知识点总结
基本概念:包括计算简图(如杆件、支座和节点的简化,体系简化等)、结构分类(按几何特征划分如梁、拱、刚架等,按内力是否静定划分如静定结构、超静定结构等)。
结构的组成规则:研究结构在各种效应(如外力、温度效应、施工误差及支座变形等)作用下的响应。
内力和位移计算:包括轴力、剪力、弯矩、扭矩的计算,以及线位移和角位移的计算。
动力响应计算:研究结构在动力荷载作用下的自振周期、振型等。
分析方法:结构力学通常有三种分析的方法,即能量法、力法和位移法。
由位移法衍生出的矩阵位移法后来发展出有限元法,成为利用计算机进行结构计算的理论基础。
计算工具:包括受力分析、弹性力学、杆件理论、振动分析、动力学理论、有限元分析软件、数值计算方法、计算机模拟等。
应用领域:结构力学在生活中的应用非常广泛,主要体现在建筑领域(如建筑设计和施工)、机械工程(如汽车工程)和航空航天工程(如飞机、火箭、卫星等的设计和制造)等方面。
以上仅是结构力学的一些主要知识点,实际上结构力学的内容非常丰富,需要不断学习和实践才能掌握。
结构力学主要知识点归纳
结构力学主要知识点归纳结构力学主要知识点一、基本概念1、计算简图:在计算结构之前,往往需要对实际结构加以简化,表现其主要特点,略去其次要因素,用一个简化图形来代替实际结构。
通常包括以下几个方面:A、杆件的简化:常以其轴线代表B、支座和节点简化:①活动铰支座、固定铰支座、固定支座、滑动支座;②铰节点、刚节点、组合节点。
C、体系简化:常简化为集中荷载及线分布荷载D、体系简化:将空间结果简化为平面结构2、结构分类:A、按几何特征划分:梁、拱、刚架、桁架、组合结构、悬索结构。
B、按内力是否静定划分:①静定结构:在任意荷载作用下,结构的全部反力和内力都可以由静力平衡条件确定。
②超静定结构:只靠平衡条件还不能确定全部反力和内力,还必须考虑变形条件才能确定。
二、平面体系的机动分析1、体系种类A、几何不变体系:几何形状和位置均能保持不变;通常根据结构有无多余联系,又划分为无多余联系的几何不变体系和有多余联系的几何不变体系。
B、几何可变体系:在很小荷载作用下会发生机械运动,不能保持原有的几何形状和位置。
常具体划分为常变体系和瞬变体系。
2、自由度:体系运动时所具有的独立运动方程式数目或者说是确定体系位置所需的独立坐标数目。
3、联系:限制运动的装置成为联系(或约束)体系的自由度可因加入的联系而减少,能减少一个自由度的装置成为一个联系①一个链杆可以减少一个自由度,成为一个联系。
②一个单铰为两个联系。
4、计算自由度:)2(3r h m W +-=,m 为刚片数,h 为单铰束,r 为链杆数。
A 、W>0,表明缺少足够联系,结构为几何可变;B 、W=0,没有多余联系;C 、W<0,有多余联系,是否为几何不变仍不确定。
5、几何不变体系的基本组成规则:A 、三刚片规则:三个刚片用不在同一直线上的三个单铰两两铰联,组成的体系是几何不变的,而且没有多余联系。
B 、二元体规则:在一个刚片上增加一个二元体,仍未几何不变体系,而且没有多余联系。
结构力学主要知识点归纳
结构力学主要知识点一、基本概念1、计算简图:在计算结构之前,往往需要对实际结构加以简化,表现其主要特点,略去其次要因素,用一个简化图形来代替实际结构。
通常包括以下几个方面:A、杆件的简化:常以其轴线代表B、支座和节点简化:①活动铰支座、固定铰支座、固定支座、滑动支座;②铰节点、刚节点、组合节点。
C、体系简化:常简化为集中荷载及线分布荷载D、体系简化:将空间结果简化为平面结构2、结构分类:A、按几何特征划分:梁、拱、刚架、桁架、组合结构、悬索结构。
B、按内力是否静定划分:①静定结构:在任意荷载作用下,结构的全部反力和内力都可以由静力平衡条件确定。
②超静定结构:只靠平衡条件还不能确定全部反力和内力,还必须考虑变形条件才能确定。
二、平面体系的机动分析1、体系种类A、几何不变体系:几何形状和位置均能保持不变;通常根据结构有无多余联系,又划分为无多余联系的几何不变体系和有多余联系的几何不变体系。
B、几何可变体系:在很小荷载作用下会发生机械运动,不能保持原有的几何形状和位置。
常具体划分为常变体系和瞬变体系。
2、自由度:体系运动时所具有的独立运动方程式数目或者说是确定体系位置所需的独立坐标数目。
3、联系:限制运动的装置成为联系(或约束)体系的自由度可因加入的联系而减少,能减少一个自由度的装置成为一个联系①一个链杆可以减少一个自由度,成为一个联系。
②一个单铰为两个联系。
4、计算自由度:)2(3r h m W +-=,m 为刚片数,h 为单铰束,r 为链杆数。
A 、W>0,表明缺少足够联系,结构为几何可变;B 、W=0,没有多余联系;C 、W<0,有多余联系,是否为几何不变仍不确定。
5、几何不变体系的基本组成规则:A 、三刚片规则:三个刚片用不在同一直线上的三个单铰两两铰联,组成的体系是几何不变的,而且没有多余联系。
B 、二元体规则:在一个刚片上增加一个二元体,仍未几何不变体系,而且没有多余联系。
C 、两刚片原则:两个刚片用一个铰和一根不通过此铰的链杆相联,为几何不变体系,而且没有多余联系。
结构力学最完整知识材料点梳理及其知识材料学习方法
第一章绪论§1-1 结构力学的研究对象和任务一、结构的定义:由基本构件(如拉杆、柱、梁、板等)按照合理的方式所组成的构件的体系,用以支承荷载并传递荷载起支撑作用的部分。
注:结构一般由多个构件联结而成,如:桥梁、各种房屋(框架、桁架、单层厂房)等。
最简单的结构可以是单个的构件,如单跨梁、独立柱等。
二、结构的分类:由构件的几何特征可分为以下三类1.杆件结构——由杆件组成,构件长度远远大于截面的宽度和高度,如梁、柱、拉压杆。
2.薄壁结构——结构的厚度远小于其它两个尺度,平面为板曲面为壳,如楼面、屋面等。
3.实体结构——结构的三个尺度为同一量级,如挡土墙、堤坝、大块基础等。
三、课程研究的对象♦材料力学——以研究单个杆件为主♦弹性力学——研究杆件(更精确)、板、壳、及块体(挡土墙)等非杆状结构♦结构力学——研究平面杆件结构四、课程的任务1.研究结构的组成规律,以保证在荷载作用下结构各部分不致发生相对运动。
探讨结构的合理形式,以便能有效地利用材料,充分发挥其性能。
2.计算由荷载、温度变化、支座沉降等因素在结构各部分所产生的内力,为结构的强度计算提供依据,以保证结构满足安全和经济的要求。
3.计算由上述各因素所引起的变形和位移,为结构的刚度计算提供依据,以保证结构在使用过程中不致发生过大变形,从而保证结构满足耐久性的要求。
§1-2 结构计算简图一、计算简图的概念:将一个具体的工程结构用一个简化的受力图形来表示。
选择计算简图时,要它能反映工程结构物的如下特征:1.受力特性(荷载的大小、方向、作用位置)2.几何特性(构件的轴线、形状、长度)3.支承特性(支座的约束反力性质、杆件连接形式)二、结构计算简图的简化原则1.计算简图要尽可能反映实际结构的主要受力和变形特点..............,使计算结果安全可靠;2.略去次要因素,便于分析和计算.......。
三、结构计算简图的几个简化要点1.实际工程结构的简化:由空间向平面简化2.杆件的简化:以杆件的轴线代替杆件3.结点的简化:杆件之间的连接由理想结点来代替(1)铰结点:铰结点所连各杆端可独自绕铰心自由转动,即各杆端之间的夹角可任意改变。
《结构力学》知识点归纳梳理
《结构力学》知识点归纳梳理《结构力学》是土木工程、建筑工程等专业的重要基础课程之一,它主要研究物体受力作用下的力学性质及其运动规律。
结构力学的知识对于设计和分析各种工程结构具有重要意义。
以下是对《结构力学》中的一些重要知识点进行归纳梳理。
1.静力学基本原理:(1)牛顿第一定律与质点的平衡条件;(2)牛顿第二定律与质点运动方程;(3)牛顿第三定律与作用力对;(4)力的合成与分解。
2.力和力矩的概念和计算:(1)力的点表示和力的向量运算;(2)力矩的点表示和力矩的向量运算;(3)力的矢量和点表示的转换。
3.等效静力系统:(1)强心轴的概念和计算;(2)悬臂梁的等效静力;(3)等效力和等效力矩。
4.支持反力分析:(1)节点平衡法计算支持反力;(2)静力平衡方程计算支持反力。
5.算术运算法:(1)类似向量的加法和减法;(2)类似向量的数量积和向量积。
6.静力平衡条件:(1)法向力平衡条件;(2)切向力平衡条件;(3)力矩平衡条件。
7.杆件受力分析:(1)内力的概念和分类;(2)弹性力的性质和计算方法;(3)强度力的性质和计算方法。
8.杆件内力的作图法:(1)内力的几何关系;(2)内力图的作图方法。
9.杆件内力的计算方法:(1)等效系统的概念和计算方法;(2)推力与拉力的分析与计算。
10.刚性梁的受力分析:(1)刚性梁的受力模式;(2)刚性梁的截面受力分析;(3)刚性梁的等效荷载。
11.弯矩与剪力的计算方法:(1)弯矩和剪力的表达式;(2)弯矩和剪力的计算方法。
12.杆件的弯曲:(1)弯曲梁的受力分析;(2)弯曲梁的弯曲方程。
13.弹性曲线:(1)弹性曲线的概念和性质;(2)弹性曲线的计算方法。
14.梁的挠度:(1)梁的挠度方程;(2)梁的挠度计算方法。
15.梁的受力:(1)梁受力分析的应用;(2)梁的横向剪切力。
以上是对《结构力学》中的一些重要知识点的归纳和梳理。
通过学习和掌握这些知识点,可以帮助我们更好地理解结构力学的基本原理,从而能够进行工程结构的设计和分析。
结构力学知识点
结构力学知识点结构力学是研究结构在外力作用下的受力和变形规律的学科,它涉及到力学、材料科学、数学等多个领域的知识。
以下是结构力学的主要知识点总结:1. 基本概念- 外力:作用在结构上的力,包括重力、风力、地震力等。
- 内力:结构内部由于外力作用而产生的力,如拉力、压力、剪力等。
- 变形:结构在外力作用下形状或尺寸的变化。
- 刚度:结构抵抗变形的能力。
- 强度:结构在外力作用下不发生破坏的能力。
2. 基本假设- 材料均质连续:假设结构材料是均匀且连续分布的。
- 线弹性:材料的应力与应变关系遵循胡克定律,即在弹性范围内应力与应变成正比。
- 小变形:结构的变形量远小于原始尺寸,可以忽略变形对结构受力的影响。
3. 基本方法- 静力平衡:通过静力平衡方程求解结构的内力。
- 虚功原理:利用虚功原理求解结构的位移和应力。
- 能量方法:通过能量守恒原理分析结构的受力和变形。
- 有限元分析:利用数值方法将结构离散化,通过计算机求解结构的受力和变形。
4. 基本构件- 杆件:承受轴向力的构件,如梁、柱。
- 梁:承受弯矩和剪力的构件,通常承受垂直于轴线的载荷。
- 板:承受面内力的构件,如楼板、墙板。
- 壳:承受曲面内力的构件,如屋顶、管道。
5. 基本理论- 材料力学:研究材料在外力作用下的应力、应变和破坏规律。
- 弹性力学:研究材料在弹性范围内的应力、应变和变形规律。
- 塑性力学:研究材料在塑性变形范围内的应力、应变和变形规律。
- 断裂力学:研究材料在外力作用下的裂纹扩展和断裂规律。
6. 分析方法- 刚度法:通过建立结构的刚度矩阵求解结构的位移和内力。
- 柔度法:通过建立结构的柔度矩阵求解结构的位移和内力。
- 弯矩分配法:一种简化的梁结构分析方法,通过分配弯矩来求解结构的内力。
- 影响线法:通过绘制结构的弯矩、剪力等影响线来分析结构的受力。
7. 结构稳定性- 屈曲:结构在外力作用下失去稳定性,发生弯曲变形。
- 振动:结构在外力作用下发生的周期性运动。
结构力学主要知识点归纳
结构力学主要知识点一、基本概念1、计算简图:在计算结构之前,往往需要对实际结构加以简化,表现其主要特点,略去其次要因素,用一个简化图形来代替实际结构。
通常包括以下几个方面:A、杆件得简化:常以其轴线代表B、支座与节点简化:①活动铰支座、固定铰支座、固定支座、滑动支座;②铰节点、刚节点、组合节点。
C、体系简化:常简化为集中荷载及线分布荷载D、体系简化:将空间结果简化为平面结构2、结构分类:A、按几何特征划分:梁、拱、刚架、桁架、组合结构、悬索结构。
B、按内力就是否静定划分:①静定结构:在任意荷载作用下,结构得全部反力与内力都可以由静力平衡条件确定。
②超静定结构:只靠平衡条件还不能确定全部反力与内力,还必须考虑变形条件才能确定。
二、平面体系得机动分析1、体系种类A、几何不变体系:几何形状与位置均能保持不变;通常根据结构有无多余联系,又划分为无多余联系得几何不变体系与有多余联系得几何不变体系。
B、几何可变体系:在很小荷载作用下会发生机械运动,不能保持原有得几何形状与位置。
常具体划分为常变体系与瞬变体系。
2、自由度:体系运动时所具有得独立运动方程式数目或者说就是确定体系位置所需得独立坐标数目。
3、联系:限制运动得装置成为联系(或约束)体系得自由度可因加入得联系而减少,能减少一个自由度得装置成为一个联系①一个链杆可以减少一个自由度,成为一个联系。
②一个单铰为两个联系。
4、计算自由度:,m为刚片数,h为单铰束,r为链杆数。
A、W>0,表明缺少足够联系,结构为几何可变;B、W=0,没有多余联系;C、W<0,有多余联系,就是否为几何不变仍不确定。
5、几何不变体系得基本组成规则:A、三刚片规则:三个刚片用不在同一直线上得三个单铰两两铰联,组成得体系就是几何不变得,而且没有多余联系。
B、二元体规则:在一个刚片上增加一个二元体,仍未几何不变体系,而且没有多余联系。
C、两刚片原则:两个刚片用一个铰与一根不通过此铰得链杆相联,为几何不变体系,而且没有多余联系。
结构力学学习方法
结构⼒学学习⽅法 结构⼒学是⼀门古⽼的学科,⼜是⼀门迅速发展的学科。
结构⼒学学习⽅法有哪些呢?下⾯店铺整理了关于结构⼒学的学习⽅法,希望对你有帮助。
结构⼒学的学习⽅法(会加) (1) 勤于积累 摄取和积累知识是培养能⼒的基础,也是研究创新的基础。
(2) 融会贯通 要把知识点连成⼀⽚,互相沟通,左右联系,前后呼应,融会贯通。
(3) ⽤⼼梳理 积累的知识要⽤⼼梳理,使之条理化,成为⼀个脉络清晰、有主有次、有⽬有纲的知识⽹。
这样才便于储存,便于驾驭。
(4) 落地⽣根 把别⼈的、书本上的知识变成⾃⼰的,化它为⼰,这样的知识才是牢靠的,⽣了根的。
把新学来的知识融化在⾃⼰已有的知识结构上,把“故”作为“新”的基地,使新在故上⽣根发芽⽣长。
结构⼒学的学习⽅法(会减) (1) 概括的能⼒ 把⼀章内容概括成三⾔两语,对⼀门课程理出它的主要脉络,写⼈能勾出特征,画龙会点睛。
(2) 简化的能⼒ 避免盲⽬简化---------不分主次,乱剪乱砍。
学会合理简化---------分清主次,剪枝留⼲。
选取计算简图是结构⼒学的基本功。
不会简略估算、定性判断,是很危险的。
(3) 统帅驾驭的能⼒ 学习积累的知识,要形成⼀个知识系统,要培养提纲挈领,统帅全局的能⼒,达到纲举⽬张,灵活驾驭的⽬的。
⼀本书有许多章、许多节、许多知识点,这些都是“⽬”。
要能够抓住直到全书的基本思路,统帅全书的核⼼策略,贯穿全书的那根主线,这就是“纲”。
举⼀纲⽽万⽬张。
具体说:能多更能少。
能平铺细说,更能⼀语道破。
能繁更能精。
能旁征博引,更能直指要害。
能放更能收。
防得开,受得拢。
能进更能出。
进得去,出得来,还能深⼊浅出。
(4) 弃形取神的能⼒ 在⼒学学习和科学研究中要培养由表⼊⾥,弃形取神的 能⼒: 个别到⼀般。
舍弃千差万别的个性和特殊性,摘取其中的共性和普遍性。
具体到抽象。
舍弃不同问题的具体性,提炼为⼀般原理的抽象性。
现象到规律。
结构力学知识点超全总结
(2)任取一力法基本结构,加虚拟力作出其M 图; (3)将M图和M 图图乘。
10.超静定结构内力图的校核
最后内力图的校核包括平衡条件和位移条件的校核。
·平衡条件校核,即利用最后内力图,取结构的整体及任一
隔离体,考察是否满足平衡条件。
力法方程表示位移条件或变形条件。
6.力法计算步骤
• 确定超静定次数,取基本体系
• 建立力法方程
• 做 M i 、MP 图
•
求系数
和自由项Δ
ij
iP
• 解力法方程,求出多余力
• 作内力图(可利用迭加原理)
• 校核
7.用力法计算超静定结构在支座位移和温 度变化时的内力
超静定结构在支座位移和温度变化作 用下,即会产生变形和位移,也会产生内力 和反力。其计算与在荷载作用下的基本相同, 只是其中的自由项是基本结构在支座位移和 温度变化作用下产生的位移,需按照静定结 构相应的位移计算公式和方法来确定。
几何可变体系
几何不变体系
A
C
B
几何常变体系
几何瞬变体系
几何可变体系
联系:链杆、单铰、复铰
W—自由度,m—刚片数,h—单铰数,r—支座链杆数
W = 3m - (2h+r) 若有复铰,则要换算成单铰。
连接n个刚片的复铰,相当于 (n-1)个单铰。
2 几何不变体系的简单组成规则
三刚片规则:三个刚片通过三个不共线单铰两两相连,
8 对称性及应用
概念:对称结构在对称荷载作用下,其
内力、反力和变形的对称性与荷载的对称 性是一致的
应用:半结构法
原结构
结构力学知识点总结
结构力学知识点总结结构力学是固体力学的一个分支,主要研究工程结构受力和传力的规律,以及如何进行结构优化。
以下是对结构力学主要知识点的总结。
一、结构的计算简图结构计算简图是对实际结构进行力学分析时,经过简化抽象得到的力学模型。
它需要忽略一些次要因素,突出结构的主要特征。
在确定计算简图时,要明确结构的支座形式。
常见的支座有固定支座、可动铰支座和固定铰支座。
固定支座限制结构在水平和竖直方向的移动以及转动;可动铰支座限制结构沿支座链杆方向的移动,允许转动;固定铰支座限制结构在水平和竖直方向的移动,但允许转动。
此外,还需要确定结构的荷载类型。
荷载包括集中荷载和分布荷载。
集中荷载是作用在结构上的一个点的荷载,如重物的压力;分布荷载则是作用在结构一段长度或面积上的荷载,如梁的自重。
二、平面体系的几何组成分析这部分内容主要是判断平面体系的几何不变性。
通过计算自由度,以及运用几何不变体系的组成规则,可以确定体系是否几何不变。
自由度是指确定体系位置所需的独立坐标数。
一个刚片在平面内有三个自由度。
计算平面体系自由度的公式为:W = 3m 2h r ,其中 m为刚片数,h 为单铰数,r 为支座链杆数。
几何不变体系的组成规则包括:两刚片规则、三刚片规则和二元体规则。
两刚片通过一个铰和一根不通过该铰的链杆相连组成几何不变体系;三刚片用不在同一直线上的三个铰两两相连组成几何不变体系;在一个体系上增加或拆除一个二元体不改变体系的几何组成性质。
三、静定结构内力计算静定结构是指在任意荷载作用下,其内力和反力都可以由静力平衡条件唯一确定的结构。
静定梁的内力包括弯矩、剪力和轴力。
计算内力的方法通常是先求出支座反力,然后通过截面法计算指定截面的内力。
弯矩使梁的受拉一侧纤维受拉为正;剪力以使隔离体顺时针转动为正。
静定刚架的内力计算方法与静定梁类似,但需要注意刚架中各杆的内力可能有弯矩、剪力和轴力。
在计算时,要正确判断各杆的内力方向。
静定桁架的内力计算通常采用节点法和截面法。
《结构力学》复习讲义要点
《结构力学》复习讲义要点第一部分:力学基础1. 力学的基本概念:质点、力、力的性质、力的合成与分解、力的共线条件等。
2. 刚体力学:平动与转动、力矩、角动量、转动惯量、力矩的几何与代数相等条件等。
3. 静力学:平衡条件、力偶、杆条受力分析、平衡多边形等。
第二部分:截面力学1. 杆件截面特征:截面形状、截面形心、截面面积、截面宽度、截面模数等。
2. 拉压杆截面特征:杆轴力计算、细长杆的安全系数、压杆的稳定性、杆件受拉压状态分析等。
3. 扭转杆截面特征:杆件受扭力分析、圆形截面的极限扭矩、扭转角的计算等。
4. 弯曲杆截面特征:直线梁与弧形梁的受力分析、力的截面矩阵表示、梁截面的正向弯矩与反向弯矩、杨氏梁受力分析等。
第三部分:结构受力分析1. 杆系内力分析:截面法则、杆系的内力与外力关系、榀杆的变形与位移、杆系内力的计算等。
2. 杆系的受力分析:平衡条件的写法、平面结构与空间结构的受力分析、杆系的平面剪力图与弯矩图、受力分析的极端情况等。
3. 简支梁:梁的受力分析、悬臂梁的转角计算、剪力与弯矩图表、弹性线与弯矩-曲率关系等。
4. 悬链线与悬链线梁:悬链线形状方程、悬链线的性质与应用、悬链线梁的分析等。
第四部分:梁的变形1. 杆系的变形:位移分量的约束关系、虚功原理、单杆件的变形与位移、受约束的杆件变形计算等。
2. 弹性力学基本方程:胡克定律、弹性应变能、变形力、应变与变形的关系、应力分析与位移分析等。
3. 简支梁的本构关系:平衡微分方程、简支梁的自由振动、简支梁的拟静状态、简支梁的弹性力学与变形等。
第五部分:结构稳定性1. 稳定性基本概念:平衡与稳定的关系、平衡的稳定性判定、等效单轴刚度、曲线弯矩法等。
2. 简支梁的稳定性:轴力屈曲、弯曲屈曲与扭转屈曲、边界条件与截面要求等。
3. 大变形理论:弹性力学与大变形理论的区别、弹性线的切线方向、悬臂梁的大变形计算等。
总结:这份复习讲义总结了《结构力学》的核心要点,包含了力学基础、截面力学、结构受力分析、梁的变形和结构稳定性的内容。
结构力学知识点总结精编版
结构力学知识点总结精编版结构力学是研究物体受力和变形的科学,它是建筑、土木、机械等工程技术学科的基础。
下面对结构力学的一些重要知识点进行总结。
1.受力分析:-受力分类:受力可以分为内力和外力。
-受力要素:力的作用点、力的作用方向和力的大小。
-平衡条件:静力平衡条件包括力的平衡条件和力矩的平衡条件。
2.结构受力分析:-支座反力计算:利用受力平衡条件来计算支座的反力。
-梁的内力分析:梁的内力包括弯矩、剪力和轴力,可以通过剪力和弯矩图来表示。
3.弹性力学:-应变和应力:应变描述物体的变形程度,应力描述物体受力状态。
-应力-应变关系:弹性体的应力和应变满足线性关系,可以通过杨氏模量来描述。
4.梁的弯曲:-切应力和曲率:梁在弯曲时产生的切应力与曲率有关,切应力最大处位于梁的纵中性轴上。
-弯矩-曲率关系:梁的弯矩和曲率满足弯矩-曲率关系,可以通过弯矩-曲率图来表示。
5.梁的剪力和扭转:-剪力分布:在梁的截面上有剪力分布,剪力最大值出现在梁的支座处。
-扭矩和扭转角:梁在扭曲时产生扭矩和扭转角,扭转角与梁上的扭矩和截面性质有关。
-扭转应力:梁在扭转时产生扭转应力,可以通过扭转应力图表示。
6.梁的挠度和应变能:-挠度计算:挠度表示梁的变形程度,可以通过梁的载荷和横截面性质来计算。
-应变能:梁在弹性变形时会产生应变能,梁的应变能可以通过挠度来计算。
7.柱的压力和稳定性:-柱的稳定性:柱在受压时可能发生屈曲,屈曲的稳定性与柱的材料、截面性质和长度等有关。
-稳定系数:利用稳定系数可以判断柱的屈曲情况。
8.梁的基本方程和边界条件:-梁的基本方程:梁的基本方程是梁的弯曲方程和梁的剪力方程,可以用来描述梁的力学行为。
-边界条件:边界条件包括梁的支座反力和梁的位移条件,可以通过边界条件来解决梁的基本方程。
以上只是结构力学的一些重要知识点的简单总结,结构力学是一个广泛而复杂的学科,需要掌握更多的理论和方法才能解决实际的工程问题。
《结构力学》课程复习提纲
《结构力学》课程复习提纲结构力学是土木工程建筑学科的基础课程,也是土木工程建筑师擅长的话题。
学习结构力学是非常重要的,它可以帮助我们深入理解建筑结构、分析结构系统,从而更好地设计和维护土木工程建筑。
下面是有关结构力学复习提纲:一、结构力学基础知识1、结构力学概述结构力学是土木工程建筑学科的基础课程,是土木工程建筑师擅长的话题。
结构力学的目的是为了更好地理解建筑结构的基本原理,并分析建筑系统的变形机制。
它以力学原理为根基,包含以下研究内容:分析结构的基本力学特性,探索施加在结构上的力的变形、变形速率和力学性能。
2、结构力学材料结构力学材料主要包括钢、铝、混凝土和木材等。
钢是由铁素体和均匀分布的碳和硅组成的合金,具有较高的强度、刚性和韧性,是一种常用的结构材料,在土木工程建筑中常用来做支撑、支承等。
铝是一种轻质金属,具有良好的抗腐蚀性和耐高温性,因其质量轻而被广泛用于结构力学,特别是在航空航天工程中具有重要的应用。
混凝土是一种重要的建筑材料,由水泥和骨料搭配组成,具有较高的抗压应力和抗剪应力性能,因此在结构力学设计中也得到了广泛应用。
木材是一种古老而又优质的建筑材料,具有较高的耐久性、良好的抗压强度、抗剪强度和绝缘性,常用于建筑的可塑性和装饰性质。
二、结构力学分析方法1、平面布置法平面布置法是结构力学中最常用的分析方法,也叫做单元法。
该方法根据材料的物理特性,将建筑结构分解为若干个分析单元,再根据这些单元之间的关系,建立起整个结构系统的力学模型,进行结构力学分析。
2、节点分析法节点分析法是结构力学中比较复杂的分析方法,它能够准确地模拟出结构受力时的变形情况,并且可以更深入地研究结构的变形机制和力学性能。
三、结构力学设计结构力学设计的基本过程包括建筑结构的规划、材料的选择、结构图绘制、分析计算和结构试验等。
需要注意的是,每一步的设计都要根据当前的技术条件和经济条件来确定,以保证最终建筑结构的完整性、可靠性和稳定性。
结构力学最全知识点梳理及学习方法
结构力学最全知识点梳理及学习方法
一、结构力学基础知识:
1、力的分类:根据受力作用的物体的性质,可将力分为外力(外力作用于结构物体的外部,如重力、气压力、拉力等)和内力(内力作用于结构物体的内部,如弯矩、剪力等);根据力的方向划分,可将它分为拉力、压力和旋转力;根据力的特性划分,可将它分为特殊力和普通力;根据力的大小和方向,可将它分为大力、小力、稳定力和不稳定力;根据受力物体的形状,可将它分为直线力、非直线力、旋转力和转动力等。
2、构件的类型:构件按照结构的组成形式,又分为横担、梁、柱、支撑、支座、腰椎和压杆等。
3、材料性质:构件的材料性质主要由弹性模量、屈服强度和杨氏模量等物理参数来表示。
4、结构形状:根据不同的表达方式,结构形状可分为直线式结构、曲线式结构、对称结构、反对称结构、非对称结构和无规则结构等。
5、运动学结构:可将力学结构分为机械运动结构和动力学结构,其中机械运动结构主要由动力系统、载荷系统和传动系统等部分组成;而动力学结构主要关注的是结构物体的动力运动情况,其中重点研究的是结构物体的运动特性,如动力传递、动力控制和动力分析等。
结构力学笔记
结构力学笔记第一章绪论一、教学内容结构力学的基本概念和基本学习方法。
二、学习目标? 了解结构力学的基本研究对象、方法和学科内容。
? 明确结构计算简图的概念及几种简化方法,进一步理解结构体系、结点、支座的形式和内涵。
? 理解荷载和结构的分类形式。
Xufangrong2021 62678756xfr在认真学习方法论——学习方法的基础上,对学习结构力学有一个正确的认识,逐步形成一个行之有效的学习方法,提高学习效率和效果。
三、本章目录§1-1 结构力学的学科内容和教学要求§1-2 结构的计算简图及简化要点§1-3 杆件结构的分类§1-4 荷载的分类§1-5 方法论(1)——学习方法(1) §1-6 方法论(1)——学习方法(2)§1-7 方法论(1)——学习方法(3)§1-1 结构力学的学科内容和教学要求1. 结构建筑物和工程设施中承受、传递荷载而起骨架作用的部分称为工程结构,简称结构。
例如房屋中的梁柱体系,水工建筑物中的闸门和水坝,公路和铁路上的桥梁和隧洞等。
从几何的角度,结构分为如表1.1.1所示的三类:表1.1.1 结构的分类分类名称特点由杆件组成的结构,是结构力学的研究对象又称壁结构,几何特征是其厚度要比长度和宽度小得多长、宽、厚三个尺度大小相仿实例梁、拱、刚架、桁架房屋中的楼板和壳体屋盖水工结构中的重力坝杆件结构板壳结构实体结构 2. 结构力学的研究内容和方法结构力学与理论力学、材料力学、弹塑性力学有着密切的关系。
理论力学着重讨论物体机械运动的基本规律,而其他三门力学着重讨论结构及其构件的强度、刚度、稳定性和动力反应等问题。
其中材料力学以单个杆件为主要研究对象,结构力学以杆件结构为主要研究对象,弹塑性力学以实体结构和板壳结构为主要研究对象。
学习好理论力学和材料力学是学习结构力学的基础和前提。
结构力学的任务是根据力学原理研究外力和其他外界因素作用下结构的内力和变形,结构的强度、刚度、稳定性和动力反应,以及结构的几何组成规律。
结构力学考点归纳总结(最新整理)
结构力学考点归纳总结第一章一、简化的原则1. 结构体系的简化——分解成几个平面结构2. 杆件的简化——其纵向轴线代替。
3. 杆件间连接的简化——结点通常简化为铰结点或刚结点4. 结构与基础间连接的简化结构与基础的连接区简化为支座。
按受力特征,通常简化为:(1)滚轴支座:只约束了竖向位移,允许水平移动和转动。
提供竖向反力。
在计算简图用支杆表示。
(2)铰支座:约束竖向和水平位移,只允许转动。
提供两个反力。
在计算简图用两根相交的支杆表示。
(3)定向支座:只允许沿一个方向平行滑动。
提供反力矩和一个反力。
在计算简图用两根平行支杆表示。
(4) 固定支座:约束了所有位移。
提供两个反力也一个反力矩。
5. 材料性质的简化——对组成各构件的材料一般都假设为连续的、均匀的、各向同性的、完全弹性或弹塑性的6. 荷载的简化——集荷载和分布荷载§1-4 荷载的分类一、按作用时间的久暂荷载可分为恒载和活载二、按荷载的作用范围荷载可分为集荷载和分布荷载三、按荷载作用的性质荷载可分为静力荷载和动力荷载四、按荷载位置的变化荷载可分为固定荷载和移动荷载第二章几何构造分析几何不变体系:体系的位置和形状是不能改变的讨论的前提:不考虑材料的应变2.1.2 运动自由度SS:体系运动时可以独立改变的坐标的数目。
W:W= (各部件自由度总和a )-(全部约束数总和) W=3m-(3g+2h+b)或w=2j-b-r.注意:j与h的区别约束:限制体系运动的装置2.1.4 多余约束和非多余约束不能减少体系自由度的约束叫多余约束。
能够减少体系自由度的约束叫非多余约束。
注意:多余约束与非多余约束是相对的,多余约束一般不是唯一指定的。
2.3.1 二元体法则约束对象:结点 C 与刚片约束条件:不共线的两链杆;瞬变体系§2-4 构造分析方法与例题1. 先从地基开始逐步组装2.4.1 基本分析方法(1)一. 先找第一个不变单元,逐步组装1. 先从地基开始逐步组装2. 先从内部开始,组成几个大刚片后,总组装二. 去除二元体2.4.3 约束等效代换1. 曲(折)链杆等效为直链杆2. 联结两刚片的两链杆等效代换为瞬铰①.分析:1.折链杆AC 与DB 用直杆2、3代替;2.刚片ECD 通过支杆1与地基相连。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章 绪 论§1-1 结构力学的研究对象和任务一、结构的定义:由基本构件(如拉杆、柱、梁、板等)按照合理的方式所组成的构件的体系,用以支承荷载并传递荷载起支撑作用的部分。
注:结构一般由多个构件联结而成,如:桥梁、各种房屋(框架、桁架、单层厂房)等。
最简单的结构可以是单个的构件,如单跨梁、独立柱等。
二、结构的分类:由构件的几何特征可分为以下三类1.杆件结构——由杆件组成,构件长度远远大于截面的宽度和高度,如梁、柱、拉压杆。
2.薄壁结构——结构的厚度远小于其它两个尺度,平面为板曲面为壳,如楼面、屋面等。
3.实体结构——结构的三个尺度为同一量级,如挡土墙、堤坝、大块基础等。
三、课程研究的对象♦ 材料力学——以研究单个杆件为主♦ 弹性力学——研究杆件(更精确)、板、壳、及块体(挡土墙)等非杆状结构 ♦ 结构力学——研究平面杆件结构四、课程的任务1.研究结构的组成规律,以保证在荷载作用下结构各部分不致发生相对运动。
探讨结构的合理形式,以便能有效地利用材料,充分发挥其性能。
2.计算由荷载、温度变化、支座沉降等因素在结构各部分所产生的内力,为结构的强度计算提供依据,以保证结构满足安全和经济的要求。
3.计算由上述各因素所引起的变形和位移,为结构的刚度计算提供依据,以保证结构在使用过程中不致发生过大变形,从而保证结构满足耐久性的要求。
§1-2 结构计算简图一、计算简图的概念:将一个具体的工程结构用一个简化的受力图形来表示。
选择计算简图时,要它能反映工程结构物的如下特征:1.受力特性(荷载的大小、方向、作用位置)2.几何特性(构件的轴线、形状、长度)3.支承特性(支座的约束反力性质、杆件连接形式)二、结构计算简图的简化原则 1.计算简图要尽可能反映实际结构的主要受力和变形特点..............,使计算结果安全可靠; 2.略去次要因素,便于..分析和...计算..。
三、结构计算简图的几个简化要点1.实际工程结构的简化:由空间向平面简化2.杆件的简化:以杆件的轴线代替杆件3.结点的简化:杆件之间的连接由理想结点来代替(1)铰结点:铰结点所连各杆端可独自绕铰心自由转动,即各杆端之间的夹角可任意改变。
不存在结点对杆的转动约束,即由于转动在杆端不会产生力矩,也不会传递力矩,只能传递轴力和剪力,一般用小圆圈表示。
(2)刚结点:结点对与之相连的各杆件的转动有约束作用,转动时各杆间的夹角保持不变,杆端除产生轴力和剪力外,还产生弯矩,同时某杆件上的弯矩也可以通过结点传给其它杆件。
(3)组合结点(半铰):刚结点与铰结点的组合体。
4.支座的简化:以理想支座代替结构与其支承物(一般是大地)之间的连结(1)可动铰支座:又称活动铰支座、链杆支座、辊轴支座,允许沿支座链杆垂直方向的微小移动。
沿支座链杆方向产生一个约束力。
(2)固定铰支座:简称铰支座,允许杆件饶固定铰铰心有微小转动。
过铰心产生任意方向的约束力(分解成水平和竖直方向的两个力)。
如预制柱插入杯形基础,四周用沥青麻丝填实。
(3)固定支座:不允许有任何方向的移动和转动,产生水平、竖直及限制转动的约束力。
(4)定向支座:又称滑动支座,允许杆件在一个方向上滑动,限制在另一个方向的运动和转动,提供两个约束力。
四、结构计算简图示例§1-3 平面杆件结构和荷载的分类一、平面杆件结构的分类(一)按结构的受力特点分类1.梁:是一种受弯构件,轴线常为一直线(水平或斜向),可以是单跨梁,也可以是多跨连续梁,其支座可以是铰支座、可动铰支座,也可以是固定支座。
2.刚架:由梁和柱组成,具有刚结点。
刚架杆件以受弯为主....,所以又叫梁式构件。
各杆会产生弯矩、剪力、轴力,但以弯矩为主要内力。
3.桁架:由若干直杆在两端用铰结点连接构成。
桁架杆件主要承受轴向变形....,是拉.压构件...。
支座常为固定铰支座或可动铰支座,当荷载只作用于桁架结点上时,各杆只产生轴力。
4.组合结构:由梁式构件和拉压构件构成。
即结构中部分是链杆,部分是梁或刚架,在荷载作用下,链杆中往往只产生轴力,而梁或刚架部分则同时还存在弯矩与剪力,5.拱:一般由曲杆构成,在竖向荷载作用下有水平支座反力。
拱内不仅存在剪力、弯矩,而且还存在轴力。
(二)按几何组成分类1.静定结构:由静力平衡条件求解2.超静定结构:由静力平衡条件和结构的变形几何条件共同求出。
二、荷载的分类荷载是主动作用在结构上的外力,如结构自重、人群、水压力、风压力等。
(一)按作用范围分类1.分布荷载:体荷载——面荷载——线荷载(均布、非均布)2.集中荷载:如吊车轮压、汽车荷载等(二)按作用时间分类1.恒载:永久作用在结构上。
如结构自重、永久设备重量。
2.活载:暂时作用在结构上。
如人群、风、雪及车辆、吊车、施工荷载等。
(三)按作用位置的变化情况分类1.固定荷载:作用位置固定不变的荷载,如所有恒载、屋楼面均布活荷载、风载、雪载等。
2.移动荷载:在荷载作用期间,其位置不断变化的荷载,如吊车荷载、火车、汽车等。
(四)按作用性质分类1.静力荷载:荷载不变化或变化缓慢,不会是结构产生显着的加速度,可忽略惯性力的影响。
2.动力荷载:荷载(大小、方向、作用线)随时间迅速变化,使结构发生不容忽视的惯性力。
例如锤头冲击锻坯时的冲击荷载、地震作用等。
§1-4 结构力学的学习方法一、课程定位:土建工程专业的一门主要技术基础课,在专业学习中有承上启下的作用二、学习方法1.注意理论联系实际,为后续专业课的学习打基础2.注意掌握分析方法与解题思路3.注意对基本概念和原理的理解,多做习题第二章 平面体系的几何组成分析§2-1 概 述一、研究体系几何组成的目的 1. 前提条件:不考虑结构受力后由于材料的应变而产生的微小变形,即把组成结构..............................的每根杆件都看作完全不变形的刚性杆件..................。
2. 几何不变体系:在荷载作用下能保持其几何形状和位置都不改变的体系。
3. 几何可变体系:在荷载作用下不能保持其几何形状和位置都不改变的体系。
注意:建筑结构必须是几何不变的。
3.研究体系几何组成的目的(1)研究几何不变体系的组成规律,用以判定一结构体系是否可作为结构使用;(2)明确结构各部分在几何组成上的相互关系,从而选择简便合理的计算顺序;(3)判定结构是静定结构还是超静定结构,以便选择正确的结构计算方法。
二、相关概念1.刚片:假想的一个在平面内完全不变形的刚性物体叫作刚片。
注:(1)在平面杆件体系中,一根直杆、折杆或曲杆都可以视为刚片,并且由这些构件组成的几何不变体系也可视为刚片。
地基基础也可视为一个大刚片。
(2)刚片中任意两点间的距离保持不变,所以可由刚片中的一条直线代表刚片。
2.自由度 (1)自由度的概念:体系运动时,用以确定体系在平面内位置............所需..的独立坐标数。
.......(2)一个点:在平面内运动完全不受限制的一个点有....2.个自由度....。
一个刚片:在平面内运动完全不受限制的一个刚片有.....3.个自由度....。
注:由以上分析可见,凡体系的自由度大于零,则是可以发生运动的,位置是可以改变的,即都是几何可变体系。
3.约束(1)定义:又称联系,是体系中构件之间或体系与基础之间的联结装置。
限制了体系的某些方向的运动,使体系原有的自由度数减少。
也就是说约束,是....使.体系自由度数......减少的装置.....。
(2)约束的类型:链杆、铰结点、刚结点(图1)链杆:一根单链杆或一个可动铰(一根支座链杆)具有1个约束,如图(a )。
单铰结点:一个单铰或一个固定铰支座(两个支座链杆)具有2个约束,如图(b )。
单刚结点:一个单刚结点或一个固定支座具有3个约束,如图(c )。
单约束:连接两个物体的约束叫单约束。
复约束:连接3个(含3个)以上物体的约束叫复约束。
1)复铰结点:若一个复铰上连接了N 个刚片,则该复铰具有2(N-1)个约束,等于(N-1)个单铰的作用。
2)复刚结点:若一个复刚结点上连接了N 个刚片,则该复刚结点具有3(N-1)个约束,等于(N-1)个单刚结点的作用。
(3)必要约束:使体系自由度数减少为零所需的最少约束。
多余约束:体系上约束数目大于体系的自由度数目,则其差值就是多余约束。
4.实铰与虚铰(1)实铰的概念:由两根直接相连接的链杆构成。
(2)虚铰的概念:虚铰是由不直接相连接的两根链杆构成的。
虚铰的两根链杆的杆轴可以平行、交叉,或延长线交于一点。
(3)虚铰的作用:当两个刚片是由有交汇点的虚铰相连时,两个刚片绕该交点(瞬时中心,简称瞬心)作相对转动。
从微小运动角度考虑,虚铰的作用相当于在瞬时中心的一个实铰的作用。
三、平面体系的自由度计算1.体系与基础相连时的自由度计算公式: W= 3m -(3g + 2j + r )注:支座链杆数是把所有的支座约束全部转化为链杆约束所得到的。
2.体系不与基础相连时的自由度计算公式体系不以基础相连,则支座约束r =0,体系对基础有3个自由度,仅研究体系本身的内部可变度V ,可得体系自由度的计算公式为: W = V+3得 V= W -3=3m -(3g + 2j )-3例1.求图示多跨梁的自由度。
解: W= 3m -(3g +2j +r )=3×3-(2×2+4)=1因 W >0,体系是几何可变的。
例2.求图示不与基础相连体系的自由度。
解: 体系内部可变度V = 3m -( 3g + 2j )-3=3×7-2×9-3=0故体系几何不变。
3. 体系自由度的讨论(1)W>0,自由度数目>约束数目,体系几何可变(2)W=0,具有使体系几何不变所需的最少约束(3)W<0,自由度数目<约束数目,体系具有多余约束(可能是几何可变体系,也可能是超静定结构)注:W ≤0是体系几何不变的必要条件。
§2-2无多余约束的几何不变体系的组成规则一、一点与一刚片1.规则一:一个点与一个刚片之间用两根不在同一条直线上的链杆相连,组成无多余约束的几何不变体系。
2.结论:二元体规则(1)二元体:两根不在同一条直线上的链杆联接一个新结点的装置。
(2)二元体规则:在一已知体系中增加或减少二元体,不改变原体系的几何性质。
注:利用二元体规则简化体系,使体系的几何组成分析简单明了。
二、两刚片规则1.规则二:两个刚片用一个单铰和杆轴不过该铰铰心的一根链杆相连,组成无多余约束的几何不变体系。
2.推论:两个刚片用不全交于一点也不全平行的三根链杆相连,组成无多余约束的几何不变体系。
三、三刚片规则1.规则三:三个刚片用不全在一条直线上的三个单铰(可以是虚铰)两两相连,组成无多余约束的几何不变体系。