第十二章 线性回归分析

合集下载

线性回归分析PPT

线性回归分析PPT

分析宏观经济因素对微观 经济主体的影响,为企业 决策提供依据。
评估政策变化对经济的影 响,为政策制定提供参考。
市场分析
STEP 02
STEP 03
评估市场趋势和竞争态势, 为企业战略规划提供支持。
STEP 01
分析消费者行为和偏好, 优化产品设计和营销策略。
预测市场需求和销售量, 制定合理的生产和销售计 划。
参数解释
(beta_0) 是截距项,表示当所有自变量值为0时,因变量的值;(beta_1, beta_2, ..., beta_p) 是斜率项,表示自 变量变化一个单位时,因变量变化的单位数量。
线性回归分析的假设
线性关系
自变量和因变量之间存在线性关系, 即它们之间的关系可以用一条直线近 似表示。
01
02
无多重共线性
自变量之间不存在多重共线性,即它 们之间没有高度的相关性,每个自变 量对因变量的影响是独特的。
03
无异方差性
误差项的方差不随自变量的值变化。
无随机性
误差项是随机的,不包含系统的、可 预测的模式。
05
04
无自相关
误差项之间不存在自相关性,即一个 误差项与另一个误差项不相关。
Part
02
线性回归模型的建立
确定自变量与因变量
01
根据研究目的和数据特征,选择 与因变量相关的自变量,并确定 自变量和因变量的关系。
02
考虑自变量之间的多重共线性问 题,避免选择高度相关的自变量 。
散点图与趋势线
通过绘制散点图,观察自变量与因变 量之间的关系,了解数据的分布和趋 势。
根据散点图的分布情况,选择合适的 线性回归模型,如简单线性回归或多 元线性回归。

第12章-多重线性回归分析

第12章-多重线性回归分析
8
6 因变量总变异的分解
P
(X,Y)

Y
(Y Y) (Y Y)

(Y Y)
Y X

Y
Y
9
Y的总变异分解
Y Y Yˆ Y Y Yˆ
Y Y 2 Yˆ Y 2 Y Yˆ 2
总变异 SS总
回归平方和 剩余平方和
SS回
SS剩
10
Y的总变异分解
病程 (X2)
10.0 3.0 15.0 3.0 4.0 6.0 2.9 9.0 5.0 2.0 8.0 20.0
表 12-1 脂联素水平与相关因素的测量数据
空腹
回归模空型腹 ?
瘦素
脂联 BMI 病程 瘦素
脂联
(X3)

血糖 (X4)
素(Y)
(X1)
(X2)
(X3)
血糖 素(Y) (X4)
5.75 13.6 29.36 21.11 9.0 4.90 6.0 17.28
H 0: 1 2 3 4 0 ,即总体中各偏回归系数均为0; H 1:总体中各偏回归系数不为0或不全为0;
= 0.05。
2 计算检验统计量: 3 确定P值,作出推断结论。
拒绝H0,说明从整体上而言,用这四个自变量构成 的回归方程解释糖尿病患者体内脂联素的变化是有统 计学意义的。
的平方和 (Y Yˆ)2为最小。
只有一个自变量
两个自变量
例12-1 为了研究有关糖尿病患者体内脂联素水平的影响因 素,某医师测定30例患者的BMI、病程、瘦素、空腹血糖, 数据如表12-1所示。
BMI (X1)
24.22 24.22 19.03 23.39 19.49 24.38 19.03 21.11 23.32 24.34 23.82 22.86

线性回归分析的基本原理

线性回归分析的基本原理

线性回归分析的基本原理线性回归分析是一种常用的统计分析方法,用于研究两个变量之间的线性关系。

它通过拟合一条直线来描述两个变量之间的关系,并利用这条直线进行预测和推断。

本文将介绍线性回归分析的基本原理,包括模型假设、参数估计、模型评估等内容。

一、模型假设线性回归分析的基本假设是:自变量和因变量之间存在线性关系,并且误差项服从正态分布。

具体来说,线性回归模型可以表示为:Y = β0 + β1X + ε其中,Y表示因变量,X表示自变量,β0和β1表示模型的参数,ε表示误差项。

线性回归模型假设误差项ε服从均值为0、方差为σ^2的正态分布。

二、参数估计线性回归模型的参数估计通常使用最小二乘法。

最小二乘法的基本思想是通过最小化观测值与模型预测值之间的差异来估计模型的参数。

具体来说,最小二乘法的目标是最小化残差平方和:min Σ(Yi - (β0 + β1Xi))^2通过对残差平方和进行求导,可以得到参数的估计值:β1 = Σ(Xi - X̄)(Yi - Ȳ) / Σ(Xi - X̄)^2β0 = Ȳ - β1X̄其中,Xi和Yi分别表示观测值的自变量和因变量,X̄和Ȳ分别表示自变量和因变量的均值。

三、模型评估线性回归模型的拟合程度可以通过多个指标进行评估,包括决定系数(R^2)、标准误差(SE)和F统计量等。

决定系数是用来衡量模型解释变量变异性的比例,其取值范围为0到1。

决定系数越接近1,说明模型对观测值的解释能力越强。

标准误差是用来衡量模型预测值与观测值之间的平均误差。

标准误差越小,说明模型的预测精度越高。

F统计量是用来检验模型的显著性。

F统计量的计算公式为:F = (SSR / k) / (SSE / (n - k - 1))其中,SSR表示回归平方和,SSE表示残差平方和,k表示模型的自由度,n表示观测值的个数。

F统计量的值越大,说明模型的显著性越高。

四、模型应用线性回归分析可以用于预测和推断。

通过拟合一条直线,可以根据自变量的取值来预测因变量的值。

12章 多元线性回归

12章 多元线性回归

统计学第十二章 多元线性回归一. 选择题1. 在多元线性回归分析中,t 检验是用来检验( ) A 总体线性关系的显著性 B.各回归系数的显著性 C.样本线性关系的显著性 D .H 0:β1=β2=…βk =02.在多元线性回归模型中,若自变量x i 对因变量y 的影响不显著,那么它的回归系数 βi 的取值( )A.可能为0B.可能为1C.可能小于0 D 可能大于13.在多元线性回归方程 y i ˆ=βˆ0+x 11ˆβ+x 22ˆβ+…+xkkβˆ中,回归系数βˆi表示( ) A.自变量x i 变动1个单位时,因变量y 的平均变动额为βˆiB.其他变量不变的条件下,自变量x i 变动1个单位时,因变量y的平均变动额为βˆiC.其他变量不变的条件下,自变量x i 变动1个单位时,因变量y的变动总额为βˆiD.因变量y 变动1个单位时,因变量x i 的变动总额为βˆi4.设自变量的个数为5个,样本容量为20。

在多元回归分析中,估计标准误差的自由度为( )A.20B.15C.14D.18 5.在多元回归分析中,通常需要计算调整的多重判定系数R a2,这样可以避免的值()A. 由于模型中自变量个数的增加而越来越接近1B. 由于模型中自变量个数的增加而越来越接近0C. 由于模型中样本容量的增加而越来越接近0D. 由于模型中样本容量的增加而越来越接近16.在多元线性回归分析中,如果F检验表明线性关系显著,则意味着()A.在多个变量中至少有一个自变量与因变量之间的线性关系显著B.所有的自变量与因变量之间的线性关系都显著C.在多个变量中至少有一个自变量与因变量之间的线性关系不显著D.所有的自变量与因变量之间的线性关系都不显著7.在多元线性回归分析中,如果t检验表明回归系数βi不显著,则意味着()A.整个回归方程的线性关系不显著B.整个回归方程的线性关系显著C.自变量x i与因变量之间的线性关系不显著D.自变量x i与因变量之间的线性关系显著8.设多元线性回归方程为Yˆ=βˆ0+x11ˆβ+x22ˆβ+…+xkkβˆ,若自变量x i的回归系数βˆi的取值接近0,这表明()A.因变量y对自变量ix的影响不显著B.因变量y对自变量ix的影响显著C.自变量ix对因变量y的影响不显著D.自变量x对因变量y的影响显著i9.一家出租汽车公司为确定合理的管理费用,需要研究出租车司机每天的收入(元)与他的行驶时间(小时)、行驶的里程(公里)之间的关系,为此随机调查了20位出租车司机,根据每天的收入(y)、行驶时间(x1)和行驶的里程(x2)的有关数据进行回归,得到下面的有关结果(a=0.05)根据上表计算的判定系数为()A. 0.9229B. 1.1483C. 0.3852D. 0.851610. 一家出租汽车公司为确定合理的管理费用,需要研究出租车四级每天的收入(元)与他的行驶时间(小时)、行驶的里程(公里)之间的关系,为此随机调查了20位出租车司机,根据每天的收入(y)、行驶时间(x1)和行驶的里程(x2)的有关数据进行回归,得到下面的有关结果(α=0.05)根据上表计算的估计标准误差为()A. 306.18B. 17.50C. 16.13D. 41.9311. 一家出租汽车公司为确定合理的管理费用,需要研究出租车司机每天的收入(元)与他的行驶时间(小时)、行驶的里程(公里)之间的关系,为此随机调查了20位出租车司机,根据每天的收入(y)、行驶时间(x1)和行驶的里程(x2)的有关数据进行回归,得到下面的有关结果(α=0.05)根据上表计算的用于检验线性关系的统计量F=()A. 306.18B. 48.80C. 5.74D. 41.9312.一家产品销售公司在30个地区设有销售分公司。

线性回归分析

线性回归分析

线性回归分析线性回归是一种用来建立和预测变量间线性关系的统计分析方法。

它可以帮助我们了解变量之间的相互影响和趋势,并将这些关系用一条直线来表示。

线性回归分析常被应用于经济学、社会科学、自然科学和工程等领域。

一、概述线性回归分析是一个广泛使用的统计工具,用于建立变量间的线性关系模型。

该模型假设自变量(独立变量)与因变量(依赖变量)之间存在线性关系,并通过最小化观测值与模型预测值之间的误差来确定模型的参数。

二、基本原理线性回归分析基于最小二乘法,通过最小化观测值与模型预测值之间的残差平方和来确定模型的参数。

具体来说,线性回归模型可以表示为:Y = β0 + β1X1 + β2X2 + ... + βnXn + ε,其中Y是因变量,X1到Xn是自变量,β0到βn是回归系数,ε是误差项。

回归系数表示自变量对因变量的影响程度。

三、应用步骤进行线性回归分析时,通常需要以下几个步骤:1. 收集数据:获取自变量和因变量的样本数据。

2. 建立模型:根据数据建立线性回归模型。

3. 评估模型的准确性:通过计算残差、决定系数等指标来评估模型的准确性。

4. 进行预测和推断:利用模型对未知数据进行预测和推断。

四、模型评价指标在线性回归分析中,有几个常用的指标用于评价模型的准确性:1. R平方值:R平方值表示因变量的变异性能够被模型解释的比例,数值范围为0到1。

R平方值越接近1,表示模型对数据的拟合程度越好。

2. 残差分析:进行残差分析可以帮助我们判断模型是否符合线性回归的基本假设。

一般来说,残差应该满足正态分布、独立性和等方差性的假设。

五、优缺点线性回归分析有以下几个优点:1. 简单易懂:线性回归模型的建立和解释相对较为简单,无需复杂的数学知识。

2. 实用性强:线性回归模型适用于很多实际问题,可以解决很多预测和推断的需求。

然而,线性回归分析也存在以下几个缺点:1. 假设限制:线性回归模型对于变量间关系的假设比较严格,不适用于非线性关系的建模。

线性回归分析

线性回归分析

线性回归分析线性回归分析是一种经典的数学方法,用于建立和分析因变量和自变量之间线性关系的模型。

该模型通常表示为y = β0 + β1x1 + β2x2 + ... + βpxp + ε,其中y表示因变量,x1,x2,...,xp表示自变量,β0,β1,β2,...,βp表示回归系数,ε表示误差。

线性回归分析的基本思想是,通过寻找自变量与因变量之间的线性关系,建立一个最合适的拟合直线或平面,并将自变量与因变量之间的关系量化成回归系数。

该方法可用于解决许多实际问题,如价格预测,销售趋势分析,财务预测等。

线性回归分析的实现过程如下:1. 收集数据:首先,需要收集与分析目标有关的数据,包括自变量和因变量的数据,这些数据可以来自样本或整体数据集。

2. 数据预处理:数据预处理是数据分析的一个重要环节,包括数据清洗、缺失值填充、异常值检查等。

这样可以提高数据的可靠性和准确性。

3. 变量选择:此步骤可以用来减少模型的复杂性和捕捉最有效的自变量,以获得更好的模型拟合。

常见的变量选择方法有前向逐步回归,后向逐步回归和Lasso等。

4. 模型建立:利用线性回归模型,可以根据收集的数据实现自变量和因变量之间的线性拟合,即利用最小二乘法求出回归系数。

5. 模型评价:评估模型的好坏有很多方法,其中最常用的是确定决定系数R²和调整决定系数R²_adj的值,用于衡量模型的预测能力是否接近实际情况,以及模型误差的大小。

6. 预测:完成模型评估后,可以使用该模型对新数据进行预测。

此时,只需要将新数据输入到线性回归模型中,通过回归系数计算出新的预测值。

线性回归分析的优点是简单直观,易于理解和解释。

在数据结构和相关变量之间遵循线性关系的情况下,该模型可以提供较为准确的预测结果。

缺点是不能解决非线性关系问题,也不能考虑多个自变量之间的相互作用。

此外,在应用中也需要注意防止过度拟合或欠拟合的情况。

最后,线性回归分析在许多领域都得到了广泛应用,如经济学、统计学、金融学、自然科学等领域。

线性回归分析教案

线性回归分析教案

线性回归分析教案一、引言线性回归是一种常用的统计分析方法,用于研究两个连续型变量之间的线性关系。

在实际应用中,线性回归广泛用于经济学、社会学、医学等领域,用于预测和解释变量之间的关系。

本教案将介绍线性回归的基本原理、模型设定和参数估计方法,以帮助学生深入理解线性回归的概念和应用。

二、教学目标1.了解线性回归的基本原理和假设。

2.学习线性回归模型的设定和参数估计方法。

3.能够使用统计软件实现线性回归模型的计算。

4.掌握线性回归模型的解释和预测能力。

5.理解线性回归模型的运用场景和限制条件。

三、教学内容1.线性回归的基本原理1.1 线性关系的定义1.2 线性回归模型的基本假设1.3 线性回归模型的优点和局限性2.线性回归模型的设定2.1 简单线性回归模型及其参数估计2.2 多元线性回归模型及其参数估计2.3 线性回归模型的变量选择方法3.线性回归模型的参数估计3.1 最小二乘法估计3.2 参数估计的性质和假设检验3.3 模型评估和诊断4.线性回归模型的解释和预测4.1 理解回归系数的含义4.2 判断模型对观测数据的拟合程度4.3 利用回归模型进行预测五、教学方法1.理论讲解与示范通过讲解线性回归的基本原理和模型设定,带领学生了解线性回归模型的概念和应用。

同时,通过实例演示和统计软件的使用展示线性回归模型的计算过程。

2.实践操作与练习在课堂上,安排学生利用统计软件进行线性回归模型的实际计算,并结合具体数据集进行模型拟合和预测操作。

通过实际操作提高学生对线性回归模型的应用能力。

3.案例分析与讨论将一些实际问题、经济数据或社会调查数据与线性回归模型结合,引导学生对模型结果进行解读和讨论,提高学生对模型解释和应用的理解。

六、教学评估1.课堂小测验在课程结束前进行一次小测验,考察学生对线性回归的理解程度和应用能力。

2.作业和项目布置线性回归相关的作业和项目,要求学生独立完成线性回归模型的建立和分析,以检验学生对所学知识的掌握程度。

线性回归分析

线性回归分析
例1:李明想开一家社区超市, 前期去了很多小区做实地调查 。经调研得到小区超市的年销 售额(百万元)与小区常住人 口数(万人)的数据资料如表 所示,请对超市的年销售额与 小区常住人口数进行回归分析 ,帮助:
表:小区超市的年销售额(百万元)与小区常住人口数(万人)统计表
24
10
01-03 回归分析的应用
分析步骤:(一)
11
01-03 回归分析的应用
分析步骤:(二)
反映模型的拟合度
12
01-03 回归分析的应用
分析步骤:(三) • 一元线性回归 y=kx+b
第三组数据的第1个数据(301.665)是回归直线的截距b,第2个数据( 44.797)也叫回归系数,其实就是回归直线的斜率k。
某一类回归方程的总称回归分析的概念50102?分类1回归分析按照涉及的变量多少分为一一元回归分析多元回归分析2按照自变量和因变量之间的关系类型可分为线性回归分析非线性回归分析回归分析的概念60102?步骤回归分析的概念1
Contents 内 容
01 回归分析的起源 02 回归分析的概念 03 回归分析的应用
22
01-03 回归分析的应用
想一想 做一做:
已 知 2009 — 2015 年 淘 宝 “ 双 11 ” 当天销量统计如图所示,请利用散 点图进行回归分析,模拟淘宝“双 11 ” 的 销 量 变 化 规 律 , 并 预 测 2016年的销量。
23
01-03 回归分析的应用
两种回归分析工具使用总结: • 利用回归分析工具进行线性回归的优缺点如下: ① 优点:可以进行一元线性回归,也可以进行多元线性回归。 ② 缺点:只能进行线性回归,不能直接进行非线性回归。 • 利用散点图和趋势线进行回归分析的优缺点如下: ① 优点:不仅能进行线性回归,还能进行非线性回归。 ② 缺点:只能进行一元回归,不能进行多元回归。

第十二章 回归分析

第十二章 回归分析
第十二章 回归分析
回归分析
如果我们将存在相关的两个变量,一个作为自变 量,另一个作为因变量,并把两者之间不十分稳 定的、准确的关系,用数学方程式来表达,则可 利用该方程由自变量的值来估计、预测因变量的 估计值,这一过程称为回归分析。 相关表示两个变量之间的双向相互关系,回归表 示一个变量随另一个变量做不同程度变化的单向 关系。
• 线性回归的基本假设
– – – – 线性关系 正态分布 独立性假设 误差等分散性假设
• 回归方程的建立
– 步骤:1)作散点图;2)设直线方程;3)选定具体方 法,计算表达式中的a和b;4)将a和b代入表达式,得 到回归方程。 – 方法:1)平均数法;2)最小二乘法。 • 最小二乘法:在配置回归线时,回归系数b的确定原则是 使散布图上各点距回归线上相应点的纵向距离平方和为最 小,这种求b的方法即最小二乘法。
• 回归分析与相关分析的关系
– 理解: • 同属相关分析; • 对称设计与不对称设计。 – 回归系数与相关系数的关系 • 相关系数是两个回归系数的几何平均数。
第二节 一元线性回归方程的检验
• 估计误差的标准差
某一X值相对应的诸Y 值,是以Y的平均数YX 为中 ˆ 心呈正态分布的。而与某一X值相对应的回归值 Y 就是与该X值相对应的那些诸Y值的平均数YX的估 ˆ 计值。由 Y 估计YX 会有一定的误差。误差大小 与X值相对应的诸Y值分布范围有关,范围大,误 差大,估计的准确性、可靠性小,范围小,误差小, 估计的准确性、可靠性大。 ˆ 我们需要一个用来描述由Y 估计YX 时误差大小的 指标,即估计误差的标准差。平均数与标准差未知, 样本的无偏估计量为:

a YX Y bYX X
• 列回归方程式(见教材)

第十二章 简单回归分析

第十二章 简单回归分析

第十二章简单回归分析习题一、是非题1.直线回归反映两变量间的依存关系,而直线相关反映两变量间的相互线性伴随变化关系.2.对同一组资料,如相关分析算出的r越大,则回归分析算出的b值也越大. 3.对同一组资料,对r与b分别作假设检验,可得t r=t b4.利用直线回归估计X值所对应的Y值的均数置信区间时,增大残差标准差可以减小区间长度.5.如果直线相关系数r=0,则直线回归的SS残差必等于0.二、选择题1. 用最小二乘法确定直线回归方程的原则是各观察点距直线的( ).A.纵向距离之和最小 B. 纵向距离的平方和最小C. 垂直距离之和最小D.垂直距离的平方和最小E.纵向距离的平方和最大2.Y=14十4X是1~7岁儿童以年龄(岁)估计体质量(市斤)的回归方程,若体质量换成位kg,则此方程( )A 截距改变B 回归系数改变C 两者都改变D 两者都不改变E.相关系数改变4.直线回归系数假设检验,其自由度为( )A.n B. n-1C.n-2 D. 2n-1E.2(n-1)5.当r=0时,Y=a+b X回归方程中( )A a必大于零B a必大于XC a必等于零D a必大于YE a必等于b6.在多元线性回归分析中,反应变量总离均差平方和可以分解为两部分,残差是指( ).A.观察值与估计值之差B.观察值与平均值之差C.估计值与平均值的平方和之差D.观察值与平均值之差的平方和E.观察值与估计值之差的平方和三、筒答题1.用什么方法考察回归直线是否正确?2.简述回归系数方差分析Y的平方和与自由度的分解.3. 举例说明如何用直线回归方程进行预测和控制?4. 直线回归分析时怎样确定自变量和因变量?5. 简述曲线回归常用的几种曲线形式.。

线性回归分析

线性回归分析

线性回归分析线性回归分析是一种统计学方法,用于建立一个自变量和一个或多个因变量之间的线性关系模型。

它是一种常用的预测和解释性方法,在实际问题的应用广泛。

首先,线性回归分析的基本原理是通过找到最佳拟合直线来描述自变量和因变量之间的关系。

这条直线可以用一元线性回归方程 y =β0 + β1*x 表示,其中y是因变量,x是自变量,β0和β1是回归系数。

通过确定最佳拟合直线,我们可以预测因变量的值,并了解自变量对因变量的影响程度。

其次,线性回归分析需要满足一些假设前提。

首先,自变量和因变量之间呈线性关系。

其次,误差项满足正态分布。

最后,自变量之间不具有多重共线性。

如果这些假设得到满足,线性回归模型的结果将更加可靠和准确。

线性回归分析的步骤通常包括数据收集、模型设定、模型估计和模型检验。

在数据收集阶段,我们要搜集并整理相关的自变量和因变量数据。

在模型设定阶段,我们根据问题的需求选择适当的自变量,并建立线性回归模型。

在模型估计阶段,我们使用最小二乘法来估计回归系数,并得到最佳拟合直线。

在模型检验阶段,我们通过检验回归方程的显著性和模型的拟合程度来评估模型的质量。

通过线性回归分析,我们可以进行预测和解释。

在预测方面,我们可以利用回归模型对新的自变量数据进行预测,从而得到相应的因变量值。

这对于市场预测、销售预测等具有重要意义。

在解释方面,线性回归分析可以帮助我们了解自变量对因变量的影响程度。

通过回归系数的大小和正负,我们可以判断自变量对因变量的正向或负向影响,并量化这种影响的大小。

线性回归分析在许多领域都有广泛的应用。

在经济学中,线性回归模型被用于解释经济变量之间的关系,如GDP与失业率的关系。

在医学领域,线性回归模型可以用于预测患者的疾病风险,如心脏病与吸烟的关系。

在工程领域,线性回归模型可以用于预测材料的强度与温度的关系。

总之,线性回归分析在实践中具有广泛的应用价值。

然而,线性回归分析也存在一些局限性。

首先,线性回归模型只能处理线性关系,对于非线性关系的建模效果不佳。

线性回归分析

线性回归分析

线性回归分析线性回归是一种广泛应用于统计学和机器学习的分析方法,用于建立和预测两个变量之间的线性关系。

它可以帮助我们理解变量之间的相互作用和影响,并进行未来的预测。

本文将介绍线性回归的基本原理、模型建立过程和一些应用实例。

一、线性回归的基本原理线性回归的目标是通过一条直线(或超平面)来拟合数据点,使得预测值和实际观测值之间的误差最小。

这条直线的方程可以表示为:y=β0+β1*x+ε,其中y是因变量,x是自变量,β0和β1是回归系数,ε是误差项。

线性回归的核心假设是,自变量x和因变量y之间存在线性关系,并且误差项ε服从正态分布。

在此基础上,线性回归通过最小二乘法来估计回归系数β0和β1的值,使得预测值和实际值的误差平方和最小。

二、线性回归的模型建立过程1.数据准备:收集包含自变量和因变量的样本数据,确保数据的质量和准确性。

2.模型选择:根据自变量和因变量之间的性质和关系,选择合适的线性回归模型。

3.模型拟合:使用最小二乘法来估计回归系数β0和β1的值,计算出拟合直线的方程。

4.模型评估:通过误差分析、残差分析等方法来评估模型的拟合效果和预测能力。

5.模型应用:利用已建立的模型进行预测和推断,帮助决策和预测未来的结果。

三、线性回归的应用实例线性回归可以应用于各个领域和实际问题中,下面以几个典型的实例来说明其应用:1.经济学:通过分析自变量(如GDP、通货膨胀率)对因变量(如消费水平、投资额)的影响,可以建立GDP与消费的线性回归模型,预测未来消费水平。

2.市场营销:通过分析广告投入与销售额之间的关系,可以建立销售额与广告投入的线性回归模型,帮助制定广告投放策略。

3.医学研究:通过收集患者的生理指标(如血压、血糖水平)和疾病状况,可以建立生理指标与疾病发展程度的线性回归模型,帮助疾病诊断和治疗。

4.金融风险管理:通过分析利率、汇率等宏观经济变量与企业盈利、股价波动之间的关系,可以建立风险预警模型,帮助企业进行风险控制和决策。

统计学第六版贾俊平12章多元线性回归

统计学第六版贾俊平12章多元线性回归

二元回归方程的直观解释
二元线性回归模型
回归面
y
y b0 b1x1 b2x2
(观察到的y)
} b0
i
x2
(x1,x2)
x1
E( y) b0 b1x1 b2x2
估计的多元回归方程
估计的多元回归的方程
(estimated multiple regression equation)
12.1 多元线性回归模型
一 多元回归模型与回归方程 二 估计的多元回归方程 三 参数的最小二乘估计
多元回归模型与回归方程
多元回归模型
(multiple regression model)
1. 一个因变量与两个及两个以上自变量的回归
2. 描述因变量 y 如何依赖于自变量 x1 , x2 ,…, xp 和误差项 的方程,称为多元回归模型
2. 如果出现下列情况,暗示存在多重共线性
模型中各对自变量之间显著相关。 当模型的线性关系检验(F检验)显著时,几乎所有回
归系数的t检验却不显著 回归系数的正负号与其的相反。
Excel 输出结果的分析
多重共线性
(例题分析)
【例】判别各自变量之间是否存在多重共线性
贷款余额、应收贷款、贷款项目、固定资产投资额之间的相关矩阵
1. 用样本统计量 bˆ0 , bˆ1 , bˆ2 , , bˆ p 估计回归方 程中的 参数 b0 , b1 , b2 , , b p 时得到的方程
2. 由最小二乘法求得 3. 一般形式为
yˆ bˆ0 bˆ1x1 bˆ2x2 bˆpxp
▪ bˆ0 , bˆ1 , bˆ2 , , bˆ p是 b0 , b1 , b2 , , b p

线性回归方程分析

线性回归方程分析

线性回归方程分析线性回归是一种常见的统计分析方法,用于分析自变量与因变量之间的线性关系。

线性回归方程是根据样本数据拟合出来的直线方程,可以预测因变量的值。

在本文中,我们将详细介绍线性回归方程的分析方法。

首先,线性回归方程的一般形式为:y = ax + b,在这个方程中,x是自变量,y是因变量,a和b是回归系数。

线性回归试图找到最佳的a和b,使得通过这个方程预测出来的y值与实际观测值之间的差距最小。

1.收集数据:首先,需要收集一组自变量和因变量的观测数据。

2.描述数据:对于自变量和因变量的观测数据,可以用散点图来描述它们之间的关系。

散点图可以帮助我们观察到数据的分布和趋势。

3.拟合直线:根据收集的数据,我们可以使用最小二乘法来拟合一条直线。

最小二乘法的目标是最小化观测值与拟合值之间的差距的平方和。

通过最小二乘法,可以计算出最佳的回归系数a和b。

4.解读回归系数:得到最佳的回归系数后,我们需要解读它们的意义。

回归系数a表示因变量y随着自变量x的增加而增加或减少的程度。

回归系数b表示当自变量x为0时,因变量y的预测值。

5.评估模型:评估模型的好坏可以使用多个指标,如R方值、均方根误差等。

R方值是用来评估回归方程的解释力度,取值范围从0到1,越接近1表示模型拟合得越好。

均方根误差是用来评估预测值与观测值的偏差程度,值越小表示模型拟合得越好。

6.预测新值:拟合好的线性回归方程可以用于预测新的自变量对应的因变量的值。

通过将新的自变量代入回归方程中,可以计算出预测的因变量值。

线性回归方程的分析方法既适用于简单线性回归,也适用于多元线性回归。

在多元线性回归中,自变量可以有多个,并且回归方程的形式变为:y = a1x1 + a2x2 + ... + anxn + b。

多元线性回归的分析过程与简单线性回归类似,只是需要考虑多个自变量的影响。

线性回归方程的分析方法在实际应用中得到了广泛的应用,特别是在经济学、金融学、社会科学等领域。

线性回归分析

线性回归分析

线性回归分析随着社会的发展,经济体制的改革,经济管理人员迫切需要了解到投资项目或者是工程项目的影响因素,这些对投资项目具有直接或间接的影响,通过各种各样的经济分析和技术分析方法来进行综合评价。

为了使我国在日趋激烈的竞争中立于不败之地,必须注重微观管理的决策水平,强化管理手段,而其中最有效的手段之一就是运用线性回归分析方法来确定最优方案。

线性回归分析就是根据两个或多个随机变量X、 Y的相关关系,将X的值代入一个参数方程,求出解,再利用参数的数值判断该方程能否描述这两个变量之间的关系。

线性回归分析的主要作用在于:第一,判断两个随机变量是否线性相关;第二,确定参数;第三,检验假设。

一、线性回归分析方法的介绍回归分析是数理统计的基础,它可以确定被试某种因素和某些指标之间的函数关系,也可以确定一组指标与另一组指标之间的函数关系。

一般我们常用的是线性回归分析。

线性回归分析,也称为“回归”,是数学统计学的一个基本概念。

所谓线性回归,就是依照“自变量”与“因变量”的关系,运用数学公式,将自变量的变化,导致因变量的变化,用回归方程描绘出来。

回归分析是一门应用性很强的学科,在解决实际问题时,既可以从数学上证明或计算出有关结果,又可以直接利用回归分析的结果加以利用,从而弥补了试验设计的不足。

1、解释变量变量就是要研究的因变量,通过解释变量来解释自变量的变化。

2、自变量自变量就是我们要研究的原因变量,即导致投资项目X变化的原因。

3、回归直线通过回归直线将自变量Y与因变量X之间的相互关系表现出来,反映自变量变化情况,并说明因变量X的变化对自变量Y的影响。

4、相关系数相关系数是一种表示自变量与因变量之间关系密切程度的统计量。

在同一时期内,各因素间的相关程度,相关大小的程度用r来表示。

5、 R统计量R统计量是研究对比某两种现象之间的数量关系的统计量。

2、自变量就是我们要研究的原因变量,即导致投资项目X变化的原因。

3、回归直线通过回归直线将自变量Y与因变量X之间的相互关系表现出来,反映自变量变化情况,并说明因变量X的变化对自变量Y的影响。

线性回归分析方法

线性回归分析方法

线性回归分析方法线性回归是一种常用的统计分析方法,用于研究自变量与因变量之间的线性关系。

本文将介绍线性回归的基本原理、模型假设、参数估计方法以及结果解释等内容,帮助读者更好地理解和应用线性回归分析方法。

一、线性回归的基本原理线性回归假设自变量和因变量之间存在线性关系,通过拟合一个线性方程来描述这种关系。

假设我们有一个因变量Y和一个自变量X,线性回归模型可以表示为:Y = β0 + β1X + ε其中,β0是截距,β1是自变量的回归系数,ε是误差项,表示模型无法完全解释的因素。

线性回归的目标是找到最佳的回归系数,使得预测值与真实值之间的误差最小化。

二、线性回归的模型假设在线性回归分析中,有几个关键的假设前提需要满足:1. 线性关系假设:自变量和因变量之间的关系是线性的。

2. 独立性假设:观测样本之间是相互独立的,误差项之间也是独立的。

3. 同方差性假设:误差项具有相同的方差,即误差项的方差在不同的自变量取值下是恒定的。

4. 正态性假设:误差项服从正态分布。

如果以上假设不满足,可能会导致线性回归分析的结果不可靠。

三、线性回归的参数估计方法线性回归的参数估计方法通常使用最小二乘法(Ordinary Least Squares, OLS)来确定回归系数。

最小二乘法的思想是通过最小化观测值与估计值之间的残差平方和来拟合回归模型。

具体而言,我们可以通过以下步骤来估计回归系数:1. 计算自变量X和因变量Y的均值。

2. 计算自变量X和因变量Y与其均值的差。

3. 计算X与Y的差乘积的均值。

4. 计算X的差的平方的均值。

5. 计算回归系数β1和β0。

四、线性回归模型的结果解释线性回归模型的结果可以用来解释自变量对因变量的影响程度以及回归系数的显著性。

通常我们会关注以下几个指标:1. 回归系数:回归系数β1表示自变量X单位变化时,因变量Y的平均变化量。

回归系数β0表示当自变量X为零时,因变量Y的平均值。

2. R平方:R平方是衡量模型拟合优度的指标,它表示因变量Y的变异中有多少百分比可以由自变量X来解释。

第十二章 回归分析预测法

第十二章 回归分析预测法

全面分析影响预测对象的相关因素, 全面分析影响预测对象的相关因素,确定自变量 1、首先对所有影响因素进行分析 2、比较相关因素,找出最主要的影响因素 比较相关因素, 选择回归预测模型, 选择回归预测模型,确定模型参数 实际预测 检验预测模型和预测结果的可靠性程度
三、随机误差项的影响因素
人们的随机行为 回归模型中 省略的变量
回归分析预测法 从各种经济现象之间的相关关系出发, 从各种经济现象之间的相关关系出发, 通过对与预测对象有联系的现象变动趋势的 分析, 分析,推算预测对象未来状态数量表现的一 种预测法。 种预测法。
回归分析预测法的基本步骤 (一)根据预测的目的,选择确定自变量和 根据预测的目的, 因变量 (二)收集历史统计资料 分析.计算并建立回归 (二)收集历史统计资料,分析.计算并建立回归 收集历史统计资料,分析 预测模型 (三)进行相关分析 (四)检验回归预测模型 计算预测误差 检验回归预测模型,计算预测误差 回归预测模型 (五)计算并确定预测值
回归模型 定义:
回归分析是对具有相关关系的变量之间的 数量变化规律进行测定, 数量变化规律进行测定,研究某一随机变量 因变量)与其他一个或几个普通变量( (因变量)与其他一个或几个普通变量(自变 之间的数量变动关系, 量)之间的数量变动关系,并据此对因变量进 行估计和预测的分析方法。 行估计和预测的分析方法。由回归分析求出的 关系式, 关系式,称为回归模型
P( − t α < t < t α ) = 1 − α
2 2

P( −t α <
2
ɵ βi − βi sβɵ
i
i
< tα ) = 1− α
2
ɵ ɵ P ( βi − t α × sβɵ < βi < βi + t α × sβɵ ) = 1 − α
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

回归是回归分析中最基本、最简单的一种,
回归方程
一、直线回归方程的一般表达式为
ˆ a bX Y

(12 1)
ˆ Y 为各X处Y的总体均数的估计。
回归方程的应用
一、线性回归的主要用途 1.研究因素间的依存关系 自变量和应变 量之间是否存在线性关系,即研究一个或多个 自变量对应变量的作用,或者应变量依赖自变 量变化而变化的规律。
否存在实际意义。 3.两变量间存在直线关系时,不一定
表明彼此之间就存在因果关系。
4.建立回归方程后,须对回归系数
进行假设检验。
5. 使用回归方程进行估计与预测时,
一般只适用于原来的观测范围,即自变量
的取值范围,不能随意将范围扩大。
6. 在线性回归分析时,要注意远离
群体的极端值对回归效果的影响。
表12-1 12只大白鼠的进食量(g)与体重增加量(g)测量结果
序号 (1) 1 2 3 4 5 6 7 8 9 10 11 12 合计
X 进食量(g)
(2) 305.7 188.6 277.2 364.8 285.3 244.7 255.9 149.8 268.9 247.6 168.8 200.6 2957.9 (Σ X)
目前,“回归”已成为表示变量 之间某种数量依存关系的统计学术语, 并且衍生出“回归方程”“回归系数”
等统计学概念。如研究糖尿病人血糖
与其胰岛素水平的关系,研究儿童年 龄与体重的关系等。
两相关变量的散点图
一、直线回归的概念
目的:研究应变量Y对自变量X的数量依 存关系。
特点:统计关系。 X值和Y的均数的关系,
不同于一般数学上的X 和Y的函数 关系。
为了直观地说明两相关变量的线性 依存关系,用表12-1第(2)、(3)
列中大白鼠的进食量和体重增加量
的数据在坐标纸上描点,得图12-1所
示的散点图(scatter plot)。
例12-1 用某饲料喂养12只大白鼠, 得出大白鼠的进食量与体重增加量 如表12-1,试绘制其散点图。
(4) 93452.49 35569.96 76839.84 133079.04 81396.09 59878.09 65484.81 22440.04 72307.21 61305.76 28493.44 40240.36 770487.13 2
(5) 556.96 216.09 368.64 767.29 357.21 259.21 295.84 166.41 334.89 313.29 187.69 243.36 4066.9 2
( X
)
( Y )
30 25 20 15 10 5 130
图 12-1
体重增加量(g),Y
180
230 280 进食量(g),X
330
380
12只大白鼠进食量与体重增重量散点图
在定量描述大白鼠进食量与体重增
加量数量上的依存关系时,习惯上将进
食量作为自变量(independent variable), 用X表示;体重增加量作为应变量
Y 体重增加量(g)
(3) 23.6 14.7 19.2 27.7 18.9 16.1 17.2 12.9 18.3 17.7 13.7 15.6 215.6 (Σ Y)
X
2
Y
2
XY
(6) 7214.52 2772.42 5322.24 10104.96 5392.17 3939.67 4401.48 1932.42 4920.87 4382.52 2312.56 3129.36 55825.2 (Σ XY)
(dependent variable),用Y表示。
由图12-1可见,体重增加量有随进食 但并非12个点都在直线上 ,此与两变量间
严格的直线函数关系不同,称为直线回归
(linear regression) ,其方程叫直线回归方程,以
量增加而增大的趋势,且散点呈直线趋势,
区别严格意义的直线方程。 故又称简单回归。
2.估计与预测 可用易测定的一组给定的 自变量的观测值来推算较难测定的Y值 。 3.统计控制 是利用回归方程进行逆估计, 即应变量Y给出一个确定的值或在一定范围内 波动时,通过控制自变量的取值来实现 。
二、线性回归应用的注意事项
1.在进行直线回归分析之前,应绘制 散点图。
2.作回归分析时,要注意两变量间是
线性回归分析
双变量计量资料:每个个体有两个变量值 总体:无限或有限对变量值 样本:从总体随机抽取的n对变量值
(X1,Y1), (X2,Y2), …, (Xn,Yn)
目的:研究X和Y的数量关系
方法:回归与相关
简单、基本——直线回归、直线相关
历史背景:
英国人类学家 F.Galton首次在《自然遗传》 一书中,提出并阐明了“相关”和“相关系数” 两个概念,为相关论奠定了基础。其后,他和 英国统计学家 Karl Pearson对上千个家庭的身 高、臂长、拃长(伸开大拇指与中指两端的最 大长度)做了测量,发现:
儿子身高(Y,英寸)与父亲身高(X, 英寸)存在线性关系: 。
ˆ 33.73 0.516 X Y也即高个子父代的子代在成年之后的身
高平均来说不是更高,而是稍矮于其父代水 平,而矮个子父代的子代的平均身高不是更 矮,而是稍高于其父代水平。 Galton 将这种 趋向于种族稳定的现象称之“回归”。
相关文档
最新文档