用导数求切线方程(课堂PPT)
3.2导数的计算(27张PPT)

;
(7) y 3 x; 2
例3 :日常生活中的饮用水通常是经过净化的,随着水纯
净度的提高,所需净化费用不断增加。已知1吨水净化
到纯净度为x%时所需费用(单位:元)为:
c(x)= 5284 (80 x 100). 100 x
求净化到下列纯净度时,所需净化费用的瞬时变化率;
(1)90%;
(2)98%.
x
x
f (x) (x2) ' lim y lim 2x x x2 lim (2x x) 2x.
x x0
x0
x
x0
公式三:(x2)' 2x
二、几种常见函数的导数
4) 函数y=f(x)=1/x的导数.
解: y f (x) 1 , x
y f (x x) f (x) 1 1 x x x x (x x)x
y
'
1 x2
探究:
表示y=C图象上每一点处的切线 斜率都为0
表示y=x图象上每一点处的切线 斜率都为1
这又说明什么?
这又说明什么?
画出函数y=1/x的图像。根据图像, 描述它的变化情况。并求出曲线在 点(1,1)处的切线方程。
x+y-2=0
3.2.2基本初等函数 的导数公式及导数 的运算法则
高二数学 选修1-1
y f (x x) f (x) C C 0,
y 0, x
f (x) C lim y 0. x0 x
公式一:C 0 (C为常数)
二、几种常见函数的导数
2) 函数y=f(x)=x的导数. 解: y f (x) x,
y f (x x) f (x) (x x) x x,
(1) c '(90) 5284 52.84 (100 90)2
1.1.3导数的几何意义课件共35张PPT

(3)设切点为(a,b),则 y′|x=a=a2=1, ∴a=±1, 当 a=1 时,b=53,切点为1,53, 当 a=-1 时,b=1,切点为(-1,1), ∴切线方程为 3x-3y+2=0 或 x-y+2=0. ………………………………………………………………………………12 分
[反思提升] (1)求“在某点处”的切线:该点必在曲线上且是切点,而求“过某 点”的切线该点不一定在曲线上,且该点不一定是切点. (2)求“过某点”的切线方程的步骤 ①设“过某点”的切线 l 与曲线相切的切点坐标为(x0,y0). ②用“在点(x0,y0)处”的切线求法,写出切线 l 的方程. ③利用切线“过某点”,其坐标满足切线方程,求出 x0 与 y0. ④将(x0,y0)代入②中的切线 l 化简即求出“过某点”的切线方程. (3)求“过某点”的曲线的切线方程中,该点在曲线上时,所求点的切线中一定包 括“在该点”处曲线的切线.
∴曲线 y=1x在点(1,1)处的切线方程为 y-1=-(x-1),即 y=-x+2. 曲线 y=x2 在点(1,1)处的切线斜率为
f′(1)=liΔmx→0 1+ΔΔxx2-12=liΔmx→0 2Δx+ΔxΔx2=liΔmx→0 (2+Δx)=2, ∴曲线 y=x2 在点(1,1)处的切线方程为 y-1=2(x-1),即 y= 2x-1. 两条切线方程 y=-x+2 和 y=2x-1 与 x 轴所围成的图形如图 所示, ∴S=12×1×2-12=34,即三角形的面积为34.
导数几何意义应用问题的解题策略: (1)导数几何意义的应用问题往往涉及解析几何的相关知识,如直线斜率与方 程以及直线间的位置关系等,因此要综合应用所学知识解题. (2)解题的关键是函数在某点处的导数,已知切点可以求斜率,已知斜率也可 以求切点,切点的坐标是常设的未知量. (3)一定要区分曲线 y=f(x)在点 P(x0,f(x0))处的切线与过点 P(x0,f(x0))的切线 的不同,前者 P 为切点,后者 P 不一定为切点.
导数的应用曲线的切线和法线问题

导数的应用曲线的切线和法线问题在微积分中,导数是一个重要的概念,它描述了函数在某一点上的变化率。
除了用来求函数的极值和变化趋势外,导数还可以应用于曲线的切线和法线问题。
本文将探讨导数在曲线切线和法线问题上的应用。
一、曲线的切线问题对于给定的曲线,我们可以通过求取该曲线上某一点的导数来确定该点处的切线。
具体的步骤如下:1. 确定曲线上的某一点P(x₀, y₀)。
2. 求取该点的导数dy/dx。
3. 使用点斜式或一般式求取与该点所在切线平行的直线方程。
4. 得到切线的方程。
举例来说,如果我们有一个曲线的方程为y = 2x² + 3x - 4,那么可以依次进行如下步骤来求取曲线在某一点上的切线:1. 确定点P(x₀, y₀)的坐标,假设为P(2, 7)。
2. 求取该点的导数dy/dx,对于曲线y = 2x² + 3x - 4,求导得到dy/dx = 4x + 3。
3. 使用点斜式求取切线的方程,将点P的坐标和导数dy/dx的值代入点斜式方程y - y₀ = m(x - x₀),得到y - 7 = (4(2) + 3)(x - 2)。
4. 化简方程,得到切线的方程y = 8x - 9。
通过这个例子可以看出,求取曲线切线的关键是求取点的导数,然后利用切线方程将导数与点的坐标结合,得到切线的方程。
二、曲线的法线问题曲线的法线是与该曲线在某一点处相切,垂直于切线的直线。
求取曲线的法线同样可以通过求取该点的导数来完成。
具体的步骤如下:1. 确定曲线上的某一点P(x₀, y₀)。
2. 求取该点的导数dy/dx,并计算其倒数k。
3. 求取法线的斜率nk = -1/k。
4. 使用点斜式求取法线方程。
5. 得到法线的方程。
和曲线的切线问题类似,求取曲线的法线也需要先求取点的导数,然后计算导数的倒数作为法线的斜率。
三、综合案例考虑一个具体的综合案例,假设我们有一个函数f(x) = x³ + 2x²- 3x + 1,我们希望求取该函数在 x = 2 处的切线和法线。
求切线方程

评:“过某点”与“在某点处”的不同.故审题应细.
练习、已知曲线C:y=x3-x+2和点A(1,2), 求在点A处的切线方程?
变式:求过点A的切线方程?
求曲线的切线方程
迟玉弟
导数的几何意义
函数y=f(x)在x=x0处的导数f′(x0)就 是曲线y=f(x)在点(x0,f(x0))处的切 线的斜率,即k=f′(x0).
f ( x) x3 例、已知曲线方程
(1)求曲线在(1,1)处的切线方程; (2)求(1)中切线Байду номын сангаас曲线是否有其他公共点; (3)变式过点(-2,-8)的切线方程。
(1)3x-y-2=0 (2)联立方程解得公共点(1,1)(-2,-8)
说明切线与曲线的公共点除了切点还可以有另外的点
分析:由(2)知(-2,-8)不一定为切点,我们可 以设出切点,求出切点处斜率,利用切点和斜率写出 点斜式方程,将点(-2,-8)代入方程得到切点的值, 再求切线。 解:设切点为(a, a 3)
导数的应用切线与极值问题

导数的应用切线与极值问题导数的应用:切线与极值问题导数是微积分中的重要概念,它在各个科学领域中都有着广泛的应用。
其中,切线与极值问题是导数应用的两个常见问题。
本文将探讨如何使用导数解决切线和极值问题,并通过实例解释其应用。
一、切线问题切线是曲线上某一点处与该点相切的直线。
通过导数,我们可以确定曲线上某点的切线方程。
设曲线方程为y=f(x),点P(x,y)处的切线斜率k即为函数f(x)在该点的导数,即k=f'(x)。
例子1:求曲线y=x^2+2x+1在点P(1,4)处的切线方程。
解:首先求导数:f'(x)=(x^2+2x+1)'=2x+2。
然后求点P(1,4)处的斜率:k=f'(1)=2(1)+2=4。
由切线斜率和点可确定切线方程,即y-4=4(x-1)。
将其化简,得到切线方程为y=4x。
二、极值问题在求解极值问题时,我们可以利用导数为0的点来确定函数的最大值或最小值。
设函数f(x)在[a,b]区间上连续且在区间内可导,若f'(c)=0且c∈(a,b),则c称为f(x)在[a,b]上的临界点。
临界点和区间端点都有可能是函数的极值点。
例子2:求函数f(x)=x^3-3x^2的极小值。
解:首先求导数:f'(x)=(x^3-3x^2)'=3x^2-6x。
然后求导函数的临界点:3x^2-6x=0。
化简得到x(x-2)=0,解得x=0或x=2。
接下来,我们通过判断临界点和区间端点的函数值来确定极小值。
计算f(0)=-0、f(2)=-4,因此f(x)=x^3-3x^2的极小值为-4,在x=2处取得。
综上,我们通过求解导数和判断临界点来确定函数的极值。
三、切线和极值问题的应用切线问题和极值问题在实际应用中有着广泛的运用。
例子3:一辆汽车在某段时间内行驶的路程和时间的关系如图所示。
求该段时间内汽车的平均速度,以及汽车行驶的最快和最慢速度。
图表:时间(小时) 0 2 4 6 8 10路程(公里)***********解:我们可以通过导数来求解这个问题。
专题2.12 导数的切线方程(解析版)

第十二讲 导数的切线方程1. 导数的几何意义:切线的斜率2. 求斜率的方法(1)公式:/12012tan ()y y k f x x x α-===- 0απ为直线的倾斜角,范围[0,),x 是切点的横坐标(2)当直线l 1、l 2的斜率都存在时:1212l l k k ⇔=,12120l l k k ⊥⇔•=3. 切线方程的求法(1)求出直线的斜率(2)求出直线上的一点或切点(3)利用点斜式00()y y k x x -=-写出直线方程。
考向一 斜率(或倾斜角)与切点互求【例1】(1)曲线y =13x 3在x =1处切线的倾斜角为 。
(2)设函数()ln f x x x =,若0()2f x '=,则0x =______________.【答案】(1)π4.(2)e 【解析】(1)∵y ′=x 2,∴y ′|x =1=1,∴切线的倾斜角α满足tan α=1,∵0≤α<π,∴α=π4. (3)由题意得()ln 1f x x '=+,又00()ln 12f x x '=+=,解得0e x =.【举一反三】1.已知在曲线2y x =上过点00(),P x y 的切线为l .(1)若切线l 平行于直线45y x =-,求点P 的坐标;(2)若切线l 垂直于直线2650x y -+=,求点P 的坐标;(3)若切线l 的倾斜角为135︒,求点P 的坐标.【答案】(1)(2,4);(2)39(,)24-;(3)11(,)24-.【解析】(1)两条直线平行斜率相等,2x 0=4,x 0=2,代入曲线y 0=4,切点P (2,4)(2)直线直线垂直,斜率相乘等于- 1.0000139392x =-1,x =-,将x 代入曲线y =,故P (-,)32424(3)因为切线l 的倾斜角为135︒,所以其斜率为1-.即021x =-,得012x =-,014y =,故11(,)24P -.考向二 在某点处求切线方程【例2】设函数f (x )=x ln x ,则点(1,0)处的切线方程是________.【解析】因为f ′(x )=ln x +1,所以f ′(1)=1,所以切线方程为x -y -1=0.【答案】x -y -1=0【举一反三】1.函数f (x )=e x cos x 在点(0,f (0))处的切线方程为 。
考点49 利用导数求切线方程(讲解)(解析版)

考点49:利用导数求切线方程【思维导图】【常见考法】考点一:求切线的斜率或倾斜角1.曲线1x y xe -=在点(1,1)处切线的斜率等于 . 【答案】2【解析】由1x y xe -=,得,故,故切线的斜率为.2.点P在曲线y =α为曲线在点P 处的切线的倾斜角,则α的取值范围为 . 【答案】2,3ππ⎡⎫⎪⎢⎣⎭【解析】根据题意可知:''1xy e ==+⎝⎭ 则()()()221111'111x xxx e y e e e ⎫+-⎪=-=-⎪+++⎝⎭令()1,0,11x t t e =∈+所以)()2',0,1y t t t =-∈可知)'y ⎡∈⎣ 曲线在点P 处的切线的斜率范围为)⎡⎣,所以)tan α⎡∈⎣故2,3παπ⎡⎫∈⎪⎢⎣⎭3.已知函数()()21,.f x g x xx==若直线l 与曲线()f x ,()g x 都相切,则直线l的斜率为 . 【答案】4-【解析】设直线l 的斜率为k ,则()21'k f x x ==-,解得x =,切点为⎛⎝;且()'2kg x x ==,解得2kx =,切点为2,24k k ⎛⎫⎪⎝⎭; 因为l 与曲线()f x ,()g x 都相切,所以2k k +=,解得4k =-.考法二:在某点处求切线方程1.设曲线3ln(1)y x x =-+ 在点(0,0)处的切线方程_________________. 【答案】20x y -=【解析】由题意,函数3ln(1)y x x =-+的导数为131y x '=-+, 可得曲线3ln(1)y x x =-+在点(0,0)处的切线斜率为312-=,即切线的斜率为2, 则曲线在点(0,0)处的切线方程为02(0)y x -=-,即为2y x =,即20x y -=. 故答案为:20x y -=.2.函数3()2ln 2f x x x =-+的图象在1x =处的切线方程为______________________. 【答案】20x y -+=【解析】由题3(1)12ln123f =-+=,又22'()3f x x x=-,故3()2ln 2f x x x =-+在(1,3)处的斜率为2'(1)311f =-=,故在(1,3)处的切线方程为31(1)20y x x y -=⨯-⇒-+= 故答案为:20x y -+= 3.已知函数()2()1xf x x x e =++,则()f x 在(0, (0))f 处的切线方程为 .【答案】210x y -+=【解析】因为()2()32x f x e x x '=++,所以(0)2f '=,又因为(0)1f =,所以切点为(0)1,, 所以曲线()f x 在(0, (0))f 处的切线方程为210x y -+=.4.已知()()221f x x xf '=+,则曲线()y f x =在点()()00f ,处的切线方程为 .【答案】40x y +=【解析】由题:()()221f x x xf =+',所以()()'221f x x f +'=,()()'1221f f =+',所以()'12f =-,所以()24f x x x =-,()24f x x '=-,()00f =,()04f '=-所以切线方程为40x y +=.5.设a 为实数,函数()()322f x x ax a x =++-的导函数是fx ,且fx 是偶函数,则曲线()y f x =在原点处的切线方程为 . 【答案】2y x =-【解析】由()()322f x x ax a x =++-所以()()2'322f x x ax a =++-,又()f x '是偶函数,所以20a =,即0a =所以()2'32f x x =-则()'02f =-,所以曲线()y f x =在原点处的切线方程为2y x =-考法三:过某点求切线方程1.曲线ln y x =过点(0,1)-的切线方程为_________. 【答案】10x y --= 【解析】由题, 1'y x=,设切点为()00,ln x x ,则在切点处的切线斜率为01x ,又切线过点(0,1)-,故0000ln (1)11x x x x --=⇒=.故切点为()1,0. 故切线方程为()101101x y y x -=---=⇒.故答案为:10x y --= 2.求函数()32f x x x x =-+的图象经过原点的切线方程为 . 【答案】0x y -=【解析】由函数()32f x x x x =-+,则()2321f x x x '=-+,所以()01f '=,所以函数()32f x x x x =-+的图象经过原点的切线方程为()010y x -=-,即0x y -=.3.若过原点的直线l 与曲线2ln y x =+相切,则切点的横坐标为 . 【答案】1e【解析】设切点坐标为()00,2ln x x +,由1y x'=,切线方程为00012ln ()y x x x x --=-, 原点坐标代入切线方程,得02ln 1x +=,解得01ex =.4.已知函数()3f x x x =-,则曲线()y f x =过点()1,0的切线条数为 .【答案】2【解析】设切点坐标 3000(,)P x x x -,由()3f x x x =-,得2()31x f x '=-,∴切线斜率2031k x =-,所以过3000(,)P x x x -的切线方程为320000(31)()y x x x x x -+=--,即2300(31)2y x x x =--,切线过点()1,0,故32002310x x -+=,令()32000231h x x x =-+,则()200066h x x x '=-,由()00h x '=,解得00x =或01x =,当0(,0),(2,)x ∈-∞+∞时,()00h x '>,当0(0,2)x ∈时,()00h x '<,所以()0h x 的极大值极小值分别为 h (0)10=>,(1)0h =, 故其图像与x 轴交点2个,也就是切线条数为2.考法四:已知切线求参数1.已知函数()()e xf x x a =+的图象在1x =和1x =-处的切线相互垂直,则a = .【答案】-1 【解析】因为'()(1)xf x x a e =++ ,所以1'(1)(2)'(1)af a e f aee,-=+-==,由题意有(1)'(1)1f f -=- ,所以1a =-.2.已知在曲线()21ax f x x =+在点()()1,1f 处切线的斜率为1,则实数a 的值为 .【答案】43【解析】当0x >时,()()2221ax axf x x +'=+,()11f '=,即314a=,得43a =.. 3.已知函数()ln f x x x ax =+,过点()1,1P 可作两条直线与()f x 的图象相切,则a 的取值范围是 。
用导数求切线方程的四种类型知识讲解

用导数求切线方程的四种类型用导数求切线方程的四种类型浙江 曾安雄求曲线的切线方程是导数的重要应用之一,用导数求切线方程的关键在于求出切点00()P x y ,及斜率,其求法为:设00()P x y ,是曲线()y f x =上的一点,则以P 的切点的切线方程为:000()()y y f x x x '-=-.若曲线()y f x =在点00(())P x f x ,的切线平行于y 轴(即导数不存在)时,由切线定义知,切线方程为0x x =.下面例析四种常见的类型及解法. 类型一:已知切点,求曲线的切线方程此类题较为简单,只须求出曲线的导数()f x ',并代入点斜式方程即可. 例1 曲线3231y x x =-+在点(11)-,处的切线方程为( ) A.34y x =- B.32y x =-+ C.43y x =-+D.45y x =-解:由2()36f x x x '=-则在点(11)-,处斜率(1)3k f '==-,故所求的切线方程为(1)3(1)y x --=--,即32y x =-+,因而选B.类型二:已知斜率,求曲线的切线方程此类题可利用斜率求出切点,再用点斜式方程加以解决.例2 与直线240x y -+=的平行的抛物线2y x =的切线方程是( ) A.230x y -+=B.230x y --=C.210x y -+=D.210x y --=解:设00()P x y ,为切点,则切点的斜率为0022x x y x ='==|.01x =∴.由此得到切点(11),.故切线方程为12(1)y x -=-,即210x y --=,故选D.评注:此题所给的曲线是抛物线,故也可利用∆法加以解决,即设切线方程为2y x b =+,代入2y x =,得220x x b --=,又因为0∆=,得1b =-,故选D.类型三:已知过曲线上一点,求切线方程过曲线上一点的切线,该点未必是切点,故应先设切点,再求切点,即用待定切点法. 例3求过曲线32y x x =-上的点(11)-,的切线方程. 解:设想00()P x y ,为切点,则切线的斜率为02032x x y x ='=-|.∴切线方程为2000(32)()y y x x x -=--.320000(2)(32)()y x x x x x --=--.又知切线过点(11)-,,把它代入上述方程,得3200001(2)(32)(1)x x x x ---=--. 解得01x =,或012x =-.故所求切线方程为(12)(32)(1)y x --=--,或13112842y x ⎛⎫⎛⎫⎛⎫--+=-+ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭,即20x y --=,或5410x y +-=.评注:可以发现直线5410x y +-=并不以(11)-,为切点,实际上是经过了点(11)-,且以1728⎛⎫- ⎪⎝⎭,为切点的直线.这说明过曲线上一点的切线,该点未必是切点,解决此类问题可用待定切点法.类型四:已知过曲线外一点,求切线方程此类题可先设切点,再求切点,即用待定切点法来求解. 例4 求过点(20),且与曲线1y x=相切的直线方程. 解:设00()P x y ,为切点,则切线的斜率为0201x x y x ='=-|. ∴切线方程为00201()y y x x x -=--,即020011()y x x x x -=--. 又已知切线过点(20),,把它代入上述方程,得020011(2)x x x -=--. 解得000111x y x ===,,即20x y +-=. 评注:点(20),实际上是曲线外的一点,但在解答过程中却无需判断它的确切位置,充分反映出待定切点法的高效性.例5 已知函数33y x x =-,过点(016)A ,作曲线()y f x =的切线,求此切线方程.解:曲线方程为33y x x =-,点(016)A ,不在曲线上. 设切点为00()M x y ,,则点M 的坐标满足30003y x x =-. 因200()3(1)f x x '=-,故切线的方程为20003(1)()y y x x x -=--.点(016)A ,在切线上,则有32000016(3)3(1)(0)x x x x --=--. 化简得308x =-,解得02x =-.所以,切点为(22)M --,,切线方程为9160x y -+=.评注:此类题的解题思路是,先判断点A 是否在曲线上,若点A 在曲线上,化为类型一或类型三;若点A 不在曲线上,应先设出切点并求出切点.在初中数学中,曲线的切线没有一般的定义。
利用导数求曲线的切线和公切线知识讲解

利用导数求曲线的切线和公切线一. 求切线方程【例1】.已知曲线f(x)=x 3-2X12+1.(1) 求在点P( 1,0 )处的切线l i的方程;⑵ 求过点Q( 2,1 )与已知曲线f(x)相切的直线丨2的方程.提醒:注意是在某个点处还是过某个点!二. 有关切线的条数【解答】解:(I)由 f (x) =2x3- 3x 得f'( x) =6x2- 3,令f,( x) =0 得, x= - ■-或x= ■-,2 2•- f (-2) =- 10, f (-二)=",f ( = ) =- ", f (1) =- 1,••• f (x)在区间[-2, 1]上的最大值为二.(n)设过点P (1, t)的直线与曲线y=f (x)相切于点(X0, y°),则y o=2・” -3x。
,且切线斜率为k=6 :匚-3,•••切线方程为y-y o= (6:,二-3)(x -x o),••• t - y°= (6 :,二-3)( 1 - x o),即卩4- 6 . F +t+3=0,设g (x) =4x? - 6x?+t+3 , 则“过点P (1, t)存在3条直线与曲线y=f (x)相切”,等价于“ g (x)有3 个不同的零点”.T g'(x) =12x2- 12x=12x (x- 1),•g (0) =t+3是g (x)的极大值,g (1) =t+1是g (x)的极小值.•g (0)> 0 且g (1)v 0,即-3v t v- 1,•当过点过点P (1, t)存在3条直线与曲线y=f (x)相切时,t的取值范围是(-3,- 1).(rn)过点A (- 1, 2)存在3条直线与曲线y=f (x)相切;过点B (2, 10)存在2条直线与曲线y=f (x)相切;过点C (0, 2)存在1条直线与曲线y=f (x)相切.【作业1】.(2017?莆田一模)已知函数 f (x) =2x3- 3x+1, g (x) =kx+1 - Inx .(fM y<1(1)设函数hW二’、,当k v 0时,讨论h (x)零点的个数;g lx)』x^l(2)若过点P (a,- 4)恰有三条直线与曲线y=f (x)相切,求a的取值范围.三. 切线与切线之间的关系【例4】.(2018?绵阳模拟)已知a, b, c€ R,且满足b2+c2=1,如果存在两条互相垂直的直线与函数f (x) =ax+bcosx+csinx的图象都相切,则a+/HW:c 的取值范围是.解:f '(x) = a + b cos x—c sin x = a +c' cos(x + ^?) = a +cos(x + p)令H + e = 则码 + 0 =环巧+e = g. f\x) ~+dtj题意’存在x r x2E R使得厂(xj厂(兀)= T* 0p(a+cos^X fl + cos^)=_l»即关于。
利用导数求切线方程

3
题型二:求曲线过一点的切线方程 例:已知曲线C:f (x) x3 x 2 ,求经
过点 P(1, 2) 的曲线C的切线方程。
思考(1)判断P点 所处的位置? (2)从图像探究, 过该点有几条切线, 如何印证你的探究
答案:2x-y=0或x+4y-9=0
点P是曲线 y x2 ln x上任意一点,则点P 到直线 y x 2 的最小距离是多少?
T 切线
P
o
x
3.基本初等函数的导数公式
原函数 f(x)=c(c为常数) f(x)=xα(α∈Q*)
f(x)=sinx f(x)=cosx
导函数 f′(x)=__0
f′(x)=___α_x_α_-1
f′(x)=_c_o__s_x f′(x)=__-s_i_n_x_
原函数
导函数
f(x)=ax(a>0,且a≠1) f(x)=ex
答案:
求曲线上的点到直线的最小距离。
• 练习:
1.求y xex 2x 1在(0,0)处的切线
3x y 1 0
2.曲线y x2 ax b在(0,b)处的切线方程是
x y 1 0,求a,b
a 1,b 1
已知切线方程为y ex,曲线为f (x) ex ,
求切点坐意义
函数 y f (x) 在x x0 处的导数就是函数
y f (x) 的图像在点 (x0 , f (x0 )) 处的切线的 斜率,即
k f (x0 )
一.曲线的切线
请看当点Q沿着曲线逐渐向点P接近时,割线PQ
绕着点P逐渐转动的情况.
y
y=f(x)
割
线 Q
解:f ' (x) 6x2 3 k f '(1) 3 y 1 3(x 1)3x y 4 0
高考复习第二单元曲线的切线求法

.
类型四:已知过曲线外一点,求切线方程 • 例4
1 0) 且与曲线 y 相切的 求过点 (2, x
直线方程.
1 解:设 P( x0,y0 ) 为切点,则切线的斜率为 y |x x0 2 . x0 1 1 1 y y ( x x ) 2 ( x x0 ) . ∴切线方程为 0 0 ,即 y 2
解:设 P( x0,y0 ) 为切点, 则切点的斜率为 y| . 2 x 2 x x0 0 ∴ x0 1 , 1) . 由此得到切点 (1 故切线方程为 y 1 2( x 1) , 即, 2 x y 1 0 故选D.
x0 1
类型三:已知过曲线上一点,求切线方程
则在(1,-1)点处率 k
即
y 3x 2
,因而选B.
类型二:已知斜率,求曲线的切线方程 • 例2 与直线 2 x y 4 0 平行且与抛物线 2 y x 切线方程是( D ) A. 2 x y 3 0 B. 2x y 3 0 C. 2 x y 1 0 D.2 x y 1 0
A.-e B.-1 C.1 (2)求下列函数的导数:
D. e
e +1 ① y= x ; e -1 1 ③ y= 4; (1-3x)
x
x x ②y=x-sin cos . 2 2 ④y=x 1+x .
2
1 (1)解析 f′(x)=2f′(1)+x, ∴f′(1)=2f′(1)+1,∴f′(1)=-1.
用导数求切线方程的四种类型
• 类型一:已知切点,求曲线的切线方程 3 2 y x 3 x 1 在点 (1, 1) 处的切线 例1 曲线 方程为( B )
A.y=3x-4 B.y=-3x+2 C.y=-4x+3 D.y=4x-5
导数专题:导数与曲线切线问题(6大题型)(解析版)

第1页共14页
导数与曲线切线问题
一、求曲线“在”与“过”某点的切线
1、求曲线“在”某点处的切线方程步骤
第一步(求斜率):求出曲线在点()()00,x f x 处切线的斜率0()
f x '第二步(写方程):用点斜式000()()()
y f x f x x x '-=-第三步(变形式):将点斜式变成一般式。
2、求曲线“过”某点处的切线方程步骤(此类问题的点不一定是切点)
第一步:设切点为()()00,Q x f x ;
第二步:求出函数()y f x =在点0x 处的导数0()f x ';
第三步:利用Q 在曲线上和0()PQ f x k '=,解出0x 及0()f x ';
第四步:根据直线的点斜式方程,得切线方程为000()()()y f x f x x x '-=-.
二、切线条数问题
求曲线的切线条数一般是设出切点()(),t f t ,由已知条件整理出关于t 的方程,把切线问条数问题转化为关于t 的方程的实根个数问题。
三、公切线问题
研究曲线的公切线,一般是分别设出两切点,写出两切线方程,然后再使用这两个方程表示同一条直线,但要注意以下两个方面:
(1)两个曲线有公切线,且切点是同一点;
(2)两个曲线有公切线,但是切点不是同一点。
四、已知切线求参数问题
此类问题常见的考查形式有两种,一是判断符合条件的切线是否存在,二是根据切线满足条件求参数的值或范围。
常用的求解思路是把切线满足条件转化为关于斜率或切点的方程或函数,再根据方程的
根的情况或函数性质去求解。
专题03 导数与切线方程问题(解析版)

整理得 徲
徲 ̐,
曲线存在两条切线,故方程有两个不等实根,即满足
̐
,解得 a>0 或 a<-2,故选:D
【例 3】已知曲线 y 1 ex 在 x 1 处的切线 l 与直线 2x 3y 0 垂直,则实数 a 的值为______. xa
【答案】 2 e 5
【解析】直线 2x 3y 0 的斜率为 - 2 ,可得曲线在 x 1 处的切线为 3 ,
x
1
所以切线方程为 y+2=-1·(x-1),即: x y 1 0 故选:A
【例 3】已知函数
f (x) 的导函数为
f
'(x) ,且满足
f (x) cos x xf
'( ) ,若曲线
y
f (x) 在 x 0 处的
2
切线为 l ,则下列直线中与直线 l 垂直的是( )
A. 2x y 1 0
【例 2】已知函数 죠徲 ̐ 徲 .若曲线 ̐ 죠徲存在两条过죠 点的切线,则 的取值范围是( )
徲
A.죠 ∞ 죠 ∞
B.죠 ∞ 죠 ∞
C.죠 ∞ 죠 ∞
D.죠 ∞ 죠 ∞
【答案】D
【解析】 徲 ̐
,设切点坐标为(徲 徲
徲
徲 ),
则切线方程为 徲 徲 ̐ 죠 徲 죠徲 徲 ,
又切线过点(1,0),可得 徲 徲 ̐ 죠 徲 죠 徲 ,
x2
2y2
1,即标准方程为 x2
y2 1
1,
2
所以有 a2 1, b2 1 ,则 c2 a2 b2 3 ,
2
2
6
所以离心率
e
c
2
6 ,故答案选 B.
a1 2
5.1.2 导数的概念及其几何意义课件ppt

y
y
,即
x
x
=
f(x 0 +x)-f(x 0 )
x
叫做函数y=f(x)从x0到x0+Δx的平均变化率.
(x0+Δx)-x0
名师点析 (1)Δx是自变量的变化量,它可以为正,也可以为负,但不能等于零,
而Δy是相应函数值的变化量,它可以为正,可以为负,也可以等于零.
(2)函数平均变化率的物理意义:如果物体的运动规律是s=s(t),那么函数s(t)
Δ
所以 =-Δx-2x+3.故函数的导数
Δ
Δ
f'(x)= lim
Δ→0 Δ
= (-Δx-2x+3)=-2x+3.
Δ→0
反思感悟 (1)利用定义求函数 y=f(x)的导数的步骤
①求函数值的变化量 Δy=f(x+Δx)-f(x);
Δ
②求函数的平均变化率
Δ
③取极限,得
=
(+Δ)-()
(2)若函数y=f(x)在某区间[x0,x0+Δx]上的平均变化率为0,能不能说明函数值在区
间[x0,x0+Δx]上的函数值都相等?
提示 不能.因为函数在某区间[x0,x0+Δx]上的平均变化率为0只能说明
f(x0+Δx)=f(x0).
(3)函数y=f(x)在区间[x0,x0+Δx]上的平均变化率的几何意义是什么?
它是一个确定的值,与给定的函数及x(或x0)的位置有关,而与Δx无关;导函
数是对一个区间而言的,它是一个确定的函数,依赖于函数本身,也与Δx无
关.
微练习
求函数 y=f(x)= x的导数.
解 函数的导数为
用导数求切线方程精品ppt课件

病原体侵入机体,消弱机体防御机能 ,破坏 机体内 环境的 相对稳 定性, 且在一 定部位 生长繁 殖,引 起不同 程度的 病理生 理过程
1.下列结论正确的个数为
()
①y=ln2,则 y′=1 2
②y=x12,则 y′|x=3=-227
③y=2x,则 y′=2xln2 ④y=lபைடு நூலகம்g2x,则 y′=xl1n2
导数的几何意义:
函 数 f ( x ) 在 x x 0 处 的 导 数 f '( x 0 ) 就 是 :
曲 线 y f ( x ) 在 点 P ( x 0 , f ( x 0 ) ) 处 的 切 线 的 斜 率 。
即k f ' (x0) f( x ) 在 点 P 处 的 切 线 方 程 为
y y 0 f( x 0 ) ( x x 0 )
1.函数 y= 2x2+1的导数为________. 2. 函数 y=ln2x 的导数为________. 3.函数 y=ln(3-2x)的导数为________. 4. y=sin3x 的导数为________.
第一章 导数及其应用
病原体侵入机体,消弱机体防御机能 ,破坏 机体内 环境的 相对稳 定性, 且在一 定部位 生长繁 殖,引 起不同 程度的 病理生 理过程
⑤y
sin y 6
cos 6
第一章 导数及其应用
病原体侵入机体,消弱机体防御机能 ,破坏 机体内 环境的 相对稳 定性, 且在一 定部位 生长繁 殖,引 起不同 程度的 病理生 理过程
1.曲线y=xn在x=2处的导数为12,则n等于( )
A.1
B.2
C.3
D.4
第一章 导数及其应用
病原体侵入机体,消弱机体防御机能 ,破坏 机体内 环境的 相对稳 定性, 且在一 定部位 生长繁 殖,引 起不同 程度的 病理生 理过程
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
类型二:已知斜率,求曲线的切线方程
例2 与直线 2xy40平行的抛物线 y x 2
的切线方程是( )
4
类型三:已知过曲线上一点,求切线方程
例3 求过曲线 y x3 2x 上的点 (1, 1) 的切线方程
过曲线上一点的切线,该点未必是切点,故应
先设切点,再求切点,即用待定切点法.
5
设 P(x0,y0)为切点,则切线的斜率为 y|xx0 3x02 2
即 xy20 或 5x4y10
7
类型四:已知过曲线外一点,求切线方程
例4 求过点 ( 2 ,0 ) 且与曲线 y 1
x
相切的直线方程
8
设 P(x0,y0 )为切点,则切线的斜率为
y |x x0
1 x02
切线方程为
1 y y0 x02 (xx0)
y 1 x0
x102(xx0)源自又知切线过点 ( 2 ,0 ) ,把它代入上述方程,得
1 x0
1 x02
(2 x0)
9
解得
x0
1,y0
1 x0
1
故所求切线方程为 xy20
10
Thank You
11
用导数求切线方程
主讲人:甄玉星
1
四种常见的类型
类型一:已知切点,求曲线的切线方程 类型二:已知斜率,求曲线的切线方程 类型三:已知过曲线上一点,求切线方程 类型四:已知过曲线外一点,求切线方程
2
类型一:已知切点,求曲线的切线方程 例1 曲线 yx3 3x2 1 在点 (1, 1) 处的 切线方程为
切线方程为 yy0(3x022)(xx0)
y (x 0 3 2 x 0 ) (3 x 0 2 2 )(x x 0 )
又知切线过点 (1, 1) ,把它代入上述方程,得 1 (x 0 3 2 x 0) (3 x 0 2 2 )(1 x 0)
6
解得
x0
1
,或
x0
1 2
故所求切线方程为 y(12 )(32 )(x 1 ) 或 y181342x12